universe ohpp

75
The Universe Beyond Chapter #21

Upload: ringoldj

Post on 10-May-2015

1.492 views

Category:

Technology


1 download

DESCRIPTION

Power point presentation for astronomy unit. Chap #21 "The Universe"

TRANSCRIPT

Page 1: Universe Ohpp

The Universe BeyondChapter #21

Page 2: Universe Ohpp

Astronomy – The study of the origin, composition, and movement of all the objects outside of the Earth system.

PLEASE… do not confuse this term with another that sounds close… astrology.

Astrology – Using the relative positions of the planets, moon, and stars to predict human events.

Page 3: Universe Ohpp

Much of what astronomers study of the universe comes to Earth in the form of visible light and other forms of electromagnetic radiation (EMR).

There are many different forms of EMR.

Page 4: Universe Ohpp

Some interesting facts about light:

Sometimes light acts as a wave of energy, other times it acts like a particle of energy called a photon.

Light travels through space at “light speed” which is approx. 186,000 miles per second. This is equal to approx. 6,000,000,000,000 (six trillion) miles per year.

So… 1 light year is equal to six trillion miles. Light years measure distance not time.

Light Year – The distance light travels in one year. A unit of measurement used to measure distance in outer space.

Page 5: Universe Ohpp

Consider this…The universe is so big, we have to measure the distance between other stars, galaxies, etc. using light years.

If you could travel at the speed of light, it would take 5.4 hours to reach Pluto. It would take 4.3 years to reach the nearest star outside of our solar system.

The fastest space craft ever built travels at about 25,000 m.p.h. At that speed it would take 115,171 years to reach the nearest star outside of our solar system.

To travel 1 light year at that same speed would take 26,784 years.

Page 6: Universe Ohpp

Most of the points of light you see in the sky at night are stars. But, how do we know what stars are made of?

Page 7: Universe Ohpp

Consider this…Fact #1: Everything in the universe (as far as we know) is made up of the elements found in the Periodic Table of the Elements.

Fact #2: All the elements, when heated hot enough, will produce light.

Fact #3: You can tell what a distant star is made of just by examining the light it produces. In addition, you can tell how big the star is, how hot it is, how fast it’s moving and in which direction, if there are planets around it, how old it is, how it will die, and much, much more.

Page 8: Universe Ohpp

Before we continue, lets review some of the basic physics of waves.

Wave Height Wave Length

Page 9: Universe Ohpp

Light travels through space as a wave of energy.

When white light enters a prism, it is separated into individual colors based on wave length.

Long wavelengths

Long wavelengthsShort wavelengths

RED

ORANGE

YELLOW

GREEN

BLUE

INDIGOVIOLET

How does a prism work? A prism bends light at an angle. Each different color of light is a different wavelength. The prism bends light depending on its wavelength. Different wavelengths of light are bent to slightly different degrees. For example, the angle to which red light is bent is different than orange light, so they come out of the prism in two different locations. This is how the “rainbow” or spectrum is created.

Spectrum

Spectrum – The “rainbow” of colors produced when white light passes through a prism.

Rainbow pic

Page 10: Universe Ohpp

Solid object

Spectroscope – Tool used by astronomers to analyze starlight.

Page 11: Universe Ohpp
Page 12: Universe Ohpp

Hydrogen

Helium

Neon

Sodium

Mercury

Each element of the periodic table, when heated, will produce light. When this light is shown through a prism, it will create a spectrum that is unique for that element. Each element has a “finger print” spectrum that is like no other element.

Page 13: Universe Ohpp

An actual spectrum of the sun can be very complicated. By matching up the spectral lines for different elements, astronomers have discovered what stars are made of.

Page 14: Universe Ohpp

How do we know which direction stars are moving, how fast they are moving, and if there are other planets around them?

Page 15: Universe Ohpp

The Doppler EffectThe apparent change in the wavelength of a wave of energy that occurs when an object is moving toward you or away from you.

As the car travels toward you, it’s catching up to the sound waves it’s making and the waves are compressed together creating a shorter wavelength. With sound, short wavelengths have a higher pitch. The same effect happens to light waves. Short wavelengths of light are blue in color.

As the car travels away from you, it’s traveling away from its own sound waves and stretching them farther apart, creating a longer wavelength. With sound, longer wavelengths have a lower pitch. The same effect happens to light waves. Long wavelengths of light are red in color.

Page 16: Universe Ohpp

Red Shift – When the entire spectrum of light coming from a star moving away from the Earth appears to be shifted to the red end of the spectrum.

Ligh

t fr

om s

tar

Blue Shift – When the entire spectrum of light coming from a star moving toward the Earth appears to be shifted to the blue end of the spectrum.

The farther the shift, the faster the star is moving.

Page 17: Universe Ohpp

Classifying StarsStars can be classified in six basic ways:

1. Size2. Composition3. Surface Temperature4. Color5. Brightness6. Mass

Page 18: Universe Ohpp

1. SIZE

Stars are grouped into 5 main sizes:

Super Giant Star Example: North Star

Giant Star Example: Mira

Medium Star Example: Sun

White Dwarf Star Example: Van Maanen’s Star

Neutron Star

Page 19: Universe Ohpp

The size of objects in space can vary greatly. Here’s an example:

Page 20: Universe Ohpp

The sizes of objects in space and the distances between them are so enormous, they cannot be put to scale on a textbook page. Any time you've seen a diagram of the solar system, it’s not even close to scale.

Distance video wed site

Page 21: Universe Ohpp

2. COMPOSITION

Hydrogen

Helium

The most common element in stars is hydrogen. The second most common element is helium. Together they make up 96% to 99% of a star’s mass.

Page 22: Universe Ohpp

3. SURFACE TEMP. and 4. COLOR

The surface temp. and color of a star are closely related. The color of a star tells how hot the surface temp is.

Hottest Stars    

  Temp. Color

  Approx. 35,000 cBlue or Blue-white

  Approx. 10,000 c White

  Approx. 6,000 c Yellow (Sun)

  Approx. 5,000 c Red-orange

  Approx. 3,000 c Red

Coolest Stars    

Page 23: Universe Ohpp

5. BRIGHTNESS

The brightness of star depends on its temp., size, and distance from Earth. The measure of a star’s brightness is called magnitude.

There are two basic types of magnitude:

Apparent Magnitude – A stars brightness as it appears from Earth.

Absolute Magnitude – The actual amount of light a star gives off.

Page 24: Universe Ohpp

The actual brightness or, absolute magnitude of the bulb is 100 watts.

The closer you are to the light source, the brighter the light will appear to be. This exhibits a higher apparent magnitude.

The farther away the light source, the lower the apparent magnitude.

Page 25: Universe Ohpp

A good example is the North Star also called Polaris. Can you find the North Star in this picture?

North Star

The reason for the North Star’s small apparent magnitude is because it’s so far away… about 431 light years away.

The North Star looks small in the night time sky. However, it is 45 times bigger than the Sun and 2500 times brighter.

Page 26: Universe Ohpp

North Star

Sun

To put things in perspective, this is an example of the approximate sizes of the two stars.

Page 27: Universe Ohpp

6. MASSThe main factor that shapes the “life” and “death” of a star is how much mass it began with.

The more mass a star starts out with, the shorter it will live.

The less mass a star starts out with, the longer it will live.

Our Sun is about 5 billion years old and will live for about 10 billion years.

Page 28: Universe Ohpp

Another way to classify stars is by organizing them according the relationship that exists between brightness and surface temperature. A

The Hertzsprung-Russell diagram (H-R diagram) organizes stars according to the relationship between magnitude and surface temp.

Page 29: Universe Ohpp

Motions of stars

Apparent Motion – Because of the rotation of the Earth, the Sun appears to move across the sky. (It rises in the east and sets in the west.) The stars also appear to move across the sky. Because the North Star is above the axis of rotation, all the other stars appear to rotate around it.

Page 30: Universe Ohpp

North Star

Page 31: Universe Ohpp
Page 32: Universe Ohpp

Actual motion – All stars are really moving in space relative to one another. However, stars are so far away that their actual motion is hard to observe.

Page 33: Universe Ohpp

Circumpolar Circumpolar constellations – Constellations that are always visible in the night time sky.

Page 34: Universe Ohpp

The Life Cycle of Stars

All stars are created inside a giant cloud of dust and gas called a nebula.

Page 35: Universe Ohpp

Eagle Nebula

Page 36: Universe Ohpp

Rosette Nebula

Page 37: Universe Ohpp

Orion Nebula

Page 38: Universe Ohpp

Crab Nebula

Page 39: Universe Ohpp

Inside a nebula, gas and dust collect together from the force of gravity. Over millions of years, more and more hydrogen gas is pulled together. Collisions between the hydrogen atoms cause the gas cloud to heat up.

When the temp inside the cloud reaches approx. 15,000,000 0C nuclear fusion begins.

This causes the formation of a protostar.

Page 40: Universe Ohpp

Many protostars have disks of gas around them that may form planets.

Page 41: Universe Ohpp

What is the difference between a chemical reaction and a nuclear reaction?

In a chemical reaction, the bonds that hold atoms together are broken to release energy. An example of a chemical reaction is fire, a stick of dynamite, gasoline burning in your car engine, acid dissolving limestone, etc… In chemical reactions, the atoms are not changed.

In nuclear reactions, the atoms themselves are broken apart to create new kinds of atoms with the release of energy.

Page 42: Universe Ohpp

This is an example of a large quantity of dynamite being exploded. It’s a good example of a chemical reaction.

This shows the detonation of a small amount of nuclear material. Nuclear reactions release a great deal more energy than chemical reactions.

Page 43: Universe Ohpp

Inside the core of a typical star, hydrogen atoms are fused together to form helium atoms with the release of a tremendous amount of energy.

Page 44: Universe Ohpp

The protostar will become a typical star. At this point, its life cycle is fixed and it becomes a main sequence star.

How long the star will “live” and how it will “die” depends on how much mass it started with.

Page 45: Universe Ohpp

The sun is about here in its life cycle.

When the Sun is about 10 billion years old, it will expand into a red giant, and then shrink into a white dwarf star.

Page 46: Universe Ohpp

Inside a star, two opposing forces are at work.

The force of nuclear fusion tries to blow the star apart.

The force of gravity tries to crush the star inward.

When the two opposing forces are equal, the star “burns” at a constant, even rate.

Page 47: Universe Ohpp

When the Sun begins to run out of hydrogen fuel, it will start to use helium as fuel and create carbon in the process. This will cause the star to increase greatly in size and the surface to cool down. The star becomes a Red Giant.

Approx. orbit of the Earth

Page 48: Universe Ohpp

Once the star runs out of its helium fuel, gravity will crush it down into a tiny white dwarf star. This star does not have enough mass, to create the gravitational forces necessary to fuse carbon atoms and keep the fusion reaction going. The outer shell of hydrogen gas keeps expanding and drifts away to form a planetary nebula.

White dwarf star

Planetary nebula

Red Giant

Page 49: Universe Ohpp

A white dwarf star is very small, very dense and extremely hot. It may exist this way for billions of years until it cools down to become a black dwarf.

Comparison of size of white dwarf using Earth for scale.

Page 50: Universe Ohpp
Page 51: Universe Ohpp

The life cycle of a massive star is very similar to a medium-sized star. They continue on the same life-cycle until they become red giant stars. From there, they take a different path. If a star is approx. 6 to 30 times larger than the Sun, nuclear fusion will continue, creating new elements until the element iron is formed in the star’s core.

Page 52: Universe Ohpp

The star is unable to fuse iron atoms, and the core begins to absorb energy until the star explodes in a super nova.

Page 53: Universe Ohpp

A massive star called Eta Carinae approx. 8000 light years from Earth is entering its final stages before going super nova. It is expected to explode in the next 10,000 to 20,000 years.

Page 54: Universe Ohpp

During a super nova explosion, temperatures can reach 100 billion 0C. At these temps., iron atoms fuse to form new elements. The newly formed elements, along with most of the star’s remaining gases, are blown into space.

Page 55: Universe Ohpp

A star that began as a massive star will usually end up as a neutron star after the super nova explosion.

Inside this small nebula called the Crab Nebula is a neutron star.

Page 56: Universe Ohpp

A neutron star is about as massive as the sun but only a few miles in diameter so the star is extremely dense. A teaspoon full of neutron star matter would weigh approx. 100 million tons.

Page 57: Universe Ohpp

Neutron stars spin very fast. As it spins it gives off radio waves. When these radio waves are directed toward the Earth, they are detected as pulses of radio waves. This type of neutron star is called a Pulsar.

Page 58: Universe Ohpp

If a star begins with a mass that is at least 30 times greater than the Sun, it will explode in a super nova and become a black hole.

Page 59: Universe Ohpp

One way that astronomers find black holes is to look for the effects they have on the objects around them. In this case, The gravity of a black hole is pulling material off of a companion star and forming an accretion disk around it. As material orbits faster and faster around the black hole, it heats up and sends out a jet of particles into space.

Astronomers can locate these jets of particles using different kinds of telescopes.

Page 60: Universe Ohpp

Another way astronomers locate black holes is by finding stars that are orbiting unseen objects very fast.

Page 61: Universe Ohpp
Page 62: Universe Ohpp

A large collection of stars is called a galaxy. This is a photo graph made by the Hubble telescope of deep space. What was once thought to be individual stars turned out to be huge collections of stars.

Page 63: Universe Ohpp

Astronomers estimate that there are about 200 billion galaxies in the known universe.

The galaxy that our sun is in is called the Milky Way Galaxy.

Page 64: Universe Ohpp

This is an artists conception of what astronomers believe the Milky Way Galaxy looks like.

Page 65: Universe Ohpp

Some basic Milky Way facts:1. The Milky Way is a barred-spiral galaxy.

2. The main disk is approx. 100,000 light years in diameter and 1000 light years thick.

3. The Sun orbits the galactic center every 250 million years.

4. The Sun is about 26,000 light years out from the galactic center.

Milky Way Galaxy hyperlink

5. Each star in the galaxy is in its own, individual orbit. The spiral arms are only temporary areas where stars have piled up.

Page 66: Universe Ohpp
Page 67: Universe Ohpp
Page 68: Universe Ohpp

Different types of galaxies

I. Spiral Galaxies

II. Elliptical Galaxies

III. Irregular Galaxies

Page 69: Universe Ohpp

I. Spiral Galaxies

Page 70: Universe Ohpp

II. Elliptical Galaxies

Page 71: Universe Ohpp

III. Irregular Galaxies

Page 72: Universe Ohpp
Page 73: Universe Ohpp

Two prevailing theories on how the universe was created:

Big Bang Theory

Creationism

Page 74: Universe Ohpp

Creation of the universe

Page 75: Universe Ohpp