ulrich häussler-combe computational methods for reinforced concrete...

26
Ulrich Häussler-Combe Computational Methods for Reinforced Concrete Structures

Upload: others

Post on 13-Apr-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Ulrich Häussler-Combe Computational Methods for Reinforced Concrete …concrete-fem.com/.../uploads/2014/01/cercbookReading.pdf · 2014-09-03 · *qmi2mib r 6bmbi21h2k2mibpp2`pb2r

Ulrich Häussler-Combe

Computational Methods for Reinforced Concrete Structures

Page 2: Ulrich Häussler-Combe Computational Methods for Reinforced Concrete …concrete-fem.com/.../uploads/2014/01/cercbookReading.pdf · 2014-09-03 · *qmi2mib r 6bmbi21h2k2mibpp2`pb2r
Page 3: Ulrich Häussler-Combe Computational Methods for Reinforced Concrete …concrete-fem.com/.../uploads/2014/01/cercbookReading.pdf · 2014-09-03 · *qmi2mib r 6bmbi21h2k2mibpp2`pb2r
Page 4: Ulrich Häussler-Combe Computational Methods for Reinforced Concrete …concrete-fem.com/.../uploads/2014/01/cercbookReading.pdf · 2014-09-03 · *qmi2mib r 6bmbi21h2k2mibpp2`pb2r
Page 5: Ulrich Häussler-Combe Computational Methods for Reinforced Concrete …concrete-fem.com/.../uploads/2014/01/cercbookReading.pdf · 2014-09-03 · *qmi2mib r 6bmbi21h2k2mibpp2`pb2r
Page 6: Ulrich Häussler-Combe Computational Methods for Reinforced Concrete …concrete-fem.com/.../uploads/2014/01/cercbookReading.pdf · 2014-09-03 · *qmi2mib r 6bmbi21h2k2mibpp2`pb2r

Es As

F2 = As Es ε2 = −As Es α α γ

sc ssc/s = α n = z/sc = z/(s α)

Ftie =z

sc/ αF2 = −z

As2

sEs

2 α α γ

V = −F2 α

Vtie = z as2 Es3 α α γ

as = As/s

∂Vtie

∂γ= z as2 Es

3 α α

∂V

∂γ=

∂V

∂γ+

∂Vtie

∂γ= z

(bEc

2 θ 2 θ + as2 Es3 α α

)α = π/2 θ = π/4

∂V

∂γ=

1

4zbEc =

1

2zbGc

Gc

3 α zb = αc A, αc = z/hαc 3

Vθ = π/4

20 ≤ θ ≤ 45

Page 7: Ulrich Häussler-Combe Computational Methods for Reinforced Concrete …concrete-fem.com/.../uploads/2014/01/cercbookReading.pdf · 2014-09-03 · *qmi2mib r 6bmbi21h2k2mibpp2`pb2r

σε

σ = · ε

σ = · ε+ σp

σp =

(Np

Mp

)= −F p

(αp

−zp αp

)F p zp

αp = zp/ x

e =

∫Le

T · σ x =

∫Le

T · · ε x+

∫Le

T · σp x = εe +

pe

− pe

•ε•p

−N ε′ −Np′ = px−M ε′′ −Mp′′ = pz

Page 8: Ulrich Häussler-Combe Computational Methods for Reinforced Concrete …concrete-fem.com/.../uploads/2014/01/cercbookReading.pdf · 2014-09-03 · *qmi2mib r 6bmbi21h2k2mibpp2`pb2r

−N ε′ = px − (F p αp)′

−M ε′′ = pz + (zpFp αp)

′′

F p ≈ const., αp ≈ 1

−M ε′′ = pz + z′′pFp

z′′pFp z z′′p

pz

σpp

zp, αp x

F p0

F p0

x

F p0 Fp

Page 9: Ulrich Häussler-Combe Computational Methods for Reinforced Concrete …concrete-fem.com/.../uploads/2014/01/cercbookReading.pdf · 2014-09-03 · *qmi2mib r 6bmbi21h2k2mibpp2`pb2r

zp =[

r3

4 − 3r4 + 1

2Ler

3

8 − Ler2

8 − Ler8 + Le

8 − r3

4 + 3r4 + 1

2Ler

3

8 + Ler2

8 − Ler8 − Le

8

⎛⎜⎜⎝zpIαpI

zpJαpJ

⎞⎟⎟⎠Le

αP =∂zp∂x

=∂zp∂r

∂r

∂x= z′p

zpI , αpI zpJ , αpJ −1 ≤ r ≤ 1zp(−1) = zpI , z

′p(−1) = αpI zp(1) = zpJ , z

′p(1) = αpJ

e

LPe =

Le

2

∫ 1

−1

√(x′p)2 + (z′p)2 r

xp

x′p = 1⎛⎜⎜⎝zpIαpI

zpJαpJ

⎞⎟⎟⎠ =

⎛⎜⎜⎝zp0Iαp0I

zp0Jαp0J

⎞⎟⎟⎠zp0I , αp0I , zp0J , αp0J

x′p = 1 + ε⎛⎜⎜⎝zpIαpI

zpJαpJ

⎞⎟⎟⎠ =

⎛⎜⎜⎝zp0I + wI

αp0I + φI

zp0J + wJ

αp0J + φJ

⎞⎟⎟⎠ε

wI , φI , wJ , φJ LP

LP0 LP

Page 10: Ulrich Häussler-Combe Computational Methods for Reinforced Concrete …concrete-fem.com/.../uploads/2014/01/cercbookReading.pdf · 2014-09-03 · *qmi2mib r 6bmbi21h2k2mibpp2`pb2r

F p =LP

LP0

F p0

Δεp(x) = Δε(x)− zp Δκ(x)

Δε, Δκ

F p(x) = F p0 + EpAp Δεp(x)

Ep Ap

F p(x)

L = 10

b = 0.2, h = 0.4 fcd = 38 /As1 = As2 = 12.57 , d1 = d2 = 5

Mu ≈ 0.20 N = 0qu = 8Mu/L

2 = 15.2 /

σc0 = −10 /F p0 = 0.8

Page 11: Ulrich Häussler-Combe Computational Methods for Reinforced Concrete …concrete-fem.com/.../uploads/2014/01/cercbookReading.pdf · 2014-09-03 · *qmi2mib r 6bmbi21h2k2mibpp2`pb2r

hp

zp = 4hp

(x2

L2− x

L

)hp = 0.15

Ap = 6fp0,1 = 1600 / fp = 1800 /

Ep = 200 000 / σp0 = 1333 /

εp0 = 6.67

q = 5 /

qp = 25 /

F p/F p0 = 1.002 hp/L = 1/67

≈−2.2 −3.5

Mq = 0.03 × 102/8 =

Page 12: Ulrich Häussler-Combe Computational Methods for Reinforced Concrete …concrete-fem.com/.../uploads/2014/01/cercbookReading.pdf · 2014-09-03 · *qmi2mib r 6bmbi21h2k2mibpp2`pb2r

0.375 Mc = 0.255Mp = 0.120

0.12Mc = 0.220 Mp = 0.155

Page 13: Ulrich Häussler-Combe Computational Methods for Reinforced Concrete …concrete-fem.com/.../uploads/2014/01/cercbookReading.pdf · 2014-09-03 · *qmi2mib r 6bmbi21h2k2mibpp2`pb2r

F p

L ∫ L

0

δεT · σ s =

∫ L

0

δ T · ¯ s+ δ T · ¯

sσ ε

Page 14: Ulrich Häussler-Combe Computational Methods for Reinforced Concrete …concrete-fem.com/.../uploads/2014/01/cercbookReading.pdf · 2014-09-03 · *qmi2mib r 6bmbi21h2k2mibpp2`pb2r

αe

υe

υe = (αe) · υe

˜(r) = (r) · υe, ε(r) = (r) · υe

δεT = δυTe · T (αe) · T (r)

e =T (αe) · Le

2

∫ 1

−1

T (r) · σ(r) r

Le αe

Te =∂ e

∂υe

Te = TMe + TGe

TMe = T · Le

2

∫ 1

−1

T · ∂σ∂ε

· ∂ε

∂υe· ∂υe

∂υer

= T · Le

2

∫ 1

−1

T · T · r ·= T · ˜ Te ·

TGe =∂ T

∂αe· e · ∂αe

∂υe

T

Page 15: Ulrich Häussler-Combe Computational Methods for Reinforced Concrete …concrete-fem.com/.../uploads/2014/01/cercbookReading.pdf · 2014-09-03 · *qmi2mib r 6bmbi21h2k2mibpp2`pb2r

e =Le

2

∫ 1

−1

T · σ r

∂ T

∂αe=

⎡⎢⎢⎢⎢⎢⎢⎣− αe − αe 0 0 0 0

αe − αe 0 0 0 00 0 0 0 0 00 0 0 − αe − αe 00 0 0 αe − αe 00 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦

e =

⎛⎜⎜⎜⎜⎜⎜⎝NI

VI

MI

NJ

VJ

MJ

⎞⎟⎟⎟⎟⎟⎟⎠ ,∂αe

∂υe=

1

Le

⎛⎜⎜⎜⎜⎜⎜⎝αe

− αe

0− αe

αe

0

⎞⎟⎟⎟⎟⎟⎟⎠

TGe =

⎡⎢⎢⎢⎢⎢⎢⎣−AI αe AI αe 0 AI αe −AI αe 0BI αe −BI αe 0 −BI αe BI αe 0

0 0 0 0 0 0−AJ αe AJ αe 0 AJ αe −AJ αe 0BJ αe −BJ αe 0 −BJ αe BJ αe 0

0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦

Ai = αeNi + αeVi, Bi = αeNi − αeVi, i = I, J

¯e =Le

2

∫ 1

−1

T (αe) · T (r) · (αe) · ¯(r) r

¯e =

(NI VI MI NJ VJ MJ

)T¯e ¯

υe, ε, σ

Page 16: Ulrich Häussler-Combe Computational Methods for Reinforced Concrete …concrete-fem.com/.../uploads/2014/01/cercbookReading.pdf · 2014-09-03 · *qmi2mib r 6bmbi21h2k2mibpp2`pb2r

(υ) =

= ¯ + ¯

u,w, φαe = π/2

T = αe α

TM =

⎡⎣ 12EJL3 0 6EJ

L2

0 EAL 0

6EJL2 0 4EJ

L

⎤⎦

Page 17: Ulrich Häussler-Combe Computational Methods for Reinforced Concrete …concrete-fem.com/.../uploads/2014/01/cercbookReading.pdf · 2014-09-03 · *qmi2mib r 6bmbi21h2k2mibpp2`pb2r

TG = NJ0TG,

0TG =

⎡⎣ 1L 0 00 0 00 0 0

⎤⎦0TG

( TM + TG) · υ =

υ

TM · υ = −NJb0TG · υ

NJb

NJb =3EJ

L2

9wJ +6Lφ = 0 π2 EJ/4L2 ≈ 2.47EJ/L2

NJb

NJb

αe Le

ε σ

T

αe, Le

Page 18: Ulrich Häussler-Combe Computational Methods for Reinforced Concrete …concrete-fem.com/.../uploads/2014/01/cercbookReading.pdf · 2014-09-03 · *qmi2mib r 6bmbi21h2k2mibpp2`pb2r

L = 5.0 h = 0.4b = 0.2

nE = 10

Ec = 33 000 / fc = 38 /εc1 = −0.0023, εcu1 = −0.0035

fyk =

500 /2

ft = 525 /2

εy0 = 2.5 εu = 25

� As2 = As1 = 12.57d2 = d1 = 5

Pb =π2

4

EJ

L2=

π2

4

33 000 · 0.0010675.02

= 3.47

Page 19: Ulrich Häussler-Combe Computational Methods for Reinforced Concrete …concrete-fem.com/.../uploads/2014/01/cercbookReading.pdf · 2014-09-03 · *qmi2mib r 6bmbi21h2k2mibpp2`pb2r

P = 2 e =0.032

uu = 0.071

P = 2 e > 0.032

Mz=4.94 = 0.067e P → 0.064

Mz=0.06 = 0.206(e + uu)P → 0.206

E = 33 000 /Mx=0.06 = 0.172

Mu = 0.261

εcu1 = −0.0035

Page 20: Ulrich Häussler-Combe Computational Methods for Reinforced Concrete …concrete-fem.com/.../uploads/2014/01/cercbookReading.pdf · 2014-09-03 · *qmi2mib r 6bmbi21h2k2mibpp2`pb2r

zc1, zc2z0

m Θ

m = �A, Θ = � J

� AJ Θ

Θ

· υ(t) + (t) = (t)

t

e

Page 21: Ulrich Häussler-Combe Computational Methods for Reinforced Concrete …concrete-fem.com/.../uploads/2014/01/cercbookReading.pdf · 2014-09-03 · *qmi2mib r 6bmbi21h2k2mibpp2`pb2r

υe

e

e = ¯e + ¯e

(t) tt

t = 0

(t) = · υ(t)

e

· υ(t) + · υ(t) = (t)

,(t)

· υ(t) + · υ(t) = 0

t

υ = ξ ωt

ξ ω

T =2π

ω

· ξ = ω2 · ξn ξi, ωi, i = 1, . . . , n n

ξi

ξi Ξυ = Ξ ·υ ˜ = ΞT · ·Ξ

˜ = ΞT · · ΞΞT n

Page 22: Ulrich Häussler-Combe Computational Methods for Reinforced Concrete …concrete-fem.com/.../uploads/2014/01/cercbookReading.pdf · 2014-09-03 · *qmi2mib r 6bmbi21h2k2mibpp2`pb2r

ω1

ω1 =

(√υT · · υυT · · υ

)=

T1

υ T1

m k

ω =

√k

m, T = 2π

√m

k

n > 1ω1 T1 υ

mw + EJ w′′′′ = 0

EJ

w(x, t) =π x

Lωt

L

w =∂2w

∂t2= −ω2 π x

Lωt, w′′′′ =

∂4w

∂x4=

π4

L4

π x

Lωt

w(0, t) = w(L, t) = 0 EJ w′′(0, t) = EJ w′′(L, t) = 0

ω =π2

L2

√EJ

m

T =2L2

π

√m

EJ

ν = 1/T

Page 23: Ulrich Häussler-Combe Computational Methods for Reinforced Concrete …concrete-fem.com/.../uploads/2014/01/cercbookReading.pdf · 2014-09-03 · *qmi2mib r 6bmbi21h2k2mibpp2`pb2r

E = 33 000 /25 / g ≈ 10 / � =0.025/10 = 2.5× 10−3 / A = 0.2 · 0.4

m = 0.2× 10−3 /

T = 2L2

π

√mEJ =

0.038 ν = 26

P0

P (t) = P0 f(t)

f(t) =

{1 t ≤ td0 t > td

P0, td P0 = −0.07 td = 0.1

nE = 20

Δt = 0.001 0.06

0.01060.0053 P0

Page 24: Ulrich Häussler-Combe Computational Methods for Reinforced Concrete …concrete-fem.com/.../uploads/2014/01/cercbookReading.pdf · 2014-09-03 · *qmi2mib r 6bmbi21h2k2mibpp2`pb2r

td P0 = −0.07

tdtd = 0.001

Page 25: Ulrich Häussler-Combe Computational Methods for Reinforced Concrete …concrete-fem.com/.../uploads/2014/01/cercbookReading.pdf · 2014-09-03 · *qmi2mib r 6bmbi21h2k2mibpp2`pb2r

P0 = −0.07 td = 0.1

As2 = 12.57 , d2 = 5

εc ≈ −1 εs ≈ 2

f(t)

Page 26: Ulrich Häussler-Combe Computational Methods for Reinforced Concrete …concrete-fem.com/.../uploads/2014/01/cercbookReading.pdf · 2014-09-03 · *qmi2mib r 6bmbi21h2k2mibpp2`pb2r

· υ(t) + · υ(t) + · υ(t) = (t)