universal weight function plan - nested (off-shell) bethe vectors - borel subalgebras in the quantum...

21
Universal Weight Function , o ,o S.KHOROSHKIN S .PA K U LIA K Plan - Nested (off-shell) Bethe vectors - Borel subalgebras in the quantum affine algebras - Projections and an Universal weight function o * Institute of Theoretical and Experim ental Physics,M oscow Laboratory of Theoretical Physics JointInstitute ofN uclear R esearch,D ubna - Weight functions in theory µ 1 ( ) N q U gl Part I Weight functions and the Hierarchical Bethe ansat Part II Universal weight function and Drinfeld’s currents

Upload: brandon-sanders

Post on 29-Dec-2015

216 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Universal Weight Function Plan - Nested (off-shell) Bethe vectors - Borel subalgebras in the quantum affine algebras - Projections and an Universal weight

Universal Weight FunctionUniversal Weight Function, o ,oS.KHOROSHKIN S.PAKULIAK

PlanPlan

- Nested (off-shell) Bethe vectors

- Borel subalgebras in the quantum affine algebras

- Projections and an Universal weight function

o

*

Institute of Theoretical and Experimental Physics, Moscow Laboratory of Theoretical Physics J oint Institute of Nuclear Research, Dubna

- Weight functions in theoryµ1( )NqU gl

Part IPart I Weight functions and the Hierarchical Bethe ansatzWeight functions and the Hierarchical Bethe ansatz

Part II Part II Universal weight function and Drinfeld’s currents Universal weight function and Drinfeld’s currents

Page 2: Universal Weight Function Plan - Nested (off-shell) Bethe vectors - Borel subalgebras in the quantum affine algebras - Projections and an Universal weight

Algebraic Bethe Ansatz ( 2gl case)Let be a -operator of some quantum integrable

Due to the RTT relation

is the generating series of quantum integrals of motion.

the transfer matrixtr( ) ( ) ( ) ( )t T A D u u u u

( )L u 2 2 Lmodel associated with

2 2( )gl sl

2 1

( ) ( )( ) ( ) ( ) ( )

( ) ( )M

A BT L L L

C D

L

u uu u u u

u u

1 2 2 1( , ) ( ) ( ) ( ) ( ) ( , )R T T T T Ru v u v v u u v

the problem of finding eigenfunctions for

If we can find a vector

in the form

is reduced to the Bethe equations for parameters

vac such that( ) 0 ( ) ( ) ( ) ( )C A D d vac vac vac vac vacu u a u u u

( )t u1 1

1 1 1

,..., ( ) ( )

( ) ,..., ( ; ,..., ) ,...,

n n

n n n

B B

t

u u u u

u u u u u u u u

L vac

.ku

Part I Weight functions and the Hierarchical Bethe ansatzPart I Weight functions and the Hierarchical Bethe ansatz

Page 3: Universal Weight Function Plan - Nested (off-shell) Bethe vectors - Borel subalgebras in the quantum affine algebras - Projections and an Universal weight

The Hierarchical Bethe AnsatzP. Kulish, N. Reshetikhin. Diagonalization of ( )GL N invariant transfer matrices and

quantum N-wave system (Lee model) J.Phys. A: Math. Gen. 16 (1983) L591-L596

(short review)

The Hierarhical Bethe Ansatz starts from the decomposition ( )T uinto blocks

( 1)( ) ( )

( ) (

))

)

((

NN B

D

TT

C

u

uu

u

u

where ( )D u is a scalar, ( )B u -dimensional column and row, and ( 1) ( )NT u monodromy

and ( )C u are ( 1)N is 1N gl

a matrix.

Let , 1,...,V Mm m be representations of with the highest ( ) ( )1( ,..., ).Nm mh h

and auxiliary spaces respectively. The monodromy is now

( , ) ( )N N

R E E E E E E E E E E

ii ii ii jj jj ii ij ji ji iji i j

u v

The problem is to find eigenstates of the transfer matrix( ) tr ( )Wt Tu u

Let 1N

MV V W LH and £ be quantum

N N

Nglweightweight

Page 4: Universal Weight Function Plan - Nested (off-shell) Bethe vectors - Borel subalgebras in the quantum affine algebras - Projections and an Universal weight

Let (0) (0)0 1 MV V LH H

The column

fundamental representation of

11

1 1 111 1

1 1 (1) 1 11 ... 1 1

...

( ) ( ) ( ) ( ; ; )N

N NF t B t B t F t t t t n

n

n

iin i i n n

i i

L K

where1 1

(1).... 0F

ni i H f

of the monodromy

1 11 1

1 10

N N

t t

n

HLC C

by the comultiplication

( 1) ( 1) ( 1)( ) ( ) ( )N N NT T T ij kj ikk

u u u

be such that any vector 0f H satisfies

( ) ( ) , ( ) 0, 1,..., 1D f d f C f N iu u u i

( )B u may be considered as an operator valued

1.N gl We look for eigenvectors

( )t u in the form

These vectors are defined by the elements( 1) ( )NT u acting in the tensor product

1,..., 1N ki

1N gl

Page 5: Universal Weight Function Plan - Nested (off-shell) Bethe vectors - Borel subalgebras in the quantum affine algebras - Projections and an Universal weight

Let ( )R P u u

In the fundamental

23 131 22 32( ) ( ) (( ; ) (( ) ( ) ( )) ) ( )iT t T tF t t T B t tT T is s s s vac

be a rational -matrix, where P is the

( ) 1, ( ) ( ) , ( ) ( ) 1. u u u u u u u

representation the monodromy matrix acts by the R-matrix

permutation operator

ExamplesExamples

( ) ( )N N

R E E E E E E E E E E

ii ii ii jj jj ii ij ji ji iji i j

u

N Rgl

( )( ( )) ( ) ( ) ( )T e e e ij k ij k kj iu v u v v v

LetFix 3.N 1 21 1. and n n Denote 11t t and 2

1t s

1 2 1 2 12 2 12 1

2 1

23

13

1

2 2 22 1

1 22 2 13 2 1

( ; , ) ( )( ) ( ) ( )

(

+ ( 1) ( ) ( ) +

+

)

( )

( )( ) ( ) ( )

F t t t T T

t

T t

T T

t

T

T

t

t TT

s s s s s s

s s s

s s s

vac

vac

vac

Let 1 21 2. and n n Denote 11t t and 2 2

1 1 2 2, t t s s

Page 6: Universal Weight Function Plan - Nested (off-shell) Bethe vectors - Borel subalgebras in the quantum affine algebras - Projections and an Universal weight

Weight function as specific element of Weight function as specific element of monodromy matrix ( case)monodromy matrix ( case)

A.Varchenko, V.Tarasov. Jackson integrals for the solutions to Knizhnik-Zamolodchikov equation, Algebra and Analysis 2 (1995) no.2, 275-313

µ1( )glNqU

1( ) ( ) ( ),NqL U

End C b$u µ1( ) ( )Nq qU U $b glLet

It satisfies the -relation with1 1

1 1( , ) ( , ) ( , ) 1 ( , ) ( , )q q q q

u vu v u v u v u u v v u v

u v u vDefine an element

(1) ( ) ( ,...,1)1 1 1( , ..., ) ( ) ( ) ( , ..., )K M M

M M ML L u u u u u uT R

( ,...,1) ( )1

1

( ,..., ) ( , )MM

M

R

jij i

i j

u u u uR

Let 1, , NKn n be nonnegative integers such that

Rename the variables

µ1( ).NqU gl

1 .N M Ln n

where

is an -operator realization of Borel subalgebra of

RLL

iu

1 2

1 1 2 21 1 1 1{ ,..., } { ,..., ; ,..., ;......; , , }

N

N NM t t t t t t Kn n nu u

11 ( ) ( )( ,..., ) N M

M qU

u u bCT End

L

Page 7: Universal Weight Function Plan - Nested (off-shell) Bethe vectors - Borel subalgebras in the quantum affine algebras - Projections and an Universal weight

Example:

1 2 2 1 23 12 2 12 1

2 1 13 12 2 22 1

2 1 13 22 2 12 1

( ; , ) ( , ) ( , ) ( ) ( ) ( )

( , ) ( , ) ( ) ( ) ( ) +

+ ( , ) ( , ) ( ) ( ) ( )

t t t L t L L

t t L t L L

t t L t L L

s s s s s s

s s s s

s s s s

B

1 2 21 2 1 1 1 2 22, 3, 1, 2, , , N M t t t t n n s s

Define an element

1

1

1 11 1 21 1,(( ) )( ( ,..., ; ; ,..., ) 1)N

N

M N NN Nt t t t E E K L nn

n nTtr id

1

1 1

( ) ( , )N

N

t t t

a aj i

a i j

B

( )( ) qUt $B b

1 2 1 2 23 12 2 12 1

2 13 12 2 22 1

1 13 22 2 12 1

( ; , ) ( )( ) ( ) ( ) ( )

( 1) ( ) ( ) ( ) +

+ ( ) ( ) ( ) ( )

F t t t T t T T

t T t T T

t T t T T

s s s s s s

s s s

s s s

vac

vac

vac

In the case of the rational In the case of the rational RR-matrix-matrix

Page 8: Universal Weight Function Plan - Nested (off-shell) Bethe vectors - Borel subalgebras in the quantum affine algebras - Projections and an Universal weight

a vector-valued weight function of the weight

associated with the vector

Let be the set of indices of the simple roots

for the Lie algebra

A -multiset is a collection of indexes together with a

map , where and We

associate a formal variable to the index

Weight function

.v1 , )N N N n n n

Let be -module. A vector is called a weight

singular vector with respect to the action of if

for and If we call

( )qU b$V Vv( ),qU b$ ( ) 0L ij u v

1 1N j i ( ) ( ) .L ii iu v u v ,Vv

( ) ( )V t tw B v

1( ,...,N Ln n

{1,..., }N

1{ ,..., }N 1.Ngl

( , )a i

.I i ¢: ,I ( )i atai

a

( , ).a i

Page 9: Universal Weight Function Plan - Nested (off-shell) Bethe vectors - Borel subalgebras in the quantum affine algebras - Projections and an Universal weight

that is, is a formal power series over the variables

2 1 3 2 1, ,..., , 1t t t t t t t

n n ni i i i i i i

For any -multiset we choose the formal series where

I

32

1 1 1

1 2 1

1 1 1,, ,,{ ,..., } ( )[ , ,..., , ]q

tt tU t t U t t t t

t t t t

n

n n n

n n

ii ii i i i i i

i i i i

b1 1

( ,..., ) { ,..., }, ,W t t U t t I n ni i i i ki

1( ,..., )W t t

ni i

with coefficients in the ring of polynomials :1 1

1 1( )[ , , , , ]qU t t t t

n ni i i ib

• For any representation with singular weight vector V v

1 1( ,..., ) ( ,..., )V t t W t tw

n ni i i i v

converges to a meromorphic -valued weight function.V

• If then and0I 1W .V w v• If are two weight singular vectors, then is a

weight singular vector in the tensor product and for

any -multiset the weight function satisfies the

recurrent relation

1 2, v v 1 2 v v

1 2V V I

1 2( )V V tw

Page 10: Universal Weight Function Plan - Nested (off-shell) Bethe vectors - Borel subalgebras in the quantum affine algebras - Projections and an Universal weight

1 2 1 1 2 2

1 2

({ | }) ({ | }) ({ | })V V I V I V II I I

t t t

w w w

i i i i i i

1 2 2, 1 1, 2

1 1(2) (1)

11 , ,

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )N

I I I I I I

q t qt qt q tt t

t t t t

a a a ai j i ja a

a i a i a a a aa i i i j i j i j i ji j i j

i a i a i j a i j a

2, 1 2, 1

1 1 1

1 1 1 , ,

( ) , ( ) 1 ( ) 1, ( )j I I I I

qt q t t t

t t q t qt

a a a ai j i j

a a a ai i j i j i ji j i ji a j a i a j a

(1) (2)1 1 2 2( ) ( )L t L t aa a aa av v v v

We call the element theµ1 1( ,..., ) ( ) ( )Nq qW t t U U $

ni i b gl

Universal Weight Function

Page 11: Universal Weight Function Plan - Nested (off-shell) Bethe vectors - Borel subalgebras in the quantum affine algebras - Projections and an Universal weight

Chevalley description: 1, , , 0,1,...,e f

i i ik i r

1

11

, , etc.k

f k q f e fq q

iij i

i i jj i j

ai ij

i i

kk

Standard Hopf structures:

1) ( 1 , etc.f f f

i i ii i i i

k k k k

Current (Drinfeld’s «new») realization of ( ), 1,..., :qU i rg$

0

[ ]( ) [ ] ( ) ( ) [ ]e e f f

m

i i i i i i

k k k

k k k

z k z z k z z k zy yZ Z

( , ) ( , )( ) ( ) ( ) ( ) etc.q e e e e q i j i j

i j j iz w z w w z z w

Current Hopf structure: D D( ) 1 ( ) ( ) ( ) , ( ) ( ) ( ) etc.f f f

i i i i i i i

z z z z z z zy y y y

Different realizations of the QAA $gU Uq= ( )

Part II Universal weight function and Drinfeld’s current

Page 12: Universal Weight Function Plan - Nested (off-shell) Bethe vectors - Borel subalgebras in the quantum affine algebras - Projections and an Universal weight

Here are the operators of the adjoint action:

1 1( ) [0] [0 ] ( ) [0] [0]e e f f

i i i i i i i ii iS x x k xk S x x k xk

iS

Relation between the two realizationsRelation between the two realizations

Let be the longest root of the Lie algebra0 1

r

r rin g.

Let be The assignment ge

[0] [0] 1,...,e e e f a ai i i i

i r

0

1

1

a a i

i i i

rn

i

k k k k k

0 1 2 0 1 2( [1]) ( [ 1])e f e e

a L a L

n j n ji i i i i iS S S S S S

establishes the isomorphism of the two realizations.

1 2

[ ,[ ,...[ , ]...]]. i i i jn

e e e e e

Page 13: Universal Weight Function Plan - Nested (off-shell) Bethe vectors - Borel subalgebras in the quantum affine algebras - Projections and an Universal weight

Different Borel Subalgebras in Different Borel Subalgebras in ( )qU g$

1 1( ) ( ) ( ) :{ , } ( ) :{ , }q q q qU U U e U e

$ $ $ $i i i ik kb g b b

( ) :{ } ( ) :{ } 0,1,...,q qU e U e $ $i i

i rn n

( ( )) ( ) ( ) ( ( )) ( ) ( )q q q q q qU U U U U U n b n n n b

We call the STANDARD Borel subalgebras of( )qU b$ ( )qU g$

1:{ [ ], ; , [ ], 0; 1,..., } ( )F qU f U $

i i in n k n n i r gy¢

1:{ [ ], ; , [ ], 0; 1,..., } ( )E qU e U $

i i in n k n n i r gy¢

We call and CURRENT Borel subalgebras ofFU ( )qU g$EU

:{ [ ], } :{ [ ], }f F e EU f U U e U i in n n n¢ ¢

( ) ( )( ) ( )D Df f F e E eU U U U U U

( ) ( ) ( )f F q F q F F qU U U U U U U U - - +b n bI I I

( ) ( ) ( )e E q E q E E qU U U U U U U U + + -b n bI I I

Page 14: Universal Weight Function Plan - Nested (off-shell) Bethe vectors - Borel subalgebras in the quantum affine algebras - Projections and an Universal weight

of linear spaces;

(i) The algebra admits a decomposition that is, theA 1 2,A A Amultiplication map establishes an isomorphism1 2: A A A

Let be a bialgebra with unit 1 and counit We say that itsA .subalgebras and determine an orthogonal decomposition 1A 2A

,Aof if

Orthogonal decompositions of Hopf algebrasOrthogonal decompositions of Hopf algebras

1 1 1 2 1 2 2 2 1 2 1 2 1 1 2 2: ( ) ( ) : ( ) ( ) P P P P aa a a aa a a a aA A(1) (2) (1) (2)

1 2( ) ( ) ( )=P P a a a a a afor

: ( ) ( ) ( ) ( )

: ( ) ( ) ( ) ( )

F F F f

F F f F

U U U U P f f f f P f f f f

U U U U P f f f f P f f f f

A

A

ýý

curves. Israel J.Math 112 (1999) 61-108 B. Enriquez, V. Rubtsov. Quasi-Hopf algebras associated with and complex2sl

(ii) is a left coideal, is a right coideal:1A 2A

1 1 2 2( ) ( ) A A A A A A

Page 15: Universal Weight Function Plan - Nested (off-shell) Bethe vectors - Borel subalgebras in the quantum affine algebras - Projections and an Universal weight

a system of simple roots of a Lie algebra The Universal The Universal

1 1 1( ) ( )( ,..., ) ( ( ) ( ))t t P f t f t Ln n ni i i i i iW

given by the projectionweight function weight function for the quantum affine algebra is ( )qU

$g.g

1{ ,..., }I ni iLet be an ordered -multiset, where is

Projections and the weight functionProjections and the weight function

[ ], , J U e n n Z

elements where[ ],e n , n Z

( )( ( )) ( ) ( ) mod DP f P P f U J

Theorem. Theorem. Let be a left ideal of generated by theJ ( ),qU$g

Let be a singular weight vector in a highest weight vrepresentation of then V ( ),qU g$

1 1( ,..., ) ( ,..., )t t t t

n nV i i i iw vW

is a meromorphic -valued weight functionV ( )qU$g

Page 16: Universal Weight Function Plan - Nested (off-shell) Bethe vectors - Borel subalgebras in the quantum affine algebras - Projections and an Universal weight

Coproduct property of the weight functionCoproduct property of the weight function

representations with singular vectors They are eigen-

( )( ) ( ) 1,..., 1,2t t i

kk i kv v i r ky

vectors of the Cartan currents

1 2, .v v1 2V V V Let be the tensor product of highest weight

1 2 2

1 2

({ | } ) = ({ | }) ({ | })I I V II I I

t t t

1V i i V i i i iw w w

( ), ( )

( ), ( )

2 2, 1

( )

(1)( )

1 , 1 , ( ) ( ) , ( )

( )i j

i j

i j

I b j I I i jj b

q t tt

t q t

r r

a ia i a i i j

i a i a

( )qU$g

( , )D 1

( , )( ) 1 ( ) ( ) ( ) ( ) ( )( ( )) ( )q

f f f f fq

i j

i i i i i j i ji j

z wz z z z z z z z

z wy y y

Page 17: Universal Weight Function Plan - Nested (off-shell) Bethe vectors - Borel subalgebras in the quantum affine algebras - Projections and an Universal weight

µ1( )NqU gl weight function as a projectionweight function as a projection

representation of µ1( ).NqU glV

vLet be a singular weight vector in a highest weight

1

1 11 1 1 1( ) ( ) ( ) ( ) ( )

N

N NN Nt P F t F t F t F t L L LV n nw v

1 1

1 1 2 1

( ) ( ) ( ) ( )N N

V

q t qtt t t t

t t

w a

a

a a ni j a

V a ia aa i j n a ii j

v w vB v

Then the weight function is equal toµ1( )NqU gl

( ) ( )L t taa av v

Page 18: Universal Weight Function Plan - Nested (off-shell) Bethe vectors - Borel subalgebras in the quantum affine algebras - Projections and an Universal weight

Ding-Frenkel isomorphismDing-Frenkel isomorphism

affine algebra Comm.Math. Phys. 156 (1993) 277-300

J. Ding, I. Frenkel. Isomorphism of two realizations of quantum µ

1( ).NqU gl

2,1

1,1 1,

1

( ) 0( )

1

( ) ( ) 1

q

N N N

eU

e e

O $M O

L

bz

z z

1, 1, , 1 , 1( ) ( ) ( ) ( ) ( ) ( )E e e F f f i i i i i i i i i iz z z z z z

11,2 1, 1

, 1

1

(1 ( (

01( )

00 (

(1

N

N N

N

f f

Lf

k z)z) z)

zz)

k z)

, 1 , 1( ( )) ( ) ( ) ( ( )) ( ) ( )q qP F f U P F f U i i i i i iz z z zb b$ $

Page 19: Universal Weight Function Plan - Nested (off-shell) Bethe vectors - Borel subalgebras in the quantum affine algebras - Projections and an Universal weight

Composed currents and projectionsComposed currents and projections

, 1, , 1( ) res ( ) ( )d

F F F i j s j i sw=z

wz z w

w

11 1( ) ( ) ( ) ( ) ( )( )q F F F F i i i iz-qw z w w z z-w

, 1( ) ( )F t F t i i i

1 2, [0] [0] [0] 1( ( )) ( ( ))F F FP F t F t

L

i i ji j jS S S

1 1, ,( ( )) ( ) ( )P F t q q f t j i

i j i jv v

Define the screening operators ( )B A AB qBA S

1, 1 1,

0

( ) [ ] ( ) ,q q F F

ki s s j

k

k z z

1, , 1 , 1 1, ,( ) [0]) ( )( [0]F F F qF F s j i s i si j s j zz z

1

1, , 1 1 ,, 1,( ) ( ) ( ) ( () ) ( )q q

F F F F F

s j i s i s s j i j

z wz w w z z w

1- wz

z

, 1,..., 2. s i i j

µ1( )q NU gl

Page 20: Universal Weight Function Plan - Nested (off-shell) Bethe vectors - Borel subalgebras in the quantum affine algebras - Projections and an Universal weight

Calculation of the projectionsCalculation of the projections

, , , , , , ,0 0

( ) ( ) ( ), ( ) [ ] , ( ) [ ] F F F F F F F

n ni j i j i j i j i j i j i j

n n

z z z z n z z n z

1

1, , 1 , 1 1,( ) ( ) ( ) ( )q q

F F F F

s j i s i s s j

z wz w w z

z-w1

, 1 1, ,

( )( ) ( ) ( )

q qF F F

i s s j i j

z zw z z

z w z w

First step 22 1 3 2

, 1 2,3 1,2 , 1 3,4 1,3 2 1( ( ) ( )) ( ( )) ( ( ) ( ) ( )) N N

N N N N

t

t tP F t F t P F t P F t F t F t

L L

Let us calculate using2 1, 1 2,3 1,2( ( ) ( ) ( ))N

N NP F t F t F t L

1 2 1 2 1 2( ( )) ( ) ( ) ( ( ) ) 0P FP F P F P F P P F F and

2 2 1 2 2 21,3 1,3 1,2 2,3 1,3( ) ( ( )) ( )( ( ) ( )) ( )F t P F t q q F t F t F t

1, 1 1,2( ( ) ( ))N

N NP F t F t L121

1, 1 , 1 1, 1

2 1

( ( ) ( )) ( ( ))N

NN N

tP F t F t P F t

t t

jmm m

m m m j jm j

After -steps:N

Page 21: Universal Weight Function Plan - Nested (off-shell) Bethe vectors - Borel subalgebras in the quantum affine algebras - Projections and an Universal weight

1 1,2 2 1, 1 1

2

, 1 1

1

( ) ( ) ( ) ( ) ( )

0 ( )( )

0 ( ) ( )

( )

N N

N N N

N

t f t t f t t

tL t

f t t

t

L

O M

O

k k k

kv v

k

k

Taking into account

we conclude that

1 1, 1 1 1

1

( ,..., ) ( ( ) ( )) ( )N

N NN Nt t P F t F t t

L jj

j

v k vB

The element for a collection of times satisfies:( )tB 1{ ,..., }Nt t

1111 1 1 1

1 , 12 2

( )( ,..., ) ( ,..., ) ( ) ( )

NN N q q t

t t t t L t L tt t

jmm m j

m j j j jm j

v vB B