university of groningen novel roles for syndecan-1 in ... · chapter 4 77 abstract!!...

25
University of Groningen Novel roles for syndecan-1 in renal transplantation Adepu, Saritha IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2015 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Adepu, S. (2015). Novel roles for syndecan-1 in renal transplantation. University of Groningen. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 19-01-2021

Upload: others

Post on 23-Sep-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: University of Groningen Novel roles for syndecan-1 in ... · Chapter 4 77 ABSTRACT!! SyndecanE1!is!a!transmembrane!heparansulfateproteoglycanpresentonhepatocytes and!involved!inuptake!of!triglycerideErichlipoproteins!viaits

University of Groningen

Novel roles for syndecan-1 in renal transplantationAdepu, Saritha

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite fromit. Please check the document version below.

Document VersionPublisher's PDF, also known as Version of record

Publication date:2015

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):Adepu, S. (2015). Novel roles for syndecan-1 in renal transplantation. University of Groningen.

CopyrightOther than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of theauthor(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policyIf you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediatelyand investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons thenumber of authors shown on this cover page is limited to 10 maximum.

Download date: 19-01-2021

Page 2: University of Groningen Novel roles for syndecan-1 in ... · Chapter 4 77 ABSTRACT!! SyndecanE1!is!a!transmembrane!heparansulfateproteoglycanpresentonhepatocytes and!involved!inuptake!of!triglycerideErichlipoproteins!viaits

75

 

 

 

 

                       Am  J  Transplant  2014;  14:  2328-­‐38            

           

Saritha  Adepu  Kirankumar  Katta  

Uwe  Tietge  Arjan  Kwakernaak  

Wendy  Dam  Harry  vanGoor  Robijn  Dullaart  Gerjan  Navis  

Stephan  Bakker  Jacob  van  den  Born  

 

Chapter  4  

 Hepatic   syndecan-­‐1   changes   associate   with  dyslipidemia  after  renal  transplantation.    

Page 3: University of Groningen Novel roles for syndecan-1 in ... · Chapter 4 77 ABSTRACT!! SyndecanE1!is!a!transmembrane!heparansulfateproteoglycanpresentonhepatocytes and!involved!inuptake!of!triglycerideErichlipoproteins!viaits

Chapter 4

76

Page 4: University of Groningen Novel roles for syndecan-1 in ... · Chapter 4 77 ABSTRACT!! SyndecanE1!is!a!transmembrane!heparansulfateproteoglycanpresentonhepatocytes and!involved!inuptake!of!triglycerideErichlipoproteins!viaits

Chapter 4

77

ABSTRACT  

 

Syndecan-­‐1   is  a   transmembrane  heparan  sulfate  proteoglycan  present  on  hepatocytes  

and   involved   in   uptake   of   triglyceride-­‐rich   lipoproteins   via   its   heparan   sulfate   (HS)  

polysaccharide  side  chains.  We  hypothesized  that  altered  syndecan-­‐1  metabolism  could  

be   involved   in   dyslipidemia   related   to   renal   transplantation.   In   a   rat   renal  

transplantation   model   elevated   plasma   triglycerides   were   associated   with   fivefold  

increased  expression  of  hepatic  syndecan-­‐1  mRNA  (p<0.01),  but  not  protein.  Expression  

of   syndecan-­‐1   sheddases   (ADAM17,   MMP9)   and   heparanase   was   significantly  

upregulated  after  renal  transplantation  (all  p<0.05).  Profiling  of  HS  side  chains  revealed  

loss   of   hepatic   HS   upon   renal   transplantation   accompanied   by   significant   decreased  

functional  capacity  for  VLDL  binding  (p=0.02).  In  a  human  renal  transplantation  cohort  

(n=510),   plasma   levels   of   shed   syndecan-­‐1   were   measured.   Multivariate   analysis  

showed   plasma   syndecan-­‐1   to   be   independently   associated   with   triglycerides  

(p<0.0001)   and   inversely  with  HDL   cholesterol   (p<0.0001).   Last,  we   show   a   physical  

association   of   syndecan-­‐1   to  HDL   from   renal   transplant   recipients   (RTRs),   but   not   to  

HDL   from   healthy   controls.   Our   data   suggest   that   after   renal   transplantation   loss   of  

hepatic   HS   together   with   lipoprotein-­‐bound   syndecan-­‐1   hampers   lipoprotein   binding  

and   uptake   by   the   liver   contributing   to   dyslipidemia.   Our   data   open   perspectives  

towards  improvement  of  lipid  profiles  by  targeted  inhibition  of  syndecan-­‐1  catabolism  

in  renal  transplantation.    

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 5: University of Groningen Novel roles for syndecan-1 in ... · Chapter 4 77 ABSTRACT!! SyndecanE1!is!a!transmembrane!heparansulfateproteoglycanpresentonhepatocytes and!involved!inuptake!of!triglycerideErichlipoproteins!viaits

Chapter 4

78

INTRODUCTION  

 

Increased  plasma   levels  of   triglyceride  rich   lipoproteins  (TRLs)   is  common  after  renal  

transplantation  and  conceivably  contribute  to  the  increased  cardiovascular  disease  risk  

consistently   observed   in   these   patients   (1-­‐3).   A   persistent   increase   in   plasma  

triglycerides   can   result   into   cardiovascular   disease   (4-­‐6).   TRLs   and   chylomicron  

remnants  from  the  circulation  can  enter  the  space  of  Disse  in  the  liver  where  they  are  

cleared   by   endocytosis,   facilitated   by   receptors   present   on   hepatocytes   (7).   The  

clearance   of   TRLs   in   liver   is   takes   place   by   most   well-­‐known   LDL   receptor   (LDLR)  

pathway  (8,  9),  and  also  a  recent  player   in  the   field  via  HS  dependent  pathway  that   is  

syndecan-­‐1  mediated  uptake  (10).  The  importance  of  syndecan-­‐1  mediated  uptake  and  

clearance  of  TRLs  has  been  shown  in  syndecan-­‐1  KO  mice  studies  where  the  presence  of  

the  LDLR  could  not  compensate  for  lack  of  syndecan-­‐1  in  TRL  clearance  (11).  Among  all  

HS  proteoglycans  present  in  liver,  syndecan-­‐1  is  the  primary  HS  proteoglycan  mediating  

hepatic   clearance   of   TRLs   (11-­‐13).   On   the   other   hand,   it   has   also   been   reported   that  

very  high  level  overexpression  and  subsequently  increased  shedding  of  liver  syndecan-­‐

1  result  in  increased  plasma  levels  of  triglycerides  and  cholesterol  in  mice  (14).  

Syndecan-­‐1   is   a   major   type   I   transmembrane   HS   proteoglycan.   It   consists   of   a   core  

protein,   which   can   be   divided   into   a   long   ectodomain,   a   conserved   transmembrane  

domain  and  a  short  cytoplasmic  domain.  The  ectodomain  provides  attachment  sites  for  

HS  distally  and  eventual  chondroitin  sulfate  at  the  proximal  end  (15,16).  It  also  contains  

protease-­‐sensitive   cleavage   sites   for   various   matrix   metalloproteinases   (MMPs),  

resulting   in   release  and  shedding  of   (parts  of)   the  ectodomain  of   syndecan-­‐1   (17-­‐19).  

Syndecan-­‐1  is  predominantly  expressed  on  epithelial  cells  in  a  basolateral  pattern  (20),  

on   plasma   cells   (21)   and   abundantly   on   the   sinusoidal   basal   surface   of   hepatic  

parenchymal  cells   (22).  Via   its  HS  polysaccharide  side  chains  syndecan-­‐1  acts  as  a  co-­‐

receptor  and   is   involved   in  diverse  processes  such  as   triglyceride  clearance   (11),   cell-­‐

cell   adhesion,   migration,   wound   healing,   growth   factor   binding,   inflammation,   and  

binding   of   chemokines   (23-­‐27).   The   core-­‐protein   of   syndecan-­‐1   is   implicated   in  

adhesion,  angiogenesis,  raft-­‐dependent  endocytosis  and  response  to  IGF-­‐1  (28-­‐30).  

Under  pathological  conditions  the  expression  and  shedding  of  hepatic  syndecan-­‐1  may  

become   abnormal.   Serum   syndecan-­‐1   levels   are   increased   in   patients   with  

hepatocellular   carcinoma   (31).   In   patients   with   chronic   hepatitis   C   serum   levels   of  

Page 6: University of Groningen Novel roles for syndecan-1 in ... · Chapter 4 77 ABSTRACT!! SyndecanE1!is!a!transmembrane!heparansulfateproteoglycanpresentonhepatocytes and!involved!inuptake!of!triglycerideErichlipoproteins!viaits

Chapter 4

79

syndecan-­‐1   serves   as   non-­‐invasive   marker   to   predict   liver   fibrosis   (32).    

Immunohistochemical   analysis   of   syndecan-­‐1   in   liver   specimens   of   patients   with  

chronic  cholestatic  liver  disease  and  in  primary  hepatic  stellate  cells  revealed  increased  

expression   of   syndecan-­‐1   which   might   contribute   to   matrix   deposition   leading   to  

fibrosis   (33).   Adenovirus-­‐mediated   hepatic   overexpression   of   syndecan-­‐1   in   mice   is  

associated  with  hyperlipidemia  (14).  

Recently,  we   showed   in   renal   transplant   recipients   (RTR)   an   increased   expression   of  

renal   tubular   epithelial   syndecan-­‐1,   which   as   co-­‐receptor   for   growth   and   survival  

factors,  was  associated  with  epithelial  repair  and  improved  graft  outcome  (34).  In  RTR,  

loss  of  renal  function  is  often  associated  with  dyslipidemia  (1-­‐3).  A  persistent  increase  

in   plasma   triglycerides   can   result   in   atherosclerosis   and   adds   to   the   highly   increased  

cardiovascular   risk   in   these   patients   (6,9,35).   However,   besides   renal   changes   in  

syndecan-­‐1   in   RTR,   potential   alterations   in   hepatic   syndecan-­‐1  metabolism   have   not  

been  addressed   thus   far.  We   therefore   evaluated   in   a   rat   renal   transplantation  model  

the  expression  of  hepatic  syndecan-­‐1  and  its  sheddases,  heparanase  and  SULF2,  and  we  

profiled  HS  side  chains  in  rat  livers  from  control  and  renal  allograft  recipients.  To  reveal  

whether   these   changes   have   clinical   relevance   we   measured   plasma   levels   of   shed  

syndecan-­‐1,   and   associated   these   values   with   parameters   of   lipid   metabolism   in   a  

human   renal   transplantation   cohort,   and   we   also   checked   for   physical   association   of  

shed  syndecan-­‐1  with  plasma   lipoproteins.  Our   results   suggest  hepatic   loss  of  HS  and  

syndecan-­‐1   shedding   to  be   implicated   in  dyslipidemia   in  RTR,   opening   the  possibility  

for  novel  therapeutic  intervention  strategies  aimed  at  blocking  syndecan-­‐1  shedding  in  

transplantation  patients.  

 

MATERIALS  AND  METHODS  

 

Rat  renal  transplantation  model    

 In   this   study  5   to  10  weeks  old   inbred   female  Dark  Agouti   rats   (donors)  and  5   to  10  

week  old  inbred  male  Wistar  Furth  rats  (recipients)  were  used.  Dark  Agouti  and  Wistar  

Furth   rats   were   obtained   from   Harlan   (Horst,   The   Netherlands)   and   Charles   River  

Laboratories   Inc.   (I’Arbresle,   France;   Wilmington,   MA)   respectively.   All   animals  

received   care   in   compliance   with   the   Principles   of   Laboratory   Animal   Care   (NIH  

Publication  No.86-­‐23,  revised  1985),  the  University  of  Groningen  guidelines  for  animal  

Page 7: University of Groningen Novel roles for syndecan-1 in ... · Chapter 4 77 ABSTRACT!! SyndecanE1!is!a!transmembrane!heparansulfateproteoglycanpresentonhepatocytes and!involved!inuptake!of!triglycerideErichlipoproteins!viaits

Chapter 4

80

husbandry  and  the  Dutch  Law  on  Experimental  Animal  care,  and  were  approved  by  the  

ethical  committee  on  animal  experiments  of  the  University  of  Groningen.  Female  Dark  

Agouti   kidneys  were   orthotopically   transplanted   into  male  Wistar   Furth   recipients   as  

described   previously   (n=5)   (36).   Non-­‐transplanted,   sham-­‐operated   age   and   sex  

matched   Wistar   Furth   rats   served   as   control   group   (n=5).   Recipients   received  

cyclosporine   A   (Sandimmune,   Novartis,   Basel,   Switzerland;   5mg/kg   BW)  

subcutaneously  for  the  first  10  days  after  transplantation.  The  contralateral  kidney  was  

removed   12   to   14   days   after   transplantation.   Total   follow   up   was   9   weeks.   The  

transplanted   animals   showed   loss   of   renal   function   and   developed   proteinuria   and  

hypertension.  Blood  plasma  obtained  at  baseline,  4  and  8  weeks  after  transplantation,  

was   analyzed   for   urea,   creatinine   and   triglycerides   on   a   multi   test   analyzer   system  

(Roche  Modular;  F.Hoffmann-­‐La  Roche  Ltd,  Basel,  Switzerland).  Kidney  and  liver  tissues  

were  obtained  9  weeks  after  transplantation  and  cryopreserved  for  RNA  isolation  and  

histology.  

 

Quantitative  reverse  transcriptase  (qRT-­‐)  PCR  

Total  RNA  was  isolated  from  liver  tissues  of  RTR  group  and  control  rats  using  RNeasy  

mini   kit;   1µg   of   RNA   was   reverse   transcribed   to   cDNA   using   QuantiTect   Reverse  

Transcriptase  Kit   (Qiagen,  Germany)   according   to   the  manufacturer’s   instructions.   To  

detect   the   expression   of   selected   target   genes   QuantiTect   Primer   Assay   (Qiagen)   on  

demand  primers  were  used.  Endogenous  GAPDH  was  used  as  housekeeping  gene  along  

with   the   following   primers:   syndecan-­‐1,   ADAM17,  MMP9,   Sulf2,   heparanase-­‐1   and   -­‐2,  

albumin,  apolipoproteins  B,  E  and  AV,  and  the  LDL  receptor.  Real  time  polymerase  chain  

reaction  (PCR)  was  performed  by  CFX384  touch  real-­‐time  PCR  (Bio-­‐Rad  CA,USA)  with  

SYBR   Green   I   dye   (Bioline,   Dublin,   Ireland)   according   to   the   manufacturer’s  

instructions.  Fluorescent  data  were   converted   to   cycle   threshold   (CT)  values.  Relative  

mRNA   levels   were   calculated   as   2-­‐∆CT,   in   which   ∆CT   is   CT   gene   of   interest   –   CT  

housekeeping  gene.    

 

Dot  Blot  Assay  

Proteins  were   isolated   from   cryosections   of   livers   of   RTR   and   control   rats  with  RIPA  

buffer  (Santa  Cruz  sc-­‐24948,  Dallas,  Texas,  USA).  Tissue  was  lysed  on  ice,  re-­‐suspended  

and  undissolved  material  was  spun  down.  Protein  concentration  was  determined  with  

Page 8: University of Groningen Novel roles for syndecan-1 in ... · Chapter 4 77 ABSTRACT!! SyndecanE1!is!a!transmembrane!heparansulfateproteoglycanpresentonhepatocytes and!involved!inuptake!of!triglycerideErichlipoproteins!viaits

Chapter 4

81

the   Pierce   BCA   protein   Assay   kit   (Product   #   23227   Thermo   scientific,  Waltham,  MA,  

USA).     1.25µg/µl   of   protein   was   blotted   on   an   activated   polyvinylidene   difluoride  

membrane  with  the  aid  of  a  BIO-­‐DOT  (BioRad,  Hercules,  CA,  USA)  device.  After  blotting  

the  membrane  was  dried,   incubated  with  methanol   for  1  min  and  washed  three  times  

with   demi   water.   Thereafter   the   membrane   was   blocked   for   endogenous   peroxidase  

activity   with   3%  H2O2   in   water   for   10  min,   followed   by   overnight   blocking   with   5%  

skimmed  milk   in  TBS  +  0.05%  Tween-­‐20.  The  membrane  was   incubated   for  1  h  with  

anti-­‐syndecan-­‐1   N18   antibody   (sc7100,   Santa   Cruz   Biotechnology   INC),   followed   by  

rabbit   anti   goat   HRP   (DAKO   Glostrup,   Denmark)   secondary   antibody.   Detection   and  

quantification   were   done   with   Western   Lightning   Ultra   from   PerkinElmer  

NEL112001EA   (Waltham,  MA,  USA).  Data   are   expressed  as   fold   increase   compared   to  

the  control  group.  As  a  positive  control  human  recombinant  syndecan-­‐1  was  spotted  on  

the  membrane.  Wells  without  any  spotted  sample,  but  incubated  with  anti-­‐syndecan-­‐1  

and  HRP-­‐labeled  secondary  antibody  served  as  negative  controls.  

 

Immunofluorescence    

Four   µm   liver   cryosections   were   fixed   in   acetone   and   blocked   for   endogenous  

peroxidase   activity   with   0.03%   H2O2   followed   by   blocking   with   5%   bovine   serum  

albumin  in  phosphate  buffered  saline  (PBS),  with  normal  goat  serum  or  normal  rabbit  

serum.   Sections   were   incubated   for   1hr   with   goat   polyclonal   anti-­‐syndecan-­‐1   (N-­‐18,  

1:100  in  PBS),  rabbit  polyclonal  anti-­‐LDLR  (Pab8804;  Abnova,  Taipei  city,  Taiwan)  and  

mouse   anti-­‐HS  mAbs   10E4,   JM403,   and   3G10   (37-­‐39).   Binding   of   primary   antibodies  

was   detected   by   incubating  with   rabbit   anti   goat   Ig-­‐HRP   (DAKO,   1:100   in   PBS),   goat  

anti-­‐mouse  IgM-­‐HRP  (Southern  Biotech,  Birmingham,  AL)  or  rabbit  anti  mouse  Ig-­‐HRP  

(DAKO)   1:100   in   PBS   for   30   min.   HRP   activity   was   visualized   using   the  

Tetramethylrhodamine  System  (PerkinElmer).  DAPI  was  used  to  stain  the  nuclei.  Liver  

staining  was  quantified  in  ten  randomly  taken  photomicrographs  at  200X  magnification  

by   using   Mac   Biophotonics   ImageJ   program   (Rasband,W.S.,   ImageJ,   U.S.   National  

Institute  of  Health,  Bethesda,  MD).  Data   is  expressed  as   fold   increase  compared  to  the  

control  group.  

 

Ligand  binding  assay    

Page 9: University of Groningen Novel roles for syndecan-1 in ... · Chapter 4 77 ABSTRACT!! SyndecanE1!is!a!transmembrane!heparansulfateproteoglycanpresentonhepatocytes and!involved!inuptake!of!triglycerideErichlipoproteins!viaits

Chapter 4

82

To  detect  binding  capacity  of  hepatic  HS  proteoglycans  to  bind  the  HS-­‐binding  proteins  

FGF2  and  L-­‐selectin,  a  ligand  binding  assay  on  hepatic  tissue  sections  was  performed  as  

described  previously  (36).  HS  epitope  requirements  for  binding  of  FGF2  and  L-­‐selectin  

have   been   defined   before   (40,41).   To   confirm   that   the   observed   binding   pattern   (for  

both  FGF2  and  L-­‐selectin)  was  specifically  mediated  by  HS  proteoglycans,   the  sections  

were  pretreated  with  0.05  U/ml  heparitinase  I  (Flavobacterium  heparinum,  EC  4.2.2.8;  

Seikagaku,  Tokyo,  Japan)  for  1h  at  37°C  in  a  humidified  chamber.  

 

Labelled  VLDL  binding  assay  

VLDL   fractions  were   isolated   from  control  healthy  human  plasma  by  density  gradient  

ultra-­‐centrifugation.   1milliliter   of   purified   VLDL   (1mg/ml)   was   added   to   2   ml   of  

lipoprotein   deficient   plasma   and   was   incubated   with   100µl   (3mg/ml)   DiI   (Sigma  

Aldrich,  St.Louis,  MO,  USA)  for  8  hrs  at  37ºC.  VLDLs  were  re-­‐isolated  by  density  gradient  

ultra-­‐centrifugation   by   adjusting   with   KBr.   The   re-­‐isolated   VLDL-­‐DiI   fraction   was  

dialyzed   against   PBS   overnight   to   remove   KBr.   DiI   labelled   VLDL  were   incubated   on  

4µm  thick   liver  cryosections   from  RTR  and  control  rats   for  2hrs  at  room  temperature  

and   after   washing   mounted   with   vectashield   DAPI   (DAKO).   Quantification   of   VLDL  

binding  was  done  as  described  above.  

 

Renal  Transplant  recipient  cohort  and  healthy  individuals    

A  number  of  510  stable  RTR  with  a   functioning  graft   for  >1  year  were  included  in  the  

study.  Data  were  collected  between  August  2001  and  July  2003  at  a  median  of  6  years  

after   transplantation.   All   patients   available   for   analysis   signed   written   informed  

consent.  Approval   for   this   study  has  been  obtained  by   the   Institutional  Review  Board  

(METC   2001/039).   Detailed   description   of   this   study   has   been   published   before   (42-­‐

44).   Plasma   from   21   healthy   sex-­‐   and   age-­‐matched   volunteers   (age   48±7   years,   38%  

females)  was  used  as  controls.  

 

ELISA    

Plasma   syndecan-­‐1   was   determined   in   RTR   and   control   samples   using   sCD   138  

sandwich   ELISA   kit   (Diaclone,   Besancon,   France)   according   to   the   manufacturer’s  

instructions.  

 

Page 10: University of Groningen Novel roles for syndecan-1 in ... · Chapter 4 77 ABSTRACT!! SyndecanE1!is!a!transmembrane!heparansulfateproteoglycanpresentonhepatocytes and!involved!inuptake!of!triglycerideErichlipoproteins!viaits

Chapter 4

83

Lipoprotein  isolation  

One  milliliter  of  plasma   from   four  RTR  and   two  control   individuals  were  subjected   to  

fast   protein   liquid   chromatography   size   exclusion   gel   filtration   using   a   Superose   6  

column   (GE   Healthcare,   Uppsala,   Sweden)   as   described   (45).   Samples   were  

chromatographed   at   a   flow   rate   of   0.5   ml/min,   and   fractions   of   500   µl   each   were  

collected.  Syndecan-­‐1  was  determined  in  the  respective  lipoprotein  fractions  by  ELISA  

as  detailed  above.  

 

Statistics  

Between-­‐group  differences  in  the  rat  transplantation  experiment  were  tested  with  the  

Mann-­‐Whitney  U  test.  Statistical  calculations  in  the  human  transplantation  study  were  

done   using   version   20   of   SPSS   (Inc.   Chicago,   IL).  Data   are   given   as  means   ±   SD   or   as  

medians   (IQ   ranges).   Log-­‐transformed   data   are   shown   for   nonparametrically  

distributed  data.  Transplantation  patients  were  divided  into  sex  stratified  tertiles  based  

on  plasma  syndecan-­‐1  levels.  Analyses  were  performed  by  analysis  of  variance  and  by  

Kruskal-­‐Wallis   test  where  appropriate.  Besides,  univariate  analysis  was  done   to   show  

associations   between   syndecan-­‐1   and   other   continuous   variables.     To   determine  

whether  plasma  syndecan-­‐1  was   independently  associated  with  triglycerides  and  HDL  

cholesterol   linear   regression   analysis  was  performed  with   log  plasma   triglycerides   as  

the  dependent  variable  in  one  analysis  and  HDL  cholesterol  as  the  dependent  variable  in  

the   other     (model   1),   with   adjustments   for   recipient   age,   sex   and   body   mass   index    

(model  2),  followed  by  adjustments  for  renal  function  (model  3),  donor  age,  donor  type,  

CMV  seropositivity,  type  of  dialysis,  duration  of  dialysis  (model  4),   for  diabetes,  use  of  

statins   and   liver   function  parameters   (model   5)   and   for   plasma  CRP   (model   6).   Two-­‐

sided  p-­‐values  <  0.05  were  considered  statistically  significant.  

 

RESULTS  

 

Liver  syndecan-­‐1  mRNA,  but  not  protein  is  increased  in  RTR  group  

In  a  rat  model  of  renal  transplantation,  chronic  transplant  dysfunction  developed  over  

time  as  indicated  by  gradually  increasing  plasma  levels  of  creatinine  and  urea  (Fig.  1A  

and   B).   As   a   consequence   of   progressive   renal   failure,   the   allografted   rats   developed  

Page 11: University of Groningen Novel roles for syndecan-1 in ... · Chapter 4 77 ABSTRACT!! SyndecanE1!is!a!transmembrane!heparansulfateproteoglycanpresentonhepatocytes and!involved!inuptake!of!triglycerideErichlipoproteins!viaits

Chapter 4

84

dyslipidemia,  as  indicated  by  increased  plasma  triglyceride  values  at  week  8  after  renal  

transplantation  (Fig.  1C).  

   

Figure   1:   Progressive   renal   dysfunction   in   experimental   renal   transplantation   resulted   in  hypertriglyceridemia.  Renal  transplantation  in  rats  led  to  progressive  renal  function  loss  evidenced  by  plasma   creatinine   (A)   and   plasma   urea   (B)   levels   over   time.   In   the   same   timeframe   rats   developed  hypertriglyceridemia  (C).  P-­‐values  are  indicated  in  the  graphs.    

 

   

Renal  transplantation  did  not  change  hepatic  lipoprotein  synthesis  but  receptors  involved  in  TRL  uptake  are  up-­‐regulated.  No  differences  were  observed   in   apolipoprotein  mRNA  expression  between  livers  of  RTR  and  control  rats  evidenced  for  ApoE  (2A),    ApoB  (2B)  and  ApoAV  (2C).  Hepatic  lipoprotein  lipase  also  did  not  differ  between  the  groups  (2D),  however  the  receptors  involved  in  TRL  uptake,  LDLR  (2E)   and   syndecan-­‐1   (2F)   are   significantly   upregulated   in   livers   of   RTR   rats   compared   to   control   rats.  Data  are  expressed  relative  to  GAPDH  expression.  P-­‐values  are  indicated  in  the  graphs.    

Given   the   key   role   of   the   liver   in TRL   metabolism,   nine   weeks   after   renal  

transplantation,   by   qRT-­‐PCR   we   evaluated   the   mRNA   expression   of   apolipoproteins  

with  a   link   to   the  metabolism  of  apoB-­‐containing   lipoproteins  apoE,  apoB  and  apoAV,  

triglyceride   hydrolysis   (lipoprotein   lipase)   and   TRL   uptake   receptors   (LDLR   and  

Page 12: University of Groningen Novel roles for syndecan-1 in ... · Chapter 4 77 ABSTRACT!! SyndecanE1!is!a!transmembrane!heparansulfateproteoglycanpresentonhepatocytes and!involved!inuptake!of!triglycerideErichlipoproteins!viaits

Chapter 4

85

syndecan-­‐1)  in  the  liver.  Results  are  given  in  Fig.  2  and  show  that  renal  transplantation  

did   not   change   hepatic  mRNA   expression   of  major   apolipoproteins  with   a   link   to   the  

metabolism   (Fig.2A-­‐2C),   nor   lipoprotein   lipase   expression   (Fig   2D). Despite   the  

increased   plasma   triglyceride   levels,   the   mRNA   expression   of   both   TRL   uptake  

receptors  LDLR  and   syndecan-­‐1  were   significantly   increased   in   the   livers   of  RTR   rats  

(Fig.   2E   and   F).   Therefore,   we   next   determined   syndecan-­‐1   localization   and   protein  

expression  in  the  livers  of  control  Wistar  Furth  and  RTR  rats.  Both  in  control  and  RTR  

rats,  syndecan-­‐1  was  exclusively  expressed  in  the  sinusoids  of  the   liver  (Fig.  3A  and  B  

respectively).   No   syndecan-­‐1   expression   was   seen   in   blood   vessels,   bile   ducts   and  

Kupffer  cells.  Staining  intensity  of  syndecan-­‐1  was  not  significantly  changed  in  RTR  as  

compared   to  control   rats   (Fig.  3C).   In  addition,  also  no  differences   in  protein   levels  of  

syndecan-­‐1   were   found   in   hepatic   lysates   of   RTR   and   control   rats   using   semi-­‐

quantitative  dot-­‐blot  analysis  (Fig.  3D  and  E).  

 

Liver  syndecan-­‐1  sheddases  are  increased  in  RTR  group  

As   there   is   a   difference   in   hepatic   syndecan-­‐1   mRNA   expression   between   RTR   and  

control  groups,  which  however  was  not  reflected  at  the  protein  level,  we  next  evaluated  

hepatic  mRNA   expression   profiles   of   the   known   syndecan-­‐1   sheddases   ADAM17   and  

MMP9   (Fig.   4A   and   B).   Both   sheddases   were   significantly   up   regulated   in   the   RTR  

compared  to  the  control  group.  As  it  has  been  described  that  shedding  of  syndecan-­‐1  is  

promoted  by  heparanase  (46),  we  further  evaluated  the  expression  of  heparanase-­‐1  and  

its   homologue   heparanase-­‐2,   which   were   indeed   both   significantly   increased   in   RTR  

rats  (Fig.  4C  and  D).  Taken  together,   these  data   indicate   increased  hepatic  syndecan-­‐1  

shedding  after  experimental  renal  transplantation.  

 

Hepatic  HS  side  chains  are  largely  lost  in  RTR    

Since  HS  side  chains  of  liver  syndecan-­‐1  are  involved  in  binding  and  uptake  of  TRLs,  we  

profiled  for  HS  polysaccharide  structures  to  evaluate  potential  changes/modifications  in  

HS   structure   in   livers   of   the   RTR   group.   In   a   combined   approach   we   used   anti-­‐HS  

mAbs10E4,   JM403,  and  3G10   to  visualize   the  respective  HS  epitopes  as  well  as   ligand  

binding  assays   for   the  known  HS-­‐binding  proteins  FGF2  and  L-­‐selectin.   Liver   staining  

with  anti-­‐HS  mAbs  10E4,  JM403  and  3G10  (Fig.  5A-­‐C)  showed  a  significant  reduction  in  

staining   intensity   in   livers   of   RTR   group   compared   to   controls.   Consistent  with   these  

Page 13: University of Groningen Novel roles for syndecan-1 in ... · Chapter 4 77 ABSTRACT!! SyndecanE1!is!a!transmembrane!heparansulfateproteoglycanpresentonhepatocytes and!involved!inuptake!of!triglycerideErichlipoproteins!viaits

Chapter 4

86

data  also   the  binding  capacity  of  hepatic  HS   for  FGF2  was  significantly  reduced   in   the  

RTR   compared   to   the   control   group   (Fig.   5D).   Hepatocyte   HS   did   not   bind   L-­‐selectin  

(data  not  shown)  either  in  control  or  in  RTR  livers,  despite  L-­‐selectin    

       Protein  levels  of  hepatic  syndecan-­‐1  did  not  differ  between  RTR  and  control  rats.  Sinusoids  in  the  livers   of   control   (3A)   and   RTR   rats   (3B)   showed   comparable   distribution   and   staining   intensity   for  syndecan-­‐1.  Quantification  of  hepatic  syndecan-­‐1  protein  by  digital   image  analysis   (3C)  and  by  dot  blot  assay   (3D   and   3E)   did   not   reveal   differences   between   control   and   RTR   rats.   Sinusoids   in   the   livers   of  control  (3F)  and  RTR  (3G)  also  showed  expression  of  LDLR,  with  increased  expression  in  RTR  rats  (3H)  Scale  bar  in  A  and  B  is  50  µm.  Data  in  C  and  E  are  expressed  relative  to  controls,  which  was  set  to  1.    

binding  with  basement  membrane  HS  in  the  same  liver  sections.  We  also  evaluated  by  

qRT-­‐PCR  the  expression  of  SULF2,  an  exo-­‐sulfatase  that  removes  6-­‐O  sulfates  from  HS  

and  was  found  to  be  increased  in  the  liver  under  diabetic  conditions  (47,48).  However,  

no   significant  difference  was   found   in  hepatic   SULF2  expression  between   control   and  

RTR   rats   (not   shown),   suggesting   that   loss   of   hepatic   HS-­‐staining   is   not   related   to  

increased  SULF2  activity.  

 

Reduced  binding  of  VLDL  to  hepatic  HS  in  RTR  

3B

Page 14: University of Groningen Novel roles for syndecan-1 in ... · Chapter 4 77 ABSTRACT!! SyndecanE1!is!a!transmembrane!heparansulfateproteoglycanpresentonhepatocytes and!involved!inuptake!of!triglycerideErichlipoproteins!viaits

Chapter 4

87

We   next   aimed   to   investigate   if   the   apparent   reduction   of   hepatic   HS   after   renal  

transplantation  also  translates  into  a  difference  in  the  binding  capacity  of  hepatic  HS  for  

lipoproteins.  Incubation  of  liver  sections  with  DiI-­‐labelled  VLDL  showed  a  significantly  

reduced   HS   binding   in   liver   sections   of   the   RTR   group   (p=0.02;   Fig.   5E).   All   VLDL  

binding  was  prevented  by  pretreatment  of  the  sections  with  heparitinase  (not  shown).  

Based  on  these  findings  we  conclude  that  renal  transplantation  results  in  loss  of  hepatic  

HS  and  a  subsequently  reduced  lipoprotein  binding  capacity  in  RTR  rats.  

 

Increased  plasma  syndecan-­‐1  in  RTR  associates  with  dyslipidemia  

To   translate   the   relevance  of   the   results  generated   in   the   rodent  model   into  a   clinical  

setting   plasma   syndecan-­‐1  was  measured   in   a   cross-­‐sectional   cohort   of   510  RTR   and  

associated   to   clinical   parameters.   In   43   of   these   patients,   syndecan-­‐1   concentrations  

were   below   the   detection   level   therefore   set   at   the   lower   limit   of   8ng/ml.   Median  

plasma  concentration  was  27  (16-­‐42)  ng/ml.  This  is  significantly  higher  than  median    

     Liver   syndecan-­‐1   sheddases   are   increased   in   RTR.   The   mRNA   expression   levels   of   syndecan-­‐1  sheddases   ADAM17   (A),   MMP9   (B),   Heparanase-­‐1   (C)   and   Heparanase-­‐2   (D)   are   upregulated   in   RTR  livers   compared   to   control   livers.   Data   are   expressed   relative   to   GAPDH   expression.   P-­‐values   are  indicated  in  the  graphs.    

Page 15: University of Groningen Novel roles for syndecan-1 in ... · Chapter 4 77 ABSTRACT!! SyndecanE1!is!a!transmembrane!heparansulfateproteoglycanpresentonhepatocytes and!involved!inuptake!of!triglycerideErichlipoproteins!viaits

Chapter 4

88

values   in  sex-­‐  and  age-­‐matched  healthy  control   individuals,  namely  16  (10-­‐36)  ng/ml,  

p<0.05,   indicating   increased   syndecan-­‐1   shedding   in   renal   transplantation   patients.  

Table  1  shows  sex  stratified  tertiles  of  syndecan-­‐1,  and  the  respective  associations  with  

dyslipidemia   and   renal   function.   Plasma   syndecan-­‐1   was   positively   associated   with  

triglycerides,   ApoB   and   serum   creatinine,   and   inversely   with   HDL   cholesterol.   These  

associations  were  also  analyzed  by  univariate  analyses  showing  significant  associations  

between   continuous   variables   (Table   1,   last   column).     Since   the   differences   in  

triglyceride,  ApoB,  and  HDL  values  in  the  three  syndecan-­‐1  tertiles  are  relatively  small,  

we  more  extensively  analyzed  these  associations  by  regression  analysis.  Table  2  shows  

the  multivariate  regression  analysis  of  syndecan-­‐1  as  independent  variable  with  either  

plasma   triglycerides,   or   HDL   cholesterol   as   dependent   variable   upon   adjustment   for  

clinical   parameters   (age,   sex   and  body  mass   index),   renal   function,   transplant   related  

variables,  diabetes,  and  liver  function.  Even  after  adjustment  for  all  these  co-­‐variables,  

the   association   between   plasma   syndecan-­‐1   and   triglycerides   or   HDL   cholesterol  

remained   very   robust   (in   both   analyses:   p<0.0001).   The   association   of   plasma  

creatinine   and   ApoB   with   syndecan-­‐1   levels   was   lost   in   multivariate   analysis.   These  

data   imply  that   in  RTR  plasma  syndecan-­‐1  is   independently  positively  associated  with  

triglycerides  and  inversely  with  HDL  cholesterol.

 

Physical  association  of  plasma  lipoproteins  with  shed  syndecan-­‐1  

In  order  to  see  whether  shed  syndecan-­‐1  in  human  plasma  is  physically  associated  with  

lipoproteins,  we  selected  four  RTR  with  high  plasma  levels  of  syndecan-­‐1  (median  237  

ng/ml)  and  two  control  individuals  with  normal  (<20  ng/ml)  plasma  syndecan-­‐1  values.  

Lipoproteins  were  isolated  by  FPLC  and  syndecan-­‐1  was  determined  by  ELISA  in  both  

HDL   and   LDL   fractions.   Very   low   protein   content   of   VLDL   fractions   did   not   allow  

evaluation  in  ELISA.  The  Results  showed  that  shed  syndecan-­‐1  was  abundantly  present  

in  HDL   from  RTR  patients,  whereas   in  both   control  HDL   fractions  no   syndecan-­‐1  was  

detected   (Table   3).   In   LDL   fractions   low   amounts   of   measurable   syndecan-­‐1   was  

present  both  in  control  and  RTR  samples,  however  without  apparent  differences.  

Page 16: University of Groningen Novel roles for syndecan-1 in ... · Chapter 4 77 ABSTRACT!! SyndecanE1!is!a!transmembrane!heparansulfateproteoglycanpresentonhepatocytes and!involved!inuptake!of!triglycerideErichlipoproteins!viaits

Chapter 4

89

   

 

 

 

 

 

 

 

Hepatic   HS   side   chains   are   largely   lost   in   RTR.   Hepatic   HS   side   chain   profiling   using   anti-­‐HS  monoclonal  antibodies10E4  (5A),  JM403  (5B)  and  3G10  (5C)  revealed  reductions  in  staining  intensity  in  livers  of  the  RTR  compared  to  the  control  group.  The  ligand  binding  capacity  of  hepatic  HS  for  FGF2  (5D)  and  DiI   labeled  VLDL  (E)  was  significantly  reduced   in   livers  of   the  RTR  compared  to   the  control  group.  For  every  mAb  /  HS-­‐binding  protein  representative  photomicrographs  of  control  and  RTR  liver  sections  are   shown,   with   the   corresponding   quantification,   expressed   relative   to   control   values.   P-­‐values   are  indicated  in  the  graphs.    

 

 

Page 17: University of Groningen Novel roles for syndecan-1 in ... · Chapter 4 77 ABSTRACT!! SyndecanE1!is!a!transmembrane!heparansulfateproteoglycanpresentonhepatocytes and!involved!inuptake!of!triglycerideErichlipoproteins!viaits

Chapter 4

90

Table  1.  Sex  stratified  tertiles  of  plasma  syndecan-­‐1  

 

    Tertile  I   Tertile  II   Tertile  III   P-­‐value   P-­‐value  

(Univariate  

analysis)  

N   169   172   169      

Men  (%)   56   55   56      

Plasma  syndecan-­‐1  men  (ng/ml)   14  (8-­‐17)   28  (26-­‐33)   55  (43-­‐75)      

Women  (%)   44   45   44      

Plasma  syndecan-­‐1  women  (ng/ml)   11  (8-­‐14)   25  (22-­‐28)   51  (37-­‐78)      

           

Recipient  demographics            

Age  (years)   53±12   52±13   50±12   0.09   0.06  

Body  composition            

Hip  circumference  (cm)   99.8±7.6   98.7±9.6   100.1±9.1   0.32   0.91  

Waist  circumference  (cm)   96.4±13.3   96.5±13.5   98.6±13.7   0.22   0.08  

BMI   25.8±4.1   25.8±4.1   26.5±4.3   0.19   0.17  

Blood  pressure            

Systolic  pressure  (mm  Hg)   154±23   151±23   153±22   0.41   0.58  

Diastolic  pressure  (mm  Hg)   90  ±10   89±10   90±9   0.19   0.74  

Mean  arterial  pressure  (mm  Hg)   142±16   139±16   141±15   0.23   0.74  

Lipids            

Triglycerides  (mmol/L)   1.74  (1.24-­‐2.19)   1.94  (1.49-­‐2.48)   2.15  (1.47-­‐2.96)   <0.0001   <0.0001  

LDL  cholesterol  (mmol/L)   3.56±0.79   3.52±0.98   3.50±0.97   0.81   0.69  

HDL  cholesterol  (mmol/L)   1.19±0.31   1.06±0.34   1.03±0.30   <0.0001   <0.0001  

ApoB  (g/L)   1.05±0.20   1.08±0.22   1.12±0.25   0.005   0.002  

Insulin  Conc.  (µU/ml)   11.1  (7.6-­‐15.7)   11.7(8.2-­‐16.3)   10.9(8.4-­‐16.4)   0.457   0.267  

Liver  function            

ASAT  (U/L)   22  (19-­‐27)   22  (18-­‐27)   22  (19-­‐26)   0.84   0.81  

ALAT  (U/L)   18  (14-­‐22)   17  (13-­‐25)   20(14-­‐25)   0.21   0.29  

Total  bilirubin  (µmol/L)   18  (15-­‐21)   16  (14-­‐21)   16  (13-­‐21)   0.24   0.56  

C-­‐reactive  protein  (mg/L)   1.73  (0.82-­‐4.25)   1.88  (0.75-­‐5.64)   2.42  (1.03-­‐5.15)   0.22   0.26  

Renal  function            

Serum  creatinine  (  µmol/L)   120  (95-­‐157)   127  (99-­‐168)   134  (104-­‐198)   0.04   0.001  

Creatinine  clearance  (ml/min)   65±20   60±21   61±27   0.12   0.01  

Proteinuria  >  0.5g  (n  (%))   43  (25)   47  (27)   54(31)   0.41   0.04  

Transplantation  type            

Postmortem  donor  (  n  (%))   149  (88)   150  (87)   143  (84)   0.61   0.38  

Living  donor    (n  (%))   20  (12)   22  (13)   26  (16)   0.61   0.38  

*Normally distributed data are given as mean ± SD, skewed distributed data as median (interquartile range) and categorical distributed variables as number (percentage).

Page 18: University of Groningen Novel roles for syndecan-1 in ... · Chapter 4 77 ABSTRACT!! SyndecanE1!is!a!transmembrane!heparansulfateproteoglycanpresentonhepatocytes and!involved!inuptake!of!triglycerideErichlipoproteins!viaits

Chapter 4

91

 

Table   2.   Multivariate   regression   analysis   of   log   plasma   syndecan-­‐1   with   log  plasma  triglycerides  and  HDL  cholesterol  in  renal  transplant  recipients    

  Log  plasma  triglycerides   HDL  cholesterol  

  Standardized  β   95%  CI   P-­‐value   Standardized  β   95%  CI   P-­‐value  

Model  1   0.21   0.07;  0.51   <0.0001   -­‐0.21   -­‐  0.11;  -­‐0.05   <0.0001  

Model  2   0.29   0.06;  0.16   <0.0001   -­‐0.18   -­‐  0.10;  -­‐0.04   <0.0001  

Model  3   0.18   0.06;  0.15   <0.0001   -­‐0.17   -­‐  0.10;  -­‐0.03   <0.0001  

Model  4   0.18   0.05;  0.15   <0.0001   -­‐0.18   -­‐  0.10;  -­‐0.03   <0.0001  

Model  5   0.18   0.05;  0.15   <0.0001   -­‐0.18   -­‐  0.10;  -­‐0.40   <0.0001  

Model  6   0.18   0.05;  0.15   <0.0001   -­‐0.18   -­‐  0.10;  -­‐0.03   <0.0001  

 

Log  plasma  triglycerides  and  HDL  cholesterol    were  entered  as  dependent  variable  in  this  analyses:  Model  1  :  Crude  Model  2  :  Model  1  +  adjustments    for  recipient    age,  sex    and  BMI  Model  3  :  Model  2  +  adjustments    for  creatinine  clearance  and  proteinuria  Model  4  :  Model  3  +  adjustments    for  donor  age  ,  donor  type,  CMV  seropositivity,  type  of  dialysis,  duration  of  dialysis  Model  5  :  Model  4  +  adjustments    for    diabetes,  use  of  statins  ,  liver  function    Model  6  :  Model  5  +  adjustments    for  log  plasma  CRP    

Table   3:   Presence   of   syndecan-­‐1   in   plasma   and   lipoprotein   size   exclusion  fractions,  isolated  from  two  control  individuals  and  four  RTR  patients    

Syndecan-1 sandwich

ELISA (ng/mg protein)

Control individuals RTR patients

Plasma

HDL

LDL

<20 (<20-<20)

<8 (<8-<8)

23 (22-24)

273 (217-376)

160 (9-197)

31 (13-45) RTR,  renal  transplant  recipient  Results  are  given  as  median  values  (range)      DISCUSSION  

 

In   this  study  we  show  a  pathophysiologically  relevant  decrease   in  hepatic  syndecan-­‐1  

function  in  a  rat  model  of  renal  transplantation.  Secondly,  we  found  plasma  syndecan-­‐1  

levels   in   RTR   to   be   increased   and   to   be   associated  with   dyslipidemia.   Despite   rather  

small   differences   in   triglyceride   and  HDL   values   in   the   three   syndecan-­‐1   tertiles,   the  

regression   analysis,   even   after   adjustment   for   many   potential   confounders,   showed  

strong   associations   between   plasma   syndecan-­‐1   and   both   lipid   parameters,   which  

Page 19: University of Groningen Novel roles for syndecan-1 in ... · Chapter 4 77 ABSTRACT!! SyndecanE1!is!a!transmembrane!heparansulfateproteoglycanpresentonhepatocytes and!involved!inuptake!of!triglycerideErichlipoproteins!viaits

Chapter 4

92

indicates  that  this  finding  is  robust  and  relevant  for  lipid  metabolism.  Since  syndecan-­‐1  

is   involved   in   TRL   uptake   in   the   liver,   our   data   indicate   that   shedding   of   hepatic  

syndecan-­‐1   and   loss   of   hepatic   HS   post   renal   transplantation   hamper   proper   TRL  

uptake  by   the   liver.  These  mechanisms  conceivably  contribute   to  dyslipidemia   in  RTR  

and   might   provide   novel   opportunities   for   treatment   of   dyslipidemia   in   RTR   and  

probably  other  (renal  and/or  transplantion)  cohorts.  

In  recent  years,  the  abundant  syndecan-­‐1  expression  in  hepatocytes  and  its  crucial  role  

in  TRL  clearance  was  shown  (11).  Besides,  loss  of  hepatic  syndecan-­‐1  due  to  increased  

shedding,   hampered   hepatic   TRL   uptake,   thus   leading   to   hypertriglyceridemia   (13).  

Others   showed   that   overexpression   of   hepatic   syndecan-­‐1   leads   to   increased   plasma  

triglyceride   levels   (14).   This   suggested   to   us,   that   in   our   study   increased   plasma  

syndecan-­‐1   might   originate   (at   least   partly)   from   the   liver.   In   livers   of   RTR   rats   we  

showed   syndecan-­‐1   mRNA   to   be   upregulated   ~5-­‐fold,   along   with   upregulation   of  

sheddases  and  heparanases,  however  no  increase  in  syndecan-­‐1  protein  levels,  despite  

a   clear   loss   of   hepatic   HS   side   chains.   These   findings   are   compatible   with   increased  

hepatic  syndecan-­‐1  synthesis,  followed  by  syndecan-­‐1  HS  deglycanation  by  heparanase  

and   subsequent   shedding   (46).  As   a   consequence,  TRL   cannot  be   cleared  properly  by  

syndecan-­‐1   HS   on   hepatocytes,   resulting   in   hypertriglyceridemia.   This   proposed  

mechanism  may  explain  the  strong  independent  association  of  plasma  syndecan-­‐1  with  

triglyceride   levels   in  RTR  patients.  Since   in  general  decreased  HDL  cholesterol   follows  

hypertriglyceridemia,   this  might  explain   the   inverse  correlation  of  plasma  syndecan-­‐1  

with  HDL-­‐cholesterol.  However,  our  data  would  suggest  an  additional  mechanism  that  

may  explain   this   syndecan-­‐1  –  HDL  relationship.  We  showed  a  physical  association  of  

syndecan-­‐1  with  HDL   from  RTR,   but   not   from   control   individuals.  We   thus   speculate  

that  shed  syndecan-­‐1  is  largely  deglycanated  and  via  core-­‐protein  interaction  bind  with  

HDL  proteins  such  as  α1-­‐antitrypsin,  which  by  proteomic  analysis  have  been   found   in  

HDL  fractions  (49)  and  binds  specifically  with  syndecan-­‐1  core  protein,  but  not  with  HS-­‐

glycanated   syndecan-­‐1   (50).   Eventual   functional   consequences   of   HDL-­‐syndecan-­‐1  

association  are  not  known  yet  warrant  further  investigation.  

Which  mechanism(s)  or  pathways  are  involved  in  these  changes  in  hepatic  syndecan-­‐1  

metabolism?  Increased  plasma  syndecan-­‐1  have  been  described  before  in  various  liver  

diseases   such   as   liver   fibrosis,   chronic   hepatitis   C   infection   and   liver   cancer   (31,32).  

Moreover,  hepatic  syndecan-­‐1  is  increased  under  conditions  of  chronic  cholestatic  liver  

Page 20: University of Groningen Novel roles for syndecan-1 in ... · Chapter 4 77 ABSTRACT!! SyndecanE1!is!a!transmembrane!heparansulfateproteoglycanpresentonhepatocytes and!involved!inuptake!of!triglycerideErichlipoproteins!viaits

Chapter 4

93

diseases  (33).  These  findings  suggest  that  upregulation  of  hepatic  syndecan-­‐1  turnover  

is  part  of  a  stress  response  upon  various  noxi.  The  mechanism  behind  this  is  not  clear  

yet  and  needs  further  research.  As  described  by  Siedel  (51)  allograft  transplantation  in  

itself   can   create   a   systemic   pro-­‐inflammatory   condition   resulting   in   shedding   by  

proteases   such   as   ADAM17   (52)   and   rise   of   serum   syndecan-­‐1   levels.   We   earlier  

documented   a   pro-­‐inflammatory   profile   of   our   renal   transplantation   cohort   (43).  

Alternatively,   urinary   loss   of   albumin   in   renal   transplant   recipients   might   induce  

increased   albumin   synthesis   in   the   liver   to   compensate   albuminuria.   Indeed,   by   qRT-­‐

PCR  we   found   increased   albumin   synthesis   in   livers   of  RTR   rats   compared   to   control  

rats  (not  shown).  It  might  be  possible  that  in  response  to  urinary  protein  loss,  increased  

protein   synthesis   in   the   liver   is   not   restricted   to   albumin   alone,   but   includes   many  

others  proteins  including  syndecan-­‐1  and  its  sheddases  too.  However,  quantification  of  

hepatic   apolipoprotein   synthesis   (apoB,   -­‐E,   and   -­‐AV  mRNA  expression)  did  not   reveal  

any   difference   between   RTR   recipient   and   control   rats,   arguing   against   a   uniform  

upregulation   of   all   hepatic   proteins   upon   renal   transplantation.   We   cannot   formally  

exclude  that  increased  syndecan-­‐1  expression  and  shedding  is  a  consequence  of  the  use  

of   immunosuppressive   medication,   although   comparison   between   patients   with   the  

highest   and   the   lowest   plasma   syndecan-­‐1   values   did   not   reveal   any   significant  

difference   in   immunosuppressive   regimen   (not   shown).   Moreover,   in   the   rat   renal  

transplantation   model,   rats   only   received   cyclosporine   A   in   the   first   ten   days   after  

transplantation,  whereas   the   tissues  were  harvested  nine  weeks  after   transplantation.  

Generalized  oxidative  stress  is  also  increased  in  RTR  (53)  and  could  also  be  involved  in  

the   changes   in   hepatic   syndecan-­‐1   metabolism.   Focus   of   current   research   is   the  

identification   of   the   mechanism(s)   involved   in   syndecan-­‐1   changes   upon   renal  

transplantation.    

The   data   presented   in   this   study   is   consistent   with   the   concept   that   in   RTR,   liver  

syndecan-­‐1  synthesis,  deglycanation  and  shedding   is   increased.  Shed  syndecan-­‐1  ends  

up   in   the   plasma   and   associates   with   HDL.   Hepatic   loss   of   HS   side   chains   hampers  

binding   and   uptake   of   TRLs   and  might   contribute   to   dyslipidemia.  We   speculate   that  

targeted  intervention  in  syndecan  catabolism,  e.g.  by  specific  inhibitors  of  ADAM17  (52)  

could   be   a   promising   therapy   to   reduce   hepatic   dysfunction   related   to   shedding   of  

syndecan-­‐1.

 

Page 21: University of Groningen Novel roles for syndecan-1 in ... · Chapter 4 77 ABSTRACT!! SyndecanE1!is!a!transmembrane!heparansulfateproteoglycanpresentonhepatocytes and!involved!inuptake!of!triglycerideErichlipoproteins!viaits

Chapter 4

94

Acknowledgements  

S.  Adepu  and  K.  Katta  are  financially  supported  by  the  Graduate  School  of  Medical  

Sciences  of  the  University  of  Groningen.  We  thank  Andre  Zandvoort,  Annemieke  Smit  –  

van  Oosten  and  Michel  Weij  for  their  excellent  technical  assistance.    

 

Disclosure  

The  authors  of  this  manuscript  have  no  conflicts  of  interest  to  disclose  as  described  by  

the  American  Journal  of  Transplantation.    

 

Page 22: University of Groningen Novel roles for syndecan-1 in ... · Chapter 4 77 ABSTRACT!! SyndecanE1!is!a!transmembrane!heparansulfateproteoglycanpresentonhepatocytes and!involved!inuptake!of!triglycerideErichlipoproteins!viaits

Chapter 4

95

REFERENCES    

1.    Gonyea  JE,  Anderson  CF.  Weight  change  and  serum  lipoproteins  in  recipients  of  renal  allografts.  Mayo  Clin  Proc  1992;  67:  653-­‐657.  2.   Riella   LV,   Gabardi   S,   Chandraker   A.   Dyslipidemia   and   its   therapeutic   challenges   in   renal  transplantation.  Am  J  Transplant  2012;  12:  1975-­‐1982.  3.  Razeghi  E,   Shafipour  M,  Ashraf  H,  Pourmand  G.  Lipid  disturbances  before  and  after   renal   transplant.  Exp  Clin  Transplant  2011;  9:  230-­‐235.  4.  Twickler  T,  Dallinga-­‐Thie  GM,  Chapman  MJ,   Cohn   JS.  Remnant   lipoproteins   and  atherosclerosis.   Curr  Atheroscler  Rep  2005;  7:  140-­‐147.  5.   Miller   M,   Stone   NJ,   Ballantyne   C,   Bittner   V,   Criqui   MH,   Ginsberg   HN   et   al.   Triglycerides   and  cardiovascular   disease:   a   scientific   statement   from   the   American   Heart   Association.   Circulation   2011;  123:  2292-­‐2333.  6.   Karpe   F,   Boquist   S,   Tang   R,   Bond   GM,   de   Faire   U,   Hamsten   A.   Remnant   lipoproteins   are   related   to  intima-­‐media  thickness  of  the  carotid  artery  independently  of  LDL  cholesterol  and  plasma  triglycerides.  J  Lipid  Res  2001;  42:  17-­‐21.  7.  Havel  RJ,  Hamilton  RL.  Hepatic   catabolism  of   remnant   lipoproteins:  where   the   action   is.  Arterioscler  Thromb  Vasc  Biol  2004;  24:  213-­‐215.  8.  Ramasamy  I.  Recent  advances  in  physiological  lipoprotein  metabolism.  Clin  Chem  Lab  Med  2013:  51:  1-­‐33    9.  Beisiegel  U.  Lipoprotein  metabolism.  Eur  Heart  J  1998;  19  (Suppl  A):  A20-­‐23.  10.   Fuki   IV,   Kuhn  KM,   Lomazov   IR,   Rothman  VL,   Tuszynski   GP,   Iozzo  RV   et   al.   The   syndecan   family   of  proteoglycans.  Novel  receptors  mediating  internalization  of  atherogenic  lipoproteins  in  vitro.  J  Clin  Invest  1997;  100:  1611-­‐1622.  11.  Stanford  KI,  Bishop  JR,  Foley  EM,  Gonzales  JC,  Niesman  IR,  Witztum  JL    et  al.  Syndecan-­‐1  is  the  primary  heparan  sulfate  proteoglycan  mediating  hepatic  clearance  of  triglyceride-­‐rich  lipoproteins  in  mice.  J  Clin  Invest  2009;  119:  3236-­‐3245.  12.  Planer  D,  Metzger  S,  Zcharia  E,  Wexler  ID,  Vlodavsky  I,  Chajek-­‐Shaul  T.  Role  of  heparanase  on  hepatic  uptake  of  intestinal  derived  lipoprotein  and  fatty  streak  formation  in  mice.  PLoS  One  2011;  6:  e18370.  13.   Deng   Y,   Foley   EM,   Gonzales   JC,   Gordts   PL,   Li   Y,   Esko   JD.   Shedding   of   syndecan-­‐1   from   human  hepatocytes  alters  very  low  density  lipoprotein  clearance.  Hepatology  2012;  55:  277-­‐286.  14.  Cortes  V,  Amigo  L,  Donoso  K,  Valencia  I,  Quinones  V,  Zanlungo  S  et  al.  Adenovirus-­‐mediated  hepatic  syndecan-­‐1  overexpression  induces  hepatocyte  proliferation  and  hyperlipidaemia  in  mice.  Liver  Int  2007;  27:  569-­‐581.  15.   Bernfield  M,   Kokenyesi   R,   Kato  M,   Hinkes  MT,   Spring   J,   Gallo   RL   et   al.   Biology   of   the   syndecans:   a  family  of  transmembrane  heparan  sulfate  proteoglycans.  Annu  Rev  Cell  Biol  1992;  8:  365-­‐393.  16.  Fears  CY,  Woods  A.  The  role  of  syndecans  in  disease  and  wound  healing.  Matrix  Biol  2006;  25:  443-­‐456.  17.   Jalkanen   M,   Rapraeger   A,   Saunders   S,   Bernfield   M.   Cell   surface   proteoglycan   of   mouse   mammary  epithelial   cells   is   shed   by   cleavage   of   its   matrix-­‐binding   ectodomain   from   its   membrane-­‐associated  domain.  J  Cell  Biol  1987;  105:  3087-­‐3096.  18.   Manon-­‐Jensen   T,   Itoh   Y,   Couchman   JR.   Proteoglycans   in   health   and   disease:   the   multiple   roles   of  syndecan  shedding.  FEBS  J  2010;  277:  3876-­‐3889.  19.  Manon-­‐Jensen  T.,  Multhaupt,  H.  A.,  &  Couchman,   J.  R.  Mapping  of  matrix  metalloproteinase  cleavage  sites  on  syndecan-­‐1  and  syndecan-­‐4  ectodomains.  FEBS  J  2013;  280,  2320-­‐2331.  20.  Hayashi  K,  Hayashi  M,   Jalkanen  M,  Firestone   JH,  Trelstad  RL,  Bernfield  M.   Immunocytochemistry  of  cell   surface   heparan   sulfate   proteoglycan   in   mouse   tissues.   A   light   and   electron   microscopic   study.   J  Histochem  Cytochem  1987;  35:  1079-­‐1088.  21.   Sanderson  RD,   Lalor   P,   Bernfield  M.  B   lymphocytes   express   and   lose   syndecan   at   specific   stages   of  differentiation.  Cell  Regul  1989;  1:  27-­‐35.  22.  Roskams  T,  Moshage  H,  De  Vos  R,  Guido  D,  Yap  P,  Desmet  V.  Heparan  sulfate  proteoglycan  expression  in  normal  human  liver.  Hepatology  1995;  21:  950-­‐958.  23.  Stepp  MA,  Daley  WP,  Bernstein  AM,  Pal-­‐Ghosh  S,  Tadvalkar  G,  Shashurin  A  et  al.  Syndecan-­‐1  regulates  cell  migration  and  fibronectin  fibril  assembly.  Exp  Cell  Res  2010;  316:  2322-­‐2339.  24.  Elenius  K,  Vainio  S,  Laato  M,  Salmivirta  M,  Thesleff  I,   Jalkanen  M.  Induced  expression  of  syndecan  in  healing  wounds.  J  Cell  Biol  1991;  114:  585-­‐595.  

Page 23: University of Groningen Novel roles for syndecan-1 in ... · Chapter 4 77 ABSTRACT!! SyndecanE1!is!a!transmembrane!heparansulfateproteoglycanpresentonhepatocytes and!involved!inuptake!of!triglycerideErichlipoproteins!viaits

Chapter 4

96

25.  Kiefer  MC,  Stephans   JC,  Crawford  K,  Okino  K,  Barr  PJ.  Ligand-­‐affinity   cloning  and  structure  of  a   cell  surface  heparan  sulfate  proteoglycan  that  binds  basic   fibroblast  growth  factor.  Proc  Natl  Acad  Sci  U  S  A  1990;  87:  6985-­‐6989.  26.  Gotte  M.  Syndecans  in  inflammation.  FASEB  J  2003;  17:  575-­‐591.  27.   Li   Q,   Park   PW,   Wilson   CL,   Parks   WC.   Matrilysin   shedding   of   syndecan-­‐1   regulates   chemokine  mobilization  and  transepithelial  efflux  of  neutrophils  in  acute  lung  injury.  Cell  2002;  111:  635-­‐646.  28.   Beauvais   DM,   Ell   BJ,   McWhorter   AR,   Rapraeger   AC.   Syndecan-­‐1   regulates   alphavbeta3   and  alphavbeta5  integrin  activation  during  angiogenesis  and  is  blocked  by  synstatin,  a  novel  peptide  inhibitor.  J  Exp  Med  2009;  206:  691-­‐705.  29.  Beauvais  DM,  Rapraeger  AC.  Syndecan-­‐1  couples  the   insulin-­‐like  growth  factor-­‐1  receptor  to   inside-­‐out  integrin  activation.  J  Cell  Sci  2010;  123:  3796-­‐3807.  30.   Chen   K,   Williams   KJ.   Molecular   mediators   for   raft-­‐dependent   endocytosis   of   syndecan-­‐1,   a   highly  conserved,  multifunctional  receptor.  J  Biol  Chem  2013;  288:  13988-­‐13999.  31.Metwaly  HA,  Al-­‐Gayyar  MM,  Eletreby  S,  Ebrahim  MA,  El-­‐Shishtawy  MM.  Relevance  of  serum  levels  of  interleukin-­‐6  and  syndecan-­‐1  in  patients  with  hepatocellular  carcinoma.  Sci  Pharm  2012;  80:  179-­‐188.  32.  Zvibel  I,  Halfon  P,  Fishman  S,  Penaranda  G,  Leshno  M,  Or  AB  et  al.  Syndecan  1  (CD138)  serum  levels:  a  novel  biomarker  in  predicting  liver  fibrosis  stage  in  patients  with  hepatitis  C.  Liver  Int  2009;  29:  208-­‐212.  33.  Roskams  T,  Rosenbaum  J,  De  Vos  R,  David  G,  Desmet  V.  Heparan  sulfate  proteoglycan  expression   in  chronic  cholestatic  human  liver  diseases.  Hepatology  1996;  24:  524-­‐532.  34.  Celie  JW,  Katta  KK,  Adepu  S,  Melenhorst  WB,  Reijmers  RM,  Slot  EM  et  al.  Tubular  epithelial  syndecan-­‐1  maintains   renal   function   in  murine   ischemia/reperfusion  and  human   transplantation.  Kidney   Int  2012;  81:  651-­‐661.  35.  Hassing  HC,  Surendran  RP,  Mooij  HL,  Stroes  ES,  Nieuwdorp  M,  Dallinga-­‐Thie  GM.  Pathophysiology  of  hypertriglyceridemia.  Biochim  Biophys  Acta  2012;  1821:  826-­‐832.  36.   Katta   K,   Boersema   M,   Adepu   S,   Rienstra   H,   Celie   JW,   Mencke   R   et   al.   Renal   heparan   sulfate  proteoglycans   modulate   fibroblast   growth   factor   2   signaling   in   experimental   chronic   transplant  dysfunction.  Am  J  Pathol  2013;  183:  1571-­‐1584.    37.  van  den  Born  J,  Gunnarsson  K,  Bakker  MA,  Kjellén  L,  Kusche-­‐Gullberg  M,  Maccarana  M  et  al.  Presence  of  N-­‐unsubstituted  glucosamine  units    in  native  heparan  sulfate  revealed  by  a  monoclonal  antibody.  J  Biol  Chem  1995;  270:  31303-­‐31309.  38.   David   G,   Bai   XM,   Van   der   Schueren   B,   Cassiman   JJ,   Van   den   Berghe   H.   Developmental   changes   in  heparan  sulfate  expression:  in  situ  detection  with  mAbs.  J  Cell  Biol  1992;  119:  961-­‐975.    39.     van   den   Born   J,   Salmivirta   K,   Henttinen   T,   Ostman  N,   Ishimaru   T,  Miyaura   S   et   al.   Novel   heparan  sulfate  structures  revealed  by  monoclonal    antibodies.  J  Biol  Chem  2005;  280:  20516-­‐20523.  40.  Maccarana  M,  Casu  B,  Lindahl  U.  Minimal  sequence  in  heparin/heparan  sulfate  required  for  binding  of  basic  fibroblast  growth  factor.  J  Biol  Chem  1993;  268:  23898-­‐23905.  41.  Wang   L,   Brown   JR,   Varki   A,   Esko   JD.   Heparin's   anti-­‐inflammatory   effects   require   glucosamine   6-­‐O-­‐sulfation  and  are  mediated  by  blockade  of  L-­‐  and  P-­‐selectins.  J  Clin  Invest  2002;  110:  127-­‐36.  42.   de   Vries   AP,   Bakker   SJ,   van   Son   WJ,   Homan   van   der   Heide   JJ,   The   TH,   de   Jong   PE   et   al.   Insulin  resistance  as  putative  cause  of  chronic  renal  transplant  dysfunction.  Am  J  Kidney  Dis  2003;  41:  859-­‐867.  43.  van  Ree  RM,  Oterdoom  LH,  de  Vries  AP,  Gansevoort  RT,  van  der  Heide  JJ,  van  Son  WJ  et  al.  Elevated  levels   of   C-­‐reactive   protein   independently   predict   accelerated   deterioration   of   graft   function   in   renal  transplant  recipients.  Nephrol  Dial  Transplant  2007;  22:  246-­‐253.  44.   van   Ree   RM,   de   Vries   AP,   Oterdoom   LH,   Seelen   MA,   Gansevoort   RT,   Schouten   JP   et   al.   Plasma  procalcitonin  is  an  independent  predictor  of  graft  failure  late  after  renal  transplantation.  Transplantation  2009;  88:  279-­‐287.  45.   Nijstad   N,   Wiersma   H,   Gautier   T,   van   der   Giet   M,   Maugeais   C,   Tietge   UJ.   Scavenger   receptor   BI-­‐mediated  selective  uptake  is  required  for  the  remodeling  of  high  density  lipoprotein  by  endothelial  lipase.  J  Biol  Chem  2009;  284:  6093-­‐100.  46.  Ramani  VC,  Yang  Y,  Ren  Y,  Nan  L,  Sanderson  RD.  Heparanase  plays  a  dual  role  in  driving  hepatocyte  growth   factor  (HGF)  signaling  by  enhancing  HGF  expression  and  activity.   J  Biol  Chem  2011;  286:  6490-­‐6499.  47.   Hassing   HC,   Surendran   RP,   Derudas   B,   Verrijken   A,   Francque   SM,   Mooij   H   L   et   al.   SULF2   strongly  prediposes  to  fasting  and  postprandial  triglycerides  in  patients  with  obesity  and  type  2  diabetes  mellitus.  Obesity  (Silver  Spring)  2013;  Dec  13.  doi:  10.1002/oby.20682    48.  Hassing  HC,  Mooij  H,  Guo  S,  Monia  BP,  Chen  K,  Kulik  W  et  al.  Inhibition  of  hepatic  sulfatase-­‐2  in  vivo:  a  novel  strategy  to  correct  diabetic  dyslipidemia.  Hepatology  2012;  55:  1746-­‐1753.  

Page 24: University of Groningen Novel roles for syndecan-1 in ... · Chapter 4 77 ABSTRACT!! SyndecanE1!is!a!transmembrane!heparansulfateproteoglycanpresentonhepatocytes and!involved!inuptake!of!triglycerideErichlipoproteins!viaits

Chapter 4

97

49.   Vaisar   T,   Pennathur   S,   Green   PS,   Gharib   SA,   Hoofnagle   AN,   Cheung   MC   et   al.   Shotgun   proteomics  implicates  protease   inhibition  and  complement  activation   in   the  anti-­‐inflammatory  properties  of  HDL.   J  Clin  Invest  2007;  117:  746-­‐756.  50.   Chan   SCH,   Leung  VOY,   Ip  MSM,   Shum  DKY.   Shed   syndecan-­‐1   restricts   neutrophil   elastase   from  α1-­‐antitrypsin  in  neutrophilic  airway  inflammation.  Am  J  Respir  Cell  Mol  Biol  2009;  41:  620-­‐628.  51.  Seidel  C,  Ringden  O,  Remberger  M.  Increased  levels  of  syndecan-­‐1  in  serum  during  acute  graft-­‐versus-­‐host  disease.  Transplantation  2003;  76:  423-­‐426.  52.   Pruessmeyer   J,   Martin   C,   Hess   FM,   Schwarz   N,   Schmidt   S,   Kogel   T,   et   al.   A   disintegrin   and  metalloproteinase  17  (ADAM17)  mediates  inflammation-­‐induced  shedding  of  syndecan-­‐1  and  -­‐4  by  lung  epithelial  cells.  J  Biol  Chem  2010;  285:  555-­‐564.  53.  Snoeijs  MG,  van  Bijnen  A,  Swennen  E,  Haenen  GR,  Roberts  LJ,    Christiaans  MH  et  al.  Tubular  epithelial  injury  and  inflammation  after  ischemia  and  reperfusion  in  human  kidney  transplantation.  Ann  Surg  2011:  253,    598-­‐604.    

Page 25: University of Groningen Novel roles for syndecan-1 in ... · Chapter 4 77 ABSTRACT!! SyndecanE1!is!a!transmembrane!heparansulfateproteoglycanpresentonhepatocytes and!involved!inuptake!of!triglycerideErichlipoproteins!viaits