underground ductbank heating … ieee presentation...©ccg facilities integration incorporated basic...

25
© CCG Facilities Integration Incorporated March 2016 UNDERGROUND DUCTBANK HEATING CONSIDERATIONS A Practical Approach to Determining UG Electrical Ductbank Ampacity Mike Mosman, PE CCG Facilities Integration Incorporated © CCG Facilities Integration Incorporated Topics PHYSICS of HEAT in DUCTBANKS NEC and DUCTBANK AMPACITY TIPS for ACCURATE AMPACITY CALCULATIONS 2

Upload: hoangkien

Post on 22-Apr-2018

218 views

Category:

Documents


4 download

TRANSCRIPT

Page 1: UNDERGROUND DUCTBANK HEATING … IEEE Presentation...©CCG Facilities Integration Incorporated Basic Thermodynamics Heat moves from hot things to cold things. Heat flows through liquids,

© CCG Facilities Integration Incorporated

March 2016

UNDERGROUND DUCTBANK HEATING CONSIDERATIONS

A Practical Approach to Determining UG Electrical Ductbank Ampacity

Mike Mosman, PECCG Facilities Integration Incorporated

© CCG Facilities Integration Incorporated

Topics

� PHYSICS of HEAT in DUCTBANKS

� NEC and DUCTBANK AMPACITY

� TIPS for ACCURATE AMPACITY CALCULATIONS

2

Page 2: UNDERGROUND DUCTBANK HEATING … IEEE Presentation...©CCG Facilities Integration Incorporated Basic Thermodynamics Heat moves from hot things to cold things. Heat flows through liquids,

© CCG Facilities Integration Incorporated

Ductbanks Have Issues3

� What’s wrong with this picture?� Maybe lots of things, maybe nothing.

� One needs to know purpose and usage of ductbank before design is deemed suitable.

The Physics of Underground Ductbank Heating and Ampacity Calculations

PART ONE4

Page 3: UNDERGROUND DUCTBANK HEATING … IEEE Presentation...©CCG Facilities Integration Incorporated Basic Thermodynamics Heat moves from hot things to cold things. Heat flows through liquids,

© CCG Facilities Integration Incorporated

Basic Thermodynamics� Heat moves from hot

things to cold things.

� Heat flows through liquids, solids and gasses by various mechanisms.

� Heat transfer rate depends on temperature difference and thermal resistance.

5

© CCG Facilities Integration Incorporated

Heat Generation6

i = amps

Vin Vout

� Watts (W) = i2 x R = i x (Vin – Vout)� 1 Watt-second (W-s) = 1 Joule (J)� 1055.06 J = 1 BTU (British Thermal Unit)� Q = Heat, measured in Joules or BTU’s (and

sometimes calories)

Page 4: UNDERGROUND DUCTBANK HEATING … IEEE Presentation...©CCG Facilities Integration Incorporated Basic Thermodynamics Heat moves from hot things to cold things. Heat flows through liquids,

© CCG Facilities Integration Incorporated

Heat Flow7

� Q = Heat flow rate = ∂Q/∂t in J/s or BTU/h� Q = k x A x ∆T /L, with units in Watts (J/s) when:

� k = Thermal conductivity in W/ºC-cm� ∆T = Thot – Tcold in ºC� Dimensions are in centimeters (cm)

� 1/k = Thermal resistance, Rho (ºC-cm/W)

A = Area (cm2)L = Length (cm)

Q

kThot Tcold

© CCG Facilities Integration Incorporated

Special Considerations8

Wat

ts

Amps

Rel

ativ

e Im

peda

nce

Temperature (degrees C)

SilverCopper

Aluminum

x 2x

y

4y

� Conductor heat dissipation is not linear to the load. It varies with the square of the current.

� Conductor impedance increases with operating temperature. (Be aware of temperature correction factors.)

� These facts can have significant implications in ductbank designs.

Page 5: UNDERGROUND DUCTBANK HEATING … IEEE Presentation...©CCG Facilities Integration Incorporated Basic Thermodynamics Heat moves from hot things to cold things. Heat flows through liquids,

© CCG Facilities Integration Incorporated

Heat Transfer Mechanisms9

© CCG Facilities Integration Incorporated

Representative Ductbank10

AMBIENT

SLABB

NATIVE SOIL

BACKFILLB

ENCASEMENTB

DUCTB

INSULATION

CONDUCTOR

Page 6: UNDERGROUND DUCTBANK HEATING … IEEE Presentation...©CCG Facilities Integration Incorporated Basic Thermodynamics Heat moves from hot things to cold things. Heat flows through liquids,

© CCG Facilities Integration Incorporated

Typical Ductbank Heat Flow

� Encasement conducts heat from source (wires in duct).� Ultimately, almost all heat from encasement flows to surface.� Most heat flows path of least thermal resistance, which makes

backfill very important.

11

FINISHED SURFACE

NATIVE SOIL

ENCASEMENT

BACKFILL

© CCG Facilities Integration Incorporated

Types of Heat Flow in Ductbanks12

� Radiation and conduction from surface to ambient environment. (Lower ambient produces greater heat flow.)

� Conduction through slab or paving, if present. (Often ignored.)

� Conduction through backfill and native soil. (Thermal resistivity, rho, of soil and backfill often considered equivalent. Lower rho produces greater heat flow.)

� Conduction through encasement. (Thermal resistivity, rho, of concrete often set at 55. However, hardness and water content affect rho values.)

� Convection, radiation and conduction pass heat from wire to duct. (Duct temperature assumed to be that of cable surface.)

� Conduction through wire insulation. (Includes shields and outer coverings. Codes differ for LV and MV cable types.)

Page 7: UNDERGROUND DUCTBANK HEATING … IEEE Presentation...©CCG Facilities Integration Incorporated Basic Thermodynamics Heat moves from hot things to cold things. Heat flows through liquids,

© CCG Facilities Integration Incorporated

Equivalent Circuit13

VsVeVdVi

Insulation

Current SourceAmps = Heat Generated

Duct Encasement SlabBackfill/Native Soil

Ground = Ambient Temperature

WireSurface

Temperature

DuctSurface

Temperature

EncasementSurface

Temperature

SlabUnderside

Temperature

� Volts ≈ Temperature Above Ambient (∆T)� Impedance ≈ Thermal Resistivity (rho)� Amps ≈ Heat Flow (Q)

Zi Zd Ze Zs

Zb

Zn

Vc

Conductor Temperature

Typical Equivalent Impedance

© CCG Facilities Integration Incorporated

Thermal Models14

VO

LTS

TIME

SW ON

GROUND POTENTIAL (AMBIENT)

VOLTSAMP

SOURCE ZSW V

TEM

PE

RAT

UR

E

TIME

COFFE TEMP

AIR TEMP (AMBIENT)

SW OFF

A STEAMIN’ CUP’A JOE LEFT ON THE TABLE.

SIMPLIFIED EQUIVALENT CIRCUIT.

Page 8: UNDERGROUND DUCTBANK HEATING … IEEE Presentation...©CCG Facilities Integration Incorporated Basic Thermodynamics Heat moves from hot things to cold things. Heat flows through liquids,

© CCG Facilities Integration Incorporated

Temperature vs Time Domain

� This is a typical conductor temperature vs. time curve when a load is turned on and off, and is constant while on.

� T0 is ambient (or starting) temperature. T2 is maximum conductor temp when thermal equilibrium is reached at t2.

� Load is turned off at point of thermal equilibrium and cools to ambient at t3. (t3 - t2 = t2 - t0)

� t1 is the “time constant” of this curve type. (T1 = 63% of T2)

15

TIME

TEM

PE

RAT

UR

E

t1 t2

T1

T2

Load OffLoad On

T0 t3t0

The National Electrical Code and Underground Ductbank Calculations

PART TWO16

Page 9: UNDERGROUND DUCTBANK HEATING … IEEE Presentation...©CCG Facilities Integration Incorporated Basic Thermodynamics Heat moves from hot things to cold things. Heat flows through liquids,

© CCG Facilities Integration Incorporated

NEC Article 31017

© CCG Facilities Integration Incorporated

NEC 310.15(A)(1)� Note – This is for low

voltage wires only.� Two methods of

calculating wire ampacities is allowed:� Tables in 310.15(B) which

are familiar to every engineer, or

� Under engineering supervision per 310.15(C) which is basically the Neher-McGrath formulas.

� Note the reference to Annex B.

18

Page 10: UNDERGROUND DUCTBANK HEATING … IEEE Presentation...©CCG Facilities Integration Incorporated Basic Thermodynamics Heat moves from hot things to cold things. Heat flows through liquids,

© CCG Facilities Integration Incorporated

NEC 310.15(A)(2)

� There is an important Exception in 310.15(A)(2). It will come in handy in all sorts of situations.

� Note the reference to termination limitation. 90�C wire ampacity cannot be used with 75�C rated terminations.

19

© CCG Facilities Integration Incorporated

NEC 310.15(A)(3)

� This paragraph in the code states that the manner of use of a conductor has a bearing on the selection of its maximum allowable ampacity.

� It is incumbent on the Engineer to determine the purpose of the conductors in UG ductbanks, and perform appropriate ampacity calculations that find the most economical design that results in safe operation.

20

Page 11: UNDERGROUND DUCTBANK HEATING … IEEE Presentation...©CCG Facilities Integration Incorporated Basic Thermodynamics Heat moves from hot things to cold things. Heat flows through liquids,

© CCG Facilities Integration Incorporated

NEC 310.15(C)

� This is the basis for use of the Neher-McGrath.� All is fairly simple except for determining Rca.� Thus the popularity of ampacity software.

21

© CCG Facilities Integration Incorporated

NEC 310.60

� This part of the code is for medium voltage cables.� It also allows “engineering supervision,” i.e. Neher-McGrath

calculations.

22

Page 12: UNDERGROUND DUCTBANK HEATING … IEEE Presentation...©CCG Facilities Integration Incorporated Basic Thermodynamics Heat moves from hot things to cold things. Heat flows through liquids,

© CCG Facilities Integration Incorporated

NEC Annex B

� When you don’t have the software and want to do quick calculations on simple ductbanks, Annex B is a good tool.

� Annex B is information and not part of the required code.� It applies to low voltage wiring (up to 2000 volts) and is not

used for MV ductbanks.

23

© CCG Facilities Integration Incorporated

Table B.310.15(B)(2)(7)� This table is used

more than all others together.

� It’s limited to just three ductbank configurations.

� It uses “standard” ductbank cross-sections shown in Figure B.310.15.

24

Page 13: UNDERGROUND DUCTBANK HEATING … IEEE Presentation...©CCG Facilities Integration Incorporated Basic Thermodynamics Heat moves from hot things to cold things. Heat flows through liquids,

© CCG Facilities Integration Incorporated

Figure B.310.15(B)(2)(2)

� But what if your ductbank doesn’t look like these?

25

© CCG Facilities Integration Incorporated

B.310.15(B)(5)

� What about a 5-way ductbank? Interpolation between the 4-way (calculated) and the 6-way In chart is fairly accurate.

� What about larger ductbanks?

26

AMPACITY = 2 x .88 AMAPACITY OF 1 DUCT

AMPACITY = 4 x .94 AMPACITY OF 1 DUCT IN

3-WAY DUCTBANK

Page 14: UNDERGROUND DUCTBANK HEATING … IEEE Presentation...©CCG Facilities Integration Incorporated Basic Thermodynamics Heat moves from hot things to cold things. Heat flows through liquids,

© CCG Facilities Integration Incorporated

Figure B.310.15(B)(2)(3) INFO� This figure give us a 9-way ductbank. Again, interpolation for

7-way and 8-way ductbanks is fairly accurate.

27

� Computers required beyond this.

© CCG Facilities Integration Incorporated

Figure B.310.15(B)(2)(1)� If you know how to use this

chart, you’re already expert.� The bottom half allows you to

select a different Rho value and load factor than those given in the Tables.

� The upper half is derived from the amperages given in the Tables, I1 being the larger amperage and I2 being the smaller amperage of the three columns of amperages.

� Note the dotted line is I1, the larger amperage.

28

Page 15: UNDERGROUND DUCTBANK HEATING … IEEE Presentation...©CCG Facilities Integration Incorporated Basic Thermodynamics Heat moves from hot things to cold things. Heat flows through liquids,

© CCG Facilities Integration Incorporated

B.310.15 (B)(3)(a)

� Does this mean if the ductbank was 400’ long a deeper part could be 100’? No. It’s purpose is to avoid obstructions, not to avoid ampacity adjustments.� This applies to MV ductbanks as well.

29

25’100’

© CCG Facilities Integration Incorporated

B.310.15.(B)(3)(b)30

-30”

BAD GOOD BETTER, BUT THE NEC DOESN’T CARE.

� This applies to MV ductbanks as well.

Page 16: UNDERGROUND DUCTBANK HEATING … IEEE Presentation...©CCG Facilities Integration Incorporated Basic Thermodynamics Heat moves from hot things to cold things. Heat flows through liquids,

© CCG Facilities Integration Incorporated

Table B.310.15(B)(2)(11)� Account for the neutral wire if it’s current carrying.� Conductor count and ambient temp corrections must both be

applied. Why?

31

� Current carrying neutral adds to Q, the heat being generated.

� Higher ambient temp lowers ∆T which reduces Q, the heat flow.

� More heat + less heat flow = higher conductor temps.

Tips for Making Accurate and Economical Underground Ductbank Ampacity Calculations

PART THREE32

Page 17: UNDERGROUND DUCTBANK HEATING … IEEE Presentation...©CCG Facilities Integration Incorporated Basic Thermodynamics Heat moves from hot things to cold things. Heat flows through liquids,

© CCG Facilities Integration Incorporated

Typical Service Entrance?33

© CCG Facilities Integration Incorporated

Complex Ductbank Problem34

Page 18: UNDERGROUND DUCTBANK HEATING … IEEE Presentation...©CCG Facilities Integration Incorporated Basic Thermodynamics Heat moves from hot things to cold things. Heat flows through liquids,

© CCG Facilities Integration Incorporated

Is the Code Conservative?� Read this excerpt from the NEC Handbook – I’ll wait.

35

© CCG Facilities Integration Incorporated

Rho Values36

� The following (from Annex B) is a “suggestion” by the NEC, but is it appropriate?

� It’s better to verify actual conditions to be found on site. Ask for official reports.

Page 19: UNDERGROUND DUCTBANK HEATING … IEEE Presentation...©CCG Facilities Integration Incorporated Basic Thermodynamics Heat moves from hot things to cold things. Heat flows through liquids,

© CCG Facilities Integration Incorporated

Concrete Rho Values (typical rpt.)

� Note variation of rho values with concrete encasement hardness and water content.

37

(Courtesy Near-Mcgrath.com)

© CCG Facilities Integration Incorporated

Soil Rho Values (typical report)

� Soil rho values are rarely consistent and depend heavily on water content.

38

Project

Page 20: UNDERGROUND DUCTBANK HEATING … IEEE Presentation...©CCG Facilities Integration Incorporated Basic Thermodynamics Heat moves from hot things to cold things. Heat flows through liquids,

© CCG Facilities Integration Incorporated

A Word About Water Content� True: It never rains under a building.� False: That means it’s dry under there.� Q: Why do they put a vapor barrier under the most concrete

slabs on grade?� A: To keep the moisture from coming through the slab from

below.

39

Parking lot @ 150º

Air-conditioned building @ 70º

Slab

Water evaporates under hot paving

...and condenses under cool slab.

© CCG Facilities Integration Incorporated

“Dry” vs “Wet” Soil� Conduction of heat in soil occurs

at contact points between soil particles.

� Water in soil aids in conduction of heat.

� Saturated soils have all air gaps filled with water.

� As soil dries some water remains. Due mainly to capillary action the remaining water collects around particle contact points.

� Even a small amount of residual water aids conduction at particle contact points.

40

SATURATED SOIL

“DRY” SOIL

Page 21: UNDERGROUND DUCTBANK HEATING … IEEE Presentation...©CCG Facilities Integration Incorporated Basic Thermodynamics Heat moves from hot things to cold things. Heat flows through liquids,

© CCG Facilities Integration Incorporated

Appropriate Ambient Temperature

� Heat generally flows toward surface.� Ductbanks under large buildings generally remain a stable

20ºC or close to the building’s interior temperature.� Ductbanks outdoors under heat-gathering surfaces will have

higher ambient temperatures.

41

Parking lot @ 150º

Air-conditioned building @ 70º

Ambient 35ºC (or higher?)

Ambient normal 20ºC

© CCG Facilities Integration Incorporated

Temp Adjustments in Portions� Wire ampacity at termination must be based on 75ºC wire, not

90ºC, due to termination.� In portion of duct near heat source temperature deration must

be applied, but it may be applied to 90ºC wire rating instead of 75ºC wire rating.

42

75ºC TERMINATION

90ºC WIRE

HEAT SOURCE

10’

PORTION 1 PORTION 2

Page 22: UNDERGROUND DUCTBANK HEATING … IEEE Presentation...©CCG Facilities Integration Incorporated Basic Thermodynamics Heat moves from hot things to cold things. Heat flows through liquids,

© CCG Facilities Integration Incorporated

Load Definition43

NEC 100

NEC 220.60

NEC 210.19

� These definitions imply a Load Factor effect on ampacity, but Load Factor is not defined anywhere in the NEC.

� Load Factor impact on conductor ampacity depends on what time duration is used to define it. 3 hours? 24 hours? A week? A year?

© CCG Facilities Integration Incorporated

Beware the PVC Duct Limitation44

� Most PVC conduits are UL listed for 90ºC max wires.� 105ºC MV cables may be loaded only to 90ºC when in PVC.

Page 23: UNDERGROUND DUCTBANK HEATING … IEEE Presentation...©CCG Facilities Integration Incorporated Basic Thermodynamics Heat moves from hot things to cold things. Heat flows through liquids,

© CCG Facilities Integration Incorporated

Good Ductbank Design Practices45

� Stack ducts 2-high maximum. All ducts get proximity to the encasement surface to facilitate heat flow.

� Uneven number of ducts? Leave the blank at the bottom middle. That’s the hottest position.

© CCG Facilities Integration Incorporated

Good Ductbank Design Practices46

� The code allows (in Annex B) that mutual heating of ductbanks is negligible if edges of encasements are 4’ apart or nearest conduits are 5’ apart.� Only for ductbanks up to 2000 volts.� This may conflict with many computerized programs.

� This implies that feeders 5’ or more apart in a wide ductbank will not mutually heat each other.

4’

5’OR

Page 24: UNDERGROUND DUCTBANK HEATING … IEEE Presentation...©CCG Facilities Integration Incorporated Basic Thermodynamics Heat moves from hot things to cold things. Heat flows through liquids,

© CCG Facilities Integration Incorporated

Non-concurrent Redundancy47

� When non-concurrent loads appear in same ductbank, the code allows the calculation to be made with only the greater load.� Normal and emergency feeders to ATS’s.� UPS input and bypass feeders.� “A” and “B” circuits to double-corded computer equipment.� Utility and backup EG feeders.

� Interleave “A” and “B” circuits for cooler ductbanks.

A BBA

AB B A

© CCG Facilities Integration Incorporated

Short Duration Loads

� Short duration or time-limited loads may benefit from a temperature vs. time (time-domain) ampacity calculation.� Backup generator feeders, maintenance bypass feeders, etc.

� T0 is ambient (or starting) temperature. T2 is maximum conductor temp when thermal equilibrium is reached at t2.

� If load is turned off before thermal equilibrium at t2, the maximum conductor temperature T1 will be lower than T2.

48

TIME

TEM

PE

RAT

UR

E

t1 t2

T1

T2Time-domain curve

T0 t0

Page 25: UNDERGROUND DUCTBANK HEATING … IEEE Presentation...©CCG Facilities Integration Incorporated Basic Thermodynamics Heat moves from hot things to cold things. Heat flows through liquids,

© CCG Facilities Integration Incorporated

Ampacity Software� When the design is complex, computerized ampacity

programs are a must. Common software programs are:� ETAP (etap.com)

� Requires add-on package for underground cable thermal calculations.� Add-on includes time-domain (transient) calculations.

� AmpCalc (calcware.com)� Single-purpose software.� Inexpensive and easy to use.� Does not perform time-domain calculations.

� CymCap (cyme.com)� Single-purpose software.� Performs time-domain calculations.

� All above programs based on Neher-McGrath equations.

49

Michael Mosman, PEVP, CTOCCG Facilities Integration IncorporatedBaltimore, MD(410)[email protected]

QUESTIONS & COMMENTS50