unlocking the elusive generation of carbyne equivalents

1
Carbon-based Reactive Species n New disconnection approach for chiral center construction with monovalent carbon species Assembly-point functionalization of carbyne species Development of an arene CH bond diazomethylation 5 n Carbon has the unique ability to bind four atoms and form stable tetravalent structures prevalent in nature. The lack of one or two valences leads to a set of species, which are fundamental to understand chemical reactivity 1 References: [1] Trost, B. M. & Fleming, I. Comprehensive Organic Synthesis (Pergamon, Oxford, 1991). [2] Thap, D. M., Gunning, H. E. & Strausz, O. P. J. Am. Chem. Soc. 89, 6785–6787 (1967). [3] (a) Weiss, R., et al Angew. Chem. Int. Ed. 33, 1952–1953 (1994); (b) Bonge-Hansen, T. et al. J. Org. Chem. 78, 7488-7497 (2013). [4]. Prier, C. K., Rankic, D. A. & MacMillan, D. W. C. Chem. Rev. 113, 5322–5363 (2013). [5] (a) Ford, A. et al. Chem. Rev. 115, 9981–10080 (2015). (b) Davies, H. M. L. et al. Nature 451, 417–424 (2008). [6] Cernak, T., et al Chem. Soc. Rev. 45, 546–576 (2016). [7] Lovering F., et all J. Med. Chem. 52, 6752–6756 (2009). Acknowledgements: This work was funded by the ICIQ Foundation, the CERCA Programme (Generalitat de Catalunya), MINECO (CTQ2016-75311-P, AEI/FEDER-EU; Severo Ochoa Excellence Accreditation 2014–2018, SEV-2013- 0319), the CELLEX Foundation through the CELLEX-ICIQ high-throughput experimentation platform. We thank the European Union for a Marie Curie-COFUND post-doctoral fellowship (to Z.W.) and the CELLEX Foundation for pre-doctoral (to A.G.H.) and post-doctoral fellowships (to A.M.d.H.). M.G.S. is a Junior Group Leader of the ICIQ Starting Career Programme 2014−2019. Ana García Herraiz, Zhaofeng Wang, Ana M. del Hoyo, Marcos García Suero* Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology Av Països Catalans 16, 43007 Tarragona − Spain *[email protected] n In contrast, the monovalent carbon species — carbynes — have remained unexplored for over fifty years. 2 n Sequencing control strategy by orthogonal catalytic activation modes: carbocations carbanions radicals majority of carbon reactivity is undestood with di- and trivalent species carbynes Late-stage assembly-point diversification of medically relevant agents Stage b Diazo diversification diazo compound N 2 Ar pivotal prochiral intermediate carbene Carbynes might reveal previously elusive disconnection approaches ! Challenges : (i) carbyne generation (ii) sequencing control unexplored monovalent carbon carbynes LG () e ± M N 2 LG designed carbyne source LG is redox active N 2 is metal active e ± M Ar H aromatic feedstocks n Selected scope H 1 mol% Ru(bpy) 3 (PF 6 ) 2 NaHCO 3 , CH 3 CN white LED, rt, 2 hours Ar Ar N 2 CO 2 Et O I CO 2 Et N 2 O OTf EtO 2 C (hetero)arenes (2 equiv) diazo compounds hypervalent iodine reagent (1 equiv) diazomethyl radical doublet carbyne equivalent N 2 monovalent carbon with three non-bonded electrons doublet/quartet spin states :CH (methylidyne, 146 Kcal/mol) one of the first molecules detected in interstellar space distinct radical/carbene reactivity on the same carbon atom innate ability to form three sigma bonds . This work has been published: Z. Wang, A. G. Herraiz, A. M. del Hoyo, M. G. Suero* Nature (2018, 554, 86); and highlighted in Nature News & Views, Chemical & Engineering News Chemistry World. H Late Stage Functionalization Can we introduce a tailored chiral center to drug molecules 6,7 42% (1.25:1)(45%rsm) from ibuprofen Me Me CO 2 Et Me CO 2 Et N 2 * 58% (1:1)(61%rsm) from fingolimod O O NHBoc Me Me CO 2 Et N 2 Me N N F 3 C Me S O O NH 2 N 2 CO 2 Et 35% (2:1*)(61%rsm) from celecoxib * OMe MeO O Cl O O Me OMe EtO 2 C N 2 36% (71%rsm) from griseofulvin N Boc F O CO 2 Et N 2 35% (10%rsm) from paroxetine O O H Me HO O O O OH O O O O OH HN O Me Me O Ph O O EtO 2 C N 2 10% (80%rsm) from placlitaxel O Me H H H HO 47% (41%rsm) from estrone CO 2 Et N 2 45% (23%rsm) from duloxetine O N Boc Me S CO 2 Et N 2 72% (1:1 dr) O N Boc Me S CO 2 Et N Boc H 87% (1:1 dr) O N Boc Me S CO 2 Et O H 82% (3:1 dr) O N Boc Me S CO 2 Et N Me 78% (1:1 dr) O N Boc Me S CO 2 Et F F F 72% (1:1 dr) O N Boc Me S CO 2 Et HN O 75% (1:1 dr) O N Boc Me S CO 2 Et BuO O Me H H H HO CO 2 Et HN 56% (1.6:1 dr) HO O N Boc Me S CO 2 Et Me 51% (1:1 dr) Mechanistic hypothesis 4 O O I R R = OAc or OMe Me 3 SiOTf, CH 2 Cl 2 , rt CO 2 Et N 2 H 43-96% yield then (1 equiv and Py or 2 equiv ) New hypervalent iodine reagents as carbyne sources 3 n Stoichiometric generation of a diazomethyl radical. 1 equiv Ru(bpy) 3 (PF 6 ) 2 CH 3 CN, 25 ºC, 2 h white LED CO 2 Et EtO 2 C 78-80% N 2 CO 2 Et CO 2 Et diazomethyl radical doublet carbyne equivalent diethyl acetylenedicarboxylate 2 x N 2 DBX 20 mol% Zn(NTf 2 ) 2 or pseudocyclic-DBX single-electron/energy transfer catalyst commercial available long-lived excited state (1100 ns) O I CO 2 Et N 2 O OTf EtO 2 C O O I CO 2 Et N 2 Diazomethylbenziodoxone-DBX pseudocyclic-DBX E red = -0.29 V E red = -0.91 V (II) Ru N N N N N N Ru(bpy) 3 2+ CO 2 Et N 2 H visible light CO 2 Et N 2 CO 2 Et N 2 N 2 CO 2 Et I (III) H I (I) diazo compound Ar Ar hypervalent iodine reagents Ru(bpy) 3 2+ *Ru(bpy) 3 2+ Ru(bpy) 3 3+ electrophilic radical addition photoredox catalytic cycle E 1/2 (III)/(II) = +1.29 V E 1/2 (II)*/(III) = -0.81 V N 2 CO 2 Et Me 62% (30:1:1) N 2 CO 2 Et 45% (10:2 :3*) Me Me * N 2 CO 2 Et I 52% (18:1:1) N 2 CO 2 Et NHBoc 51% N 2 CO 2 Et Me Me 73%; 96% § N 2 CO 2 Et Me 71% (10:1) Me Me Me N 2 CO 2 Et Me B 58% (9:1) O O Me Me Me Me N 2 CO 2 Et Me F 61% (7:1) § N 2 CO 2 Et Me MeO 2 C 69% (10:1) § N 2 CO 2 Et Me 99% Me Me N 2 CO 2 Et 52% § N 2 CO 2 Et S 75% O Me N 2 CO 2 Et N Boc N 59% N t-Bu t-Bu N 2 CO 2 Et 56 % §10 eq of arene were used. ‡ 5 eq of heteroarene were used. ¶2,6-di-tertbutylpyridine was used as based. ß Na 2 CO 3 was used as base. N O N 2 CO 2 Et 70% ‡ß Me Catalytic assembly-point functionalization with feedstock chemicals n Carbyne pentannulation by double site-selective C–H functionalization H Ar represents Me Me n Catalytic assembly-point functionalization enables direct access to chiral centres. 1 mol% Ru(bpy) 3 (PF 6 ) 2 NaHCO 3 , CH 3 CN blue LED, rt, 20 hours 32% yield isobutylbenzene carbyne source Me Me H H Me Me CO 2 Et H O I CO 2 Et N 2 O OTf EtO 2 C indane N 2 CO 2 Et Me Me blue LED MeCN, rt, 20h 52% yield Ar N 2 CF 3 Ar N 2 S Ar N 2 P O O OEt O OMe OMe 24% 75% 73% Ar is mesityl Stage a CH diazomethylation CO 2 Et N 2 I (III) Ar e ± CO 2 Et OH H 53% Ar MsNH 2 Ph CO 2 Et NHMs H Ar CO 2 Et Ar Ph H 2 O CO 2 Et B H Ar NR 3 H H H 3 B NR 3 66% 35% 47% H “presence of chiral centres in drug candidates is linked with the success of transition from the discovery stage to clinical testing” chiral centres chiral centres prevalent motif in natural products and drugs Unlocking the elusive generation of carbyne equivalents

Upload: others

Post on 15-Mar-2022

7 views

Category:

Documents


0 download

TRANSCRIPT

Carbon-based Reactive Speciesn New disconnection approach for chiral center construction with monovalent carbon species

Assembly-point functionalization of carbyne species

Development of an arene C–H bond diazomethylation5

n Carbon has the unique ability to bind four atoms and form stable tetravalent structures prevalent in nature. The lack of one or two valences leads to a set of species, which are fundamental to understand chemical reactivity1

References: [1] Trost, B. M. & Fleming, I. Comprehensive Organic Synthesis (Pergamon, Oxford, 1991). [2]Thap, D. M., Gunning, H. E. & Strausz, O. P. J. Am. Chem. Soc. 89, 6785–6787 (1967). [3] (a) Weiss, R., et alAngew. Chem. Int. Ed. 33, 1952–1953 (1994); (b) Bonge-Hansen, T. et al. J. Org. Chem. 78, 7488-7497 (2013).[4]. Prier, C. K., Rankic, D. A. & MacMillan, D. W. C. Chem. Rev. 113, 5322–5363 (2013). [5] (a) Ford, A. et al.Chem. Rev. 115, 9981–10080 (2015). (b) Davies, H. M. L. et al. Nature 451, 417–424 (2008). [6] Cernak, T., etal Chem. Soc. Rev. 45, 546–576 (2016). [7] Lovering F., et all J. Med. Chem. 52, 6752–6756 (2009).Acknowledgements: This work was funded by the ICIQ Foundation, the CERCA Programme (Generalitat deCatalunya), MINECO (CTQ2016-75311-P, AEI/FEDER-EU; Severo Ochoa Excellence Accreditation 2014–2018,SEV-2013- 0319), the CELLEX Foundation through the CELLEX-ICIQ high-throughput experimentationplatform. We thank the European Union for a Marie Curie-COFUND post-doctoral fellowship (to Z.W.) and theCELLEX Foundation for pre-doctoral (to A.G.H.) and post-doctoral fellowships (to A.M.d.H.). M.G.S. is a JuniorGroup Leader of the ICIQ Starting Career Programme 2014−2019.

Ana García Herraiz, Zhaofeng Wang, Ana M. del Hoyo, Marcos García Suero*Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology

Av Països Catalans 16, 43007 Tarragona − Spain *[email protected]

n In contrast, the monovalent carbon species — carbynes — have remained unexplored for over fifty years.2

n Sequencing control strategy by orthogonal catalytic activation modes:

carbocations carbanions radicalsmajority of carbon reactivity

is undestood withdi- and trivalent species carbynes

Late-stage assembly-point diversification of medically relevant agents

Stage b D

iazo diversification

diazo compound

N2

Ar

pivotal prochiral intermediate

carbene

Carbynes might reveal previously elusive disconnection approaches !

Challenges : (i) carbyne generation (ii) sequencing control

unexploredmonovalent carbon

carbynes

LG (−)

e± MN2

LG

designed carbyne source

LG is redox active

N2 is metal active

M

ArH

aromatic feedstocks

n Selected scope

H

1 mol% Ru(bpy)3(PF6)2

NaHCO3, CH3CN white LED, rt, 2 hours

Ar Ar

N2

CO2EtO I

CO2Et

N2O

OTf

EtO2C

(hetero)arenes(2 equiv)

diazo compoundshypervalent iodine reagent(1 equiv)

diazomethyl radical

doublet carbyne equivalent

N2

monovalent carbon with three non-bonded electrons

doublet/quartet spin states

:C−H (methylidyne, 146 Kcal/mol) one of the first molecules detected

in interstellar space

distinct radical/carbene reactivity on the same carbon atom

innate ability to form three sigma bonds

.

This work has been published: Z. Wang, A. G. Herraiz, A. M. del Hoyo, M. G. Suero* Nature (2018,554, 86); and highlighted in Nature News & Views, Chemical & Engineering News Chemistry World.

H

Late StageFunctionalization

Can we introduce a tailored chiral center to drug molecules6,7

42% (1.25:1)(45%rsm) from ibuprofen

Me

Me CO2Et

Me

CO2EtN2

*

58% (1:1)(61%rsm)from fingolimod

OO

NHBoc

Me

Me

CO2EtN2

Me

NNF3C

Me

SO

O NH2

N2

CO2Et

35% (2:1*)(61%rsm) from celecoxib

*

OMe

MeO O

Cl

O

O

Me

OMe

EtO2C

N2

36% (71%rsm) from griseofulvin

NBoc

F

O

CO2EtN2

35% (10%rsm)from paroxetine

OO

H

Me

HOO

OOOH

OO

O

O

OHHN

O

Me

Me

O

Ph

OO

EtO2C

N2

10% (80%rsm) from placlitaxel

OMe

HH

H

HO

47% (41%rsm) from estrone

CO2EtN2

45% (23%rsm) from duloxetine

ONBoc

Me

SCO2Et

N2

72% (1:1 dr)

ONBoc

Me

SCO2Et

NBoc H

87% (1:1 dr)

ONBoc

Me

SCO2Et

OH

82% (3:1 dr)

ONBoc

Me

SCO2Et

NMe 78% (1:1 dr)

ONBoc

Me

SCO2Et

FFF

72% (1:1 dr)

ONBoc

Me

SCO2Et

HN

O75% (1:1 dr)

ONBoc

Me

SCO2Et

BuO

OMe

HH

H

HO

CO2EtHN

56% (1.6:1 dr)HO

ONBoc

Me

SCO2Et

Me

51% (1:1 dr)

Mechanistic hypothesis4

O

O

I R

R = OAc or OMe

Me3SiOTf, CH2Cl2, rt

CO2Et

N2H

43-96% yield

then

(1 equiv and Pyor 2 equiv )

New hypervalent iodine reagents as carbyne sources3

n Stoichiometric generation of a diazomethyl radical.

1 equiv Ru(bpy)3(PF6)2

CH3CN, 25 ºC, 2 h white LED

CO2EtEtO2C78-80%

N2 CO2Et CO2Et

diazomethyl radical

doublet carbyne equivalent

diethylacetylenedicarboxylate

2 x N2

DBX20 mol% Zn(NTf2)2

orpseudocyclic-DBX

single-electron/energy transfer catalyst

commercial available

long-lived excited state (1100 ns)

O ICO2Et

N2O

OTf

EtO2C

O

O

ICO2Et

N2

Diazomethylbenziodoxone-DBX pseudocyclic-DBX

Ered = -0.29 VEred = -0.91 V

(II)RuN

N

NN

NN

Ru(bpy)32+CO2Et

N2H

visible lightCO2Et

N2

CO2Et

N2N2 CO2Et

I(III)

HI (I)

diazo compound

Ar

Ar

hypervalent iodine reagents

Ru(bpy)32+

*Ru(bpy)32+

Ru(bpy)33+

electrophilic radical addition

photoredoxcatalytic

cycle

E1⁄2 (III)/(II) = +1.29 V

E1⁄2 (II)*/(III) = -0.81 V

N2

CO2Et

Me

62% (30:1:1)

N2

CO2Et

45% (10:2†:3*)

Me

Me

*†

N2

CO2Et

I

52% (18:1:1)

N2

CO2Et

NHBoc

51%

N2

CO2Et

Me

Me

73%; 96%§

N2

CO2Et

Me

71% (10:1)

Me

MeMe N2

CO2Et

Me

B

58% (9:1)

O

O

MeMeMeMe

N2

CO2Et

Me

F

61% (7:1)§

N2

CO2Et

Me

MeO2C

69% (10:1)§

N2

CO2Et

Me

99%

Me

Me

N2

CO2Et

52%§

N2

CO2EtS

75%‡

O

Me N2

CO2EtNBoc

N

59%‡

Nt-Bu t-Bu

N2

CO2Et

56 %

§10 eq of arene were used. ‡ 5 eq of heteroarene were used. ¶2,6-di-tertbutylpyridine was used as based. ß Na2CO3 was used as base.

N

O N2

CO2Et

70%‡ß

Me

Catalytic assembly-point functionalization with feedstock chemicalsn Carbyne pentannulation by double site-selective C–H functionalization

HAr

represents

Me

Me

n Catalytic assembly-point functionalization enables direct access to chiral centres.

1 mol% Ru(bpy)3(PF6)2

NaHCO3, CH3CN blue LED, rt, 20 hours

32% yieldisobutylbenzene carbyne source

MeMe

HH

MeMeCO2Et

H

O ICO2Et

N2O

OTf

EtO2C

indaneN2

CO2Et

MeMe

blue LED

MeCN, rt, 20h52% yield

Ar

N2

CF3Ar

N2

S Ar

N2

PO

O OEt OOMe

OMe

24%75% 73%Ar is mesityl

Stage a C−H

diazomethylation

CO2Et

N2I(III)Ar

CO2Et

OHH

53%

Ar MsNH2

Ph

CO2Et

NHMsH

Ar

CO2EtAr

Ph

H2O

CO2Et

BH

Ar

NR3H H

H3B NR3

66%

35%47% H

“presence of chiral centres in drug candidates is linked with the success of transition from the

discovery stage to clinical testing”

chiral centres

chiral centres

prevalent motif in natural products and drugs

Unlocking the elusive generation of carbyne equivalents