understanding the presence of false-positive antibodies in acute hepatitis

14
Accepted Manuscript 1 Published by Oxford University Press on behalf of the Infectious Diseases Society of America 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US. Understanding The Presence of False Positive Antibodies in Acute Hepatitis Sasan Sakiani 1,2,* , Christopher Koh 1,* , Theo Heller 1 1 Translational Hepatology Unit, Liver Diseases Branch, National Institute of Diabetes & Digestive & Kidney Diseases (NIDDK), National Institutes of Health (NIH) 2 Division of Gastroenterology and Hepatology, Metrohealth Medical Center, Case Western University Address Correspondence to: Christopher Koh, MD, Translational Hepatology Unit, Liver Diseases Branch/NIDDK/NIH, Building 10, Room 9B16, 10 Center Drive, MSC 1800, Bethesda MD 20892‐1800, Phone: 301‐496‐1721, Fax: 301‐402‐0491, Email: [email protected] * Both authors contributed equally to this manuscript Abbreviations: PCR, polymerase chain reaction; NOSA, non‐organ specific antibodies; ANA, anti‐nuclear antibody; SMA, smooth muscle antibody; RF, rheumatoid factor; AMA, antimitochondrial antibody; LKM, anti‐liver kidney microsomal antibody; HCV, hepatitis C virus; HBV, hepatitis B virus; HIV, human immunodeficiency virus; EBV, Epstein barr virus; CMV, cytomegalovirus; NIH, National Institutes of Health, HTLV, human T‐cell lymphotrophic virus; VZV, varicella zoster virus; HSV, herpes simplex virus; RPR, rapid plasmin reagent; FTA, fluorescent treponema antibody; C‐ANCA, C‐Antineutrophil cytoplasmic antibody; P‐ANCA, P‐Antineutrophil cytoplasmic antibody; IgM, immunoglobulin M; ESR, erythrocyte sedimentation rate; FPA, false positive antibody; ALT, alanine aminotransferase; AST, aspartate aminotransferase; RNA, ribonucleic acid; IV, intravenous. Manuscript Characteristics: Abstract=97; Text= 1612 words; Table= 1; Figure= 1; References= 15; Supplementary Tables = 2, Supplementary Figure = 1. Financial Support: This research was supported by the Intramural Research Program of the NIDDK, NIH. None of the authors has any financial interest or conflict of interest related to this research. Journal of Infectious Diseases Advance Access published June 18, 2014 at Queen Mary, University of London on July 14, 2014 http://jid.oxfordjournals.org/ Downloaded from

Upload: t

Post on 27-Jan-2017

213 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Understanding the Presence of False-Positive Antibodies in Acute Hepatitis

Acce

pted M

anus

cript

Published by Oxford University Press on behalf of the Infectious Diseases Society of America 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US. 

Understanding The Presence of False Positive Antibodies in Acute Hepatitis  Sasan Sakiani1,2,*, Christopher Koh1,*, Theo Heller1 1Translational Hepatology Unit, Liver Diseases Branch, National Institute of Diabetes & Digestive & Kidney Diseases (NIDDK), National Institutes of Health (NIH) 2Division of Gastroenterology and Hepatology, Metrohealth Medical Center, Case Western University Address Correspondence to: Christopher Koh, MD, Translational Hepatology Unit, Liver Diseases Branch/NIDDK/NIH, Building 10, Room 9B16, 10 Center Drive, MSC 1800, Bethesda MD 20892‐1800, Phone: 301‐496‐1721, Fax: 301‐402‐0491, Email: [email protected] *Both authors contributed equally to this manuscript   Abbreviations: PCR, polymerase chain reaction; NOSA, non‐organ specific antibodies; ANA, anti‐nuclear antibody; SMA, smooth muscle antibody; RF, rheumatoid factor; AMA, antimitochondrial antibody; LKM, anti‐liver kidney microsomal antibody; HCV, hepatitis C virus; HBV, hepatitis B virus; HIV, human immunodeficiency virus; EBV, Epstein barr virus; CMV, cytomegalovirus; NIH, National Institutes of Health, HTLV, human T‐cell lymphotrophic virus; VZV, varicella zoster virus; HSV, herpes simplex virus; RPR, rapid plasmin reagent; FTA, fluorescent treponema antibody; C‐ANCA, C‐Antineutrophil cytoplasmic antibody; P‐ANCA, P‐Antineutrophil cytoplasmic antibody; IgM, immunoglobulin M; ESR, erythrocyte sedimentation rate; FPA, false positive antibody; ALT, alanine aminotransferase; AST, aspartate aminotransferase; RNA, ribonucleic acid; IV, intravenous.   Manuscript Characteristics: Abstract=97; Text= 1612 words; Table= 1; Figure= 1; References= 15; Supplementary Tables = 2, Supplementary Figure = 1.  Financial Support: This research was supported by the Intramural Research Program of the NIDDK, NIH.  None of the authors has any financial interest or conflict of interest related to this research.  

Journal of Infectious Diseases Advance Access published June 18, 2014 at Q

ueen Mary, U

niversity of London on July 14, 2014

http://jid.oxfordjournals.org/D

ownloaded from

Page 2: Understanding the Presence of False-Positive Antibodies in Acute Hepatitis

Acce

pted M

anus

cript

 Abstract  

Although false positive antibodies (FPAs) have been well described in chronic HCV, this has not been evaluated in acute viral hepatitis. Patients with acute viral hepatitis underwent antibody testing for other causes of liver disease and sexually transmitted diseases. Those with antibody positivity underwent confirmatory testing and monitoring.  Patients with FPAs were compared with patients with acute hepatitis C infection without FPAs. 7 of 24 pts (29%) had FPAs. FPAs during acute viral hepatitis are associated with,higher IgM levels and higher ESR in acute HCV. This has both mechanistic and clinical implications and should be evaluated further.  

 

at Queen M

ary, University of L

ondon on July 14, 2014http://jid.oxfordjournals.org/

Dow

nloaded from

Page 3: Understanding the Presence of False-Positive Antibodies in Acute Hepatitis

Acce

pted M

anus

cript

 Introduction: 

  The vast majority of cases of acute viral hepatitis are due to hepatitis A‐E, but 

other identified etiologies include Epstein‐Barr virus, cytomegalovirus, herpes 

simplex virus, varicella zoster virus, and adenovirus.[1] The presentation of acute 

viral hepatitis is often nonspecific, ranging from the complete absence of symptoms 

to fulminant hepatic failure.[1, 2]  In symptomatic patients, the most commonly 

described symptoms include jaundice, fatigue, abdominal pain, nausea, anorexia, 

and fevers.  Thus, given the poor specificity of presenting symptoms in acute viral 

hepatitis, identification of the causative factor requires either serologic IgM subclass 

antibody testing or viral quantification by polymerase‐chain reaction (PCR) testing. 

Given that clinical management is purely dependent upon the causative factor, 

accurate diagnosis is paramount, as therapy may prevent chronicity or even death.  

  The immune response following an acute viral infection is often complex, 

employing a combination of the innate and humoral immune system.[3] During this 

process, polyclonal B cell activation can occur as the host attempts to develop 

organism specific antibodies which is essential for early host defense.[4] This 

polyclonal B cell activation typically results from foreign proteins and/or other 

components of the cell membranes, cytosol, or excreted products from the infecting 

microorganism, and are not specific to any specific viruses, parasites, or bacteria.[4] 

It has been shown that there can be cross‐reactivity between these immune 

reagents with host “self” antigens, in addition to immune reagents from other 

infectious organisms, in what has been termed “molecular‐mimickery.”[5] The 

presence of organ and non‐organ specific antibodies (NOSAs), including anti‐nuclear 

at Queen M

ary, University of L

ondon on July 14, 2014http://jid.oxfordjournals.org/

Dow

nloaded from

Page 4: Understanding the Presence of False-Positive Antibodies in Acute Hepatitis

Acce

pted M

anus

cript

antibodies (ANA), anti‐smooth muscle antibodies (SMAs), rheumatoid factor (RF), 

anti‐mitochondrial antibodies (AMAs), and anti‐liver kidney microsomal (LKM) 

antibodies, has been well described in many infections, including chronic HCV, HBV, 

and HIV[6, 7]. Indeed, studies have shown the presence of NOSAs in up to 70% of 

patients with chronic HCV[8], and it is felt that the process of molecular‐mimickery 

may be responsible for the multiple extrahepatic complications which are often 

auto‐immune mediated, such as mixed cryoglobulinemia, lichen planus, and non‐

Hodgkins B‐cell lymphoma.[3]  

In addition to these auto‐antibodies, false positive IgM responses towards 

other viruses have also been associated with many infectious agents[9‐11]_ENREF_5 

and even vaccinations.[12] False‐positive IgM for EBV and CMV have been reported 

to occur in approximately 3% of patients with acute human immunodeficiency virus, 

and up to 30% of patients with acute hepatitis A infection.[13]_ENREF_21 Of 

interest, there is a single case report of a false positive HIV test in a patient with 

acute Q fever‐associated hepatitis.[14] There is also evidence to suggest up to 4.5 

times higher prevalence of biologic false positive tests for syphilis in patients with 

chronic HCV.[9] These findings are significant, as many of these infections share 

many of the same risk factors and have similar clinical presentations, and accurate 

diagnosis is crucial to proper treatment.  

The presence of these auto‐antibodies and false‐positive antibodies (FPA) is 

felt to be rare in acute hepatitis[15]_ENREF_22 and thus has not been well described 

and their significance is unclear.  We present a series of cases of acute hepatitis that 

were associated with the presence of NOSAs and FPAs.  

at Queen M

ary, University of L

ondon on July 14, 2014http://jid.oxfordjournals.org/

Dow

nloaded from

Page 5: Understanding the Presence of False-Positive Antibodies in Acute Hepatitis

Acce

pted M

anus

cript

 

Methods: 

A total of 24 patients who presented to the Liver Diseases Branch of the 

National Institutes of Health (NIH) for evaluation of acute hepatitis were included in 

this study. Twenty‐two patients with a diagnosis of acute hepatitis C were 

previously described in a study by Loomba et al[2]. In addition, 1 patient was found 

to have acute hepatitis B, and a second patient was found to have acute hepatitis due 

to cytomegalovirus.  

  All patients were evaluated for other causes of chronic liver disease, 

including other viral causes, autoimmune disease, medications, and metabolic 

causes when appropriate. Laboratory analysis included checking antibodies to 

hepatitis A, B, C, D, and E, HIV, HTLV, CMV, EBV, VZV, HSV, RPR and FTA abs, in 

addition to ANA, SMA, AMA, LKM, RF, C‐ANCA, P‐ANCA, and immunoglobulins. 

Patients in the original study were begun on treatment for acute HCV with 

interferon and Ribavirin based regimens according to the standard of care at that 

time if they did not show signs of clearing the infection after a few weeks.  

  Patients with antibodies towards other infections had serial or confirmatory 

testing done to ensure that they were false positives (HIV had western blot and PCR; 

HTLV had western blot; RPR had FT‐ABS). Patients who had NOSAs and FPAs at 

time of initial presentation were then evaluated to see if they had loss of these 

antibodies. These patients were included in the “abnormal antibody” group.  The 

remaining patients were included as controls. As interferon itself has been 

at Queen M

ary, University of L

ondon on July 14, 2014http://jid.oxfordjournals.org/

Dow

nloaded from

Page 6: Understanding the Presence of False-Positive Antibodies in Acute Hepatitis

Acce

pted M

anus

cript

associated with inducing or unmasking underlying autoimmune diseases in patients, 

only positive antibodies prior to treatment with interferon were used. 

  The two groups were then compared in regards to liver function tests, viral 

loads, immunoglobulin levels, and ESR. Labs were added on to stored samples when 

necessary. Viral loads were only compared between patients with acute HCV.  

Charts and statistical analysis was performed using Prism Graphpad© 

software (ver 5.0f), and p‐values were calculated using an unpaired t‐test. A 

separate analysis was also performed using only the patients with acute HCV.  

 

Results:   

  Table 1 shows the patient demographics for both groups. Of the 24 patients 

evaluated for acute hepatitis, a total of 7 (29%) had NOSA’s and/or false positive 

antibodies at the time of diagnosis ‐ 5 (71.4%) with acute hepatitis C, 1 with acute 

hepatitis B, and 1 with acute CMV hepatitis. All patients in the control group had 

acute hepatitis C. In patients with acute HCV, detected FPAs included HIV, HTLV, 

anti‐smooth muscle, rheumatoid factor, and RPR.  In the patient with acute HBV, 

rheumatoid factor was the NOSA detected and in the patient with acute CMV, 

hepatitis E IgM was the FPA detected.  

57.1% of the patients with FPA’s were male, compared to 41.2% in the 

control group. Median age (43 vs 39, p=0.348) and presence of symptoms at the 

time of diagnosis (71.4% vs 70.5%, p=0.483) was similar between the 2 groups. No 

patients with FPA’s were infected via occupational exposure, compared to 53% of 

the control group (p=0.009). 100% of the patients with FPA’s eventually resolved 

at Queen M

ary, University of L

ondon on July 14, 2014http://jid.oxfordjournals.org/

Dow

nloaded from

Page 7: Understanding the Presence of False-Positive Antibodies in Acute Hepatitis

Acce

pted M

anus

cript

their infection (with or without treatment) compared to 76.5% of the control group 

(p=0.084). Treatment rates for hepatitis C were similar between both groups (80% 

vs 76.4%).  

Supplementary table 1 lists the patients who had NOSAs and FPAs at the time 

of diagnosis. The antibodies were lost between 2 weeks after diagnosis, and up to 1 

year after sustained virologic response.  

At the time of diagnosis, patients with FPAs had significantly higher median 

IgM levels compared to those without FPAs (292 vs 131 mg/dL, p=0.002). 

(Supplementary table 2) However, at the time of FPA resolution,  IgM levels were no 

longer significantly different between groups (Figure 1). Patients also had higher 

ESR levels at the time of diagnosis compared to those without FPAs (31 vs 19.5 

mm/hr, p=0.003) (Supplementary figure 1). Serum cryoglobulins were assessed in 

all patients at the first visit and a single positive result was found in each group. 

Median viral loads at the time of diagnosis and peak viral loads were 

compared for the patients with acute hepatitis C only. Although peak viral loads 

were higher in the FPA group compared to the control group, results were not 

significant (18,148 vs 102,000, p=0.135). Differences between mean and peak ALT 

and AST were also not significant between the groups.   

 

Discussion 

  Although the association between NOSA’s and chronic hepatitis is well 

documented, it was previously felt not to be significant in acute hepatitis. Our 

findings suggested that acute hepatitis is also associated with the production of 

at Queen M

ary, University of L

ondon on July 14, 2014http://jid.oxfordjournals.org/

Dow

nloaded from

Page 8: Understanding the Presence of False-Positive Antibodies in Acute Hepatitis

Acce

pted M

anus

cript

NOSA’s, in addition to FPAs to other viruses, which clear after resolution of the acute 

infection. This includes antibodies to diseases that may complicate the diagnosis and 

treatment, such as in the case of the false positive HIV antibodies.  

  These false positive antibodies are felt to be due to a strong immune 

response to the infecting agent, and the subsequent polyclonal B cell activation as 

the host attempts to clear it. It is therefore not unexpected that we should find 

higher values of IgM and ESR in the patients who were found to have NOSAs and 

false‐positive antibodies.  However, the significance of this difference is unclear.   

  Another interesting finding, was that none of our patients in our study group 

were infected through occupational exposure, but rather through higher risk 

methods (IV drug use, sexual transmission), while over half of the control group 

were infected through occupational exposure (p=0.009). It has previously been 

noted that there is a higher biological false‐positive rate for syphilis in intravenous 

drug users.[9] Ironically, it is these patients who are also at higher risk for co‐

infections with these other infections, and thus awareness that these positive tests 

may be false is important.  

  Our study was limited by the fact that it is a case series with a small sample 

size, which potentially affected the significance of the laboratory findings. 

Additionally, our control group consisted solely of patients with acute HCV 

infections, while we had 1 patient with acute hepatitis B and another with acute 

CMV hepatitis in the study group. The significance of the differences in immune 

responses for these viruses, in addition to any differences in the effects of molecular 

mimickery cannot be determined by our study. 

at Queen M

ary, University of L

ondon on July 14, 2014http://jid.oxfordjournals.org/

Dow

nloaded from

Page 9: Understanding the Presence of False-Positive Antibodies in Acute Hepatitis

Acce

pted M

anus

cript

 

Conclusion: 

  Although the presence of NOSAs has been well established in chronic HCV, 

the significance of these, in addition to other false positive antibodies, has not been 

previously well studied. Serologic detection of FPAs during acute viral hepatitis is 

likely associated with higher viral inoculum as well as higher IgM levels and 

nonspecific markers of inflammation. This has both mechanistic and clinical 

implications and should be evaluated further.  

 

at Queen M

ary, University of L

ondon on July 14, 2014http://jid.oxfordjournals.org/

Dow

nloaded from

Page 10: Understanding the Presence of False-Positive Antibodies in Acute Hepatitis

Acce

pted M

anus

cript

10 

 References 

 1. Lee WM, Squires RH, Jr., Nyberg SL, Doo E, Hoofnagle JH. Acute liver failure: Summary of a workshop. Hepatology (Baltimore, Md 2008; 47:1401‐15. 2. Loomba R, Rivera MM, McBurney R, et al. The natural history of acute hepatitis C: clinical presentation, laboratory findings and treatment outcomes. Alimentary pharmacology & therapeutics 2011; 33:559‐65. 3. Vassilopoulos D, Calabrese LH. Extrahepatic immunological complications of hepatitis C virus infection. Aids 2005; 19 Suppl 3:S123‐7. 4. Montes CL, Acosta‐Rodriguez EV, Merino MC, Bermejo DA, Gruppi A. Polyclonal B cell activation in infections: infectious agents' devilry or defense mechanism of the host? Journal of leukocyte biology 2007; 82:1027‐32. 5. Bogdanos DP, Mieli‐Vergani G, Vergani D. Virus, liver and autoimmunity. Digestive and liver disease : official journal of the Italian Society of Gastroenterology and the Italian Association for the Study of the Liver 2000; 32:440‐6. 6. Lenzi M, Bellentani S, Saccoccio G, et al. Prevalence of non‐organ‐specific autoantibodies and chronic liver disease in the general population: a nested case‐control study of the Dionysos cohort. Gut 1999; 45:435‐41. 7. Clifford BD, Donahue D, Smith L, et al. High prevalence of serological markers of autoimmunity in patients with chronic hepatitis C. Hepatology (Baltimore, Md 1995; 21:613‐9. 8. Ferri S, Muratori L, Lenzi M, Granito A, Bianchi FB, Vergani D. HCV and autoimmunity. Current pharmaceutical design 2008; 14:1678‐85. 9. Thomas DL, Rompalo AM, Zenilman J, Hoover D, Hook EW, 3rd, Quinn TC. Association of hepatitis C virus infection with false‐positive tests for syphilis. The Journal of infectious diseases 1994; 170:1579‐81. 10. Hernandez‐Aguado I, Bolumar F, Moreno R, et al. False‐positive tests for syphilis associated with human immunodeficiency virus and hepatitis B virus infection among intravenous drug abusers. Eur J Clin Microbiol 1998; 17:784‐7. 11. Fogeda M, de Ory F, Avellon A, Echevarria JM. Differential diagnosis of hepatitis E virus, cytomegalovirus and Epstein‐Barr virus infection in patients with suspected hepatitis E. Journal of clinical virology : the official publication of the Pan American Society for Clinical Virology 2009; 45:259‐61. 12. Mackenzie WR, Davis JP, Peterson DE, Hibbard AJ, Becker G, Zarvan BS. Multiple False‐Positive Serologic Tests for Hiv, Htlv‐1, and Hepatitis‐C Following Influenza Vaccination, 1991. Jama‐J Am Med Assoc 1992; 268:1015‐7. 13. Woods CR. False‐Positive Results for Immunoglobulin M Serologic Results: Explanations and Examples. Journal of the Pediatric Infectious Diseases Society 2013; 2:87‐90. 14. Yale SH, de Groen PC, Tooson JD, Kurtin PJ. Unusual aspects of acute Q fever‐associated hepatitis. Mayo Clin Proc 1994; 69:769‐73. 15. McFarlane BM, Bridger C, Tibbs CJ, et al. Virus‐induced autoimmunity in hepatitis C virus infections: a rare event. Journal of medical virology 1994; 42:66‐72.  

at Queen M

ary, University of L

ondon on July 14, 2014http://jid.oxfordjournals.org/

Dow

nloaded from

Page 11: Understanding the Presence of False-Positive Antibodies in Acute Hepatitis

Acce

pted M

anus

cript

11 

 Footnote Page:  Financial Support: This research was supported by the Intramural Research Program of the NIDDK, NIH.    Conflict of Interest Statement: None of the authors has any financial interest or conflict of interest related to this research.  Correspondence Author Contact Information: Christopher Koh, MD Translational Hepatology Unit Liver Diseases Branch/NIDDK/NIH Building 10, Room 9B16 10 Center Drive, MSC 1800 Bethesda MD 20892‐1800 Phone: 301‐496‐1721 Fax: 301‐402‐0491 Email: [email protected]  Meeting where this information was/will be presented: Information from this manuscript was/will be presented as a poster at Digestive Diseases Week in Chicago, IL May 3‐6, 2014.   

at Queen M

ary, University of L

ondon on July 14, 2014http://jid.oxfordjournals.org/

Dow

nloaded from

Page 12: Understanding the Presence of False-Positive Antibodies in Acute Hepatitis

Acce

pted M

anus

cript

12 

 Figure Legends:  Figure 1: Comparison of IgM Values at Time of Diagnosis. Comparison of IgM values at the time of diagnosis between all patients with acute hepatitis with false positive antibodies, acute hepatitis C infection with false positive antibodies and acute hepatitis C infection without false positive antibodies (control).   

at Queen M

ary, University of L

ondon on July 14, 2014http://jid.oxfordjournals.org/

Dow

nloaded from

Page 13: Understanding the Presence of False-Positive Antibodies in Acute Hepatitis

Acce

pted M

anus

cript

13 

Table 1: Characteristics of Study Cohort  

Abnormal Antibody Control Totaln (%) n (%) n (%)

Total number of patients 7 17 24 Acute hepatitis C 5 (71.4) 17 (100) 22 0.076 Acute CMV 1 (14.3) 0 1 Acute HBV 1 (14.3) 0 1Male 4 (57.1) 7 (41.2) 11 (45.8) 0.242Median age at diagnosis 43 +/- 16 39 +/- 16 39 +/- 17 0.348Symptomatic 5 (71.4) 12 (70.5) 18 (75) 0.483Cleared Infection 7 (100) 13 (76.5) 21 (85.5) 0.084Mode of Transmission Sex 2 (28.6) 3 (17.6) 5 (20.8) 0.278 IVDU 1 (14.3) 1 (5.9) 2 (8.3) 0.507 Occupational 0 9 (52.9) 9 (37.5) 0.009 Other 2 (28.6) 3 (17.6) 5 (20.8) 0.278 Unknown 2 (28.6) 1 (5.9) 3 (12.5) 0.194

p-valuePatient Characteristic

Abbreviations: CMV, cytomegalovirus; HBV, hepatitis B virus; IVDU, intravenous drug use.

at Queen M

ary, University of L

ondon on July 14, 2014http://jid.oxfordjournals.org/

Dow

nloaded from

Page 14: Understanding the Presence of False-Positive Antibodies in Acute Hepatitis

Acce

pted M

anus

cript

14 

at Queen M

ary, University of L

ondon on July 14, 2014http://jid.oxfordjournals.org/

Dow

nloaded from