ultra high energy cosmic rays -- observational results --

57
Ultra High Energy Cosmic Rays -- observational results -- M.Teshima Max-Planck-Institut für Physik, Mü nchen Erice Summer School July. 2004

Upload: tanner

Post on 19-Jan-2016

27 views

Category:

Documents


0 download

DESCRIPTION

Ultra High Energy Cosmic Rays -- observational results --. M.Teshima Max-Planck-Institut f ü r Physik, M ü nchen Erice Summer School July. 2004. Discovery of Cosmic Rays. Victor Hess 1912. John Linsley at Volcano Ranch (~1960). First discovery of super-GZK events. GZK mechanism. N. P. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Ultra High Energy Cosmic Rays -- observational results --

Ultra High Energy Cosmic Rays-- observational results --

M.Teshima

Max-Planck-Institut für Physik, München

Erice Summer SchoolJuly. 2004

Page 2: Ultra High Energy Cosmic Rays -- observational results --

Victor Hess 1912

Discovery of Cosmic Rays

Page 3: Ultra High Energy Cosmic Rays -- observational results --

John Linsley at Volcano Ranch (~1960)First discovery of super-GZK events

Page 4: Ultra High Energy Cosmic Rays -- observational results --

Cosmic Ray Energy Spectrum

P

γ3K

ΔN 

π

GZK mechanism

AGASA Energy Spectrum

Super GZK part.~1/km2 century

Page 5: Ultra High Energy Cosmic Rays -- observational results --

Background Radiations

in the universePair creation

GZK

Cosmic Rays and Neutrino

Page 6: Ultra High Energy Cosmic Rays -- observational results --

Candidates for EHE C.R. accelerator

Pulsar SNR A.G.N.

GRB

Radio Galaxy Lobe

Page 7: Ultra High Energy Cosmic Rays -- observational results --

Synchrotron radiation

GZK limit

Hidden HILLAS PLOT IIAnn. Rev. Astron. Astrophys. 1984, 22; p425-444

Page 8: Ultra High Energy Cosmic Rays -- observational results --

Cosmic Ray Propagation in our Galaxy

Deflection angle ~ 1 degree at 1020eVAstronomy by hadronic particles?

Page 9: Ultra High Energy Cosmic Rays -- observational results --

Cosmic Ray Propagation inGalactic Disk and Inter Gal.

Page 10: Ultra High Energy Cosmic Rays -- observational results --

Exposure in ICRC2003

Page 11: Ultra High Energy Cosmic Rays -- observational results --

Air Shower Phenomena

Page 12: Ultra High Energy Cosmic Rays -- observational results --

AGASAAkeno Giant Air Shower

Array

111 Electron Det.27 Muon Det.

0 4km

Page 13: Ultra High Energy Cosmic Rays -- observational results --

HiRes ExperimentAir Fluorescence detector

Page 14: Ultra High Energy Cosmic Rays -- observational results --

HiRes ExperimentAir Fluorescence technique

Measure Shower Development in the atmosphereEssentially Carolimetric measurement

Page 15: Ultra High Energy Cosmic Rays -- observational results --

Detector Calibration in AGASA experiment

Detector Gain by muons in each run

Cable delay (optic fiber cable)

Gain as a function of time(11years data)

Accuracy of 100ps by measuring the round trip time in each run

Detector Position

Survey from AirplaneΔX, ΔY= 0.1m, ΔZ= 0.3m

Linearity as a function of time(11years data)

Page 16: Ultra High Energy Cosmic Rays -- observational results --

Detector Simulation (GEANT)

Detector Housing (Fe 0.4mm)Detector Box (Fe 1.6mm)Scintillator (50mm)Earth (Backscattering)

vertical θ = 60deg

Detector Response

Energy spectra of shower particles

Page 17: Ultra High Energy Cosmic Rays -- observational results --

Energy  DeterminationLocal density at 600mGood energy estimator by M.Hillas

E=2.13x1020eV, E >= 1.6x1020eV

Page 18: Ultra High Energy Cosmic Rays -- observational results --

Third Highest event97/03/30 150EeV

40 detecters were hit

Page 19: Ultra High Energy Cosmic Rays -- observational results --

The Highest Energy Event (~2.46 x1020eV) on 10 May 2001

Page 20: Ultra High Energy Cosmic Rays -- observational results --

Attenuation curve S(600) vs Nch

1018eV Proton

Atmospheric depth

Page 21: Ultra High Energy Cosmic Rays -- observational results --

S600 Attenuation curve

  0-45°

  0-60°

Atmospheric depth

20.0

19.5

19.0

18.5

18.0

Page 22: Ultra High Energy Cosmic Rays -- observational results --

The Conversion from S600 to Energy

Muon/Neutrino

Ele. Mag

Page 23: Ultra High Energy Cosmic Rays -- observational results --

S600 Intrinsic fluctuation for

proton and iron

Proton

Iron

Page 24: Ultra High Energy Cosmic Rays -- observational results --

Major Systematics in AGASAastro-ph/0209422

Detector Detector Absolute gain ± 0.7% Detector Linearity ± 7% Detector response(box, housing) ± 5%

Energy Estimator S(600) Interaction model, P/Fe, Height ±15%

Air shower phenomenology Lateral distribution function ± 7% S(600) attenuation ± 5% Shower front structure ± 5% Delayed particle(neutron) ± 5%

Total ± 18%

Page 25: Ultra High Energy Cosmic Rays -- observational results --

Energy Resolution

30% 25%

mainly due to measurement errors (particle density measurement and core location determination)not due to shower fluctuation

Page 26: Ultra High Energy Cosmic Rays -- observational results --

Energy Spectrum by AGASA (θ<45)

11 obs. / 1.8 exp. 4.2σ

5.1 x 1016 m2 s sr

Page 27: Ultra High Energy Cosmic Rays -- observational results --

The Energy spectrum by AGASA Red: well inside the array

(Cut the event near the boundary of array)

Page 28: Ultra High Energy Cosmic Rays -- observational results --

Akeno 1km2 and AGASA

Page 29: Ultra High Energy Cosmic Rays -- observational results --

HiRes NSF events200-300EeV

Page 30: Ultra High Energy Cosmic Rays -- observational results --
Page 31: Ultra High Energy Cosmic Rays -- observational results --

HiRes I, II mono spectrum

Page 32: Ultra High Energy Cosmic Rays -- observational results --

AGASA vs HiRes (astro-ph)

Page 33: Ultra High Energy Cosmic Rays -- observational results --

Recent spectra (AGASA vs. HiRes@Tsukuba ICRC)

~2.5 sigma discrepancy between AGASA & HiRes

Energy scale difference by 25% vs. HiRes-stereo

vs. HiRes-I

vs. HiRes-II

Page 34: Ultra High Energy Cosmic Rays -- observational results --

World Energy Spectrum by M.Nagano 2002

Page 35: Ultra High Energy Cosmic Rays -- observational results --

Stecker 2003

Page 36: Ultra High Energy Cosmic Rays -- observational results --

by Douglas Bergman

20% energy variation

AGASA vs HiRes

Page 37: Ultra High Energy Cosmic Rays -- observational results --

AGASA HiRes

GZK-HypothesisExtended spectrumSuper-GZK

~2.4 σ

~4.2σ

~ 0 σ~ 0σ

~2.3 σ

Statistics

Page 38: Ultra High Energy Cosmic Rays -- observational results --

40% uncertainty

Impact parameter

Air Fluorescence yieldMeasurement

1. Bunner2. Kakimoto et al3. Nagano et al

Rayleigh Scattering

∝λ‐4

Page 39: Ultra High Energy Cosmic Rays -- observational results --

Possible Systematics in HiResMost of them are energy dependent

Air Fluorescence yield Total yield is known with 10~20% accuracy Yields of individual lines are not known well

Rayleigh Scattering effect ( 1/λ∝ 4)

Light transmission in air Mie Scattering

Horizontal attenuation, Scale Height, Wind velocity, Temperature single model represents whole data

Horizontal 12km (1999) 25km (2001)

Cherenkov light subtractionBias by Narrow FOV in elevation angleErrors in Mono analysis

Aperture estimation (Narrow F.O.V.) Chemical composition / Interaction dependent

Page 40: Ultra High Energy Cosmic Rays -- observational results --

Arrival Direction Distribution >4x1019eVzenith angle <50deg.

Isotropic in large scale Extra-GalacticBut, Clusters in small scale (Δθ<2.5deg) 1triplet and 6 doublets (2.0 doublets are expected from random) One doublet triplet(>3.9x1019eV) and a new doublet(<2.6deg)

Page 41: Ultra High Energy Cosmic Rays -- observational results --

Space Angle Distribution of Arbitrary two events >4x1019eV

Page 42: Ultra High Energy Cosmic Rays -- observational results --

Arrival Direction Distribution >1019eV

Page 43: Ultra High Energy Cosmic Rays -- observational results --

Space Angle Distribution

Log E>19.6Log E>19.4

Log E>19.2Log E>19.0

Page 44: Ultra High Energy Cosmic Rays -- observational results --

Energy spectrum of Cluster events∝E -1.8+-0.3

Cluster Component

Page 45: Ultra High Energy Cosmic Rays -- observational results --

Density of sourcesby Kachelriess and Semikos 2004

Page 46: Ultra High Energy Cosmic Rays -- observational results --

2D-Correlation Map in (ΔlII ,ΔbII )Log E >19.0eV, 3. 4σ Log E >19.2eV, 3. 0σ

Log E >19.4eV, 2.0σ Log E >19.6eV, 4.4σΔΔllIIII

ΔΔbbIIII

Page 47: Ultra High Energy Cosmic Rays -- observational results --

Cosmic Ray propagation in Galactic Magnetic Field

By Stanev

ΔbII

ΔlII

Aperture

Page 48: Ultra High Energy Cosmic Rays -- observational results --

Correlation with BL Lacsby Gorbnov et al. 2004

Page 49: Ultra High Energy Cosmic Rays -- observational results --

Full sky map of deflection angles

By K.Dolag, D.Grasso, V.Springel, and I.Tkachev

Page 50: Ultra High Energy Cosmic Rays -- observational results --

Expected Auto correlationYoshiguchi et al. 2004

Number density of sources~10-5 Mpc-3

Page 51: Ultra High Energy Cosmic Rays -- observational results --

Shower maximum Xmax

Fe P

Atmospheric depth

Num

ber

of s

how

er p

arti

cles

Page 52: Ultra High Energy Cosmic Rays -- observational results --

ρμ(1000) distributionby AGASA 2002

Page 53: Ultra High Energy Cosmic Rays -- observational results --

Akeno 1km2 (A1): Hayashida et al. ’95 Haverah Park (HP): Ave et al. ’03Volcano Ranch (VR): Dova et al. (ICRC ‘03)HiRes (HiRes): Archbold et al. (ICRC ‘03)

A1: PRELIMINARY

1017.5eV – 1019eV (Akeno 1km2 array)

Gradual lightening

Above 1019eV (AGASA)

Fe frac.: <40% (@90% CL)

Chemical composition study by muons(p+Fe composition assumption; AIRES+QGSJET)

PRELIMINARY

Page 54: Ultra High Energy Cosmic Rays -- observational results --

Limits on gamma-ray fraction

Gamma-ray fraction upper limits (@90%CL)

34% (>1019eV)(/p<0.45)

56% (>1019.5eV)(/p<1.27)

to observed events Topological defects (Sigl et al. ‘01) (Mx=1016[eV]; flux normalised@1020eV )Z-burst model(Sigl et al. ‘01)(Flux normalised@1020eV)

SHDM-model (Berezinski et al. ‘98) (Mx=1014[eV]; flux normalised@1019eV )

Assuming 2-comp. (p+gamma-ray) primaries

Page 55: Ultra High Energy Cosmic Rays -- observational results --

Fly’s Eye highest energy eventHalzen and Hooper 2002

Page 56: Ultra High Energy Cosmic Rays -- observational results --

HE and UHE Neutrino flux D.Tress and A.Anchordoqui 2004

Page 57: Ultra High Energy Cosmic Rays -- observational results --

SummarySuper GZK particles exist AGASA HiRes statistically consistent Origin of UHECR (Possible scenario)

Decay of Heavy Relics in our Halo (WIMPZILLA) Z-burst by EHE neutrino almost dead Violation of Special Relativity AGNs, BL-Lacs, GRBs

Super GZK particles; no evidence for gamma rays May be difficult for top-down scenarios

Evidence for point sources of UHECR AGASA HiRes statistically consistent Clusters nice chance to solve the origin of UHECRs Auger/EUSO – energy spectrum in each point source