ultra-shallow sims for semiconductor depth profiling andrew t. s. wee department of physics national...

59
Ultra-shallow SIMS for semiconductor depth profiling Andrew T. S. Wee Department of Physics National University of Singapore MS-17, Toronto, Sep09: “Depth Profiling" discussion session

Upload: avice-chambers

Post on 27-Dec-2015

215 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Ultra-shallow SIMS for semiconductor depth profiling Andrew T. S. Wee Department of Physics National University of Singapore SIMS-17, Toronto, Sep09: “Depth

Ultra-shallow SIMS for semiconductor depth profiling

Andrew T. S. WeeDepartment of Physics

National University of Singapore

SIMS-17, Toronto, Sep09: “Depth Profiling" discussion session

Page 2: Ultra-shallow SIMS for semiconductor depth profiling Andrew T. S. Wee Department of Physics National University of Singapore SIMS-17, Toronto, Sep09: “Depth

Scope

1. Enabling technologies for ultimate CMOS scaling

2. Solutions to surface transient problem3. Low energy SIMS optimal conditions4. Oblique incidence SIMS5. Beyond Si and III-V: Graphene?6. Future of ultrashallow profiling

Page 3: Ultra-shallow SIMS for semiconductor depth profiling Andrew T. S. Wee Department of Physics National University of Singapore SIMS-17, Toronto, Sep09: “Depth

Technology Navigation for Si CMOSConventional Scaling does not give Historical Performance Improvement

Conventional Device Scaling: • Reduce EOT (equivalent oxide thickness), LG, xj, etc.• Increase doping concentration• Reduce VDD to contain power consumption.

Geometry (e.g. LG , x

j , EOT, etc)

Supply Voltage V DDPer

form

ance

or

Obj

ectiv

e F

unct

ion

(Ion

, I o

ff, d

ensi

ty) Schematic Illustration of a

Performance Optimization Problem

Hitting a Performance Plateau

?

We took this Path

What happened recently: • EOT scaling stalls (due to excessive leakage current).• LG scaling slows down.• Pitch Scaling continues for increased circuit density.• VDD scaling faces challenges due to non-scalability of Vth.

Courtesy of YC Yeo

Page 4: Ultra-shallow SIMS for semiconductor depth profiling Andrew T. S. Wee Department of Physics National University of Singapore SIMS-17, Toronto, Sep09: “Depth

Overview of Scaling Limitations

DS

G

Reduce Junction Depth xj

Parasitic Series Resistance ↑

Increase Doping Concentration NA

Carrier Mobility ↓

Reduce Gate Dielectric ThicknessGate Leakage Current ↑Gate Depletion Effects ↑

LG

Reduce LG

Device Density ↑Short-Channel Effects ↑Requires EOT, xj , NA scaling

VDD

Reduce Supply Voltage VDD

If (VGS - Vth) is fixed, Vth should ↓ Ioff ↑If Ioff is fixed, (VGS - Vth) ↓ Ion ↓

Need to Increase Poly-Dopingbut limited by solubility of dopants

Ion = Cox(W/LG)(VGS - Vth)2

Simple Expression for drive current Ion

If the carrier transport properties, e.g. mobility, of the channel can be engineeried, technology evolution can take a different direction.

Courtesy of YC Yeo

Page 5: Ultra-shallow SIMS for semiconductor depth profiling Andrew T. S. Wee Department of Physics National University of Singapore SIMS-17, Toronto, Sep09: “Depth

World’s Smallest Strained Transistors (5 nm)

5 nm Gate Length is one of the Smallest in the World. First Demonstration of Germanium Stressor to create High Strain

Levels in a tiny volume of Silicon Channel in a Transistor Significant Increase in Carrier Mobility!

Impact: Future of Electronics. - Potentially influence path of technology development.

- Show a way to scale Silicon Transistors towards its Ultimate Limit.

Yeo’s Nanoelectronics Group

Before Growth of Germanium

Stressor

Germanium

Stressor

After GermaniumEpitaxy Growth

Silicon Nanowire

(Diameter =

8 nm)

Gate Electrode

Yeo’s Nanoelectronics Group

Gate Length

Strained-Silicon

Germanium

Stressor

Gate

Electrode

Breakthrough announced at VLSI Symp. 2008, Honolulu, HI.

Courtesy of YC Yeo

Page 6: Ultra-shallow SIMS for semiconductor depth profiling Andrew T. S. Wee Department of Physics National University of Singapore SIMS-17, Toronto, Sep09: “Depth

New Paths of Technology Evolution

Search for New Knobs to tweak to improve performance

• Modification of Properties of Existing Materials (e.g. Strained-Si)• New Materials (e.g. Metal- Gate/High-k, New Channel Materials)• New Device Structures (e.g. Multiple-Gate Transistors)Geometry (e.g. L

G , xj , EOT, etc)

Supply Voltage V DDPer

form

ance

or

Obj

ectiv

e F

unct

ion

(Ion

, I o

ff, d

ensi

ty)

Path of Technology Evolution

Schematic Illustration of Path of Future Technological Evolution

PerformanceAchievable with Existing Set of Materials

PerformanceAchievable with New MaterialCapabilities

Courtesy of YC Yeo

Page 7: Ultra-shallow SIMS for semiconductor depth profiling Andrew T. S. Wee Department of Physics National University of Singapore SIMS-17, Toronto, Sep09: “Depth

Current CMOS Research Frontiers

DS

Novel Silicide Materials S/D Resistance Reduction Dopant-Segregation, Metallic S/D

Metal-Gate/High-k Dielectric Stack Technology

Beyond-CMOS Logic Switches with Sub-60 meV/decade swing: Tunnel FETs

New Strain Engineering Technologies

Advanced Channel Materials, High-Mobility Materials (III-V’s), Strain Engineering

Nea

r-T

erm

(M

ajo

r Im

pac

t in

Ind

ust

ry)

Mid

-Ter

m(U

ltim

ate

CM

OS

)L

on

g-T

erm

(B

eyo

nd

202

0)

Pro

vid

e T

ec

hn

olo

gy

So

luti

on

sF

or

Ea

rly

Ev

alu

ati

on

Ex

plo

re R

ev

olu

tio

na

ryN

an

od

ev

ice

s

Now

Far Future

Tim

elin

e

Transistor Cross-Section

Courtesy of YC Yeo

Limitations of SIMS profiling:• Poor lateral resolution (J100nm); need test structures• Instrumental effects• Includes unactivated dopants

SIMS challenges:1. Ultra-thin dielectric layer2. Ultra -shallow dopant profiles,

junction depths

Page 8: Ultra-shallow SIMS for semiconductor depth profiling Andrew T. S. Wee Department of Physics National University of Singapore SIMS-17, Toronto, Sep09: “Depth

SIMS Depth ProfilingSIMS Depth Profiling• SIMS is a destructive technique whereby a crater is formed in

the sample under ion sputtering• SIMS depth resolution depends on the choice of ion species,

incidence angle and impact energy• During ion-beam sample interactions, surface roughening and

mixing are the main limiting factors of depth resolution

Surface roughening – the roughening of sample surface due to inhomogeneous

incorporation of oxygen

Atomic mixing – the pushing of atoms to deeper layers due to ion bombardment.

Page 9: Ultra-shallow SIMS for semiconductor depth profiling Andrew T. S. Wee Department of Physics National University of Singapore SIMS-17, Toronto, Sep09: “Depth

Ep > 2 keV, 0°<p<60°Xp=O2

+,Cs+

3 regions:(1) Transient (2) Steady-state (3) Roughening

Ep < 2 keVRegion 1 & 3 coalesce(Region 2 exists for narrow energy dependent range in p.)

Surface transient & roughening in low energy SIMSRef: T.J. Ormsby et al. Applied Surface Science 144–145 (1999) 292–296

Page 10: Ultra-shallow SIMS for semiconductor depth profiling Andrew T. S. Wee Department of Physics National University of Singapore SIMS-17, Toronto, Sep09: “Depth

SIMS Instrumentation

ATOMIKA 4500 SIMS Depth Profiler: – Ultra-low energy quadrupole SIMS – “Floating” low energy ion gun (FLIGTM) capable of delivering stable ion beams down to 100 eV – Incidence angles from 0 (normal) to 70

Oblique incidence SIMS:

CAMECA IMS 6f Magnetic Sector SIMS: – EM post-acceleration system– Sample stage with eucentric rotation capability (20 rev/min)

– Primary ions: O2+ Incidence angle: 44°-69°

– Oxygen flooding: 1.0 10-6 torr (max)– Energy range: 0.5 to 10.0 keV

CAMECA Wf Magnetic Sector SIMS: - Gui D et al., Chartered Semiconductor

Samples: Ge and B delta doped Si wafers• quantify surface transient, depth resolution, sputter rates

Page 11: Ultra-shallow SIMS for semiconductor depth profiling Andrew T. S. Wee Department of Physics National University of Singapore SIMS-17, Toronto, Sep09: “Depth

Scope

1. Enabling technologies for ultimate CMOS scaling

2. Solutions to surface transient problem3. Low energy SIMS optimal conditions4. Oblique incidence SIMS5. Beyond Si and III-V: Graphene?6. Future of ultrashallow profiling

Page 12: Ultra-shallow SIMS for semiconductor depth profiling Andrew T. S. Wee Department of Physics National University of Singapore SIMS-17, Toronto, Sep09: “Depth

Solutions to Surface Transient problem• Cap the surface

• Shallow implant in Si: H. U. Ehrke et al. Insight 2007, Napa, USA

• SiON: D. Gui et al, Appl. Surf. Sci. 255, 1437-1439 (2008)

• Backside depth profiling• Yeo K. L., Wee A. T. S., Liu R., Ng C. M., Surf. Interface Anal. 33 (2002) 373.

• Lower impact energy and select incidence angle• W. Vandervorst, Appl. Surf. Sci. 255, 805–812 (2008)

• A.R. Chanbasha, A.T.S. Wee, Surf. Interface Anal. 37 (2005) 628-632; A.R. Chanbasha, A.T.S. Wee, Surf. Interface Anal. 39 (2007) 397-404.

• Atom probe for 3D profiles• P.A. Ronsheim et al, Appl. Surf. Sci. 255, 1547-1550 (2008)

• 18O sputtering• H. U. Ehrke et al. SIMS XVI, (2007)

• PCOR-SIMS for high dose shallow implant• Point-by-point data corrections for all regions of profile; CEA, Application Notes, 2007

Page 13: Ultra-shallow SIMS for semiconductor depth profiling Andrew T. S. Wee Department of Physics National University of Singapore SIMS-17, Toronto, Sep09: “Depth

To achieve better device performance, it is preferable to have a N peak close to the top surface of the nitrided gate oxide, which fabricated by using de-coupled plasma nitridation (DPN).However, it is a challenge to obtain accurate N dose and profile shape due to the surface effect. One solution is to cap the SiON with a thin layer of oxide.

D. Gui et al, Appl. Surf. Sci. 255, 1437-1439 (2008)

• MCs2+ technique

SiON with capping layer

Page 14: Ultra-shallow SIMS for semiconductor depth profiling Andrew T. S. Wee Department of Physics National University of Singapore SIMS-17, Toronto, Sep09: “Depth

Backside SIMS depth profiling using SOI wafersYeo K. L., Wee A. T. S., Liu R., Ng C. M., Surf. Interface Anal. 33 (2002) 373.

Yeo K. L., Wee A. T. S., See A., Liu R., Ng C. M., Appl. Surf. Sci. 203 (2003) 335.Yeo K. L., Wee A. T. S., Liu R., Zhou F. F., See A., J. Vac. Sci. Technol. B 21 (2003) 193.

SiO2

Si

Amorphous Si capped

Epoxy

Dummy Si

11B +0.5keV 5E14at./cm2 (Si pre-amorphized); 11B +0.5keV 5E14at./cm2 (Si pre-amorphized); O2+1.5keV+1keVO2+1.5keV+1keV

Page 15: Ultra-shallow SIMS for semiconductor depth profiling Andrew T. S. Wee Department of Physics National University of Singapore SIMS-17, Toronto, Sep09: “Depth

Scope

1. Enabling technologies for ultimate CMOS scaling

2. Solutions to surface transient problem3. Low energy SIMS optimal conditions4. Oblique incidence SIMS5. Beyond Si and III-V: Graphene?6. Future of ultrashallow profiling

Page 16: Ultra-shallow SIMS for semiconductor depth profiling Andrew T. S. Wee Department of Physics National University of Singapore SIMS-17, Toronto, Sep09: “Depth

Systematic low energy SIMS study• Low energy SIMS (250 eV - 1 keV) using both O2

+ and Cs+.

• Wide range of incidence angles (0 – 70) using a quadrupole SIMS.

• Variations in surface transient widths, depth resolution sputter rates reported.

• Optimum profiling conditions are recommended for silicon ultrashallow profiling (using O2

+ and Cs+).1. A.R. Chanbasha, A.T.S. Wee, Surf. Interface Anal. 37 (2005) 628-632.2. A.R. Chanbasha, A.T.S. Wee, J. Vac. Sci. Technol. B 24 (2006) 547-553.3. A.R. Chanbasha, A.T.S. Wee, Surf. Interface Anal. 39 (2007) 397-404.4. A.R. Chanbasha, A.T.S. Wee, J. Vac. Sci. Technol. B 25 (2007) 277-285.

• Understanding the SIMS altered layer: In-situ XPS study • Tan SK, Yeo KL, Wee ATS, Surf. Interface Anal. 36 (2004) 640-644

Page 17: Ultra-shallow SIMS for semiconductor depth profiling Andrew T. S. Wee Department of Physics National University of Singapore SIMS-17, Toronto, Sep09: “Depth

Depth profile obtained using Ep ~250eV at ~20o

70Ge+

30Si+

44SiO+Ip

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

0 50 100 150 200Depth (nm)

Inte

ns

ity

(c

ps

)

• Ge delta layers

• depth markers

• depth resolution

Effect of O2+ SIMS on surface transients

A.R. Chanbasha, A.T.S. Wee, Surf. Interface Anal. 37 (2005) 628-632

Page 18: Ultra-shallow SIMS for semiconductor depth profiling Andrew T. S. Wee Department of Physics National University of Singapore SIMS-17, Toronto, Sep09: “Depth

30Si+ profiles for (a) Ep ~250 eV (b) Ep ~500eV and (c) Ep ~1keV

a) 250 eV

1.E+03

1.E+04

1.E+05

0 1 2 3 4 5

Inte

ns

ity

(c

ps

)

0 10 20 3040 50 60 70

b) 500 eV

1.E+04

1.E+05

1.E+06

0 1 2 3 4 5

Inte

ns

ity

(c

ps

)

c) 1 keV

1.E+04

1.E+05

1.E+06

1.E+07

0 2 4 6 8 10Apparent Depth (nm)

Inte

ns

ity

(c

ps

)

Equilibrium signals:

-1 keV : profiles at < 40o, eqm signals higher than initial.

- but not at > 50o,

-500 eV: lower eqm intensities at > 60o

-250 eV: eqm Intensities are higher at all

Surface transient - incomplete oxidation

Page 19: Ultra-shallow SIMS for semiconductor depth profiling Andrew T. S. Wee Department of Physics National University of Singapore SIMS-17, Toronto, Sep09: “Depth

SIMS Altered Layer @ Steady State SputteringS. K. Tan, K. L. Yeo, A. T. S. Wee, Surf. Interface Anal. 36 (2004) 640.

0 10 20 30 40 50 60 700

10

20

30

40

50

60

70

80

Si(I) Si(II) Si(III) Si(IV) O

RE

L. C

ON

C. (

%)

INCIDENT ANGLE (Degree)

XPS relative concentrations.

Ion Ion incorporationincorporation

OO22++ bombardment bombardment

SputteringSputteringvs.vs.

Different oxide layerDifferent oxide layer106 104 102 100 98

Si(IV)Si(IV)

Si(III)Si(I)

(b) 0o

(c) 15o

(f) 55o

(a) Si(100) Si(II) Si(0)

Binding Energy (eV)

(e) 45o

(d) 30o

(g) 70o

XPS Si 2p spectra of the crater surface at steady state of 4 keV O2

+ bombardment.

SiO2

sub-oxide+

SiO2

sub-oxide

Super saturation of oxygen

Page 20: Ultra-shallow SIMS for semiconductor depth profiling Andrew T. S. Wee Department of Physics National University of Singapore SIMS-17, Toronto, Sep09: “Depth

Si+ (250 eV)

SiO+ (250 eV)

Si+ (500 eV)

SiO+ (500 eV)

Si+ (1 keV)

SiO+ (1 keV)

Si+(560 eV) ref.12

Si+ (1 keV) ref 12

02468

10121416

0 10 20 30 40 50 60 70 80 90Angle of Incidence

Tra

ns

ien

t W

idth

(n

m)

Measured transient width based on both 44SiO+ and 30Si+

-ztr < 1nm at Ep~250eV, θ~0-50o

-ztr~0.7nm at Ep~250eV, θ~0-20o

-ztr~0.7nm at Ep~500eV, θ~0-10o

-ztr 1.5nm at Ep~1keV, θ~0-10o

Surface transient – transient width

Difference greatest at θ where ztr coincides with surface roughening. 1keV/40o and 500eV/50o ~ θc for oxidation

Page 21: Ultra-shallow SIMS for semiconductor depth profiling Andrew T. S. Wee Department of Physics National University of Singapore SIMS-17, Toronto, Sep09: “Depth

a) 250 eV

0.6

0.8

1.0

1.2

1.4

1.6

Rel

ativ

e S

putt

er R

ate

0 10 20 30

40 50 60 70

b) 500 eV

0.6

0.8

1.0

1.2

1.4

1.6

Rel

ativ

e S

putt

er R

ate

c) 1 keV

0.6

0.8

1.0

1.2

1.4

1.6

0 20 40 60 80 100 120

Depth (nm)

Rel

ativ

e S

putt

er R

ate

Normalized sputter rates throughout the depth

-250eV: stable 0o<<40o diff d1-avg 7%

-500eV: stable 0o<<40o diff d1-avg10%

-1keV: stable 0o<<20o diff d1-avg 11%

Sputter rates with depth

Page 22: Ultra-shallow SIMS for semiconductor depth profiling Andrew T. S. Wee Department of Physics National University of Singapore SIMS-17, Toronto, Sep09: “Depth

250eV 500eV 1keV

Surface Spike Nil > 50o - 60o >30o - 40o

Equilibrium signals lower than initial

Nil > 60o > 50o

c (incomplete oxidation) Nil > 60o > 50o

Different ztr for SiO+ and Si+ > 60o 40o < < 50o 30o < < 50o

Onset of roughening ~ 60o ~ 50o ~ 40o

Range of giving lowest ztr ~ 0o - 20o ~ 0o – 10o ~ 0o – 10o

Lowest ztr 0.7nm 0.7nm 1.5nm

Sputter rate max. at ~ 50o ~ 60o ~ 60o

Sputter rate min. at ~ 0o ~ 0o ~ 0o

Stable erosion rate at 0o < < 40o 0o < < 40o 0o < < 20o

Difference in sputter rate between near surface and throughout

depth for with stable erosion rate ~ 7% ~ 10% ~ 11%

Summary of surface transient width, sputter rate and the onset of roughening for O2

+ sputtering

Page 23: Ultra-shallow SIMS for semiconductor depth profiling Andrew T. S. Wee Department of Physics National University of Singapore SIMS-17, Toronto, Sep09: “Depth

O2+ SIMS depth resolution parameters (FWHM and d)

dependence on energy for the first delta-layer profile at ~ 0o.

Page 24: Ultra-shallow SIMS for semiconductor depth profiling Andrew T. S. Wee Department of Physics National University of Singapore SIMS-17, Toronto, Sep09: “Depth

250eV 500eV 1keV

Lowest FWHM 1.5nm 2.2nm 3.5nm

with lowest FWHM throughout depth

~ 0 - 40o ~ 0 – 30o ~ 0 – 20o

with lowest FWHM to a limited depth (nm) Nil

~ 60 - 70o (12nm)

~ 60 - 70o (50nm)

Lowest d < 1nm ~ 1.2nm ~ 1.8nm

with lowest d

throughout depth ~ 0 -50o

~ 0 - 30o

~ 60 -70o

~ 0 - 20o

~ 60 -70o

with best dynamic range ~ 50o ~ 40o ~ 30o

Highest dynamic range 6.8 x 103 8.9 x 103 2.3 x 104

Summary of results of O2+ sputtering

Page 25: Ultra-shallow SIMS for semiconductor depth profiling Andrew T. S. Wee Department of Physics National University of Singapore SIMS-17, Toronto, Sep09: “Depth

30Si-

59Si2-

98SiGe-

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

0 50 100 150 200Depth (nm)

Inte

ns

ity

(c

ps

) Ip

Depth profile: Ep~320eV at θ~50o

Effect of Cs+ SIMS on surface transientsA.R. Chanbasha, A.T.S. Wee, Surf. Interface Anal. 39 (2007) 397-404

Page 26: Ultra-shallow SIMS for semiconductor depth profiling Andrew T. S. Wee Department of Physics National University of Singapore SIMS-17, Toronto, Sep09: “Depth

a) 320eV

1.E+03

1.E+04

1.E+05

1.E+06In

ten

sit

y (

cp

s)

0 10 20 3040 50 60 70

b) 500eV

1.E+03

1.E+04

1.E+05

1.E+06

Inte

ns

ity

(c

ps

)

c) 1keV

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

0 2 4 6 8 10Apparent Depth (nm)

Inte

ns

ity

(c

ps

)30Si- profiles

3 distinct profile trends:1 (a) Abrupt rise before steady state (Ep~320eV, 30-50o; Ep~500eV,30-40o; Ep~1keV, 20-30o)

- progressive build-up of Cs (b) Abrupt rise then gradual rise to steady

state (Ep~500eV, 0-20o; Ep~1keV, 0-10o)

2. Abrupt rise, shoulder before steady state(Ep~320eV, 0-20o)- indicative of onset of roughening- only >50o (Kataoka et al. [2003])- confirmed by AFM, SiO2/Si interface

3. Less abrupt rise, peak before steady state(Ep~320eV, 60-70o; Ep~320eV, 50-70o; Ep~1keV,40-70o)

Page 27: Ultra-shallow SIMS for semiconductor depth profiling Andrew T. S. Wee Department of Physics National University of Singapore SIMS-17, Toronto, Sep09: “Depth

30Si-

(320eV)

30Si-

(500eV)

30Si-

(1KeV)

2Rnorm 320 eV

2Rnorm 500 eV

2Rnorm 1 keV

0

5

10

15

20

25

0 10 20 30 40 50 60 70 80 90

Angle of Incidence

Tra

ns

ien

t W

idth

(n

m)

Transient width

Minimum ztr:Ep~320eV, θ~40o – 2.0nmEp~500eV, θ~ 40o – 1.4nmEp~1keV, θ~30o – 1.5nm

ztr < 2Rnorm

Enhanced ztr: >50o

Reducing Ep not significantin reducing ztr

Θ>50o not suitable for ultrashallow dopant profiling

Page 28: Ultra-shallow SIMS for semiconductor depth profiling Andrew T. S. Wee Department of Physics National University of Singapore SIMS-17, Toronto, Sep09: “Depth

a) 320eV

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Rel

ativ

e S

pu

tter

Rat

e

0 10 20 30

40 50 60 70

b) 500eV

0.6

0.8

1.0

1.2

1.4

1.6

Rel

ativ

e S

pu

tter

Rat

e

c) 1keV

0.6

0.8

1.0

1.2

1.4

1.6

0 20 40 60 80 100 120Depth (nm)

Rel

ativ

e S

put

ter

Rat

e

Sputter rates with depth

Only at Ep~320eV,θ~0-10o can average sputter rate be used. Difference is ~3%

Other angles – error ~15%

Page 29: Ultra-shallow SIMS for semiconductor depth profiling Andrew T. S. Wee Department of Physics National University of Singapore SIMS-17, Toronto, Sep09: “Depth

Summary of results from this work using ultralow-energy Cs+ sputtering.

320eV 500eV 1keV30Si- profile with no peaks & no

shoulders)θ~ 30-50o θ~ 30-40o θ~ 20-30o

θ~ 0-10o(gradual rise)30Si- profiles with shoulders θ~ 0 - 20o Nil Nil30Si- profiles with peak θ~ 60-70o θ~ 50-70o Θ~ 40-70o

Enhanced transient width 11 θ> 57o (250 eV) θ> 60o Θ > 65o

Equilibrium signals maximum intensity at

θ~ 30o θ~ 30o Θ ~ 20-30o

θc roughening (evaluated at 25μm) 27 θ~ 50o (250eV) θ~ 55o θ ~ 60o

Range ofθ giving lowest ztr θ~ 30-50o θ~ 30-50o θ~ 20-30o

Lowest ztr 2.0 nm 1.4 nm 1.5 nm

Sputter rate max. at θ~ 50o θ~ 60o θ~ 60o

Sputter rate min. at θ~ 0o, 70o θ~ 0o θ~ 0o

Stable erosion rate (surface cf depth) at

θ ~ 0-10o(i)θ ~ 20-50o(ii) θ ~ 40-50o θ ~ 50-60o

Difference in sputter rate between near surface and throughout depth for θ with stable erosion rate

~3%(i)~ 15% (ii) ~15% ~15%

Page 30: Ultra-shallow SIMS for semiconductor depth profiling Andrew T. S. Wee Department of Physics National University of Singapore SIMS-17, Toronto, Sep09: “Depth

b)

y = -0.019x + 3.0y = -0.019x + 3.2

y = -0.019x + 3.8

0

1

2

3

4

5

0 10 20 30 40 50 60 70Incident Angle

FW

HM

(n

m)

320 eV 500 eV 1 keV

Depth resolution (FWHM)

Linear relationship between the depth resolution in terms of FWHM (dz) with θ when there is no surface roughening

Page 31: Ultra-shallow SIMS for semiconductor depth profiling Andrew T. S. Wee Department of Physics National University of Singapore SIMS-17, Toronto, Sep09: “Depth

y = 0.0015x + 2.185

y = 0.0021x + 1.65

0

1

2

3

4

5

0 250 500 750 1000 1250Primary Ion Energy (eV)

Re

so

luti

on

pa

ram

ete

rs(n

m)

FWHM

d

Cs+ SIMS depth resolution parameters (FWHM and λd) dependence on energy for the first delta-layer profile at θ ~ 0o.

Page 32: Ultra-shallow SIMS for semiconductor depth profiling Andrew T. S. Wee Department of Physics National University of Singapore SIMS-17, Toronto, Sep09: “Depth

Summary of results observed with ultralow-energy Cs+ sputtering

320 eV 500 eV 1 keV

Lowest FWHM 1.9nm 2.2nm 2.5nm

θ with lowest FWHM throughout depth

(120 nm)θ ~ 50o θ ~ 50o θ ~ 60o

(up to 80 nm)

θ with low FWHM to a limited depth

θ ~ 60o

FWHM ~ 2.6 nm(up to 23 nm)

θ ~ 60o

FWHM ~ 2.3 nm(up to 12 nm)

θ ~ 50o

FWHM ~ 2.6 nm(up to 103 nm)

θ with good depth resolution

θ ~ 30-50o

(< 2.4 nm)θ ~ 30-50o

(< 2.5 nm)θ ~ 40-60o

(< 3.0 nm)

Lowest λd ~ 1.1 nm/e ~ 1.1 nm/e ~ 1.5 nm/e

θ with lowest λd throughout depth θ ~ 50-70o θ ~ 60 -70o θ ~ 70o

θ with best dynamic range θ ~ 60o θ ~ 50o θ ~ 70o

Highest dynamic range 1.1 x 103 3.0 x 103 2.8 x 103

Page 33: Ultra-shallow SIMS for semiconductor depth profiling Andrew T. S. Wee Department of Physics National University of Singapore SIMS-17, Toronto, Sep09: “Depth

Summary for low energy SIMS

• O2+:

– Minimum transient width achievable at normal and near normal incidence

– Reducing Ep beyond 500eV does not result in significant reduction in ztr

• Cs+:– Lowest ztr reported ~ 1.4-2nm– Best depth resolution achievable over wider range of θ

• Optimum conditions for analysis– O2

+: Best working range with narrow transient and accurate depth calibration: 250eV, 0-20o; 500eV,0-10o; ztr ~0.7nm

– Cs+: Best condition for high depth resolution and good dynamic range: 250eV, 40o

Page 34: Ultra-shallow SIMS for semiconductor depth profiling Andrew T. S. Wee Department of Physics National University of Singapore SIMS-17, Toronto, Sep09: “Depth

Scope

1. Enabling technologies for ultimate CMOS scaling

2. Solutions to surface transient problem3. Low energy SIMS optimal conditions4. Oblique incidence SIMS5. Beyond Si and III-V: Graphene?6. Future of ultrashallow profiling

Page 35: Ultra-shallow SIMS for semiconductor depth profiling Andrew T. S. Wee Department of Physics National University of Singapore SIMS-17, Toronto, Sep09: “Depth

Sputter depth (nm)0 20 40 60 80 100 120 140 160 180 200

No

rmal

ized

mat

rix

inte

nsi

ty

10-4

10-3

10-2

10-1

No FloodingWith Flooding

Oxygen flooding improves depth resolution and suppresses crater bottom roughening effects

B- profiles using 500 eV SIMS impact energies at 46° with and without oxygen flooding

Page 36: Ultra-shallow SIMS for semiconductor depth profiling Andrew T. S. Wee Department of Physics National University of Singapore SIMS-17, Toronto, Sep09: “Depth

Depth (nm)

0 20 40 60 80 100 120 140 160 180 200

Nor

mal

ized

B i

nten

siti

es

10-4

10-3

10-2

10-1

2.0 keV 1.5 keV 0.5 keV

Delta B profiles obtained using various SIMS impact energies at 46° with oxygen flooding at saturated pressure (1.6 × 10-6 torr)

• Oxygen flooding improves resolution in 0.5-2.0 keV incident energy range.

• Resolution is best at 500 eV.

Page 37: Ultra-shallow SIMS for semiconductor depth profiling Andrew T. S. Wee Department of Physics National University of Singapore SIMS-17, Toronto, Sep09: “Depth

Effect of Oxygen Flooding on Crater Surface Composition and Surface Roughening in SIMS profiling using 1 keV O2

Ref: Ng CM, Wee ATS, Huan CHA, See A, J VAC SCI TECHNOL B 19: (3) 829-835 MAY-JUN 2001

• Intensity of 30Si+ as a function of depth for sputtering under various flooding pressures.

• Reduction of surface transient with increasing flooding

• Shift of roughening transition to shallower depths

0 20 40 60 80 100104

105

106

107

No Flooding

5.4 X 10-8 mbar

6.5 X 10-8 mbar)

7.5 X 10-8 mbar

1.9 X 10-7 mbar

Sputter Depth (nm)

Inte

nsi

ty o

f 3

0 Si+

(co

un

ts p

er

sec)

Page 38: Ultra-shallow SIMS for semiconductor depth profiling Andrew T. S. Wee Department of Physics National University of Singapore SIMS-17, Toronto, Sep09: “Depth

Pressure/Pa 4.40E-05 5.00E-05 6.00E-05 7.00E-05 7.50E-05 7.70E-05

Zon/nm 30.2 16.8 7.8 5.8 5.4 5

Wtr/nm 24.4 16 6.2 4.4 3.8 3.3

D. Gui et al, Appl. Surf. Sci. 255, 1433-1436 (2008)

Sample rotation with oxygen flooding

Oxygen flooding has two competing effects on the surface roughening, i.e., enhancement of initiating roughening and suppression of roughening development. At the intermediate pressure of ~ 5.8E-5 Pa, the surface roughening becomes most pronounced. The surface roughening is negligible without flooding or with flooding at the saturated pressure.

Page 39: Ultra-shallow SIMS for semiconductor depth profiling Andrew T. S. Wee Department of Physics National University of Singapore SIMS-17, Toronto, Sep09: “Depth

Effect of Oxygen Flooding on Surface Topography

• 2 2 m2 AFM images of the crater surface after SIMS profiling with

(a) no oxygen inlet;

(b) intermediate pressure (6.5 10 -8 mbar); and

(c) saturated pressure (1.9 10-7 mbar) of oxygen

(a) No flooding

rms = 0.3 nm

(b) Flooding at intermediate pressure (6.5 10-8 mbar)

rms = 2.5 nm

(c) Flooding at saturated pressure (1.9 10-7 mbar)

rms = 0.1 nm

Page 40: Ultra-shallow SIMS for semiconductor depth profiling Andrew T. S. Wee Department of Physics National University of Singapore SIMS-17, Toronto, Sep09: “Depth

Effect of Oxygen Flooding on Surface Composition

• Curve fitting for the XPS spectra obtained for

(a) virgin Si sample;

(b) no oxygen inlet;

(c) intermediate pressure (6.5 10 -8 mbar);

(d) saturated pressure (1.9 10 -7 mbar) of oxygen.

• (b), (c) and (d) were obtained at a sputtered depth of about 100 nm. Only the Si 2p3/2

peak components are shown here for clarity.

(d)

(b)

(a)

(c)

Si(4+)+

Si1+ Sio

Si2+Si3+

Si4+

Sat.pressure

(1.9 10-7 mbar)

Interm. pressure

(6.5 10-8 mbar)

No Flooding

Virgin sample

Page 41: Ultra-shallow SIMS for semiconductor depth profiling Andrew T. S. Wee Department of Physics National University of Singapore SIMS-17, Toronto, Sep09: “Depth

Using oxygen flooding in combination with low energy Cs+ sputtering, improves the sensitivity of SIMS profiling and removes the variation of the ion yield at the native oxide/silicon interface.

A. Merkulov et al. Appl. Surf. Sci. 231–232 (2004) 640–644

2keV As 500eV Cs+ O2 flooding

Shallow As profiled by CAMECA Wf

Page 42: Ultra-shallow SIMS for semiconductor depth profiling Andrew T. S. Wee Department of Physics National University of Singapore SIMS-17, Toronto, Sep09: “Depth

Conclusions for Oblique incidence SIMS• Low primary ion energies (sub-keV) improves depth

resolution.• Oxygen flooding and/or sample rotation is needed for oblique

incidence sub-keV SIMS profiling to suppress surface roughening.

• Oxygen flooding needs to be performed at saturation pressures whereby SiO2 (and not sub-oxides) forms to suppress surface roughening.

Page 43: Ultra-shallow SIMS for semiconductor depth profiling Andrew T. S. Wee Department of Physics National University of Singapore SIMS-17, Toronto, Sep09: “Depth

Scope

1. Enabling technologies for ultimate CMOS scaling

2. Solutions to surface transient problem3. Low energy SIMS optimal conditions4. Oblique incidence SIMS5. Beyond Si and III-V: Graphene?6. Future of ultrashallow profiling

Page 44: Ultra-shallow SIMS for semiconductor depth profiling Andrew T. S. Wee Department of Physics National University of Singapore SIMS-17, Toronto, Sep09: “Depth

Body Thickness is ~18 nm

Si:CSi:C

Leading Strained Transistor Technologies

25 nm nanowire

Si:C

Si

World’s First Transistor with Silicon-Carbon StressorsReported in IEDM 2004

World’s First Thin-Body Transistor

with Silicon-Carbon StressorsElectron Device

Letters 2007

World’s First Integration of Silicon-Carbon Stressors with Tensile SiN LinerVLSI Symp. 2006

First Integration of Silicon-Carbon Stressors in Transistor

with SiGe ChannelVLSI Symp. 2006

World’s First Nanowire Transistor with Silicon-Carbon Stressors IEDM 2006

Yeo’s Nanoelectronics Group

Yeo’s Nanoelectronics Group

Yeo’s Nanoelectronics Group

Yeo’s Nanoelectronics Group

Yeo’s Nanoelectronics Group

Courtesy of YC Yeo

Page 45: Ultra-shallow SIMS for semiconductor depth profiling Andrew T. S. Wee Department of Physics National University of Singapore SIMS-17, Toronto, Sep09: “Depth

Taxonomy for Emerging Research Information Processing Devices Ref: International Roadmap for Semiconductors (ITRS) 2007

Page 46: Ultra-shallow SIMS for semiconductor depth profiling Andrew T. S. Wee Department of Physics National University of Singapore SIMS-17, Toronto, Sep09: “Depth

Challenges of CMOS Technology

Scaling CMOS to and beyond the 16 nm technology generation:

“Develop new materials to replace silicon as an alternate channel to increase the saturation velocity and maximum drain current in MOSFETs while minimizing leakage currents and power dissipation for technology scaled to 16 nm and beyond. Candidate materials include Ge, SiGe, III-V compound semiconductors, and graphene. Develop 1D (nanowire or nanotube) structures to scale MOSFETs and CMOS gates beyond the 16 nm technology generation.“

Ref: International Roadmap for Semiconductors (ITRS) 2007

Intel's 45-nm high-k metal-gate process(Intel® Core™ i7 processor ) www.cycho.org/research/blog/

Intel’s 32 nm Nehalm chip architecture http://www.techlivez.com/2007/09/intel-reveals-worlds-first-32nm-chip-technology/

Page 47: Ultra-shallow SIMS for semiconductor depth profiling Andrew T. S. Wee Department of Physics National University of Singapore SIMS-17, Toronto, Sep09: “Depth

Emerging Research MaterialsRef: International Roadmap for Semiconductors (ITRS) 2007

• Graphene may enable novel and complementary applications to carbon nanotubes (CNT), its 1D counterpart. Graphene is receiving considerable attention because it exhibits ambipolar carrier conduction, a carrier mobility as high as ~ 2×106 cm2/V-sec, and a defect density of ~1×1010/cm2.

• … mobility … is practically independent of temperature, thus opening the possibility of room temperature ballistic transport at the submicrometer scale.

• Graphene on SiC can be patterned and etched by conventional planar lithography techniques and has the best reported transport properties, but processing temperatures, 1200–1400°C, are incompatible with CMOS fabrication.

• Since the bandgap of nanoribbons varies inversely with the ribbon width, it is possible to pattern and tune their electronic properties, such as bandgap opening due to lateral size quantization, though dimensional control.

Page 48: Ultra-shallow SIMS for semiconductor depth profiling Andrew T. S. Wee Department of Physics National University of Singapore SIMS-17, Toronto, Sep09: “Depth
Page 49: Ultra-shallow SIMS for semiconductor depth profiling Andrew T. S. Wee Department of Physics National University of Singapore SIMS-17, Toronto, Sep09: “Depth

Graphene-on-SiC FETs near DARPA targetshttp://nanotechweb.org/cws/article/tech/39365

Technology update Jun 4, 2009• HRL Laboratories has claimed a big leap forward in radio-frequency graphene transistors just

days after describing the first such devices in IEEE Electron Device Letters. On May 21, the Malibu, California, research institution said that it had made devices from single-layer graphene on 2 inch diameter SiC wafers with much-improved performance figures.

• “They have world-record field mobility of approximately 6000 cm2/Vs, which is six to eight times higher than current state-of-the-art silicon n-MOSFETs,” said HRL senior scientist Jeong-Sun Moon.

• The researcher also described the ratio of on-state current to off-state leakage current, Ion/Ioff of 19 for the devices as “excellent”.

Page 50: Ultra-shallow SIMS for semiconductor depth profiling Andrew T. S. Wee Department of Physics National University of Singapore SIMS-17, Toronto, Sep09: “Depth

Single-layer graphene on SiC

4 nm 1 nm 1 nm

multi-layer graphene or HOPG

1200 1500 1800 2100 2400 2700 30000

1000 1710

1520

2710

2735

1593

1594

1365

D

single layer EG

2-3 layer EG

SiC

SiC 2D

G

1370

Ra

ma

n In

ten

sit

y

Wave Number /cm-1

Raman: Ni ZH et al., Phys. Rev. B 77 (2008)115416.

Co

un

ts (

a. u

.)

288286284282280Binding energy (eV)

(a) Root 3 (950oC)

(b) Root 3 + nanomesh (1050oC)

(c) nanomesh (1100oC)

(d) nanomesh + graphite (1200oC)

(e) graphite (1300oC)

C 1s

h eV o

284.4 eV

282.9 eV

285.1 eV

XPS: Chen. W, et. al. Surf. Sci, 596, 176 (2005)

Multi-technique surface analytical approach

STM:

Page 51: Ultra-shallow SIMS for semiconductor depth profiling Andrew T. S. Wee Department of Physics National University of Singapore SIMS-17, Toronto, Sep09: “Depth

Scope

1. Enabling technologies for ultimate CMOS scaling

2. Solutions to surface transient problem3. Low energy SIMS optimal conditions4. Oblique incidence SIMS5. Beyond Si and III-V: Graphene?6. Future of ultrashallow profiling

Page 52: Ultra-shallow SIMS for semiconductor depth profiling Andrew T. S. Wee Department of Physics National University of Singapore SIMS-17, Toronto, Sep09: “Depth

Minimum low energy SIMS depth resolution?W. Vandervorst, Applied Surface Science 255 (2008) 805–812

• Unlimited reduction of the primary ion energy is not possible as below the threshold energy for sputtering, no target removal occurs anymore.

• O2: minimum value for sputtering lies around 30–40 eV

• Cs: the threshold energy for sputtering lies around 100–10 eV.

Page 53: Ultra-shallow SIMS for semiconductor depth profiling Andrew T. S. Wee Department of Physics National University of Singapore SIMS-17, Toronto, Sep09: “Depth

Cluster beamsW. Vandervorst, Applied Surface Science 255 (2008) 805–812

• Cluster beams do not seem to solve the depth resolution issues and suffer from unexpectedly large decay length values when considering the low energy per constituent atom.

• Formation of a deposit limits the reduction in primary beam energy

Page 54: Ultra-shallow SIMS for semiconductor depth profiling Andrew T. S. Wee Department of Physics National University of Singapore SIMS-17, Toronto, Sep09: “Depth

Future of ultra-shallow profiling?• Ultra shallow SIMS

– “SIMS performance needs to be improved down to the 0.5 nm/dec level. Meeting this target is extremely difficult and can only be approached by going as low as 100 eV.” (Vandervorst, SIMS XVI 2007)

– But SIMS is still the technique of choice for the semiconductor industry as it is relatively simple, and reproducibility rather than accuracy is needed

• 3D Atom probe– sample preparation (needle shape specimen with a top radius 50 nm) typically

requiring extensive focused ion beam milling

• Low energy ion scattering (LEIS)– For heavier atoms in lighter matrix

• Angle (& energy) resolved XPS– Lower sensitivity, but ultra shallow doping levels often >1020 at/cm3

• Combination of complementary surface analysis techniques– new materials to replace silicon (Ge, SiGe, III-Vs, graphene); matrix effect

issues with SIMS

Page 55: Ultra-shallow SIMS for semiconductor depth profiling Andrew T. S. Wee Department of Physics National University of Singapore SIMS-17, Toronto, Sep09: “Depth

XPS, UPS, AES SIMS

LT-STM

VT-STM Synchrotron PES, XAS

Page 56: Ultra-shallow SIMS for semiconductor depth profiling Andrew T. S. Wee Department of Physics National University of Singapore SIMS-17, Toronto, Sep09: “Depth

Thank YouQuestions?

Page 57: Ultra-shallow SIMS for semiconductor depth profiling Andrew T. S. Wee Department of Physics National University of Singapore SIMS-17, Toronto, Sep09: “Depth

Semiconductor Challenges to SIMSW. Vandervorst, Applied Surface Science 255 (2008) 805–812

• The development of the (sub-)32 nm technologies requires the formation of very shallow dopant profiles by low energy (cluster) implantation and diffusion-less (flash or laser) anneal leading to junction depths as small as 10 nm and with a steepness in the order of 1–2 nm/dec.

• Requirements on the SIMS depth resolution can be achieved by lowering the primary beam energy to 250–500 eV.

Page 58: Ultra-shallow SIMS for semiconductor depth profiling Andrew T. S. Wee Department of Physics National University of Singapore SIMS-17, Toronto, Sep09: “Depth

Generally speaking, magnetic SIMS has limitations in tuning the incident angle. It is even more difficult for CAMECA Wf to adjust the incident angle because the primary beam passes through split extraction field to reduce the deflection of primary beam in shallow depth profiling.

Difficulty in adjusting incident angle

Page 59: Ultra-shallow SIMS for semiconductor depth profiling Andrew T. S. Wee Department of Physics National University of Singapore SIMS-17, Toronto, Sep09: “Depth

Source Drain

Gate

SDE SDE

Lg

Lch

xj

EOT

Challenges of Si CMOS Technology-Device scaling

Objective: increase packing density and switching speed

Lch decrease, electric field interaction results in leakage from D-S when

transistor is off (SCE) >Shallower junction depth ~ 13-30nm

Gate oxide ~1-3nm65nm technology node

SIMS challenges:

1. Utra thin dielectric layer

2. Shallow dopant profiles, junction depths