universiteit twente physics of complex fluids dispersion ... · universiteit twente. physics of...

26
1 UNIVERSITEIT TWENTE. Physics of Complex Fluids 1/50 Dispersion Rheology Dirk van den Ende Dept. of Science and Technology University of Twente UNIVERSITEIT TWENTE. Physics of Complex Fluids 2/50 Outline Dispersions of non-interacting hard spheres Volume fraction dependence Brownian particles and Péclet number Shear induced diffusion Soft particle dispersions Weakly aggregating dispersions microstructure in relation to flowcurve linear viscoelasticity Dispersions out of thermodynamic equilibrium

Upload: others

Post on 18-Jun-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: UNIVERSITEIT TWENTE Physics of Complex Fluids Dispersion ... · UNIVERSITEIT TWENTE. Physics of Complex Fluids 1/50 Dispersion Rheology Dirk van den Ende Dept. of Science and Technology

1

UNIVERSITEIT TWENTE. Physics of Complex Fluids

1/50

Dispersion Rheology

Dirk van den Ende

Dept. of Science and Technology

University of Twente

UNIVERSITEIT TWENTE. Physics of Complex Fluids

2/50

Outline Dispersions of non-interacting hard spheres •  Volume fraction dependence •  Brownian particles and Péclet number •  Shear induced diffusion

Soft particle dispersions Weakly aggregating dispersions

microstructure in relation to •  flowcurve •  linear viscoelasticity

Dispersions out of thermodynamic equilibrium

Page 2: UNIVERSITEIT TWENTE Physics of Complex Fluids Dispersion ... · UNIVERSITEIT TWENTE. Physics of Complex Fluids 1/50 Dispersion Rheology Dirk van den Ende Dept. of Science and Technology

2

UNIVERSITEIT TWENTE. Physics of Complex Fluids

3/50

Sphere in liquid •  goes with the flow •  has to rotate, additional friction

NVp

V φ =

Einstein calculated: η = ηo (1+2.5φ )

UNIVERSITEIT TWENTE. Physics of Complex Fluids

4/50

At higher concentrations •  particles collide with each other •  excluded volume effects

Dispersions

Page 3: UNIVERSITEIT TWENTE Physics of Complex Fluids Dispersion ... · UNIVERSITEIT TWENTE. Physics of Complex Fluids 1/50 Dispersion Rheology Dirk van den Ende Dept. of Science and Technology

3

UNIVERSITEIT TWENTE. Physics of Complex Fluids

5/50

φ

η/ηs

η(φ)/ηs Phan and Russel; 1996

UNIVERSITEIT TWENTE. Physics of Complex Fluids

6/50

Einstein’s result

In terms of number of added particles, ΔN:

Mean field approach: starting with N particles, call that your “solvent” and add again ΔN particles:

Vfree: volume available to the added particles

α slightly larger than 1 due to interstitial solvent.

[η]=2.5, φ = NVp/V

Page 4: UNIVERSITEIT TWENTE Physics of Complex Fluids Dispersion ... · UNIVERSITEIT TWENTE. Physics of Complex Fluids 1/50 Dispersion Rheology Dirk van den Ende Dept. of Science and Technology

4

UNIVERSITEIT TWENTE. Physics of Complex Fluids

7/50

rewriting this equation

or

Krieger Dougerhty equation:

α = 1/φm

UNIVERSITEIT TWENTE. Physics of Complex Fluids

8/50

φ

η/ηs φm = 0.53

φm = 0.65

Einstein

Page 5: UNIVERSITEIT TWENTE Physics of Complex Fluids Dispersion ... · UNIVERSITEIT TWENTE. Physics of Complex Fluids 1/50 Dispersion Rheology Dirk van den Ende Dept. of Science and Technology

5

UNIVERSITEIT TWENTE. Physics of Complex Fluids

9/50 Krieger, 1972

ηr

Pe = γ’a2/D0

colloidal particles competition between diffusion and convection

tflow ~ 1/γ’ tdiff ~ a2/D0

polystyrene particles a = 400 nm

UNIVERSITEIT TWENTE. Physics of Complex Fluids

10/50

Viscoelastic effects: HS dispersions show visco-elasticity. What is the origine of the elasticity?

J. van de Werf et al.; 1989

log(ωa2/D0)

silica particles, a = 50 nm

η’’ r

η’

r

Entropy and distorsion of the pair distribution fuction g(r)

Page 6: UNIVERSITEIT TWENTE Physics of Complex Fluids Dispersion ... · UNIVERSITEIT TWENTE. Physics of Complex Fluids 1/50 Dispersion Rheology Dirk van den Ende Dept. of Science and Technology

6

UNIVERSITEIT TWENTE. Physics of Complex Fluids

11/50

Non colloidal particles shear-induced self-diffusion in simple shear flow

D = a2’ D ()

a particle radius

’ rate of shear

volume fraction y

x

Dxx Dxy 0

Dyx Dyy 0

0 0 Dzz

Tensor character:

UNIVERSITEIT TWENTE. Physics of Complex Fluids

12/50 V. Breedveld et al. ; 2002

Page 7: UNIVERSITEIT TWENTE Physics of Complex Fluids Dispersion ... · UNIVERSITEIT TWENTE. Physics of Complex Fluids 1/50 Dispersion Rheology Dirk van den Ende Dept. of Science and Technology

7

UNIVERSITEIT TWENTE. Physics of Complex Fluids

13/50

UNIVERSITEIT TWENTE. Physics of Complex Fluids

14/50

Page 8: UNIVERSITEIT TWENTE Physics of Complex Fluids Dispersion ... · UNIVERSITEIT TWENTE. Physics of Complex Fluids 1/50 Dispersion Rheology Dirk van den Ende Dept. of Science and Technology

8

UNIVERSITEIT TWENTE. Physics of Complex Fluids

15/50

Simple model •  Particles follow flow lines

if not prohibited by excluded volume •  While colliding they role over each other •  Collisions are not completed due

to interaction with a third particle

Δz

z

x

UNIVERSITEIT TWENTE. Physics of Complex Fluids

16/50

Taking an average collision time tc(φ), we calculate the displacement vector s(θ,φ) per collision.

Diffusion tensor:

Page 9: UNIVERSITEIT TWENTE Physics of Complex Fluids Dispersion ... · UNIVERSITEIT TWENTE. Physics of Complex Fluids 1/50 Dispersion Rheology Dirk van den Ende Dept. of Science and Technology

9

UNIVERSITEIT TWENTE. Physics of Complex Fluids

17/50 V. Breedveld, thesis UT ; 2000 J. Kromkamp et al. ; 2006

φ

Dij /γ’ a

2

UNIVERSITEIT TWENTE. Physics of Complex Fluids

18/50

Soft particle rheology

P.A. Nommensen; 1999

Page 10: UNIVERSITEIT TWENTE Physics of Complex Fluids Dispersion ... · UNIVERSITEIT TWENTE. Physics of Complex Fluids 1/50 Dispersion Rheology Dirk van den Ende Dept. of Science and Technology

10

UNIVERSITEIT TWENTE. Physics of Complex Fluids

19/50

φeff

ηr, D’Haene, thesis Leuven; 1992

UNIVERSITEIT TWENTE. Physics of Complex Fluids

20/50

The mystery of the missing factor 3

Page 11: UNIVERSITEIT TWENTE Physics of Complex Fluids Dispersion ... · UNIVERSITEIT TWENTE. Physics of Complex Fluids 1/50 Dispersion Rheology Dirk van den Ende Dept. of Science and Technology

11

UNIVERSITEIT TWENTE. Physics of Complex Fluids

21/50

Weakly aggregating colloidal dispersions

UNIVERSITEIT TWENTE. Physics of Complex Fluids

22/50

depletion interaction

Parameters: •  particle concentration •  polymer concentration and size •  structure of the aggregates

Fint

Page 12: UNIVERSITEIT TWENTE Physics of Complex Fluids Dispersion ... · UNIVERSITEIT TWENTE. Physics of Complex Fluids 1/50 Dispersion Rheology Dirk van den Ende Dept. of Science and Technology

12

UNIVERSITEIT TWENTE. Physics of Complex Fluids

23/50 Wolters et al. 1996

Flow curve

γ/γ#

η/η o

Silica particles (a = 38nm) in Polystyrene (5970 g/mole)

φ = 8%

UNIVERSITEIT TWENTE. Physics of Complex Fluids

24/50

R volume fraction of aggregates:

Fint ≥ Fhyd :

mean field approximation

viscosity curve:

fractal aggregate

Page 13: UNIVERSITEIT TWENTE Physics of Complex Fluids Dispersion ... · UNIVERSITEIT TWENTE. Physics of Complex Fluids 1/50 Dispersion Rheology Dirk van den Ende Dept. of Science and Technology

13

UNIVERSITEIT TWENTE. Physics of Complex Fluids

25/50

γ/γ#

η/η o

df = 2.3±0.2

UNIVERSITEIT TWENTE. Physics of Complex Fluids

26/50

measuring cylinder

and sampleholder

spring, K

air bearing, D

exciter

measuring elasticity in a shear flow: G' (',) G'' (',)

Steady rotation in the r,φ plane, Oscillation in the r,z plane

Zeegers et al. ; 1995

Page 14: UNIVERSITEIT TWENTE Physics of Complex Fluids Dispersion ... · UNIVERSITEIT TWENTE. Physics of Complex Fluids 1/50 Dispersion Rheology Dirk van den Ende Dept. of Science and Technology

14

UNIVERSITEIT TWENTE. Physics of Complex Fluids

27/50

10|-­‐2 10|-­‐1 10|0 10|1 10|2

‘  [rad/s]

10|-­‐2

10|-­‐1

10|0

10|1

10|2

G'  [P

a]

10|-­‐2 10|-­‐1 10|0 10|1 10|2

‘  [rad/s]

10|-­‐2

10|-­‐1

10|0

10|1

10|2

G''  [Pa] Fmax

Fmax

R h

Ábreak  =  ‡/…

Áescape

.

tescape

increasing γ’

ω [rad/s]

UNIVERSITEIT TWENTE. Physics of Complex Fluids

28/50

Shear cell on Confocal Scanning Laser Microscope

Silica particles (1 m) and poly(ethylene glycol) in a methanol-bromoform mixture

100 x

Page 15: UNIVERSITEIT TWENTE Physics of Complex Fluids Dispersion ... · UNIVERSITEIT TWENTE. Physics of Complex Fluids 1/50 Dispersion Rheology Dirk van den Ende Dept. of Science and Technology

15

UNIVERSITEIT TWENTE. Physics of Complex Fluids

29/50

Different cross sections through an aggregate

V. Tolpekin, thesis UT; 2004

UNIVERSITEIT TWENTE. Physics of Complex Fluids

30/50

0.4 1 10 40

r/a

1

10

100

N(r)

df = 2.0 ± 0.1

z = +5 um z = 0 um z =-5 um

Page 16: UNIVERSITEIT TWENTE Physics of Complex Fluids Dispersion ... · UNIVERSITEIT TWENTE. Physics of Complex Fluids 1/50 Dispersion Rheology Dirk van den Ende Dept. of Science and Technology

16

UNIVERSITEIT TWENTE. Physics of Complex Fluids

31/50

Aggregate growth

t [s] 0 1000 2000 3000 0

5

10

15

20

25 <D

>/a

UNIVERSITEIT TWENTE. Physics of Complex Fluids

32/50

Modeling the aggregate growth

adjustable: Ko(' ), Q

dni /dt = ½ Ai-j,j ni-j nj - Aij ni nj + Bj pji nj - Bi ni

Aggregation: Aij =4/3 ' (Ri+ Rj)3

Break-up: Bi = Ko(' ) (Ri /a)Q

d Rdf /dt = C [R3 +3 R2 R ] - Ko(' ) RQ Rdf

Page 17: UNIVERSITEIT TWENTE Physics of Complex Fluids Dispersion ... · UNIVERSITEIT TWENTE. Physics of Complex Fluids 1/50 Dispersion Rheology Dirk van den Ende Dept. of Science and Technology

17

UNIVERSITEIT TWENTE. Physics of Complex Fluids

33/50 (input: df = 2.0, tagg= 460 s)

Results of the modeling

t [s] 0 1000 2000 3000 0

5

10

15

20

25 <D

>/a

UNIVERSITEIT TWENTE. Physics of Complex Fluids

34/50

Aging of soft colloidal suspensions studied by macro- and micro-Rheology

40 °C

20 °C

E.H. Purnomo et al.; 2008

Page 18: UNIVERSITEIT TWENTE Physics of Complex Fluids Dispersion ... · UNIVERSITEIT TWENTE. Physics of Complex Fluids 1/50 Dispersion Rheology Dirk van den Ende Dept. of Science and Technology

18

UNIVERSITEIT TWENTE. Physics of Complex Fluids

35/50

(micro-) rheology probes the aging

Structural relaxation time: ts ~ tc

log w

G’

G” increasing Age

log G

Aging in soft glassy materials

* relaxation processes slow down with age of the sample… * equilibrium is never reached…

tc

log t

log <x2>

increasing Age

UNIVERSITEIT TWENTE. Physics of Complex Fluids

36/50

Thermosensitive polyNipam-polyNipmam particles

40 °C

20 °C

10 20 30 40 50 60

50

75

100

T [oC]

R g [n

m]

light scattering data

liquid glass

40 oC

20 oC

with fluorescent ( ) tracer particles eff = V0 n

V0 (T)

Page 19: UNIVERSITEIT TWENTE Physics of Complex Fluids Dispersion ... · UNIVERSITEIT TWENTE. Physics of Complex Fluids 1/50 Dispersion Rheology Dirk van den Ende Dept. of Science and Technology

19

UNIVERSITEIT TWENTE. Physics of Complex Fluids

37/50

Experiment To obtain reproducible results… …rejuvenate the sample

quench > yield 0 < yield

stre

ss

qu

ench

tw t

1: macro-rheology (HAAKE RS 600)

2: particle tracking (Confocal Scanning Laser Microscopy)

quench > yield stre

ss

qu

ench

tw t <

x2>

UNIVERSITEIT TWENTE. Physics of Complex Fluids

38/50

0 100 200 300 400 500 600 700 800

time    [s]

0

1

2

…(t)    [-­‐]

0

2

4

Â(t)  /  Â

y

t  w

t

/y

t [s]

tw [s]

Creep measurements

T = 24 oC c = 7 %w/w

J(t-tw,tw) = ( (t)- (tw))/0

Page 20: UNIVERSITEIT TWENTE Physics of Complex Fluids Dispersion ... · UNIVERSITEIT TWENTE. Physics of Complex Fluids 1/50 Dispersion Rheology Dirk van den Ende Dept. of Science and Technology

20

UNIVERSITEIT TWENTE. Physics of Complex Fluids

39/50

10 - 2 10 - 1 10 0 10 1 10 2 10 1

10 2

10 3

G'

G"

10 - 2 10 - 1 10 0 10 1 10 2 10 1

10 2

10 3

10 - 2 10 - 1 10 0 10 1 10 2 10 1

10 2

10 3

G’

G"

(rad/s)

G’’,

G’

(Pa)

tw= 30, 600, 3000, 10000s

•  Brownian motion (~√) •  local viscosity (~ ) (Mason, Weitz 1995)

age dependence at low frequencies

particle-liquid interaction at high frequencies

Linear rheology, age dependence

T = 25 oC c = 7 %w/w

UNIVERSITEIT TWENTE. Physics of Complex Fluids

40/50

Soft Glassy Rheology model

P. Sollich et al., Phys. Rev. Lett. 78, 2020 (1997); S.M. Fielding et al., J. Rheol. 44, 323 (2000)

•  Dissipation due to internal yielding of the particles •  Activated rate process with effective noise temperature x x > 1: liquid, G* = fnc (), J = fnc (t-tw) x < 1: glass, G* = fnc (t), J = fnc ((t-tw)/tw)

102

G',

G" (

Pa)

101

102 104

t Elastic response

10-1 100 10+1

ω [1/s]

G’’ tw

Microscopic picture

Page 21: UNIVERSITEIT TWENTE Physics of Complex Fluids Dispersion ... · UNIVERSITEIT TWENTE. Physics of Complex Fluids 1/50 Dispersion Rheology Dirk van den Ende Dept. of Science and Technology

21

UNIVERSITEIT TWENTE. Physics of Complex Fluids

41/50

glass aging

liquid non aging

100

101

102

G',

G" (

Pa) (a)

T=35 oCx=0.67±0.03

100 101 102 10310 0

10 1

ωtG

', G

" (Pa

) (b)

T=37 oCx=0.87±0.03

100 10110-4

10-3

10-2

10-1

100

ω(rad/s)

G',G

" (Pa

) (d)

T=40 oCx>3

10-1 100 10110-2

10-1

100 101 102 103ωt

(c)

T=38 oCx=2.2±0.3

ω(rad/s)

G',G

" (Pa

)

100

100

101

102

G',

G" (

Pa) (a)

T=35 oCx=0.67±0.03

100 101 102 10310 0

10 1

ωtG

', G

" (Pa

) (b)

T=37 oCx=0.87±0.03

100 10110-4

10-3

10-2

10-1

100

ω(rad/s)

G',G

" (Pa

) (d)

T=40 oCx>3

100 10110-4

10-3

10-2

10-1

100

ω(rad/s)

G',G

" (Pa

) (d)

T=40 oCx>3

10-1 100 10110-2

10-1

100 101 102 103ωt

(c)

T=38 oCx=2.2±0.3

ω(rad/s)

G',G

" (Pa

)

100

10-1 100 10110-2

10-1

100 101 102 103ωt

(c)

T=38 oCx=2.2±0.3

ω(rad/s)

G',G

" (Pa

)

100

Macro-rheology (curves: SGR model)

mass concentr. c: 7 %w/w tw: 3, 30, 300 s

T= 35oC

T= 38oC

T= 37oC

T= 40oC

t

t

UNIVERSITEIT TWENTE. Physics of Complex Fluids

42/50

+: micro-rheology 0 5 10 15

0.50

1.00

1.50

2.00

φ

G p    [Pa]

li quid

glas s

hard  s pher e  limit

(b)

liquid

glass

eff = V0 n

φeff

E.H. Purnomo et al., 2008

3 5 7 9

20

30

40

c   [%]

li quid

glas s

T    [

o C]

(a)

Phase diagrams

Page 22: UNIVERSITEIT TWENTE Physics of Complex Fluids Dispersion ... · UNIVERSITEIT TWENTE. Physics of Complex Fluids 1/50 Dispersion Rheology Dirk van den Ende Dept. of Science and Technology

22

UNIVERSITEIT TWENTE. Physics of Complex Fluids

43/50

10 1 10 2 10 3 10 4 10 5 10 6 10 1

10 2

10 3

G'

G"

10 1 10 2 10 3 10 4 10 5 10 6 10 1

10 2

10 3

10 1 10 2 10 3 10 4 10 5 10 6 10 1

10 2

10 3

t

G'

G"

The structural relaxation time is not observable How to measure the structural relaxation time ?

T = 25 oC c = 7 %w/w

UNIVERSITEIT TWENTE. Physics of Complex Fluids

44/50

5 m

rn(t)

rn(t+s)

particle tracking µ-rheology

<>: ensemble averaging

Stokes Einstein Relation (Newtonian fluid):

Generalized Stokes Einstein Relation:

: fluoresent tracer observed by CSLM

rn = (xn,yn)

Bursac et al; Nature materials 2005

J(t): retardation function

Page 23: UNIVERSITEIT TWENTE Physics of Complex Fluids Dispersion ... · UNIVERSITEIT TWENTE. Physics of Complex Fluids 1/50 Dispersion Rheology Dirk van den Ende Dept. of Science and Technology

23

UNIVERSITEIT TWENTE. Physics of Complex Fluids

45/50

<r2> polyNipam, 4%

liquid

glass

32oC

30oC

27oC

detection limit

eff = 1.2

eff = 1.3

eff = 1.5

eff = 1.4

31oC

UNIVERSITEIT TWENTE. Physics of Complex Fluids

46/50

Glass transition at c = 4%

tw

300 s (o) 3000 s (●)

eff = 1.3

eff = 1.4 30 <Tg< 31 oC 1.3 <g< 1.4

Page 24: UNIVERSITEIT TWENTE Physics of Complex Fluids Dispersion ... · UNIVERSITEIT TWENTE. Physics of Complex Fluids 1/50 Dispersion Rheology Dirk van den Ende Dept. of Science and Technology

24

UNIVERSITEIT TWENTE. Physics of Complex Fluids

47/50

tw [s]

300 800

1300 1800 3000 3500 4000 4500

10|0 10|1 10 |2 10 |3 10 |4

10 |-­‐3

10 |-­‐2

t-tw [s]

<r2 >

[m

2 ]

polyNipam-polyNipmam, 4%, 27 °C Age dependence

10|-­‐2 10 |-­‐1 10 |0 10 |1

10 |0

10 |1

(t-tw)/

<r2 >

/<

r2 >p

0.0 2.5 5.00.00

0.25

0.50

[ks]

tw [ks]

= (0.09 ± 0.01) tw

polyNipam-polyNipmam, 4%, 27 °C scaling with tw

UNIVERSITEIT TWENTE. Physics of Complex Fluids

48/50 10 |-­‐1 10 |0 10 |1 10 |2

10 |-­‐1

10 |0

G’/G’

G’’/G’

micro-rheology viscoelastic moduli

T.G. Mason, 2000

Page 25: UNIVERSITEIT TWENTE Physics of Complex Fluids Dispersion ... · UNIVERSITEIT TWENTE. Physics of Complex Fluids 1/50 Dispersion Rheology Dirk van den Ende Dept. of Science and Technology

25

UNIVERSITEIT TWENTE. Physics of Complex Fluids

49/50

Macro- vs µ-rheology

10|-­‐3 10 |-­‐2 10|-­‐1 10 |0 10|110|-­‐1

10|0

10|1

10|2

ω [1/s]

G',G''  [Pa]

Experimental observation:

G'macro / G'micro 2

tcmacro / tcmicro 5

T = 27 °C c = 4 % w/w tw = 1300 s

Mean field calculation of the frequency dependent drag on a

stationary particle in a low viscous cell surrounded by a viscoelastic bulk

= [G”/] =

UNIVERSITEIT TWENTE. Physics of Complex Fluids

50/50 [s-1]

G’

G’’

[P

a]

micro- vs macro T = 27 °C c = 4 % w/w tw = 1300 s

10 |-­‐3 10|-­‐2 10|-­‐1 10 |0 10 |110|-­‐1

10 |0

10 |1

b/a =1.05

G*

Page 26: UNIVERSITEIT TWENTE Physics of Complex Fluids Dispersion ... · UNIVERSITEIT TWENTE. Physics of Complex Fluids 1/50 Dispersion Rheology Dirk van den Ende Dept. of Science and Technology

26

UNIVERSITEIT TWENTE. Physics of Complex Fluids

51/50

Thank you for listening