u3. power transfer theorems and image parameters...

19
1 U3. Power transfer theorems and image parameters Circuit Analysis, GIT Philip Siegmann Departamento de Teoría de la Señal y Comunicaciones [email protected] Curso 2016-2017

Upload: phungthu

Post on 03-Oct-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: U3. Power transfer theorems and image parameters …agamenon.tsc.uah.es/.../philip/pagina_files/teaching/ac/docs/unit3.pdf · 1 U3. Power transfer theorems and image parameters Circuit

1

U3. Power transfer theorems

and image parameters Circuit Analysis, GIT

Philip Siegmann

Departamento de Teoría de la Señal y Comunicaciones

[email protected]

Curso 2016-2017

Page 2: U3. Power transfer theorems and image parameters …agamenon.tsc.uah.es/.../philip/pagina_files/teaching/ac/docs/unit3.pdf · 1 U3. Power transfer theorems and image parameters Circuit

Index

• Introduction: Typical circuit configuration

• Recall

– Equivalent impedance

– Equivalent Thevenin and Norton

• Maximum power supply. Impedance Maching

• Power transfer. Everitt Theorem.

• Transmission Units

• Image Parameters

• Cascaded association using image param.

2

Page 3: U3. Power transfer theorems and image parameters …agamenon.tsc.uah.es/.../philip/pagina_files/teaching/ac/docs/unit3.pdf · 1 U3. Power transfer theorems and image parameters Circuit

Typical circuit configuration

ZL

Eg

Zg

Two-port

passive

circuit

D

C

B

A

Energy supply

(real voltage or

current source)

Load impedance

(receiver)

Equivalent impedance, Zeq

Equivalent Thevenin, (ETh, ZTh)

Eg

Zg

B

A

Zeq

ETh

ZTh

D

C

ZL

3

Equivalent circuits:

Circuit Analysis / Fundamental theorems / Typical circuit configuration

Page 4: U3. Power transfer theorems and image parameters …agamenon.tsc.uah.es/.../philip/pagina_files/teaching/ac/docs/unit3.pdf · 1 U3. Power transfer theorems and image parameters Circuit

4 4

Recall: Equivalent Impedance

• Any passive circuit (i.e. without independent

sources) between two terminals (A,B) can be

simplified with a equivalent impedance, Zeq:

B

A

Zeq

Circuit Analysis / Fundamental theorems / Equivalent impedance

The equivalent impedance can be obtained by:

• Parallel and/or serial association of the impedances within the passive

circuit.

• Applying a test generator Eg:

Passive

circuit

B

A

Zeq

g

g

eqI

EZ Eg

Ig

Passive

circuit

B

A

Zeq

Page 5: U3. Power transfer theorems and image parameters …agamenon.tsc.uah.es/.../philip/pagina_files/teaching/ac/docs/unit3.pdf · 1 U3. Power transfer theorems and image parameters Circuit

5 5

Recall: Equivalent Thevenin &

Norton • Any linear circuit with independent sources (i.e. active

circuit) between two terminals (A,B) can be simplified by a real voltage source (Equiv.Thevenin) or real current source (Equiv. Norton):

Active

circuit

B

A

ETh

B

A

ZTh

B

A

ZN IN

Equivalent Thevenin Equivalent Norton

Circuit Analysis / Fundamental theorems / Equivalent Thevenin & Norton

Page 6: U3. Power transfer theorems and image parameters …agamenon.tsc.uah.es/.../philip/pagina_files/teaching/ac/docs/unit3.pdf · 1 U3. Power transfer theorems and image parameters Circuit

6 6

Recall: Equivalent Thevenin

• ETh is the voltage between A and B in open circuit:

• Zth is the equivalent impedance seen trough A-B

Active

circuit

B

A

o.c.in ThBAAB EVVV

Deactivated

(i.e. passive)

circuit

B

A

circuit in the sources dindependen

theannullingby , )(g

g

ThI

EZ

Circuit Analysis / Fundamental theorems / Equivalent Thevenin & Norton

____

(*) see slide 4

ETh

B

A

ZTh

ZTh

Eg

Ig

Page 7: U3. Power transfer theorems and image parameters …agamenon.tsc.uah.es/.../philip/pagina_files/teaching/ac/docs/unit3.pdf · 1 U3. Power transfer theorems and image parameters Circuit

7 7

Recall: Equivalent Norton

• IN is the current between A and B in short circuit:

• ZN (as ZTh) is the equivalent impedance seen trough A-B

• Equivalencies between the real Thevenin and Norton

sources:

Active

circuit

B

A

s.c.in NAB II

B

A

ZN IN

NTh

NNTh

ZZ

IZE

B

A

ZN IN ETh

B

A

ZTh

Circuit Analysis / Fundamental theorems / Equivalent Thevenin & Norton

Page 8: U3. Power transfer theorems and image parameters …agamenon.tsc.uah.es/.../philip/pagina_files/teaching/ac/docs/unit3.pdf · 1 U3. Power transfer theorems and image parameters Circuit

8

Maximum power supply

• When does a real generator (Eg, Zg) supply the maximum

power to a load impedance ZL?

Circuit Analysis / Fundamental theorems / Maximum power supply

Eg

Zg ZL

Ig

2

2

2

j2]Re[

2

1

ybxa

xEZIP

g

LgZL

yxZ

baZ

L

g

j

j fixed

variable

PZL

a

EP

g

ZL8

2

maxand *

maxmatching Impedance

gLZLZL ZZ

by

axPP

Page 9: U3. Power transfer theorems and image parameters …agamenon.tsc.uah.es/.../philip/pagina_files/teaching/ac/docs/unit3.pdf · 1 U3. Power transfer theorems and image parameters Circuit

9

Everitt theorem

• When there is maximum power supply at the input

gate (P1) of a non-dissipative circuit (i.e. made of L

and C only) then there is also maximum power supply

at the output (P2) of the circuit and vice versa:

Circuit Analysis / Fundamental theorems / Everitt theorem

ZL

Eg

Zg

P1 P2

No

dissipative

circuit

D

C

B

A

D-Cat matching Impedance B-Aat matching Impedance

max22max11

PPPP

Page 10: U3. Power transfer theorems and image parameters …agamenon.tsc.uah.es/.../philip/pagina_files/teaching/ac/docs/unit3.pdf · 1 U3. Power transfer theorems and image parameters Circuit

10

Transmission units

• For measuring the signal transmission trough a circuit

the following magnitudes are usually used:

– Transmission loss:

– Insertion loss:

Circuit Analysis / Fundamental theorems / Transmission units

ZL

Eg

Zg

P1 P2

circuit V1 V2

I1 I2

signaloutput circuits

signalimput circuits

signaloutput circuits

circuit without signal supplied

Zg

P20

V20

I20

ZL Eg

Page 11: U3. Power transfer theorems and image parameters …agamenon.tsc.uah.es/.../philip/pagina_files/teaching/ac/docs/unit3.pdf · 1 U3. Power transfer theorems and image parameters Circuit

11

Transmission loss

ZL

Eg

Zg

P1 P2

circuit

D

C

B

A

V1 V2

I1 I2

Circuit Analysis / Fundamental theorems / Transmission units

Page 12: U3. Power transfer theorems and image parameters …agamenon.tsc.uah.es/.../philip/pagina_files/teaching/ac/docs/unit3.pdf · 1 U3. Power transfer theorems and image parameters Circuit

12

Insertion loss

ZL

Eg

Zg

P2

circuit V2

I2

Zg

P20

V20

I20

ZL Eg

Circuit Analysis / Fundamental theorems / Transmission units

Are the different insertion loss the same if in dB and Np?

Page 13: U3. Power transfer theorems and image parameters …agamenon.tsc.uah.es/.../philip/pagina_files/teaching/ac/docs/unit3.pdf · 1 U3. Power transfer theorems and image parameters Circuit

13

Transmission units • Transmission gain:

• Insertion gain:

Circuit Analysis / Fundamental theorems / Transmission units

Page 14: U3. Power transfer theorems and image parameters …agamenon.tsc.uah.es/.../philip/pagina_files/teaching/ac/docs/unit3.pdf · 1 U3. Power transfer theorems and image parameters Circuit

14

Image parameters of a bilateral Q

Z02

Z01 Z02

Z01

Image impedances Z01 y Z02

R-L-C

Propagation constant

I1 I2

V2 V1 ZL 02

22

112exp

ZZL

IV

IV

R-L-C

Circuit Analysis / Two-port networks / Image parameters

Page 15: U3. Power transfer theorems and image parameters …agamenon.tsc.uah.es/.../philip/pagina_files/teaching/ac/docs/unit3.pdf · 1 U3. Power transfer theorems and image parameters Circuit

15

Image parameters for a bilateral and

symmetrical Q

Characteristic impedance (Z0 = Z01=Z02) and

propagation constant () can be obtained as follows:

tanh1

tanh1ln

2

1,tanh,

..

......0

CO

CSCSCO

Z

Z

A

BCZZ

C

BZ

being ZO.C. y ZS.C. impedances seen trough Q when the ports of

the opposite side are respectively open- and short-circuit:

ZO.C.

o.c.

ZO.C

o.c.

ZS.C. ZS.C.

Circuit Analysis / Two-port networks / Image parameters

s.c.

Page 16: U3. Power transfer theorems and image parameters …agamenon.tsc.uah.es/.../philip/pagina_files/teaching/ac/docs/unit3.pdf · 1 U3. Power transfer theorems and image parameters Circuit

16

Image parameters for a bilateral and

symmetrical Q

coshsinh1

sinhcosh

0

0

Z

Z

DC

BA

Propagation constant

000

00

2

1

2

1

2

1

2

1

2

1

ln2

1lnln]Np[

loss)insertion ( :,difference phase:,j

,exp

ZZZZZZ

ZZZZ

LLL

LL

P

P

I

I

V

V

I

I

V

V

loss ontransmissi

“T” as function of Z0 and

I1 I2

V2 V1 Z0

R-L-C &

symmetrical

Circuit Analysis / Two-port networks / Image parameters

2

110

2

110

2

110

log10

log20

log20]dB[

P

P

I

I

V

V

Page 17: U3. Power transfer theorems and image parameters …agamenon.tsc.uah.es/.../philip/pagina_files/teaching/ac/docs/unit3.pdf · 1 U3. Power transfer theorems and image parameters Circuit

17

Equivalent Thevenin for a bilateral and

symmetrical Q when Zg=Z0

Equivalent Thevenin:

)exp(

cosh·sinh1

0

0

g

g

g

g

th E

ZZ

E

ACZ

EE

Eg

Zg=Z0

A

B

, Z0

Eth

Zth=Z0

A

B

Circuit Analysis / Two-port networks / Image parameters

Page 18: U3. Power transfer theorems and image parameters …agamenon.tsc.uah.es/.../philip/pagina_files/teaching/ac/docs/unit3.pdf · 1 U3. Power transfer theorems and image parameters Circuit

18

Summarizing, for a bilateral and symmetric

quadripole

Equivalent circuits:

Eth

Zout

ZL V2

Eg

Zg

Zin V1

0

0

e then if

ZZ

EEZZ

out

gth

g

A

B

I1 I2

V2 V1

Eg

Zg

ZL

Zin Zout

A

B

C

D

C

D

, Z0

2

1

2

1

0in

0 exp

Z

then if

I

I

V

V

Z

ZZL

Circuit Analysis / Two-port networks / Image parameters

Page 19: U3. Power transfer theorems and image parameters …agamenon.tsc.uah.es/.../philip/pagina_files/teaching/ac/docs/unit3.pdf · 1 U3. Power transfer theorems and image parameters Circuit

19

Cascaded association using image

parameters

N bilateral and symmetric quadripoles (all with the same Z0)

connected in cascade:

N

NNNN

eII

eVeeVeVV

N

NNN

...

0

...

021

21

211 ...

0V1

0

Z

N

Z

0

0ZZL

2

0

Z1V 2V NV

0I1I 2I NI

Circuit Analysis / Two-port networks / Cascaded Association using image param.