unsteady flow modelling and computation franck nicoud university montpellier ii – i3m cnrs umr...

115
UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

Upload: rohan-holladay

Post on 30-Mar-2015

216 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

UNSTEADY FLOW MODELLINGAND COMPUTATION

Franck NicoudUniversity Montpellier II – I3M CNRS UMR 5149

and

CERFACS

Page 2: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 2

MOTIVATION - 1

• CFD of steady flow is now mature

• Many industrial codes available, robust and accurate

• Complex flow physics included: moving geometries, turbulence, combustion, mixing, fluid-X coupling

• But only the averages are computed

Page 3: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 3

MOTIVATION - 2

• Averages are not always enough (instabilities, growth rate, vortex shedding)

• Averages are even not always meaningful

T1 T2>T1

T

time

Oscillating flameT2

T1

Prob(T=Tmean)=0 !!

Page 4: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 4

MOTIVATION - 3

• Some phenomena are unsteady in nature. Ex: turbulence in a channel with ablation

O. Cabrit – CERFACS & UM2

Page 5: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 5

MOTIVATION - 4

• Some phenomena are unsteady in nature. Ex: ignition of an helicopter engine

Y. Sommerer & M. BoileauCERFACS

Page 6: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 6

MOTIVATION - 5

• Some phenomena are unsteady in nature. Ex: thermoacoustic instability - Experiment

D. Durox, T. Schuller, S. Candel – EM2C

Page 7: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 7

MOTIVATION - 6• Some phenomena are unsteady in nature.

Ex: thermoacoustic instability - CFD

P. Schmitt – CERFACS

Page 8: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 8

PARALLEL COMPUTING• www.top500.org – june 2007# Site Computer

1DOE/NNSA/LLNLUnited States

BlueGene/L - eServer Blue Gene SolutionIBM

2Oak Ridge National LaboratoryUnited States

Jaguar - Cray XT4/XT3Cray Inc.

3NNSA/Sandia National LaboratoriesUnited States

Red Storm - Sandia/ Cray Red Storm, Opteron 2.4 GHz dual coreCray Inc.

4IBM Thomas J. Watson Research CenterUnited States

BGW - eServer Blue Gene SolutionIBM

5Stony Brook/BNL, New York Center for Computional SciencesUnited States

New York Blue - eServer Blue Gene SolutionIBM

6DOE/NNSA/LLNLUnited States

ASC Purple - eServer pSeries p5 575 1.9 GHzIBM

7Rensselaer Polytechnic Institute, Computional Center for Nanotechnology InnovationsUnited States

eServer Blue Gene SolutionIBM

8NCSAUnited States

Abe - PowerEdge 1955, 2.33 GHz, InfinibandDell

9Barcelona Supercomputing CenterSpain

MareNostrum - BladeCenter JS21 Cluster, PPC 970, 2.3 GHz, MyrinetIBM

10Leibniz RechenzentrumGermany

HLRB-II - Altix 4700 1.6 GHzSGI

10 0

00 p

roce

ssor

s or

mor

e

Page 9: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 9

PARALLEL COMPUTING

• Large scale unsteady computations require huge computing resources, an efficient codes …

processors

Spe

ed u

p

Page 10: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 10

SOME KEY INGREDIENTS

• Flow physics: – turbulence, combustion modeling, heat loss, radiative transfer,

wall treatment, chemistry, two-phase flow, acoustics/flame coupling, mode interaction, …

• Numerics: – non-dissipative, low dispersion scheme, robustness, linear

stability, non-linear stability, conservativity, high order, unstructured environment, parallel computing, error analysis, …

• Boundary conditions: – characteristic decomposition, turbulence injection, non-reflecting,

pulsating conditions, complex impedance, …

Page 11: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 11

BASIC EQUATIONS reacting, multi-species gaseous mixture

Page 12: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 12

SIMPLER BASIC EQUATIONS• Navier-Stokes equations for a compressible fluid

• Finite speed of propagation of pressure waves

0

i

i

x

u

t

j

ij

iji

j

i

xx

Puu

xt

u

)(

k

kij

i

j

j

iij x

u

x

u

x

u

3

2

rTP

j

j

j

iji

j

ijii

j x

q

x

u

x

PuEu

xt

E

)(

ii x

Tq

Page 13: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 13

SIMPLER BASIC EQUATIONS• Navier-Stokes equations for an incompressible

fluid

• Infinite speed of propagation of pressure waves• Contain turbulence

0

i

i

x

u

j

ij

iji

j

i

xx

Puu

xt

u

)(

i

j

j

iij x

u

x

u

0

Page 14: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 14

Turbulence

Page 15: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 15

Turbulence

Page 16: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 16

TURBULENCE IS EVERYWHERE

Page 17: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 17

TURBULENCE

Leonardo da Vinci

Page 18: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 18

TURBULENCE

The flow regime (laminar vs turbulent) depends on the Reynolds number :

Re Ud

Velocity Length scale

viscosity

Re

laminar turbulent

Page 19: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 19

TURBULENCE

•Turbulence is increasing mixing

–Most often favorable (flames can stay in combustors)

–Some drawbacks (drag, relaminarization techniques…)

Page 20: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 20

TURBULENCE AND CHAOS

ONERAWIND TUNNEL

Page 21: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 21

CHAOS OF THE POOR

]1,1[,21 02

1 vvv tt

66667.0v6667.0 00 versusv

Page 22: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 22

TURBULENCE

• The flow is very sensitive to the initial/boundary conditions. This leads to the impression of chaos, because the tiny details of the operating conditions are never known

• This sensitivity is related to the non-linear (convective) terms

• Need for an academic turbulent case

Page 23: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 23

HOMOGENEOUS ISOTROPIC TURBULENCE

• No boundary

• L-periodic 3D domain

• being any physical quantity

L

L

L 32,ˆ, Z

Let i kx

k

xkk

3213,

1ˆ dxdxdxetL

ik

xkx

t,x

Page 24: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 24

BUDGETS IN HIT

• Spatial averaging

• Momentum

• Turbulent Kinetic Energy (TKE)

0dt

ud i

raten dissipatio TKE :

22

2

2/

i

j

j

ii

x

u

x

u

dt

ud

3213

1)( dxdxdx

Lt x

Page 25: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 25

FLUX OF TKE• For any K>0 and any

• KE of scales larger than 2/K:

• Non linear terms are responsible for the energy transfer from the largest to the smallest scales

3

:

2,ˆ, Z

Let

K

i

kxkk

xkk

j

iji

i

x

uuu

dt

ud

2/

2

t,x

Page 26: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 26

TURBULENCE: A SCENARIO1. The largest scales of the flow are fed in energy (l0)

• Must be done at rate

2. The energy is transferred to smaller and smaller scales (l)• Must be done at rate

3. When scales become small enough (), they become sensitive to the molecular viscosity and are eventually dissipated

• Must occur when:

0

30

l

u

l

u3

1KKu

Page 27: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 27

SCALES IN TURBULENCE

• Kolmogorov scales (the smallest ones)

• Large-to-small scales ratio

• Remark: in CFD, the number of grid points in each direction must follow the same scaling

4/1

4/3

K

4/14/1 Ku

4/30

0 Rl

K

Page 28: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 28

TURBULENCE SPECTRUM

),(),( tutuR jiij rxxr

• Two-point correlation tensor:

• Velocity spectrum tensor

• Energy spectrum: E(k)dk is the kinetic energy contained in the scales whose wave number are between k and k+dk

3

3213)(

)2(

1

R

iijij drdrdreR rkrk

3

321)(R

iijij dkdkdkeR rkkr

kkS

kdSkE ii

radius ofsphere:)(

)()(2

1 k

iiuudkkE2

1)(: thatshows one

0

Page 29: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 29

KOLMOGOROV ASSUMPTION

• After Kolmogorov (1941), there is an inertial zone (l0<<l<<) where E(k) only depends on and l (viz. k).

It follows that:3/53/2)( kCkE K

)(ln kE 3/5k

kln

Page 30: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 30

TURBULENCE SPECTRUM

CHANNEL

ONERA WIND TUNNEL

JET

3/53/2)( kkE Well supported by

the experiments

Page 31: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 31

TURBULENCE IN CFD

• Turbulence is contained in the Navier-Stokes equations

• So it is deterministic

• BUT: because the flow is so sensitive to the (unknown) details of IC and BC, only averages can be predicted, or used for comparison purposes ex: numerical/experimental comparisons

• “simply” resolve the Navier-Stokes equations to obtain turbulence: Direct Numerical Simulation

Page 32: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 32

TURBULENCE IN CFD

Page 33: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 33

TURBULENCE IN CFD

Page 34: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 34

TURBULENCE IN CFD

Page 35: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 35

TURBULENCE IN CFD

Page 36: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 36

DNS OF ISOTROPIC TURBULENCE

Page 37: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 37

DIRECT NUMERICAL SIMULATION OF TURBULENCE

• Solve the Navier-Stokes equations and represent all scales in space and time

• Compute the average, variance, of the unsteady solution

• The main limitation comes from the computer resources required:

– the number of points required scales like– The CPU time scales like

• In many practical applications, the Reynolds number is

large, of order 106 or more

4/90

34/30 RR

30R

Page 38: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 38

THE RANS APPROACH• Ensemble average the (incompressible) Navier-Stokes

equations

• Reynolds decomposition

• Reynolds equations:

• A model for the Reynolds stress is required

0

i

i

x

u

j

ij

ij

jii

xx

P

x

uu

t

u

'iii uuu

0

i

i

x

u j

jiij

ij

jii

x

uu

x

P

x

uu

t

u

''

'' ji uu

Page 39: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 39

DNS vs RANS in a combustor

Modern combustion chamber - TURBOMECA

Multiperforated plateSolid plate Dilution hole

Page 40: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 40

DNS vs RANS in a combustor• RANS: used routinely during

the design process. • Approx. 106 nodes for the

whole geometry

•DNS: used to know more about the flow physics in the multi-perforated plate region•Approx. 106 nodes for only one perforation

Page 41: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 41

THE RANS APPROACH• Intense scientific activity in the ’70, ’80 and ’90 to derive

the ultimate turbulence model. Ex: k-, RSM, k--v2, …

• No general model

• No flow dynamics

• Thanks to increasing available computer resources, unsteady calculations become affordable

Jet of hot gas

RANSDNS

Page 42: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 42

RANS – LES - DNS

• Reynolds-Averaged Navier-Stokes: – Relies on a model to account for the turbulence effects– efficient but not predictive

• Direct Numerical Simulation: – The only model is Navier-Stokes– predictive but not tractable for practical applications

• Large Eddy Simulation: – Relies on a model for the smallest scales, more universal– Resolves the largest scales– Predictive and tractable

Page 43: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 43

Large-Eddy Simulation

Page 44: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 44

RANS – LES - DNS

time

Str

eam

wis

e ve

loci

ty

RANS

DNS LES

Page 45: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 45

Large Eddy Simulation

Wave number

Ene

rgy

spec

trum

« Navier-Stokes » Model

• Formally: replace the average operator by a spatial filtering to obtain the LES equations

GdGttR

ξξxξx 3

3

,,

Page 46: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 46

LES equations

• Assumes small commutation errors

• Filter the incompressible equations to form :

• Sub-grid scale stress tensor to be modeled

0

i

i

x

u j

sgsijij

ij

jii

xx

P

x

uu

t

u

jijisgsij uuuu

NS

Page 47: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 47

The Smagorinsky model

• From dimensional consideration, simply assume:

• The Smagorinsky constant is fixed so that the proper dissipation rate is produced, Cs =0.18

ijijssgs SSC 22

i

j

j

iijijsgsij

sgskk

sgsij x

u

x

uSS

2

1 with ,2

3

1

Page 48: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 48

The Smagorinsky model• The sgs dissipation is always

positive

• Very simple to implement, no extra CPU time

• Any mean gradient induces sub-grid scale activity and dissipation, even in 2D !!

• Strong limitation due to its lack of universality. Eg.: in a channel flow, Cs=0.1 should be used

ijijsgsijsgsijm SSS 2

Solid wall

0 and )( because

0but 0

12

SyUU

WV sgs

No laminar-to-turbulent transition possible

Page 49: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 49

The Germano identity• By performing , the following sgs contribution appears

• Let’s apply another filter to these equations

• By performing , one obtains the following equations

• From A and B one obtains

jijisgsij uuuuT

jijisgsij uuuu

NS

NS

jijisgsij uuuu

j

sgsijij

ij

jii

xx

P

x

uu

t

u

j

sgsijij

ij

jii

xx

P

x

uu

t

u

j

sgsijij

ij

jii

x

T

x

P

x

uu

t

u

A

B

jijisgsij

sgsij uuuuT

Page 50: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 50

The dynamic Smagorinsky model• Assume the Smagorinsky model is applied twice

• Assume the same constant can be used and write the Germano identity

ijijijsijsgskk

sgsij SSSC 22

3

1 2

ijijijsijsgskk

sgsij SSSCTT 22

3

1 2

jijisgsij

sgsij uuuuT

jijiijsgskkijijijsij

sgskkijijijs uuuuSSSCTSSSC

3

122

3

122

22

ijsgskk

sgskkijijs TNMC

3

12 Cs dynamically obtained from the solution itself

Page 51: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 51

The dynamic Smagorinsky model• The model constant is obtained in the least mean square sense

• No guaranty that . Good news for the backscattering of energy; Bad news from a numerical point of view.

• In practice on takes

• Must be stabilized by some ad hoc procedure. E.g.: plan, Lagragian or local averaging

• Proper wall behavior

ijij

ijijsgskk

sgskkij

s MM

MTNC

31

2

02 sC

2

Page 52: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 52

• The dynamic procedure is one of the reason for the development of LES in the last 15 years

• It allows to overcome the lack of universality of the Smagorinsky model

• The dynamic procedure can be (has been) applied to other models

E.g.: dynamic determination of the sgs Prandtl number when computing the heat fluxes

• BUT: – it requires some ad hoc procedure to stabilize the computation

– Defining a filter is not an easy task in complex geometries

• A static model with better properties than Smagorinsky ?

The dynamic Smagorinsky model

2

Page 53: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 53

• From the eddy-viscosity assumption, modeling means finding a proper expression for

• The Smagorinsky model reads

• More generally, from dimensional argument

An improved static modelsgsij

sgs

ijijssgs SSC 2 2

12 , with ,, TtOPtOPCmsgs xx

Dynamic procedure

Natural choice

Should depend on the filtered velocity.No necessarily equal to ijij SS2

Page 54: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 54

• A good candidate appears to be based on the traceless symmetric part of the square of the velocity gradient tensor

• Considering its second invariant

1. Involves both the strain and rotation rates

2. Exactly zero for any 2D field

3. Near solid walls, goes asymptotically to zero

Choice of the frequency scale OP

ijkkjiijdij ggg 222

3

1

2

1

Sdij

dij IVSSS 2

2

3

6

1 222222

lijlkjikSijijijij SSIVSSS 22

Page 55: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 55

• The WALE model makes use of the previous invariant to define the sgs viscosity:

1. Proper asymptotic behavior

2. No extra filtering required

3. Simple implementation

The Wall Adapting Local Eddy viscosity model

5.0with , 4/52/5

2/3

2

m

dij

dijijij

dij

dij

msgs CSS

C

0

3

y

sgs yO

Page 56: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 56

Periodic cylindrical tube at bulk Reynolds number 10000

Simple geometry with complex mesh

An academic case

Page 57: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 57

• Close to solid walls, the largest scales are small …

About solid walls

Boundary layer along the x-direction: Vorticity x

- steep velocity profile, Lt ~ y

- Resolution requirement:y+ = O(1), z+ and x+ = O(10) !!

- Number of grid points: O(R2) for wall resolved LES

z

y

x

u

Page 58: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 58

• In the near wall region, the total shear stress is constant. Thus the proper velocity and length scales are based on the wall shear stress w:

• In the case of attached boundary layers, there is an inertial zone where the following universal velocity law is followed

About solid walls

ulu w

25 ,constant" Universal" :

0.4 constant,Karman Von :

,,ln1

.CC

yuy

u

uuCyu

y

u

Page 59: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 59

• A specific wall treatment is required to avoid huge mesh refinement or large errors,

• Use a coarse grid and the log law to impose the proper fluxes at the wall

Wall modeling

u

v12

model32model

yu

Exact velocity gradient at wall

Velocity gradient at wall assessed from a coarse grid

Page 60: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 60

• Coarse grid LES is not LES !!

• Numerical errors are necessary large, even for the mean quantities

• No reliable model available yet

Wall modeling in LES

Log. zone => L = .y

L < y !!for j=1, 2

y+ = O(100)

yyy

yuyu

yy

13ln)2/()2/3(

dy

du

2/11 yyu

2/322 yyu

Page 61: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 61

Numerical schemes for unsteady flows

Page 62: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 62

Classical numerical methods

• Finite elements

• Finite volumes

• Finite differences

Page 63: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 63

• Finite differences are only adapted to Cartesian meshes

• The most intuitive approach

• In 1D, the three methods are equivalent

• Thus the FD are well suited to understand basic phenomena shared by the three methods

A few words about Finite Differences

Page 64: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 64

• Instead of seeking for f(x), only the values of f at the nodes xi are considered. Thus the unknowns are fi=f(xi)

• The basic idea is to replace each partial derivative in the PDE by expressions obtained from Taylor expansions written at node i

i 1i 2i1i2i3i x

ixx

1ix 2ix1ix2ix3ix

A few words about Finite Differences

Page 65: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 65

First spatial derivative• Taylor expansion at node i:

• Only derivatives at node i are involved

i 1i 2i1i2i3i x

312

221

11 2 ii

x

ii

xiiii xxO

dx

fdxx

dx

dfxxff

ii

312

221

11 2 ii

x

ii

xiiii xxO

dx

fdxx

dx

dfxxff

ii

Page 66: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 66

• Defining and

i 1i 2i1i2i3i x

312

221

11 2

i

x

i

xiii O

dx

fd

dx

dfff

ii

32

22

1 2 i

x

i

xiii O

dx

fd

dx

dfff

ii

2

1i

2i

3311

221

2211

21

21 ii

xiiiiiiiiiii Odx

dffff

i

2

11

1222

112

1

Offf

dx

df

iiii

iiiiiii

xi

11 iii xx iii xx 1

First spatial derivative

Page 67: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 67

• If the mesh is uniform then and one recovers the classical FD formula :

• The truncation error is

• Second order centered scheme

x

fffD

dx

df iii

xi

2110

1

)( 2xO

Uniform meshxii 1

Page 68: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 68

Other classical FD formulae

)(1 xOx

ff

dx

df ii

xi

)(2

34 212 xOx

fff

dx

df iii

xi

)(2

34 212 xOx

fff

dx

df iii

xi

)(1 xOx

ff

dx

df ii

xi

)(12

88 42112 xOx

ffff

dx

df iiii

xi

)(60

945459 6321123 xOx

ffffff

dx

df iiiiii

xi

Downwind 1st order

Upwind 1st order

Downwind 2nd order

Upwind 2nd order

Centered 4th order

Centered 6th order

Page 69: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 69

• Consider the convection-diffusion of a passive scalar C(x,t) in a 1D, infinite domain

• Assuming a Gaussian initial condition one can derive the following analytical solution

0),(lim),()0,(, 02

2

0

txCxCxC

x

CD

x

CU

t

Cx

1D convection-diffusion equation

Dta

tUx

Dta

aCtxC

axCxC

2

20

2

2

0

2200

4exp),(

then 4/exp)( if

Page 70: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 70

1D convection-diffusion equation• Diffusion effect

D

aU 0Re

Re

20Re

200Re

2Re

Page 71: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 71

• 1D convection equation (D=0)

• Initial and boundary conditions:

Comparing Schemes

m/s1,m8m2,0 00

Uxx

fU

t

f

m2.0,4/exp)0,( 22 aaxxf 0),8(),2( tftf

s0t s5t

Page 72: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 72

• Semi-discrete equation

• No error associated with the time integration

• Compute the unknown fi between t=0 and t=5s, using different FD formulae

Numerical test

ifFDUdt

dfi

i ,0)(0

i 1i 2i1i2i3i x

ifx

1if 2if1if2if3if

Page 73: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 73

Numerical test

t=5s t=5s t=5st=0 t=0 t=0

Upwind 1st order

Upwind 2nd order

Centered 4th order

Centered 2nd order

400 nodes 200 nodes 100 nodes

Page 74: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 74

Preliminary conclusions• Upwind 1st order has a diffusive behavior …

• The 2nd order centered scheme is virtually exact with 400 nodes. The shape of the signal is strongly modified when only 100 nodes are used

• The 4th order centered scheme is virtually exact even with 100 nodes

• 4th better than the 2nd order; 2nd order better than 1st order

• The two 2nd order schemes behave differently regarding the speed of propagation, the shape of the signal, …

• A scheme cannot be characterized only by its order

Page 75: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 75

Spectral analysis of spatial schemes

Page 76: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 76

Spectral analysis• Consider one single harmonic

• 2nd order centered scheme

• The “error” in the first derivative is

)exp(Re)exp(Re)( jkxjkdx

dfjkxxf

x

ff

dx

dfxjkif ii

xi

i

2,)exp(Re 11

)exp()sin(

Re xjkixk

xkjk

dx

df

ix

xk

xk

)sin(

Page 77: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 77

About the kx parameter

• Consider one harmonic function of period L described with N points

• x = L / N, k = 2/L thus kx = 2/ N

(exact)

0xk4

xk

2

xk xk

Page 78: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 78

Spectral analysis

• The effective equation that is solved is

• Different wavelengths do not propagate at the same velocity

0)sin(

0

x

f

xk

xkU

t

f

2nd order centered exact

Page 79: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 79

• Effective equation 0)(0

x

fxkEU

t

f

SCHEME

2nd order centered

1st order upwind

2nd order upwind

4th order centered

)(Re xkE )(Im xkE

0

0

xk

xk

)sin(

xk

xk

)sin(

xk

xk

1)cos(

)cos(2)sin(

xkxk

xk

xk

xkxk

3)cos(4)2cos(

)cos(43

)sin(xk

xk

xk

))(( 0 txkEUxjkef

Spectral analysis

Page 80: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 80

Spectral analysis

Upwind 1st order

Upwind 2nd order

Centered 4th order

Centered 2nd order

Upwind 2nd order

When kx tends to zero, E(kx) = 1+O((kx)n), with n the scheme order

Page 81: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 81

Dispersion• The effective speed of propagation is equal to the exact one

only in the liming case kx → 0

• The actual speed of propagation of an harmonic perturbation depends on its wavelength

• Notably, the modes and are not convected at the same speed

• What occurs when a multi-frequency function propagates ?

)(xf

jkxe ',' kke xjk

Page 82: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 82

Shape deformation• Consider the function as a Fourier series

• The analytical solution at time t is

• Numerically, the mode becomes

• Summing all contributions one obtains

jkxkefxf ˆ)(

)(0

0ˆ)( tUxjkkeftUxf

))(( 0tUxkExjke jkxe

)(ˆ)( 0)(

ˆˆ

))(1(0num

00 tUxfeeftUxf tUxjk

fg

tUxkEjkk

kk

Page 83: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 83

Another consequence of dispersion

• In practical computations, the solution may be polluted by high frequency numerical perturbations

• In practice, the numerical perturbations are not single harmonics

• Consider a simple wave packet :

KkjKxjkxxf ,)exp(Re)(

x

2/K

2/k

Page 84: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 84

Group velocity

• Solve the 1D convection equation numerically, viz.

• With k<<K:

0)(0

x

fxKkEU

t

f txKkEUxKkjf )()(exp 0

)()( xKdK

dEkxKExKkE

txK

dK

dKEU

txKdK

dEKUtxKEUxktxKEUxKtxKkEUxKk

)(

0000

0

)()(

Group velocity

Page 85: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 85

Group velocitySCHEME

2nd order centered

4th order centered

)( xKE

xK

xK

)sin(

)cos(43

)sin(xK

xK

xK

dK

dKEUVg 0

)cos(0 xKU

)2cos()cos(43

0 xKxKU

0/UVg

Wiggles can propagate upstream !

The more accurate the scheme,the largest the group velocity

2nd

4th

Page 86: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 86

Numerical test

t=2

t=4

Smooth wave Wave packet

xx xx

2nd order 2nd order 4th order4th order

0

x

f

t

f

Page 87: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 87

Stabilizing computations

Page 88: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 88

Non linear stability

• Ensuring the linear stability is sometimes not enough, especially when performing LES or DNS of turbulent flows

• Recall the budget of TKE in isotropic turbulence

• So in the inviscid limit, in absence of external forcing, the TKE should be conserved

• Most of the numerical schemes do not meet this property

raten dissipatio TKE :

22

2

2/

i

j

j

ii

x

u

x

u

dt

ud

Page 89: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 89

A 1D model example

• Consider the 1D Burgers equation in a L-periodic domain

• Multiply by u, integrate over space:

02

x

u

t

u

dxdt

udL

x0

2

,02

02

0

22

I

L

xdx

x

uu

dt

ud 03

22 0

3

0

2

0

2

L

x

L

x

L

xudx

x

uudx

x

uuI

Page 90: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 90

Numerical test• Solve the Burgers equation in a 1D periodic domain with

random initialization

• Use a small time step to minimize the error due to time integration (RK4)

• Plot TKE versus time for different schemes

– Upwind biased

– Centered, divergence form

– Centered, advective formx

uuu

x

u iii

22 11

2

x

uu

x

u ii

2

21

21

2

x

uu

x

u ii

21

22

Page 91: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 91

Upwind biased

Divergence form

Advective form

div

iteration

0

2

2

logt

u

u

adv

upwind

Expected behavior

Numerical test

x

uuu

x

u iii

22 11

2

x

uu

x

u ii

2

21

21

2

x

uu

x

u ii

21

22

Page 92: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 92

iteration

Numerical test

Centered, hybrid form:

x

uu

x

uuu

x

u iiiii 2

22

23

1 21

2111

2

div

adv

upwind

1/3adv+2/3div

0

2

2

logt

u

u

Expected behaviorobtained

by mixing adv and div

Page 93: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 93

Explanation

2: node

21

21

2

ii

i

uuudx

x

uui

2:1 node

222

1

2ii

i

uuudx

x

uui

2:2 node

21

23

2

2

iii

uuudx

x

uui

222

21

2211

221 iiiiiiii uuuuuuuu

11222: node

iii uuudxx

uui

iii uuudxx

uui

22

122:1 node

132

222:2 node

iii uuudxx

uui

2

2122

12

112

iiiiiiii uuuuuuuu

Divergence form Advective form

For 2 x Divergence form + Advective form, the sum is zero …

x

uu

x

uuu

x

u iiiii 2

22

23

1 21

2111

2

Page 94: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 94

Generalization to Navier-Stokes• The same strategy can be applied to Navier-Stokes, • The convection term are then discretized under the

skew-symmetric form

j

ij

j

ji

x

uu

x

uu

2

1

CFL

<K

o-K

>/<

Ko>

LxL periodic domain

Random initial velocity

Error in TKE at time L/Ko1/2

t3 behavior

Conservative mixed scheme(Divergence form unstable)

Page 95: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 95

Boundary conditions

Page 96: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 96

BC essential for thermo-acoustics

u’=0p’=0

Acoustic analysis of a Turbomeca combustor includingthe swirler, the casing and the combustion chamber

C. Sensiau (CERFACS/UM2) – AVSP code

Page 97: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 97

BC essential for thermo-acoustics

C. Martin (CERFACS) – AVBP code

Page 98: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 98

Numerical test• 1D convection equation (D=0)

• Initial and boundary conditions:

m/s1,m8m8,0 00

Uxx

fU

t

f

0),8( tf Zero order extrapolation

m2.0,4/exp)0,( 22 aaxxf

Page 99: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 99

Numerical test 0

x

f

t

f

t=3

t=6

t=9

t=12

t=15

t=18

t=21

t=24

t=27

Page 100: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 100

Basic EquationsPrimitive form:

Simpler for analytical work

Not included in wave decomposition

Page 101: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 101

Decomposition in waves in 1D

AoTx

VA

t

V

uP

u

u

A

.

/1.

.

cu

cu

u

..

..

..

c

c

c

L

/110

/110

/101 2

2/2/0

2/12/10

2/2/11

cc

cc

L

A can be diagonalized:

A = L-1L

- 1D Eqs:

3/mkguspeed

smcuspeed /

smcuspeed /

- Introducing the characteristic variables:

Pc

u

Pc

u

cP

W

W

W

W

1

1/ 2

3

2

1

VLW

AoTLx

W

t

W.

- Multiplying the state Eq. by L:

Page 102: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 102

Remarks

• Wi with positive (resp. negative) speed of propagation may enter or leave the domain, depending on the boundary

• in 3D, the matrices A, B and C can be diagonalized BUT they have different eigenvectors, meaning that the definition of the characteristic variables is not unique.

M<1uU + cU - c

uU + cU - c

Page 103: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 103

Decomposition in waves: 3D

• Define a local orthonormal basis with the

inward vector normal to the boundary

21,, ttn zyx nnnn ,,

CnBnAnE zyxn • Introduce the normal matrix :

• Define the characteristic variables by: nnnnnn LLEVLW ..,. 1

nuucucuuuudiag nnnnnnn

.,,,,,

nu

nu

nucun cun

Page 104: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 104

Which wave is doing what ?

WAVE SPEED INLET (un >0) OUTLET (un <0)

Wn1 entropy un in out

Wn2 shear un in out

Wn3 shear un in out

Wn4 acoustic un + c in in

Wn5 acoustic un - c out out

Page 105: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 105

General implementation• Compute the predicted variation of V as given by the scheme of

integration with all physical terms without boundary conditions.

Note this predicted variation.PV

CininPinoutC WLWLVVVV ,11 ..

• Compute the corrected variation of the solution during the iteration as:

• Assess the corrected ingoing wave(s) depending on the physical

condition at the boundary. Note its (their) contribution.Cinin WLV ,1.

CinW ,

inPout WLVV 1

• Estimate the ingoing wave(s) and remove its (their) contribution(s).

Note the remaining variation.

Page 106: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 106

Pressure imposed outlet• Compute the predicted value of P, viz. PP, and decompose it

into waves:

• Wn4 is entering the domain; the contribution of the outgoing

wave reads:

• The corrected value of Wn4 is computed through the relation:

54

2 nnP WW

cP

tn

Cn P

cWW

25,4

5

2 nout W

cP

OK !

Desired pressure variation at the boundary

tCnn

CinoutC PWWc

PPP ,45,

2

• The final (corrected) update of P is then:

Page 107: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 107

Defining waves: non-reflecting BC

• Very simple in principle: Wn4 =0

• « Normal derivative » approach:

• « Full residual » approach:

• No theory to guide our choice … Numerical tests required

04

tn

Wcu n

n

04

tt

Wn

Page 108: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 108

1D entropy wave

Same result with boththe “normal derivative” and the “full residual”approaches

Page 109: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 109

2D test case• A simple case: 2D inviscid

shear layer with zero velocity

and constant pressure at t=0

Full residual Normal residual

Page 110: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 110

Outlet with relaxation on PP

cWW nn

254 • Start from

• Cut the link between ingoing and outgoing waves to make

the condition non-reflecting

• Set to relax the pressure at

the boundary towards the target value Pt

• To avoid over-relaxation, Pt should be less than unity.

Pt = 0 means ‘perfectly non-reflecting’ (ill posed)

Pc

Wn

24

tPPP BtP

Page 111: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 111

Inlet with relaxation on velocity and Temperature

• Cut the link between ingoing and outgoing waves

• Set to drive VB towards Vt

• Use either the normal or the full residual approach

to compute the waves and correct the ingoing ones via:

tVVV Bt

Page 112: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 112

Integral boundary condition

• in some situations, the target value is not known

pointwise. E.g.: the outlet pressure of a swirled flow

• use the relaxation BC framework

• rely on integral values to generate the relaxation term to

avoid disturbing the natural solution at the boundary

Boundary

Boundarybulk

1dSV

SVtV Bt

Page 113: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 113

Integral boundary condition

• periodic pulsated channel flow (laminar)

U(y

,t) /

Ubu

lk

)sin(10bulk tuuu t

Integral BCs to impose the flow rate

?

Page 114: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 114

Everything is in the details

Lodato, Domingo and Vervish – CORIA Rouen

Page 115: UNSTEADY FLOW MODELLING AND COMPUTATION Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

December, 2007 VKI Lecture 115

THANK YOU

More details, slides, papers, …

http://www.math.univ-montp2.fr/~nicoud/