typical properties for appendix a - home - springer978-1-4615-6389-1/1.pdf · 1054 typical...

66
TYPICAL PROPERTIES FOR ADVANCED COMPOSITES APPENDIX A Kenneth R. Berg A.I INTRODUCTION For a company or institution that is designing composite material structures, or embarking for the first time into the application of advanced composite materials for structural purposes, it is imperative that material prop- erties be available. Of course it would be desirable to have a complete set of statistical Design Allowables, such as the statistical '.A: values for properties, or even the 'B' values, (see Chapter 33 for detailed definitions of these values and Neal and Spiridgliozzi, 1987). Since complete statistical Design Allowables are not available, the next sought after mater- ial properties would be 'typical' properties. However 'typical' properties are not defined statistically and may be defined in many dif- ferent ways. Therefore it is important to discuss typical material properties and also discuss the means to achieve a set of typical properties. The purpose of having a complete set of typical properties is to be able to design com- posite structures with a minimum of testing confirmation. Having a complete set of typical properties will allow design optimization, pre- liminary design, cost and weight optimization and other trade-offs with a number of different materials and candidate laminates with differ- ent fiber orientations. Once an optimum Handbook of Composites. Edited by S.T. Peters. Published in 1998 by Chapman & Hall, London. ISBN 0 412 54020 7 material and configuration is selected, a mini- mum test program would then be initiated. Having a set of typical composite materials has advantages and disadvantages. For exam- ple, if one were to design a structure utilizing only typical material properties, without the knowledge of the scatter that may occur in those properties, structural failure may occur. Perhaps not immediately, nor on every struc- ture produced, but on an unknown statistical basis, at some point in time. However, prior to a final design for a structure, the normal engi- neering procedure is to initiate the test program. The purpose of the test program is threefold: one, confirmation of the design; two, determine the scatter that occurs due to variations in materials and the manufacturing process; and three, over a period of time, either to confirm the material properties data- base being used, or to accumulate test data for a material properties database. A.2 TYPICAL PROPERTIES - CONSTITUENTS A.2.l FIBERS One of the problems of determining typical properties is the variations that occur in the materials making up laminates. In the case of glass fiber, the types of glass fiber and number of manufacturers is considerably less than with carbon fiber. However, even with this limitation, there are at least two major types of glass fiber, E-glass

Upload: vokhuong

Post on 14-Mar-2018

231 views

Category:

Documents


4 download

TRANSCRIPT

Page 1: TYPICAL PROPERTIES FOR APPENDIX A - Home - Springer978-1-4615-6389-1/1.pdf · 1054 Typical properties for advanced composites and 5-2 glass. Within each of these glasses are variations

TYPICAL PROPERTIES FOR ADVANCED COMPOSITES

APPENDIX A

Kenneth R. Berg

A.I INTRODUCTION

For a company or institution that is designing composite material structures, or embarking for the first time into the application of advanced composite materials for structural purposes, it is imperative that material prop­erties be available. Of course it would be desirable to have a complete set of statistical Design Allowables, such as the statistical '.A: values for properties, or even the 'B' values, (see Chapter 33 for detailed definitions of these values and Neal and Spiridgliozzi, 1987). Since complete statistical Design Allowables are not available, the next sought after mater­ial properties would be 'typical' properties. However 'typical' properties are not defined statistically and may be defined in many dif­ferent ways. Therefore it is important to discuss typical material properties and also discuss the means to achieve a set of typical properties.

The purpose of having a complete set of typical properties is to be able to design com­posite structures with a minimum of testing confirmation. Having a complete set of typical properties will allow design optimization, pre­liminary design, cost and weight optimization and other trade-offs with a number of different materials and candidate laminates with differ­ent fiber orientations. Once an optimum

Handbook of Composites. Edited by S.T. Peters. Published in 1998 by Chapman & Hall, London. ISBN 0 412 54020 7

material and configuration is selected, a mini­mum test program would then be initiated.

Having a set of typical composite materials has advantages and disadvantages. For exam­ple, if one were to design a structure utilizing only typical material properties, without the knowledge of the scatter that may occur in those properties, structural failure may occur. Perhaps not immediately, nor on every struc­ture produced, but on an unknown statistical basis, at some point in time. However, prior to a final design for a structure, the normal engi­neering procedure is to initiate the test program. The purpose of the test program is threefold: one, confirmation of the design; two, determine the scatter that occurs due to variations in materials and the manufacturing process; and three, over a period of time, either to confirm the material properties data­base being used, or to accumulate test data for a material properties database.

A.2 TYPICAL PROPERTIES - CONSTITUENTS

A.2.l FIBERS

One of the problems of determining typical properties is the variations that occur in the materials making up laminates. In the case of glass fiber, the types of glass fiber and number of manufacturers is considerably less than with carbon fiber.

However, even with this limitation, there are at least two major types of glass fiber, E-glass

Page 2: TYPICAL PROPERTIES FOR APPENDIX A - Home - Springer978-1-4615-6389-1/1.pdf · 1054 Typical properties for advanced composites and 5-2 glass. Within each of these glasses are variations

1054 Typical properties for advanced composites

and 5-2 glass. Within each of these glasses are variations in chemical composition, fiber diam­eter, fiber finish, fiber sizing, the number of individual fibers in a tow, roving, yarn, etc.

Manufacturers have different names for the similar type of glass, for example the higher strength, higher modulus glasses. These fiber glasses are the older S-glass (no longer avail­able commercially), 5-2 glass and the R-glass by a French manufacturer. Other countries fab­ricate the same type of glass, but with only minor differences in properties.

For carbon fiber, not only are there the same variations as mentioned above for glass, but in addition, there are large variations in strength and modulus and in manufacturers, see Tables Al andA2.

Based on the large number of variations in fibers, it would be virtually impossible to obtain complete statistical material properties for each variation. Even to obtain typical prop­erties for each variation would not be practical.

To reduce this problem to a practical level, it is necessary to analyze the usage of glass and carbon fibers (or other fibers). The usage of advanced composite fibers by 'pounds used per dollar expended', is estimated to be, in order of highest usage: E-glass, high strength carbon (modulus of 227 GPa, (33 x 1()6 psi» and then 5-2 glass. With this list, it is possible to develop typical properties for composites fabricated from each of these fiber types. An example of the determination of the strength and modulus of the typical high strength car­bon fiber is shown in Fig. AI. The 'typical' property becomes: Tensile modulus of 227 GPa (33 x 106 psi), and tensile strength of 4000 MPa (580 ksi).

A.2.2 RESIN SYSTEMS

The matrix for fiber composites can be classi­fied into two categories, metallic and non-metallic. This discussion on typical prop­erties involves only non-metallic resin matrix systems.

Table A.l 'TYPical products from carbon fiber man­ufacturers (available in USA)

AMOCO (Thornel)"

P-100 P-75 T-300 T650/35 T650/42

Toho (Celion)

G30-500 G40-800 G40-600

Grafil (Grafil)b

34-700 42-650 42-750

Hexeel (Magnamite)

AS4 IM6 IM7 IM8

• Typical product name

Toho Rayon (Besfight)

HTAWlOO IM600 HM35

Toray (Torayea)

T300 T700s T800H M40 M46J

AKZO (Fortafil)

F-5 F-3

b Grafil is a subsidiary of Mitsubishi Rayon Co. Ltd and their fibers are called Grafil or Pyrofil.

Table A.2 Torayca fiber types (Toray, 1991)

Fiber type

T300 T300J T400H T700S T800H TlOOOG T1000 M35J M40J M46J M50J M55J M60J M30

M30SC M40 M46 M50

Number of filaments

lK, 3K, 6K, 12K 3K,6K,l2K

3K,6K 12K

6K,12K 12K 12K

6K,12K 6K,12K 6K,12K

6K 6K

3K,6K lK, 3K, 6K, 12K

18K 1K, 3K, 6K, 12K

6K 1K,3K

Page 3: TYPICAL PROPERTIES FOR APPENDIX A - Home - Springer978-1-4615-6389-1/1.pdf · 1054 Typical properties for advanced composites and 5-2 glass. Within each of these glasses are variations

300,---------~----------------_. Typical PropertY -----'-~

250 H '8treiigii,H4GpaH H'~*~~H

Data from vUlaus lber manufacturers

50················

OL---~----~----~----~----~

o 2 3 4 5

Strength OPa

Fig. A.l Typical strength and modulus for high strength carbon fiber. (Courtesy of Riggs Corporation.)

As was discussed for fibers, only the high usage matrix systems in advanced composites are considered as candidates for typical prop­erties. In addition, for typical properties of advanced composites for structural applica­tions, only structural resin systems are candidates. Structural resins are defined as resins that have similar modulus and tensile strength as standard epoxy systems. For exam­ple, an applicable resin for structural composites would have a modulus of approx­imately 3.5 GPa (0.5 x 1()6 psi) and a tensile strength of approximately 100 MPa (15 ksi).

The more popular structural resins are polyester, epoxy, vinyl ester and phenolic. For typical composite properties, the use of any of these resins will allow a single typical prop­erty (Fig. A.2) (CertainTeed Corporation, 1989).

A comparison for composites with different epoxy sizing from different manufacturers and a typical value is shown in Fig. A3.

Figure A.4 shows a number of different resin systems and the typical values for strength and modulus (Lubin, 1987). This data is for primarily fiber controlled properties.

There are properties in which the resin is the significant factor. These characteristics are associated with stress concentrations and

Typical properties - constituents 1055

5 • Epoxy/Amini + Epoxy/Anhydrld. lIE Vlnyl •• t.r 1 I Po.,. .... I!!I 'J'tpIc.1 Pro ... rty

0 0 100 2ao 3DD 4DD 5DD 100 7ao 8DD lao I.ODO

Strength MPa

Fig. A.2 Typical strength and modulus for E-glass composite - flexural strength. (Courtesy of Riggs Corporation.)

environmental considerations. Key among these characteristics are: temperature, frac­ture toughness, compression after impact, crack propagation, humidity, stress concen­trations, interlaminar shear, mechanical fasteners in laminates, holes in laminates, creep, damage tolerance and compatibility with fiber finish. In determining typical prop­erties, these characteristics are not included but, as applicable, need to be considered for the final design.

800r----------------------------. !'rvPIO.' Value 840 MPa ~

700 ." . :. '" :I 800 ... .~ . .

Isoo !400 ................. . j

1300

~:::Ir-.-C-.I-I~-~-·~-~-~~-·PO~·-·_3----*-~--IIO~n-Q-30-~-_F-----.1 I H.rcul •• AS-4/1'ype G X Harcula. AS-4/Treated

o~--------------------------~

Fig. A.3 Typical compression strength for carbon fiber fabric composites. (Courtesy of Riggs Corporation. )

Page 4: TYPICAL PROPERTIES FOR APPENDIX A - Home - Springer978-1-4615-6389-1/1.pdf · 1054 Typical properties for advanced composites and 5-2 glass. Within each of these glasses are variations

lOS6 Typical properties for advanced composites

100

90 . Typical. VaLues .

...... \ ..... 80 Strength 608 MPa

.. ·Modulus 7c} GPa .

ca 70 a. X"'~ .. !I CJ 60 en

50 ::;, '3

40 'tI 0

::IE 30

20

10 +H.rOUI •• A .. 1eap

XC.llon W-11U

*H.rcul •• A47D-8H • Hereul •• A-170-5H

• Flbarlte HMF-1tSlM AFlb.rlt. HMF-.l41/34

0 0 100 200 300 400 500 600 700

Tensile Strength MPa

Fig. A.4 Typical strength and modulus for carbon fiber fabric composites. (Courtesy of Riggs Corporation.)

A.3 TYPICAL PROPERTIES - COMPOSITES

A.3.l FIBER CONTROLLED TYPICAL PROPERTIES

Fiber-reinforced composite materials are pri­marily used to take advantage of the high strength and stiffness of the fiber. Therefore in most applications, the laminate orientation is designed so that the strength and modulus are controlled by the fiber properties. For example, for a typical fiber orientation in a laminate of 0° /±fP /90°, the 0° plies control the failure of the laminate whenever the percentage of 0° plies is greater than 10%, (with a () greater than ±l00). For () less than ±l0°, if the combined per­centage of 0° and ±f)0 plies is greater than 10%, then the laminate is also controlled by fiber fracture. These limitations are approximate and depend on the fiber strength and modulus, but are valid for carbon, aramid fibers and glass. For high () angles and for 90° laminates, the tensile strength of the laminate is reduced below the tensile strength of the resin due to stress concentrations between the fibers (Berg, 1967). Figure A.S shows the tensile strength of a carbon fiber laminate of 0°/ ±f)0 /90° plies, with the strength of the resin varying to influ-

ence the transverse strength and modulus of the base unidirectional laminate (100% 0° plies). The different strength resins shown on Fig. A.S, are as follows:

Lower strength resin Typical strength resin Higher strength resin

Transverse modulus

(GPa)

8.6 10.0 11.4

Transverse tensile strength

(MPa)

41.4 55.2 69.0

700 r--~La~m~l~n.~I.~1~5"~OOr<.~15:="-=±.::..8°.L' 7!.::O-"'-"-"'9O""-r--:-: .•. :7:tow= .. ::-;_= .... =RMI=.

soo ... ,Fiber f.-ctu,. Cril cal (Ultimate) .... .. ,:::.:;:::;

~lJpIcaI.lrength ItHln

*" Hlghwlnagth "-til ... La • .,8 ...... ~

*'J\'pk:aI ..... gtIII" ... n .. ---------,=

100~~R-•• -m-c~--.I~(R~NP~~-~-IU~-)-------+_------__4

oL-________ L-________ L-______ ~

o 15 30 45

Angle ±8°

Fig. A.S Effect of resin properties on tensile strength of high strength carbon composites. (Courtesy of Riggs Corporation.)

Page 5: TYPICAL PROPERTIES FOR APPENDIX A - Home - Springer978-1-4615-6389-1/1.pdf · 1054 Typical properties for advanced composites and 5-2 glass. Within each of these glasses are variations

As can be seen in Fig. A.S, the typical fiber fracture composite properties (ultimate fail­ure) are not affected by large variations in the properties of the resin. However, for resin sen­sitive properties, for example, the first ply failure (limit) of the 90° plies, the resin prop­erty is influential.

For the fiber fracture controlled composites, which are the main interest in structures, typi­cal composite material properties are valid over a wide variation in resin characteristics.

A.3.2 MATRIX CONTROLLED TYPICAL PROPERTIES

The main interest in structural components is the high strength and modulus obtainable from the fiber reinforcing of the matrix. Therefore in the design of the laminate, for most of the applications, the resulting failure modes are fiber fracture critical. Unfortunately, there are cases where the matrix is the critical element in the failure mode for all laminate orientations. This does not mean that the fiber does not contribute to reinforcing the matrix in both strength and modulus, but only that the ultimate failure is the result of failure in the matrix.

Among the cases where the matrix is the critical failure mode are laminates that are subjected to shear, the first ply failure (limit load) of a laminate (Fig. A.S, first ply failure curves and Berg, 1982) and most cases of the transverse strength property of a laminate with no 90° plies. Even for these cases, a typ­ical property can be determined utilizing the typical set of unidirectional properties repre­sented by most of the epoxy systems in use by the prepreg manufacturers as well as most of the structural epoxies sold. A typical set of unidirectional properties for high strength carbon composites, for example would be:

Strength 0° 90° Tension 2100 MPa 55 MPa Compression 1380 MPa 190 MPa In-plane shear 55 MPa

Modulus 138 GPa 9.7 GPa Shear modulus 6 GPa

Selecting the use of typical properties lOS7

A.4 SELECTING THE USE OF TYPICAL PROPERTIES

AA.1 WHERE TYPICAL PROPERTIES ARE ACCEPTABLE

The acceptability of material properties in the design of structures is based on a number of factors. If a design is being produced for a cus­tomer, the customer is often the final word on the acceptability of the material properties uti­lized. An alternate possibility is that the customer is not interested in accepting or rejecting the material properties used, but would rather accept the product against a specification. Final acceptance is a qualifica­tion of the product through testing.

The third case is where a product is pro­duced by the company itself and sold to the consumer directly. Of course the consumer (public) is not interested in accepting or rejec­tion the material properties database. An example of this is the automobile industry.

In the case of a company that subcontracts the design and fabrication of composite struc­tures, the company may either want to review the subcontractor's material properties data­base, or be able to review the design of the subcontractor with the use of the company's typical properties database.

In each of the above cases, a typical mater­ial properties database can be used for cost and weight trade-offs, selection of the best materials, optimizations studies and prelimi­nary design.

It is important to note that the final design would always go through an extensive test program to verify the material properties selected, the final design, the manufacturing process and to determine the variability of the product.

Thus, a typical material properties database is acceptable and useful to reduce the cost of engineering design, reduce the cost of testing and allow a more intelligent and less time con­suming approach to the final design.

Page 6: TYPICAL PROPERTIES FOR APPENDIX A - Home - Springer978-1-4615-6389-1/1.pdf · 1054 Typical properties for advanced composites and 5-2 glass. Within each of these glasses are variations

1058 Typical properties for advanced composites

A.4.2 WHERE TYPICAL PROPERTIES ARE NOT ACCEPTABLE

In the above discussion, the customer require­ments were mentioned as one of the criteria for acceptance or rejection of a material prop­erties database. There are cases where the customer will insist upon enough testing to develop a statistical property database. For that requirement the typical material database would not be acceptable. However in any sta­tistical database, the applicability is confined to the specific fiber, matrix and fabrication process. The statistical testing process is expensive and time consuming. In most cases, the statistical database would be limited to the laminate orientations tested, which would also be very limited.

For applications where significant environ­mental conditions are present, the use of typical material properties may not be applicable due to large variations in the response of different resins to these environmental conditions. These conditions were summarized above and included impact, humidity other corrosive flu­ids, stress concentrations, temperature, etc.

A.S SUMMARY

The design of composite material structures ~quires a knowledge of the material proper­ties for all combinations of laminates. It is cost-prohibitive to test all combinations of laminates, even to obtain typical properties. To obtain statistical design properties for a lim­ited number of laminate configurations is also expensive, but in some cases may be required by a contract. Typical composite material properties can provide useful data and be cost effective for the design engineer. The data can be generated by utilizing typical unidirec­tional data for each class of materials, (as discussed above for high strength carbon com­posites). To generate all the laminate configuration, both limit (first ply failure) and ultimate, requires a comprehensive computer program, including a failure criteria (Tsai, 1988; Hashin and Rotem, 1975) and utilizing

the composite transformations equations (Tsai, 1988). A typical property database for all ori­entations and selected materials is available (Berg, 1993), but also a typical composite mate­rial database could be generated by a company using composite engineering analy­sis as discussed above.

Although this discussion of typical proper­ties has mentioned only static strength and modulus, typical properties are also available for fatigue, CTE and for elevated temperatures (Berg, 1993). Fatigue typical properties include all fatigue stress ratios. Fatigue statistical properties, of course, would be prohibitively expensive.

If users of typical composite material prop­erties are aware of their limitations, typical properties can be a very useful database for cost effective design and analysis.

REFERENCES

Berg, K.R. 1967. The effect of fiber spacing on the strength of composites laminates, Paper pre­sented at AAWASME 8th Structures, Structural Dynamics and Materials Conference, Palm Springs, CA.

Berg, K.R. 1982. The effect of matrix strain limita­tions on composite design allowables. Proc. 27th Nat. SAMPE Symp., May, 1992, San Diego, CA.

Berg, K.R. 1993. Composite Material Properties Data Books - Sample Data Sheets. RIGGS Corporation, Seattle, WA.

CertainTeed Corporation. 1989. Sales Brochure, Test Data, Wichita Falls, TX.

Hashin, Z. and Rotem. A. 1975. Failure modes of angle ply laminates. J. Composite Mater., Volume 9.

Lubin, G. (ed.) 1987. Handbook of Composites. New York: Van Nostrand Reinhold.

Neal, D. and Spiridgliozzi, L. 1987. An efficient method for determining the I A: and 'B' design allowables. Army Materials and Mechanics Research Center, Watertown, MA.

Toray Industries, Inc. 1991. Torayca Sales Brochure, Typical Fiber Properties.

Tsai, Stephen w. 1988. Composites Design. Dayton, OH: Think Composites.

Tsai, Stephen w. and Hahn. H. 1980. Introduction to Composite Materials. Westport, CT: Technomic Publication.

Page 7: TYPICAL PROPERTIES FOR APPENDIX A - Home - Springer978-1-4615-6389-1/1.pdf · 1054 Typical properties for advanced composites and 5-2 glass. Within each of these glasses are variations

SPECIFICATIONS AND STANDARDS FOR POLYMER COMPOSITES

APPENDIXB

Frank T. Traceski

B.l USES OF SPECIFICATIONS AND STANDARDS

Material specifications and engineering stan­dards for advanced composite materials have a very broad applicability across the entire spectrum of defense and commercial applica­tions. From basic research, through engineering and manufacturing development, in produc­tion, and for maintenance and field repair, material and process specifications establish requirements and procedures.

In research and development, testing stan­dards are used for material characterization to determine physical, chemical, mechanical, ther­mal and electrical properties. In manufacturing development, material specifications are used to establish material quality and processability requirements. In production, the material pro­ducer uses test standards and material specifications for statistical process control (SPC) to ensure batch-to-batch consistency.

Material testing standards are used exten­sively in design engineering to determine material design allowables (i.e. strength and stiffness limits beyond which catastrophic fail­ure occurs) at various temperatures and environments. Material testing to standards enables one to quantify material performance

Handbook of Composites. Edited by S.T. Peters. Published in 1998 by Chapman & Hall, London. ISBN 041254020 7

limits. A list of typical composite material qualification tests is provided in Table B.I. These examples are representative of the mate­rial properties which are determined in a typical material qualification program in accordance with various test standards.

A concurrent engineering approach to com­posites engineering requires that material selection (as part of the design process) be inte­grally linked with engineering and manufacturing process development. In com­posite manufacturing development, material process specifications are defined for a given composite material and manufacturing process. Once optimized, process specifications reduce manufacturing risk and enhance producibility.

Another aspect of composites manufactur­ing is the nondestructive testing and inspection (NOTI) of composite structures to verify structural integrity during production. Ultrasonic inspection, infrared thermography, and a host of other NOTI methods are employed to locate voids, delaminations, cracks, and other types of structural defects. Standards are also employed here to define NDTI procedures and acceptance criteria.

In summary, engineering test standards and material and process specifications are employed extensively in composites research, development and production. Appendix B identifies specific material specifications and test standards for polymer composites and the

Page 8: TYPICAL PROPERTIES FOR APPENDIX A - Home - Springer978-1-4615-6389-1/1.pdf · 1054 Typical properties for advanced composites and 5-2 glass. Within each of these glasses are variations

1060 Specifications and standards for polymer composites

Table B.l Typical composite material qualification tests

Physical

Resin content Resin areal weight Resin flow Glass transition temperature (T)

RhJological dynamic spectroscopy (RDS)

Gel time Volatiles content Fiber density Fiber mass per unit length Fiber content Prep reg tack Laminate ply thickness Laminate void content Laminate density Laminate fiber volume Laminate flammability

Mechanical

Tensile strength and modulus Compression strength and modulus

Short beam shear (SBS) ±45 In-plane shear Open-hole tension Open-hole compression Compression after impact (CAl)

Flexural strength and modulus Fatigue strength Creep Dynamic mechanical analysis (DMA)

Instrumented impact (toughened resins)

Fracture toughness (toughened resins)

Solvent sensitivity compression strength,SBS

Bolt bearing

Chemical

Infrared spectroscopy (IR) Liquid chromatography (HPLC) Hydraulic fluid/solvent resistance

Fuel GP-4) resistance

Thermal

Thermogravimetric analysis (TGA)

Thermomechanical analysis (TMA)

Differential scanning calorimetry (DSC)

Thermal oxidative resistance Thermal expansion (CTE) Thermal cycling Thermal conductivity

Electrical

Dielectric constant Dielectric strength Dissipation factor Volume resistivity Dielectrometry

Some of these tests are specific to resin, fiber reinforcement, prepreg or laminate. There is no established universal set of qualification test procedures which is widely adopted. See MIL-HDBK-17 for recommended guidelines.

organizations that develop them. It is limited to consensus-type standards and does not include private sector specifications which are generally not available.

B.2 STANDARDS-DEVELOPING ORGANIZATIONS

The two principal organizations which develop test methods for composites in the USA are the American Society for Testing and Materials (ASTM) and the Suppliers of Advanced Composite Materials Association (SACMA). The Society of Automotive Engineers (SAE) Polymeric Materials Committee is the organization which pub­lishes Aerospace Material Specifications (AMS) for advanced polymer composites. The Department of Defense (DoD) has also issued

several military specifications and standards for polymer composite materials. Other pri­vate sector organizations, such as the Aerospace Industries Association (AlA) and Composite Materials Characterization (CMC), Inc., are involved in the standardization of composite materials and tests in order to reap long-term economic savings.

Japan, Germany, France and UK are also major players in composites technology. The European Association of Aerospace Manufacturers (known as AECMA in Europe) produces European Norm (EN) standards for aerospace composites. Japanese Industrial Standards GIS) serve as a basis for standard­ization of composites in Japan. Germany has issued DIN standards for composite materials. France has AFNOR standards and the UK has British Standards.

Page 9: TYPICAL PROPERTIES FOR APPENDIX A - Home - Springer978-1-4615-6389-1/1.pdf · 1054 Typical properties for advanced composites and 5-2 glass. Within each of these glasses are variations

Engineering standards for polymer com­posites also promote international commerce. In the global arena, the International Standardization Organization (ISO) is the body which develops international standards. The ISO fTC 61 Subcommittee (SC) 13 on Composites and Reinforcements Fibers is cur­rently coordinating new standards for glass and carbon fiber composites. USA participa­tion with ISO not only promotes international commerce but also enhances USA global com­petitiveness in the composites industry.

B.3 STANDARDS USED IN USA

B.3.1 ASlM STANDARDS

The AS1M Committee D30 on High-Modulus Fibers and their Composites develops standard test methods for advanced polymer compos­ites. Table B.2 lists the principal AS1M

Standards used in USA 1061

standards for determining the physical and mechanical properties of polymer composites. AS1M standards are developed by a consensus process and are widely used. The ASTM Committee D20 on Plastics also has developed standards which may be used for testing plastic resins and reinforced plastics.

B.3.2 SACMA METHODS

The SACMA has developed recommended test methods for determining the physical, mechan­ical, and chemical properties of composite materials (Table B.3). Although SACMA is not a standards-setting body, it works actively with AS1M, SAE, ISO, DoD, AlA and others towards standardization of composite test methods. SACMA does not regard its SRMs to be 'stan­dards' in the truest sense because they have not been developed by a consensus process which is typical of standard-developing bodies.

Table B.2 ASlM Standards for advanced polymer composites

ASlM C613 Resin Content of Carbon and Graphite Prepregs by Solvent Extraction ASTM 0695 Compressive Properties of Rigid Plastics ASTM D790 Flexural Properties of Unreinforced and Reinforced Plastics ASTM D2290 Plastics, Ring or Tubular, Apparent Tensile Strength of, By Split Disk Method ASTM 02344 Apparent Interlaminar Shear Strength of Parallel Fiber Composites by Short-Beam Method ASTM 02734 Void Content of Reinforced Plastics ASTM 03039 Tensile Properties of Polymer Matrix Composite Materials ASTM 03171 Fiber Content of Resin-Matrix Composites by Matrix Digestion ASTM 03379 Tensile Strength and Young's Modulus for High-Modulus Single-Filament Materials ASTM 03410 Compressive Properties of Polymer Matrix Composite Materials with Unsupported Gage Section by Shear

Loading ASTM 03479 Tension-Tension Fatigue of Oriented Fiber, Resin Matrix Composites ASTM 03518 In-Plane Shear Response of Polymer Matrix Composite Materials by Tensile Test of a + /-45 Degree

Laminate ASTM 03529 Resin Solids Content of Epoxy-Matrix Prepreg by Matrix Dissolution ASTM 03530 Volatiles Content of Epoxy Matrix Prepreg ASTM 03531 Resin Flow of Carbon Fiber-Epoxy Prepreg ASTM 03532 Gel Tune of Carbon Fiber-Epoxy Prepreg ASTM 03544 Reporting Test Methods and Results on High Modulus Fibers ASTM 03800 Density of High-Modulus Fibers ASTM 03878 Standard Terminology of High-Modulus Reinforcing Fibers and their Composites ASTM 04018 Properties of Continuous Filament Carbon and Graphite Tows ASTM 04102 Thermal Oxidative Resistance of Carbon Fibers ASTM D4255 In-plane Shear Properties of Composite Laminates ASTM 05229 Moisture Absorption Properties and Equilibrium Conditioning of Polymer Matrix Composite Materials ASTM 05300 Measurement of Resin Content and other Related Properties of Polymer Matrix Thermoset Prepreg by

Combined Mechanical and Ultrasonic Methods ASTM 05467 Compressive Properties of Unidirectional Polymer Matrix Composites Using a Sandwich Beam ASTM 05528 Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites

Page 10: TYPICAL PROPERTIES FOR APPENDIX A - Home - Springer978-1-4615-6389-1/1.pdf · 1054 Typical properties for advanced composites and 5-2 glass. Within each of these glasses are variations

1062 Specifications and standards for polymer composites

Table B.3 SACMA Recommended methods (SRM)

SRMl SRM2 SRM3 SRM4 SRM5 SRM6 SRM7 SRM8 SRM9 SRMlO SRMll SRM12 SRPl SRM13 SRM14 SRM15 SRM16 SRM17 SRM18 SRM19 SRM20 SRM21 SRM22 SRM23 SRM24

SRM25

SRM26

Compressive Properties of Oriented Fiber-Resin Composites Compression After Impact Properties of Oriented Fiber-Resin Composites Open-Hole Compression Properties of Oriented Fiber-Resin Composites Tensile Properties of Oriented Fiber-Resin Composites Open-Hole Tensile Properties of Oriented Fiber-Resin Composites Compressive Properties of Oriented Cross-Plied Fiber-Resin Composites In-plane Shear Stress-Strain Properties of Oriented Fiber-Resin Composites Short Beam Shear Strength of Oriented Fiber-Resin Composites Tensile Properties of Oriented Cross-Plied Fiber-Resin Composites Fiber Volume, Percent Resin Volume and Calculated Average Cured Ply Thickness of Plied Laminates Environmental Conditioning of Composite Test Laminates Lot Acceptance of Carbon Fibers Printing and Applying Bar Code Labels Determination of Mass Per Unit Length of Carbon Fibers Determination of Sizing Content on Carbon Fibers Determination of Density of Carbon Fibers Tow Tensile Testing of Carbon Fibers Determination of Twist in Carbon Fibers Glass Transition Temperature Determination by DMA of Oriented Fiber-Resin Composites Viscosity Characteristics of Matrix Resins High Performance Uquid Chromatography of Thermoset Resins Fluid Resistance Evaluation of Composite Materials Determining the Resin Flow of Preimpregnated B-Staged Materials Determination of Resin Content and Fiber Areal Weight of Thermoset Prepreg with Destructive Techniques Determination of Resin Content, Fiber Areal Weight and Flow of Thermoset Prepreg by Combined Mechanical and Ultrasonic Methods Heat of Reaction, Onset Temperature and Peak Temperature for Composite System Resins Using Differential Scanning Calorimetry (DSC) Fiber/Matrix Adhesion of Carbon Fiber Reinforced Polymer Matrix Composites

However, SACMA recommended methods (SRMs) are being used as standards by various organizations.

Table B.5lists military specifications for various fiber reinforcements and composite materials.

The Military Handbook 17 effort is the most widely recognized 000 standardization pro­ject. The purpose of this handbook is to provide a standard source of statistically based mechan­ical property data for current and emerging composite materials. The MIL-HDBK-17 gov­ernment/industry coordination group meets twice annually to develop this handbook.

B.3.3 AEROSPACE MATERIAL SPECIFICATIONS

The Society of Automotive Engineers (SAE) is the primary organization in the USA which issues material specifications for polymer composites. Table B.4 lists some typical Aerospace Material Specifications for polymer composites. In general, the SAE has published specifications for carbon, aramid, glass and boron fiber composites.

B.3.4 MILITARY SPECIFICATIONS

The Department of Defense (DoD) has issued several military specifications for polymer com­posite materials used in aircraft applications.

B.3.5 NASA STANDARDS

The National Aeronautics and Space Administration (NASA) has developed five standard tests and a material specification for carbon (graphite) composites. Table B.6 lists the specific tests and the NASAl aircraft industry specification for toughened epoxy composite materials.

Page 11: TYPICAL PROPERTIES FOR APPENDIX A - Home - Springer978-1-4615-6389-1/1.pdf · 1054 Typical properties for advanced composites and 5-2 glass. Within each of these glasses are variations

Standards used in USA 1063

Table B4 Aerospace material specifications (AMS) for polymer composites

Carbon/Epoxy Composites

AMS 3892B Fibers, Carbon Tow and Yam, for Structural Composites AMS 3894E Carbon Fiber Tape and Sheet, Epoxy Resin Impregnated AMS 3895B Broadgoods and Tape, Multi-Ply Carbon Fiber /Epoxy, Resin Impregnated, Uniform Fiber

Aramid/Epoxy Composites

AMS 3901B Organic Fiber (Para-Aramid), Yam and Roving, High Modulus AMS 3902C Cloth, Organic Fiber (Para-Aramid), High Modulus for Structural Composites AMS 3903A Cloth, Organic Fiber (Para-Aramid), High Modulus, Epoxy Resin Impregnated

Glass/Epoxy Composites

AMS 3821B Cloth, Type 'E' Glass, 'B' Stage Epoxy-Resin-Impregnated, 7781 Style Fabric, Flame Resistant

AMS 3828C Glass Roving, Epoxy-Resin-Impregnated, Type 'E' Glass AMS 3831A Cloth, Type 'E' Glass, 'B' Stage Epoxy Resin Impregnated, 7781 Style Fabric, Flame

Resistant, Improved Strength AMS 3832C Roving, Type '5-2' Glass, Epoxy Resin Impregnated AMS 3906B Glass Tape and Flat Sheet, Non-Woven Cloth, Epoxy Resin Impregnated, For Hand and

Machine Layup

Boron/Epoxy Composites

AMS 3865C Filaments, Boron, Tungsten Substrate, Continuous AMS 3867B Boron Filament Tape, Epoxy-Resin-Impregnated

B.3.6 FAA ADVISORY CIRCULARS (AC)

The Federal Aviation Administration (FAA) has issued Advisory Circulars (AC) to assist commercial aircraft manufacturers in demon­strating compliance with the requirements of the Federal Aviation Regulations in the design and manufacture of composite material struc­tures. Table B.7 lists two Advisory Circulars issued by the FAA. As of this writing, AC 145-6 is a draft document undergoing coordi­nation. AC 145-6 addresses requirements for composite repairs, including materials, processes, and quality control tests.

B.3.7 AEROSPACE INDUSTRIES ASSOCIATION (AIA)

The Aerospace Industries Association (AlA) plays a lead role in composites standardiza­tion. Within the AlA Engineering Standards

Division is the Materials and Structures Committee (AIA/MSC) which is responsible for the coordination and review of proposed specification requirements for materials, processes and structures. To promote stan­dardization AlA has initiated Project 340-1 Standardization of Advanced Composite Materials and has issued two National Aerospace Standards (NAS) for composites manufacturing which are listed in Table B.8.

B.3.8 COMPOSITE MATERIALS CHARACTERIZATION, INC. (CMC)

Composite Materials Characterization, Inc. (CMC) is a joint enterprise funded by users of advanced aerospace composite materials. CMC was formed as a result of an Aerospace Industries Association (AlA) initiative to pro­mote industry research collaboration. CMC is a Delaware corporation chartered in 1987 to

Page 12: TYPICAL PROPERTIES FOR APPENDIX A - Home - Springer978-1-4615-6389-1/1.pdf · 1054 Typical properties for advanced composites and 5-2 glass. Within each of these glasses are variations

1064 Specifications and standards for polymer composites

Table B.S Military specifications and standards for polymer composite materials

MIL-Y-1140H MIL-C-80730

MIL-S-9041 B

MIL-C -9084C MIL-P-9400C

MIL-P-175490 MIL-C-19663D 11IL-T-29586 (J\S)

MIL-M-43248C MIL-J\-46103D MIL-J\-46165 (MR) MIL-P-46166 (MR) MIL-P-46169J\

MIL-P-46187

MIL-P-46190 MIL-PRF-46197 J\ MIL-R-60346C

11IL-J\-62473B MIL-F-64156 MIL-Y-8337M (J\F) MIL-Y-83371 (J\F) MIL-G-83410 (J\F) MIL-R-8712M (J\F) MIL-F-87121J\ (J\F) MIL-Y-87125A (AF) MIL-STO-368 MIL-STO-373 MIL-STO-374 MIL-STO-375 *MIL-STO-2031 (SH)

• Military Standard

Yarn, Cord, Sleeving, Cloth, and Tape-Glass Core Material, Plastic Honeycomb, Laminated Glass Fabric Base, For Aircraft Structural and Electronic Applications Sandwich Construction, Plastic Resin, Glass Fabric Base, Laminated Facings and Honeycomb Core for J\ircraft Structural and Electronic J\pplications Cloth, Glass, Finished, For Resin Laminates Plastic Laminate and Sandwich Construction Parts and J\ssembly, J\ircraft Structural, Process Specification Requirements Plastic Laminates, Fibrous Glass Reinforced, Marine Structural Cloth, Woven Roving, For Plastic Laminates Thermosetting Polymer Composite, Unidirectional Carbon Fiber Reinforced Prepreg Tape (Widths Up to 60 Inches), General Specification For Mat, Reinforcing Glass Fiber J\rmor, Lightweight, Ceramic-Faced Composite J\rmor, Woven Glass Roving Fabrics Plastic Laminates, Glass Reinforced (For Use in J\rmor Composites) Plastic, Sheet Molding Compound, Polyester, Glass Fiber Reinforced (For General Purpose Applications) Prepreg, Unidirectional Tape, Carbon (Graphite) Fiber Polyimide (PMR-15) Resin Impregnated, 316 C (600 F) Prepreg, Woven Fabric, Carbon Fiber Bismaleimide (BMI) Resin Impregnated Laminate: High-Strength Glass, Fabric-Reinforced, Polyester Resin Preimpregnated Roving, Glass, Fibrous (For Prepreg Tape & Roving, Filament Wmding & Pultrusion J\pplications) J\rmor: J\luminum-J\rarnid, Laminate Composite Fabric, Carbon (Graphite) Fiber, Nickel-Coated Yarn, Roving, and Cloth, High Modulus, Organic Fiber Yarns, Graphite, High Modulus, Continuous Filament Graphite Fiber Resin Impregnated Tape and Sheet, For Hand Layup Rods, Pultruded, Graphite Fiber Reinforced, Processing of Fabric, Graphite Fiber Graphite, 1000/3000 Filaments HPLC of PMR-15 Polyimide Resin and Prepregs Transverse Tensile Properties of Unidirectional Fiber/Resin Composite Cylinders Transverse Compressive Properties of Unidirectional Fiber /Resin Composite Cylinders In-Plane Shear Properties of Unidirectional Fiber/Resin Composite Cylinders Fire and Toxicity Test Methods and Qualification Procedure for Composite Material Systems Used in Hull, Machinery, and Structural J\pplications Inside Naval Submarines

Table B.6 NASA Standards for composites

NASA RP 1092: Standards Tests for Toughened Resin Composites, July 1983

NASA RP 1092 defines five standard tests (STs) for graphite/epoxy composite laminates:

ST-l: Compression after impact ST-2: Edge delamination ST-3: Open-hole tension ST -4: Open-hole compression ST-5: Hinged double cantilever beam

NASA RP 1142: NASA/ Aircraft Industry Standard Specification for Graphite Fiber Toughened Thermoset Resin Composite Material, June 1985

Page 13: TYPICAL PROPERTIES FOR APPENDIX A - Home - Springer978-1-4615-6389-1/1.pdf · 1054 Typical properties for advanced composites and 5-2 glass. Within each of these glasses are variations

Table B.7 FAA Advisory circulars for composites

AC 20-10A Composite Aircraft Structures AC 21-26 Quality Control for the Manufacture of

Composite Structures AC 145-6 Repair Stations for Composite and

Bonded Aircraft Structure

Table B.8 National aerospace standards for composites

NAS 990 Composite Filament Tape Laying Machine - Numerically Controlled

NAS 999 Non-Destructive Inspection of Advanced Composite Structures

conduct research and development on emerging composite materials including characterization, screening, fabrication, and inspection of materi­als or structures made from the materials.

The primary focus of CMC is on screening testing of emerging composite materials. The CMC effort generates a standardized database of consistent properties for advanced compos­ite materials which can be shared between member companies (Table B.9). CMC subcon­tracts to third parties the material procurement, test specimen fabrication, inspec­tion, test, data analysis, and documentation of results. All tests and data are conducted in accordance with CMC-approved procedures to produce a consistent and standardized data­base necessary for comparative assessment of material properties. Physical and mechanical properties testing is performed, including lam­ina and laminate evaluations under tensile,

Table B.9 CMC Member companies

Dow Chemical General Electric Northrop Grumman Lockheed Martin UTC/Sikorsky Loral Vought Rohr Industries

Non-US standards in use 1065

compressive, and shear loadings at selective hygrothermal test conditions. CMC also works with other national organizations to promote composites standardization.

B.4 NON-US STANDARDS IN USE

B.4.1 AECMA STANDARDS

The European Association of Aerospace Manufacturers (known as AECMA in Europe) is developing various standards for carbon fiber composites for aerospace applications. Table B.1O lists proposed European Norm (EN) standards for determining the physical and mechanical properties of carbon fibers and their composites.

B.4.2 JAPANESE INDUSTRIAL STANDARDS (JIS)

Standardization efforts in Japan are managed by the Standards Department under the Ministry of International Trade and Industry (MITI). The Japanese Standards Association is in charge of publishing Japanese Industrial Standards OIS). Table B.lllists Japanese stan­dards for carbon fibers and their composites.

B.4.3 GERMAN (DIN) STANDARDS

German aerospace specifications for carbon, aramid, and glass fiber polymer composites are listed in Table B.12. The DIN specifications and standards are published by the German Institute for Standardization, which is the 'Deutsches Institut fiir Normung' (DIN) in German.

B.4.4 INTERNATIONAL (ISO) STANDARDS

The International Organization for Standardization (ISO) Technical Committee 61 on Plastics, Subcommittee 13 on Composites and Reinforcement Fibers is the body which is developing international standards for poly­mer composites. The USA is represented at international meetings through the American

Page 14: TYPICAL PROPERTIES FOR APPENDIX A - Home - Springer978-1-4615-6389-1/1.pdf · 1054 Typical properties for advanced composites and 5-2 glass. Within each of these glasses are variations

1066 Specifications and standards for polymer composites

Table B.l0 AECMA Standards for carbon fibers and their composites

AECMA prEN2557 Carbon Fibre Preimpregnates, Test Method for the Determination of Mass Per Unit Area

AECMA prEN2558 Carbon Fibre Preimpregnates, Test Method for the Determination of the Percentage of Volatile Matter

AECMA prEN2559

AECMA prEN2560

AECMA prEN2561

AECMA prEN2562 AECMA prEN2563

Carbon Fibre Preimpregnates, Test Method for the Determination of the Resin and Fibre Content and the Mass of Fibre Per Unit Area Carbon Fibre Preimpregnates, Test Method for the Determination of the Resin Flow Unidirectional Laminates Carbon-Thermosetting Resin Tensile Test Parallel to the Fibre Direction Unidirectional Laminates Carbon-Thermosetting Resin Flexural Test Unidirectional Laminates Carbon-Thermosetting Resin Test Method, Determination of Apparent Interlaminar Shear Strength

AECMA prEN2564 Carbon Fibre Laminates, Test Method for the Determination of the Fibre and Resin Fractions and Porosity Content

Table B.ll Japanese standards for carbon fiber composites

JIS R 7601 JIS R 7602

JIS K 7071

JIS K 7073

JIS K 7074

Testing Methods for Carbon Fibers Testing Methods for Carbon Woven Fabrics Testing Methods for Prepreg, Carbon Fiber and Epoxy Resins Testing Method for Tensile Properties of Carbon Fibre Reinforced Plastics Testing Methods for Flexural Properties of Carbon Fibre Reinforced Plastics

National Standards Institute (ANSI). Table B.131ists draft and published (ISO) standards for composites.

B.5 PROPRIETARY SPECIFICATIONS

This appendix does not include the many composite material and process specifications which have been developed and are used by individual private sector companies (Le. primes, fabricators and suppliers). Most, if not all, of the companies which either produce or use composites have some proprietary specifi­cations for composite materials and processes. It is known that proprietary specifications con-

Table B.12 German specifications for polymer composites

DIN 29965 Aerospace; Carbon Fibres, High Performance Carbon Fibre Filament Yarns, Technical Specification

DIN 29971 Aerospace; Unidirectional Carbon Fibre-Epoxy Sheet and Tape Prepreg, Technical Specification

DIN 65090 Aerospace; Textile Glass, Preimpregnated Filament Glass Cloth for E-Glass (Prepreg), Technical Specification

DIN 65426 Aerospace; Aromatic Polyamide Part 1: (Aramid) - Preimpregnated Woven

Fabric, High-Modulus Filament Yarn (Prepreg);Innnensions, Masses

DIN 65426 Aerospace; Aromatic Polyamide Part 2 (Aramid) - Woven Filament Fabric

Prepreg from High-Modulus Filament Yam and Epoxy Resin, Technical Specification

stitute a substantial data base which cannot be included herein. Please note that this appendix addresses only polymer matrix composites. Specifications and standards for other types of composite materials (MMC, CMC, and C/q are still in early stages of development and may be either subject to export control or proprietary.

Page 15: TYPICAL PROPERTIES FOR APPENDIX A - Home - Springer978-1-4615-6389-1/1.pdf · 1054 Typical properties for advanced composites and 5-2 glass. Within each of these glasses are variations

Proprietary specifications 1067

Table B13 International (ISO) standards for polymer composites

CD 1268

CD 3341

CD 3374

CD 4605

CD 14127 with

CD 15024 Polymer

CD 15034

CD 15040

CD 15310

DIS 3374

DIS 5025

DIS 14126

Fiber Reinforced Plastics - Test Plates Manufacturing Methods -Part 1 - General Conditions

Textile Glass - Yams - Determination of Breaking Force and Breaking Elongation

Textile Glass - Mats - Determination of Mass Per Unit Area

Reinforced Products - Woven Fabrics - Determination of Mass Per Unit Area

Composites - Determination of Resin, Fiber and Void Content for Composites Reinforced Carbon Fiber

Determination of Mode I Delamination Resistance of Unidirectional Fiber Reinforced Laminate Using the Double Cantilever Beam Specimin

Plastics - Prepregs - Resin Flow

Plastics - Prepregs - Gel Time

Reinforced Plastics - Determination of In-Plane Shear Modulus by Plate Twist Method

Reinforcement Products - Mats and Fabrics - Determination of Mass Per Unit Area

Textile Glass - Woven Fabrics - Determination of Width and Length

Fiber Reinforced Plastic Composites - Determination of Compressive Properties in the In­Plane Direction

FDIS 1889 Reinforcement Yarns - Determination of Linear Density

FDIS 1890 Reinforcement Yarns - Determination of Twist

FDIS 3344 Reinforcement Product - Determination of Moisture Content

FDIS 12114 Fiber-reinforced Plastics - Thermosetting Moulding Compounds and Prepregs­Determination of Cure Characteristics

FDIS 11667 Fiber-Reinforced Plastics - Moulding Compounds and Prepregs - Determination of Resin, Reinforced Fiber and Mineral Filler Content - Dissolution Methods

FDIS 12115 Fiber-Reinforced Plastics - Thermosetting Moulding Compounds and Prepregs -Determination of Flowability, Maturation and Shelf Life

ISO 2559 Textile Glass - Mats (made from Chopped or Continuous Strands) Basis for a Specification

ISO 3605 Textile Glass - Rovings - Determination of Compressive Properties of Rod Composites

ISO 8515 Textile Glass - Reinforced Plastics - Determination of Compressive Properties in the Direction Parallel to the Plane of Lamination

ISO 10119 Carbon Fiber - Determination of Density

ISO 10120 Carbon Fiber - Determination of Linear Density

CD - Committee Draft DIS - Draft International Standard FDIS - Final Draft International Standard

Page 16: TYPICAL PROPERTIES FOR APPENDIX A - Home - Springer978-1-4615-6389-1/1.pdf · 1054 Typical properties for advanced composites and 5-2 glass. Within each of these glasses are variations

1068 Specifications and standards for polymer composites

REFERENCES

1. National Advanced Composites Strategic Plan, National Center for Advanced Technologies, September 1991.

2. Traceski, Frank T., Specifications and Standards for Plastics and Composites, ASM International (Materials Park, Ohio), August 1990.

3. Test Standards and Engineering Databases for Advanced Composites, Draft Position Paper by Aerospace Industries Association, January 1992.

4. Advanced Composites Standardization, "White Paper," Prepared by the Committee for Standardization of Advanced Composite Materials, 4 November 1992.

5. Annual Book of ASTM Standards, Vol. 15.03, American Society for Testing and Materials (Philadelphia, PA), 1991.

6. SACMA Recommended Methods, Suppliers of Advanced Composite Materials Association, (Arlington, VA), 1997.

7. SAE AMS Index, Aerospace Material Specifications, Society of Automotive Engineers (Warrendale, PA), July 1996.

8. Department of Defense Index of Specifications and Standards (DoDISS), 1 January 1997.

9. Military Handbook 17, Polymer Matrix Composites, Draft Volumes 1, 2 & 3, US Department of Defense, 17 June 1991.

10. Communication with Mr. Joseph R. Soderquist, Federal Aviation Administration (FAA), 4 September 1997.

11. Documentation from Mr. Cecil W. Schneider, President of Composite Materials Characterization, Inc., 28 October 1991.

12. ISO/TC61/SCI3/WGI4 Letter Correspondence from Mr. Junichi Matsui, Toray Industries (Composite Materials Research Laboratories; Japan), 5 August 1992.

13. ISO/TC61/SCI3 Report to ASTM 020.61, Gary Williams, July 1997.

ACKNOWLEDGEMENTS

The following individuals reviewed and com­mented on this paper and are acknowledged for their constructive comments: Mr. Jerome Persh (retired), formerly Office of the Director of Defense Research and Engineering; Dr. Gary L. Hagnauer, US Army Research Laboratory (ARL), Materials Directorate; Mr. Gary Hansen, formerly Hercules Advanced Materials & Systems Company; Mr. Jerome R. J aeb, Chief Engineer, Structures Technology, Boeing Defense & Space Group; Mr. Samuel J. Dastin (retired), formerly Director, Advanced Materials, Grumman Aircraft Systems.

Page 17: TYPICAL PROPERTIES FOR APPENDIX A - Home - Springer978-1-4615-6389-1/1.pdf · 1054 Typical properties for advanced composites and 5-2 glass. Within each of these glasses are variations

INDEX

Page numbers in bold type refer to figures; those in italics refer to tables

A-glass 134 Abrading, surface preparation 669 Abrasion

mechanical 668 particulate fillers 252 resistance, PET 224, 233

Abrasive water jet, see AWJ Abrasives

machining 606 in slurry 607 types of 607

ABS compressive strength 258 density 258 maximum service temperature

258 shear modulus 259 shear strength 259 tensile strength 258 thermal conductivity 259

Accelerators 59--{'1, 60-1 anhydride-cured system 72

Acceptance values 724 Accumulation, damage 797 Acids, Lewis 60-1 Acoustic

emission 849 honeycomb assemblies 849

fatigue testing 811 pressure vessel 472, 472

Acoustical properties, fiberglass 135 Acousto-ultrasonics 849 Acrylic acid, and polypropylene 251 ACTS, reflectors 1017, 1017 Acute toxicity 823-4, 824

measuring 824 Adaptability, adhesives 274 Additives

low profile 382 pultrusion 515-18 wetting agents 515-16

Adducts, thermoplastic polymers 526

Adherends axial stress 644

bending failures 644 bending stresses 644 composite 630, 660, 662-3 deformable 633, 634 deformations 630 dissimilar 635, 660 ductility 630 equal thickness 650 failures 627-9,628,657 fully tapered 646, 647 identical 639 layered 646 loading stress 642 modulus 643 moisture absorbancy 630 rigid 632,633,634 stiffness 636

unbalance 629,648 stretching elongations 633 tapering 627,629,644-51,645,

647, 648, 649, 650, 653, 656, 658

thermal expansion 630, 661 thickness 627-9,628,628,656-7,

658 transverse shear 630 weaker matrix 630

Adhesion aramids 26 failure 674-5

Adhesives 255,271,274-6,517-18 adaptability 274 aerostructural 651, 652 blisters 271 bond line control 274 bondWng 120255,727

aluminum alloy 683 pressure 271

brittle 651 cell-edge 276 co-curing 868, 870 cohesive failure 674-5 core 271 cure temperature 661 Cydeweld 255

damage to 656 ductile response 651--{" 652, 657 ductility 627-8,629-30,655--{' elastic-plastic response 649 environmental conditions 630 epoxies 275 failure in 628 fillet forming 271 flow, sandwich 288 heavy liquids 275-6 high temperature 658 joints 61Q--{,3

bonded doubler 628 bonding techniques 611 double-lap 628 double-strap 628 durability 631-2 inspection methods 627 manufacturing deficiencies

611 poor bonding 611 scarf 628, 629 single-strap 628 single-lap 628 stepped-lap 628,629 stresses in 632 surface preparation 611 tapered single-lap 628 tapered-strap 628 unsupported single-lap 628

light liquids 275-6 mechanical 518 nylon 670 pastes 275-6 peel

strengths 274-5 stresses 628

phenolics 255 blended 275

Plycosite 255 putties 275--{' Redux 255 repairs 869 reticulating films 276 scrim-supported 873

Page 18: TYPICAL PROPERTIES FOR APPENDIX A - Home - Springer978-1-4615-6389-1/1.pdf · 1054 Typical properties for advanced composites and 5-2 glass. Within each of these glasses are variations

1070 Index

self-adhesive skins 276 shear stresses 632-7, 633, 634,

635,636 strain energy 629-30, 653 supported films 276 syntactic foams 275-6 test methods 630 thixotropic liquids 275-6 toughness 274-5 unsupported films 276 urea-formaldehyde 255 urethanes 275 water absorption 668

Adjusting, lamina properties 763 Advanced Communications

Technology Satellite, see ACTS Advanced composites

applications 23 military 23

Advanced fibers, repairs 877 Advantages

AWJ 604 correlators 834 hand lay-up 352 injection pultrusion 497 machining 596

laser 605 ultrasonic 608

preform 438 pull winding 497 RTM 434-5 tapering 646 turning 597 twin-screw extruders 539 vertical pultrusion 495

AECMA standards 1065, 1066 Aerospace

applications, materials selection 1009

design 709 goal 712, 713

equipment 1004-21 Industries Association (AIA)

1063 industry

composite tools 593 facing material 255 prepregs 885

material specifications 1062, 1063 Aerostructural, adhesives 651, 652 AFR7ooB, chemistry of 81 AFR700B/S2Iaminates

air aging 94, 95 compression strength 93 flex strength 93, 95 shear strength 93 tensile strength 93 weight loss 94

AFRP 605, 1024

Agglomerates 313, 314 Aging

Air

air 85,90 aircraft 860 thermoplastics 127

aging 85,90 3F /36F polyimides 85 AFR700B/S2Iaminates 94,95 AvimidN 85 Skybond 85

release agents 516 Airbus A320, composite applications

1036,1038 Aircraft

aging 860 aluminum core removal 862 applications 1022-42 certification requirements 1022-3 components 1029-30, 1029 current prices 1024, 1026 damaged protective coatings

859~

design 878 process 1024-5, 1026 requirements 713, 1022-3

effect of contaminants 863 environmental exposure 860-1 face sheet materials removal 864 face sheets removal 862 fixed wing, current prices 1024,

1026 fluid contamination 859 flushing contaminants 864 honeycomb core removal 862 impact damage 858-9 interim repairs 859 leak paths 859-60 maintainability 1024 maintenance 878 metal face sheets removal 862 metal repairs 857 minor damage 859 moisture barrier removal 863-4 non-metallic core removal 862 open core evacuation 865 production 840-1, 841

costs 1024 reinforced plastics 1023 repairs 857-8,857-80,1024

planning 861 skin damage removal 861, 861 skin penetration 858, 859 speed tape repairs 859 stabilizer

design requirements 710 preliminary materials 711

structural applications 1027-8, 1027,1028

thermal cycling 818 through-the-face, sheet

evacuation 865 water evacuation 863 water ingestion 859 wet lay-up repairs 865-7

Aircraft Energy Efficiency (ACEE) 1035

Alignment, graphitization 191 Aliphatic

amine-cured (TETA) 65 amines, health effects 832, 833 content 75 polyether triamine (APTA),

viscosity 54 system 70

Alkaline cleaning, metal surfaces 871 degradation 1000

All purpose vehicles 908, 908 Alleo 59 Alternative, tooling 449-50, 449, 450 Altex 309, 309 Alumina 249-50

composites 325 grit, light grit-blasting 675, 676 silicate

boria modified 309,310 strength 309 Young's modulus 309

trihydrate 245 Aluminosilicate, staple 160 Aluminum

alloy adhesive bonding 683 linear thermal expansion 705

core removal 862 CTE 558,589 density 170, 558 elastic modulus 170 fiberglass cloth repairs 877 foil 820 fracture elongation 170 oxide

fibers 27 particulate fillers 250

rivets 668 specific

modulus 1049 strength 1049

surface preparation 871, 876 tensile strength 170 tension-tension ratio 1049 thermal conductivity 558

America's Cup yachts 922 Amine curing 49-50,51

epoxy resins, aliphatic 70 Amines, aliphatic 53, 54 Amino resins, health effects 834

Page 19: TYPICAL PROPERTIES FOR APPENDIX A - Home - Springer978-1-4615-6389-1/1.pdf · 1054 Typical properties for advanced composites and 5-2 glass. Within each of these glasses are variations

Aminolysis, degradation 888 Amoco 58

anhydride curing agents 56 Analysis

composites 736-57 cost of 736 equilibrium equations 737

Ancadride MHHPA (Ciba-Geigy) 57 Anchorage 987

grounded 986 prestressed concrete 985-6

Angle of impact, meteoroids 815 Angle ply 741 Anhydride

curing 50 agents 56-9,56-9

health effects 832, 833 high temperatures 50

Anhydride-cured system 72 accelerator 72 cure cycle 72 curing agent 72 heat distortion temperature 72 maximum stress 72 modulus of elasticity 72 pot life 72 solvent absorption 72 tensile properties 72 viscosity 72

Anisotropic bodies, thermoelastic behavior

470-1 composites 797 materials 687,688

material constants 688 pitches, stabilization 178

Anisotropicity, PAN 185 Anisotropy

crystal 334, 335 GFRP 1006 PET 224

Annealing, and coating thickness 297

Anodizing 667 aluminum alloys 668 low voltage 871 non-tank 871

Antennas 932-3 Antimony oxide 244

high cost 244 synergism 244

Antistatic agents, fiberglass 146-7 Appliances, reuse 901 Applications 3,270,931-56

aircraft 11 antennas 932-3 aramid fibers 216,217-20,222-3 AS-4/PEKK 127--8 battery casings 941

biomedical, thermoplastics 127--8 boron 163,165,166 bridges 933-4, 933 business equipment 934, 934 cable cars 934-5 carbon fibers 196-7 casting 38 ceramic fibers 163,165,166 CMCs 935 consumer products 946 cooling towers 936-7 drive shafts 936-7 electrical 937, 937 electronics 937, 937 firefighter breathing apparatus

937--8 flywheel mechanical battery

systems 938, 938 fuel tanks 939-40 glulam beams 940-1 grating 936 health 943-4, 944 high silica 163, 165, 166 high-pressure tubing 941 high-speed train brakes 941 hydrogen fuel storage 941 industrial equipment 951 ladders 936 laptop computers 942 lighting poles 948-9, 948 loom components 942 maglev train guideways 942-3 marine 916-28 medical 943-4, 944 metal surfaces 871 MMCs 944-5 mobile storage 945 molding compounds 945-6 musical instruments 946 non-aerospace 935 O-rings 953 oil and gas 946-7, 947 POO fiber 238 PET 230 pick-up trucks 936-7 pipeline rehabilitation 947--8 piping 936 PMR-1596 ports and harbors 949 power poles 948-9,948 quartz 163, 165, 166 railways 950

rolling stock 949-50 rolls and air shafts 950-1, 951 safety 943-4, 944 seals 953 SMEs 952 structural 709 tunnels 950

Index 1071

uranium enrichment centrifuges 953-4

valves 954 wind turbine blades 954

Aramid 23, 26, 425 adhesion 26 composites 210, 210 compression 26 costs 717 density 26 fibers 202-22

applications 216,217-20, 222-3

athletic shoes 222 attributes 358 availability 216,217 by-products 222 chemical properties 213-15,

214 choice of resin 222 composites 207 compressive properties 221 costs 223 creep resistance 216, 222 cutting 222 definition 202 design of 216, 221-2 electrical insulators 215 electrical properties 215 environmental properties

213-15,214 equilibrium moisture content

215,241 failure 210 fatigue resistance 221, 222 flame resistance 205,207 forms 216 handling 222 health effects 835 length-to-diameter ratio 204 limitations 207 machining 222 manufacture 203-4 mechanical properties 207-13,

208-9, 209, 210, 211, 212 melting 205

point 204 microbuckling 207 moisture absorption 221 opaque 221 optical properties 215 physical properties 205-7, 206 pricing 216 properties 205-15 reinforced plastic, see AFRP safety 222 sandwich construction 222 self-screening 215 solvents 204

Page 20: TYPICAL PROPERTIES FOR APPENDIX A - Home - Springer978-1-4615-6389-1/1.pdf · 1054 Typical properties for advanced composites and 5-2 glass. Within each of these glasses are variations

1072 Index

specific stiffness 207 strengths 207

strength 205 to weight ratio 223

structure 204-5 temperature resistance 205 tensile

modulus 715, 716 stiffness 209 strength 209

thermal properties 205-7,206 resistance 205

thermoplastic matrices 222 toughness 221 treatments 215-16 twisted 215-16 UV absorption 215, 221 water absorption 215 weave 222 weight 222

mechanical properties 718 moisture absorption 26 paper honeycomb 269-70

applications 270 price 716 strength retention 230 strengths 718 tensile strength 26

Aramid/ epoxy, C1E 589 Aramid/fiberglass 359 Aramid/graphite 359

hybrids 354 Arc jet tests, carbon-carbon

composites 347 Archimedean screw 538 Architecture, microstructural 795,

796 Areas of transition 731-2,732 Armos

availability 220 elongation at break 208 initial tensile modulus 208 sources of information 221 specific gravity 208 tensile strength 208

Aromatic amine-cured MPDA 65 amines, health effects 832, 833 polyamide fiber, see aramid fibers polyester fibers 235--7,235,235 system 71

Aromatization, and carbonization 183

Articulation components 962-3 Artificial

blood vessels 963 joints 810

ligaments, PET 234 AS-4 carbon tiber 123

in-plane shear modulus 124 tensile modulus 123 tensile strength 123

AS-4/PEEK(APC) observed life 806, 807 predicted life 806,807 residual strength 806, 807 strength 125

AS-4/PEKK, applications 127-8 Asbestos, health hazards 252 Assembly bowing, GFRP 1014,1014 ASTM

methods, cured epoxy resin systems 72

numbers 66, 66 standards 1061, 1061

Atmospheric electricity 860 Atomic oxygen 813--14,814

destructiveness 813 erosion 814 fluence 813 reaction efficiency 814

Atomite 247, 247 ATOTech 61 ATR72

CFRP wing box 1038 composite applications 1038,

1937 Autoclave 22, 116,461

consolidation 298,577 cure cycle 84 definition 577 repairs 868 tooling 589-91, 590

Autoclave/oven, molding 361 Automated Real-time Inspection

System (ARIS) 842 Automated Tool Manufacture for

Composite Structures 566 Automation, cost savings 16 Automobiles, reuse 900-1 Automotive

body applications 909--10, 913 SMC 909

industry design requirements 713 recycling 901-2 surface preparation 669

interiors 912, 913 market, GMT 127 suspension 911

Availability aramid fibers 216, 217 Armos 220 Dyneema 231 glass fibers 24 Hoechst Celanese 231

Kevlar 217-18 PET 231 Spectra 231 SVM 220 Technora 220 Tekmilon 231 Twaron 219-20 Vectran 236

Aviation, price of 1024 Avimid N, air aging 85 AWJ

advantages 604 disadvantages 604 drilling 604 linear cutting 603,603 machining 600, 602 milling 604 process 602 traverse rates 603 turning with 603--4 without abrasives 600

AXAF orbiting observatory 970 Axial

compressive properties, Spectra 226,226

loading 745--7 orientation, PET 224 stress 613

adherends 644 tensile properties, Spectra 226,

226 Axisymmetric deformation

circular plates 752-3 cylindrical shells 753-4 disks 752-3

AZ epoxy N (AZS Corp) 63

Bag molding 352-77, 361, 362, 366-72,368,369,370,371

thermal cures 367 Bagging 577 Balance 9,10-11 Balanced laminates 693 Balls, tooling 565 Barcol hardness

recycled PET 894 testing 38

Barium ferrite, IDlers 527 Barium sulfate 249

fillers 527 Barrier

creams 829-30,830 layers, silicon carbide 292 materials 863-4

Bars bending 785 testing 784

Bases, Lewis 60--1 Basic structural units, see BSUs

Page 21: TYPICAL PROPERTIES FOR APPENDIX A - Home - Springer978-1-4615-6389-1/1.pdf · 1054 Typical properties for advanced composites and 5-2 glass. Within each of these glasses are variations

Basketvveave 140,145 Bathtub manufacture, Japan 889 Battery casings 941 BeaDls 745-7,746,995-7,996

bending stiffness 997 curved 791 deflection 995,996 displaceDlents along 747 Dlodes of failure 997 properties of 283 shear deforDlation 748-9,995 strength analysis 308-9 stresses in 747 thin-vvalled 747-9, 748 types 283

sandvvich 281 Bearing

failure 616, 729 load 620-1,620

contact region 620-1 edge distances 621 joints 626

strength 624-5, 625 joints 618-19 tests 625

stress 619, 619 at fasteners 620

Beech Starship 472,627,1022,1039, 1040

Bell DlOUth 500-1 Bend radius 308 Bending 785,791-2

bars 785 deflections 637

fasteners 626 single lap joint 641

failures adherends 644 joints 617, 617

fasteners 625, 625 longitudinal 747 nonlinear 747 rings 785, 792 skin fracture 751 stiffness 745 strength 791

Kulon 305 testing 446 VMN-4305

stresses adherends 644 fOrDlulas 284

three-point 785, 791 and tvvisting 3 vvhole rings 785

3,3',4,4' -Benzophenone­tetracarboxylic dianhydride (BTDA), Dlelting point 59, 76

BenzyldiDlethylaDline (BDMA),

Dlelting point 60 Besfight 1054

properties of 170 BF3MEA 59 Biaxial

fabrics, non-vvoven 504 plain-vveave 399 stretching 546

Bicycles 1050 carbon fiber fraDle 1050 fraDle tubes 1051 handlebars 1051 tube and lug designs 1050-1

Binders fiberglass 147 organic 314 solutions, availability 82

Bioabsorbable cODlposites 961 biocoDlpatibility 962

Biological attack 810-11 Biomaterials 957--64 Bisaleimide resins 30

see also BMIs BisphenolA

fuDlarates 36,39 hODlopolYDler property 102 structure precursor 102 supplier 102 trade naDle 102

Bisphenol A-based, health effects 832

Bisphenol E hODlopolYDler property 102 structure precursor 102 supplier 102 trade naDle 102

BisphenolM hODlopolYDler property 102 structure precursor 102 supplier 102 trade name 102

Blast pressure 675--6, 676, 677 Bleed-out 367 Bleeder 577

perDleability 581 ply, Dlolding 584-6, 585

Blistering CFRP 918 isophthalic polyesters 918 Dlarine applications 918, 918 orthophthalic polyesters 918 perDleation barrier 918

Blisters, adhesives 271 Blovv

Dlolding 529,532,549 accuDlulator 549 polYDler properties 550

Blovvn core, NDE 854 BMC 379-80,491-2

Index 1073

cOffiDlercial 380 cODlpression molding 492 definition 379 fatigue properties 386, 387 flexural Dlodulus 386, 386 flexural strength 386,386 injection Dlolded 380 IZOD impact 386, 386 recycling 890-3 specific gravity expansion 386,

386 tensile Dlodulus 386, 386 tensile strength 386,386 therDlal coefficient 386, 386

BMI 30,99-114 CAl perforDlance 105 cODlpressive Dlodulus 111 dielectric properties 106-7 edge delaDlination 111 F-22 fighter 113, 113 filDl adhesives 114 galvanic corrosion 108-9 hODlopolYDlers of 99 hydrolysis 112 Dlatrices 106 DlechaniCal strength 111 Dlolding cODlpounds 114 DlonODlers 100,103 suppliers 112 therDlal properties 106,109 toughening, diepoxides 105

BMI-DAB 100-1 definition 105

BMI-MDA, definition 105 Boat hulls 1045 Boeing 777

cODlposite structure 1035, 1036 Bolt

hole 621 tensions, torque levels 626

Bolted joints 728,728, 729, 1015

edge distance 617, 617 Bolting and riveting 517 Bond

defects 630-1 failures 627-9,628 layer 656-8,657 line control, adhesives 274 stresses 640

lateral deflections 640 thickness 631 to adherend, thickness 641 van der Waals 224, 226

Bonded doubler, adhesive joints 628 joints 728,728,1015

cracking 659,659 creep failure 658

Page 22: TYPICAL PROPERTIES FOR APPENDIX A - Home - Springer978-1-4615-6389-1/1.pdf · 1054 Typical properties for advanced composites and 5-2 glass. Within each of these glasses are variations

1074 Index

design 728 durability 658-9 environmental extremes 658 viscoelasticity 631

step lap joints 627 Bonding

adhesives 127, 255 agent 190-1 fiber and matrix 801-2 fusion 127 hydrogen PPTA 204 inspection 668 interfacial 149 and joints 374 metals 668 pressure 872-4

adhesives 271 skin/core 917-18 techniques, adhesive joints 611

Bondline adhesive voids, NDE 854 thickness control 872-3

Bone cement 962 Boron 23

applications 163,165,166 continuous fibers 163 fibers 27

reinforced plastics (BFRP) 1023

forms 161-3 manufacture 156--7 properties 161 trifluoride (BF:J 59 trifluoride-monoethylene amine

(BFaMEA), melting point 61

Boron-aluminum, MMC 299 Boron-epoxy

CTE 589 stabilizer covers 1030-1

Bosses 392,392 mold making 390

Boundary conditions 588, 750 laminates 689

Bowing, GFRP 1013 Braiding 18, 33, 164, 402, 402,

413-18,413,414,415,417,436, 437

2-D 413 definition 415

2-step 416 3-D 413

geometric parameters 416 angle, and fiber volume fraction

417 cross section 417,417 definition 413 dry tows 418 horizontal 413,413

interlacing patterns 415, 415 Maypole machines 413, 414 multidirectional 473 prepreg 418 processing technology 413-15 rackets 1050 sporting goods 1045-6 structural geometry 415-16 tape 418 track and column 414, 414, 416 tubular 413

Break-out 597 Breakage 302,319 Breaking strength

fiberglass 139-40, 141-4 Kevlar 214 Technora 214

Breather 288 Bremsstrahlung radiation 816 Bridges 933-4, 933

deck 986,986 enclosures 992-3, 994 rehabilitation 988

Brittle adhesives 651 composites 797 fiber breakage 291 materials, ultrasonic machining

605 solids 188-9

Broken fibers 803 buildup 803

Bromine, halogens 43 BSUs 169 Buckling 547,747,750-2,752

asymmetric 755 column-type 755 columns 997 cylindrical shells 755-7 flange 998 local 997-8 pressure 756 sandwich 282

Buffalo Color 58 Building

construction, recycling 901-2 systems 989,991

Buildup, broken fibers 803 Bulk molding compound, see BMC Bumpers 815 Bundle theory 189-90 Buoys and floats 927-8 Bushings

fiberglass 138 platinum 133 tooling 562

Business equipment applications 934, 934 shielding 936

Butt tensile test 638, 638 Butyl glycidyl ether (BGE), viscosity

61 By-products

aramid fibers 222 volatile 48, 78

Bypassload 616,619,620 definition 620 joints 626 pure 620,621 ratio 620

C-glass 134 C-scan

pulse-echo testing 842, 842 ultrasonic through-transmission

testing 841, 841 Cable cars 934-5 Cables 927 Calcium

aluminoborosilicate 24 carbonate 246--7, 247

abundance 243 fillers 527 low shrinkage 243 Mohs hardness scale 243 particulate fillers 243, 247 stiffness 243

Calcium-sodium metaphosphate 957 Calendering 532 Carbide, coating 296 Carbon

black 245 content 306 fiber 25-6,234,335-8,336,337

see also CF aluminum interaction 297 applications 196--7 in carbon, matrix 337 compatibility of 295, 296 competitive prices 25 composites 190-1

ISO standards 1067 typical compression

strength 1055 cost of 196, 917 CVD 335 discontinuous 337-8 elastic modulus 169 electrical

conductivity 169 properties 184-5,185,186

ffiament directionality 335 from PAN 171, 335, 336 from pitch 171 health effects 835 heat treatment 335 high modulus 335 high strength 335

Page 23: TYPICAL PROPERTIES FOR APPENDIX A - Home - Springer978-1-4615-6389-1/1.pdf · 1054 Typical properties for advanced composites and 5-2 glass. Within each of these glasses are variations

honeycomb 270-1 laminate, tensile strength

1056 MPa 425 nanoporous 183 noncircular 336 PAN-based 169

attributes 358 pitch-based 25, 353

attributes 358 production 25 pyrolysis 335 reinforced

composites 358-9 plastics, see CFRP

reuse 884 rovings 502 selection 90 shape 335,336,337 shear strength 295 tensile

modulus 335 strength 169

thermal conductivity 169 decomposition 25, 25 properties 184-5,185,186

torsional strength 295 volwne fraction 335 Young's modulus 295

fiber-epoxy, drilling 599 fillers 527 specific modulus 1049 specific strength 1049 tension-tension ratio 1049 type T300 503

Carbon-aluminwn infiltration 303 layer reinforced 304 magnesium evaporation 303-4 MMC, tensile strength 300 plate reinforced 304 producing 303 rolling 303 soldering 303

Carbon-carbon, rocket nozzles 712 Carbon-carbon composites 333--50

advanced 344 applications 341, 349-50 arc jet tests 347 coating 343-4 cure cycle 342 density 333 high temperatures 340, 344 impact damage 334 lay-up 342 linear thermal expansion 333 manufacturing 341-4 mechanical properties 344-5,345

melting point 333 modulus of elasticity 333 multiformity 333, 333 oxidation resistance 333 pistons 349 powders 343 pyrolysis 341, 342 reproducible strength levels 333 stiffness 333 strength efficiency 344 tensile strength 333 TEOS 349 thermal

conductivity 333, 349 expansion 333, 349-50 gradients 333 oxidation 345, 347-8

thermophysical properties 348-9, 349

Carbon-carbon part 2-D 340 in oxidizing atmosphere 340

Carbon-epoxy 1031 composites 27 laminates 669 prepreg 558

Carbon-fiberglass 359 Carbon-graphite, quasi-isotropic

laminates 13, 13 Carbon-matrix composites 333 Carbonic, properties of 170 Carbonization

and aromatization 183 chemical changes 181-3 and effluent loss 183 emissions during 181-2 microstructural changes 183-4,

184 stabilized PAN 181

Carbonized organic composites 339-41,340

curing temperatures 339-40 impregnation 340 pyrolysis 340 starting material 339

Carbonyls, thermal decomposition 293-4,294

Carcinogenicity 824 Cards combs 495 Carpet plots 718-20, 719

construction 719 laminate selection 720 lay-up sequence 719 shear modulus 720, 721 strength values 719 tensile

modulus 719 strength 720,720

Cartilage 958

Index 1075

Carving bits, honeycomb 289 Cast

aluminwn, tooling 442 boron, aluminum cable 299 ceramic, CTE 589 lamina, composites 299

Casting, applications 38 Catalysts 49,832

homopolymerization 49 metal coordination 104

Catalytic curing 50-I, 51 Caul plates 14, 288-9

design 591 tooling design 590

Cavity pressure 443 CDS 798,798 CE 99-114,104

adhesives 114 composition 108 compression 111 dielectric properties 106-7 edge delamination 111 galvanic corrosion 108-9 hot-wet performance 108 hydrolysis 112, 112

of cyanurate linkages 107 mechanical strength 111 moisture absorption 107 monomers 105 prepreg reinforced 113 property of casting 108 reinforcement 111 suppliers 112 tensile strength 108 thermal properties 106, 109 Young's modulus 108

Celion 1054 compressive strength 87 flexural strength 87 fracture toughness 87 shear strength 87

interlaminar 91 tensile

modulus 87 strength 87

weight loss 91, 93 Cell

configurations, honeycomb 262 size, honeycomb 263

Cell-edge, adhesives 276 Celluloid acetate

compressive strength 258 density 258 maximum service temperature

258 shear modulus 259 shear strength 259 tensile strength 258 thermal conductivity 259

Page 24: TYPICAL PROPERTIES FOR APPENDIX A - Home - Springer978-1-4615-6389-1/1.pdf · 1054 Typical properties for advanced composites and 5-2 glass. Within each of these glasses are variations

1076 Index

Cellulosic, fillers 527 Central cylinder, satellites 375-6 Centred injection, ports 451, 451 Centreless

grinder 429 sander 429

Ceramics 307-29 applications 328-9,328 brittle 361 continuous unidirectional 317-18 cutting tool inserts 328, 328 densities 307 density 312 electrical conductivity 307 fibers 27

applications 163,165, 166 continuous 163 forms 161-3 health effects 835 manufacture 156-7 properties 161

fracture toughness 312 hardness 307 matrices, designing 317-23, 318,

319,320,321 matrix

composites, see CMCs lamina, fiber fracture 799 materials 311-12

melting point 312 temperatures 307, 311

modulus of rupture 312 Poisson's ratio 312 powder processing 312-14,313,

314 reinforcing 307-11,308,308,309,

310,311 strengthening 323-4, 323 thermal conductivity 307 thermal expansion 312 tolerance to flaws 307 unreinforced 328-9 Young's modulus 307,312

Certification requirements aircraft 1022-3 military aircraft 1023

CF/PEEK 115 CF/PPS 115 CF/PSU 115 CFRP 1023-4

blistering 918 cathodic 918 prepregs 1-23

Chain folding, PET 224 Channeling 443 Char yield, NR-I50 82 Characteristic damage state, see CDS Characteristic temperatures

PET 121 polyamide 6, 6 121 polyamide 12 121 polybutylene-terephthalate 121 polyesters 121 polyolefin 121 polypropylene 121

Charge pattern 384-5 preparation 384-5

Chassis application 910--11,913 Chemical

composition, fiberglass 147--8 contamination 860 degradation 299,888-9 name 121 oxidation, direct wet 191 precipitation 292-3 properties, aramid fibers 213-15,

214 resistance 38

and crystallinity 120 feldspar 243-4 fiberglass 134 Kevlar 214 nepheline 243-4 PBI 237 PET 224,230 Technora 214 thermoplastics 126

stability 214 vapor deposition, see CVD vapor infiltration, see CVI

Chemically resistant, gloves 829 Chimneys 983

rehabilitation 988 Chlorendic 39

anhydride (CA), melting point 58

resins 36, 36, 43 Chlorinated solvents, health effects

836 Choice of resin, aramid fibers 222 Chopped strand, mat 155, 917 Chopped-fiber, reinforced

composites 355 Chopper gun 353 Chord, winding 462 Chromic acid anodized, aluminum

foil 820 Chronic toxicity 824

testing 824 CIC 381

modified 381 Circuit boards, fiberglass 136 Circular plates, axisymmetric

deformation 752-3 Circumferential, reinforcement 461 Civil aircraft

applications 1035-9, 1036, 1037, 1038, 1039

material weights 1027 Civil engineering, pultrusion 519-20 Clamping 501-2

levels 625 pressure 625

joints 618 loss of 626

Day grades of 244 particle sizes 244 particulate fillers 244

Clearances, fasteners 624, 626 Cleavage 50

asymmetric 50 thermolytic 81

Climb, milling 596 Close packing 403, 403 Closure, of mold 442 CMCs 935

ultrasonic machining 605 CNC, lathes 597 CO2, gas laser 605 Co-poly-p-phenylene/3,4'-

oxydiphenylene terephthalamide 203, 203, 205

Coarse fillers silica 516 talc 516

Coating aluminum foil 820 by precipitation 293, 294 carbide 296 carbon fibers 292-4,294,295 chemical precipitation 292-3 electroless deposition 292-3 in gas phase 294--8 in-mold 385 medical applications 957 metal, heating temperature 294 nickel 292 nickel vapor-deposited 819-20 nitride 296 polyurethane 813 protective 819-20,819 silicon carbide 294 thickness 293,294,297

and annealing 297 and deposition time 294 Kulon 306 VMN-4306

two-layer 300 Cockroft-Walton accelerator 848, 848 COD 124 Coefficient of thermal expansion

seealsoCTE aluminum 558 carbon-epoxy prepreg 558

Page 25: TYPICAL PROPERTIES FOR APPENDIX A - Home - Springer978-1-4615-6389-1/1.pdf · 1054 Typical properties for advanced composites and 5-2 glass. Within each of these glasses are variations

glass-epoxy 558 high carbon cast steel 558 Invar 558 laminates 322 mahogany 558 monolithic graphite 558 steel 558 whiskers 308

Cohesive fracture 674, 675 Collision avoidance 484, 485 Color, stability 43 Columns 997-9,999

buckling 997, 999 crushing 997 failure mechanisms 997 properties 998,999 slenderness 997 testing 999

Commercial resins 101, 102, 103 stabilization 178

Comminuted polymers, fillers 527 Compacted plies, Springer's model

588 Compaction 470

pressure 457 Compliance 195 Compliant ring method 788-9 Components

of composites 879 design 709 sizing 712

Composites 166 adherends 630, 660 AI-B-C 304 analysis 736-57 anisotropic 797 aramid

fibers 207 reinforced 716, 717

beam cost 723 design example 722-3, 722,

723 design values 723

bolting and riveting 516-17 brittle 797 cast lamina 299 components of 879 coupling agents 250 damage

assessment 880 sources 838

definition 378 density, thermoplastics 534 environmental effects 879-80 fabrication 879 failure 193

analysis 880

fiber dominated 795 flywheels 474-5 glass-reinforced 716,717 graphite-reinforced 716, 717 health and safety 880 history 353-4 hybrids 353 inhomogeneous 797 inspection 880 layer, permeability 581 Materials Characterization, Inc

(CMC) 1065, 1965 panels 909 preventive maintenance 880 processes

health hazards 831 safety hazards 831

processing 879 preforms 397 times 353

protective coatings 879 pultruded, outdoor use 504 quality controls 880 reasons for using 3 repair methods 880 repairs, aircraft 857-8 sealants 879 sealing 302 standard tests 880 talc 246 testing 194-6 thermal properties 661 Ti-Al-C 303 tools 566-75

aerospace industry 593 ease of preparation 592 low density 592 prepreg 566,567-71 thermal expansion 592 thermal stability 592 wet lay-up 566

toxicological properties 831-7 tubes

curing 428-9 fishing rods 427

unidirectional 191 whisker-alumina 320-1

Composition CE 108 continuous ceramic fibers 309 fiberglass 138-9 fibers 158 whiskers 158

Compound structures 456 Compression

aerospace applications 26 after impact (CAl) 105 ararnids 26 CE 111

hot-wet 108 measuring in 195

Index 1077

molding 22,43,374,384,529, 532,545

composite parts 549 fiber orientation 548 GMT 117 one-dimensional flow 583-4,

584 polyimides 545 PTFE 545 and pultrusion 490 rackets 1049 thermoplastics 116,544-9 two-dimensional flow 584 UHMWPE 545

molds 394,395,395 properties 360 strength

AFR700B/S21aminates 93 marine laminates 920 normalization 721

strength after impact 125, see also impact energy

and tension 786-9 TEOS 346 testing 781

buckling 787 flat specimens 787 rings 782, 788-9 transverse cracking 787 unidirectional composites 787

Compressive fiber stress, and fiber volume

fraction 581 modulus

BMl 111 PMR-15 laminates 88

properties aramid fibers 221 testing 38

strength ABS 258 Celion 87 cellulois acetate 258 epoxies 258 fiberglass epoxies 153 honeycomb 264-5,266-7 Kulon 305 laminate 616 Nomex 272, 273 PBO fiber 238 phenolics 258 plied-yam 151 PMR-15 82,88 polyurethane 258 polyvinyl chloride 258 recycled phenolic 894 S-glass epoxies 152

Page 26: TYPICAL PROPERTIES FOR APPENDIX A - Home - Springer978-1-4615-6389-1/1.pdf · 1054 Typical properties for advanced composites and 5-2 glass. Within each of these glasses are variations

1078 Index

single-yam 151 skinned molded foam 258 thermoplastics 124 thermosets 124 VMN-4305 yam distribution 154

stress, surface 321 Compton scattering 845 Computed tomography 846-7, 848

advantages 846-7 density map 846-7

Computer codes, joints 624, 630 Computer numerical controlled, see

CNC Concrete

dilation 988 fonns 925 linear thermal expansion 705 polymer 984, 984 post-tensioning 986, 987 prestressed 985-6 rehabilitation 988 reinforcing 999-1000

Condensed core, NDE 854 Conductivity, and modulus of

elasticity 186 Consolidation 314,576-94

autoclave 298, 577 definition 576 equation 582

one-dimensional 584 equipment selection 577 fiber deformation 576 history 578-86 mechanisms involved in 576 mode~ 578-86,581-6 pressure 577 resin flow 576 techniques 576 temperature 577 thick composites 585 thin composites 585 time 585

window 588 tooling materia~ 577

Constituent materi~ 22 properties 766-7

Constitutive equations 739,741 stiffness coefficients 743-4

Construction applications 982-1001

materials selection 982 carpet plots 719 methods 1014-15 mold 447 pultrusion 519-20

Consumer products 946 Contact

areas 184 inverse method 611 region, bearing load 620-1

Continuity condition, resin flow 582-3

Continuous casting 29&-9 ceramic fibers 163,309 dry jet wet spinning 204 fiber-reinforcement 22 fibers 156, 338, 338

alumina-based 156-7 density 162 description 162 diameter 162 elastic modulus 162 filament

directionality 338 winding 338

layer interlocking 338 manufacturers 162 multilayer locking 338 reinforced composites 355 specific strength 162 thermal expansion coefficient

162 trade names 162

filament, fiber architecture 401-2 glass, rovings 492 impregnated compound, see CIC reinforcement 502 strand mat 436, 503 whisker 156

Contour, variation 372-3 Contoured tape, lay-up 16 Control surfaces, marine

applications 924 Coolants, drilling 600 Cooling towers 936-7, 993-4, 995 Coordinating partial plies, tooling

design 590 Copolymerization 34 Core

corrosion adhesives 271 NDE854

edge treatment 277 fatigue, NDE 854 materi~ 256-7 movement, adhesives 271 node disbonds, NDE 854 plug repair 866 selection, sandwich 284 shaping 289,289 shear stress, formulas 284 size, sandwich 288 splitting, adhesives 271

Cores density 276

splices 276,278,278 Comers

flexure, TEOS 346 injection, ports 451,451 preform 438

Corporate Average Fuel Economy (CAFE) 907

Correction method, tooling 590-1 Corrective Optics Space Telescope

Axial Replacement, see COSTAR

Correlation, ultrasonic 843--4, 844 Correlators

advantages 834 block diagram 844 P1FE 834

Corrosion barrier 47 galvanic 10&-9 resffitance 38,42,303

construction 982,983 high-temperature 322 reinforced composites 387

Corrugated configuration, reinforced composites 389

Corrugation process, honeycomb 257

Cortical bones 958 COSTAR 101&-19,1019 Costs

aramid 717 carbon fiber 917 E-glass 717 glass fibers 24 graphite 717 meta-aramids 205 metals 717 particulate fillers 242 PBOfiber 238 52-glass 917

Count fiberglass 141-4 plied-yam 151 single-yam 151

Countersinking, and drilling 59&-9 Countersunk

fasteners 624,624,625,625 head 729

Coupling agents 671

chemical functionability 147 commercial 148 composites 250 effect on mechanical

properties 149 fiberglass 146-7 polypropylene and acrylic

acid 251 resin interaction 149

Page 27: TYPICAL PROPERTIES FOR APPENDIX A - Home - Springer978-1-4615-6389-1/1.pdf · 1054 Typical properties for advanced composites and 5-2 glass. Within each of these glasses are variations

silanes 147, 250--1 titanates 251 viscosity 250 zirconates 251

with diepoxides 105 eliminating 193-4 and stiffness 702-3

Coupon tests 195, 687, 688 Coupons

configuration 721 standard 721

Crack bridgUng 320,323-4,323 deflection 320,323-4,323 formation 469 growth, fatigue 811 initiation 124, 632 opening displacement, see COD propagation 124

Cracking bonded joints 659, 659 matrices 319

Crashworthiness 3 Cratering 814 Crazing 343 Creel

bookshelf 492 horizontal feed 494 loaded multiple spindle 494 mat/fabric 494 package positions 493 pultrusion 492-5

Creep effects 126

environmental 1000 failure

bonded joints 658 hot-wet conditions 659

fatigue 631 homopolymers 212 low temperatures BOO para-aramids 212 resistance

aramid fibers 216, 222 PET 227 Spectra 227,228-9,230,232

rupture 797, BOO, 806 time-dependent BOO,800 viscoelastic 797

Cresyl glycidyl ether (CGE), viscosity 62

Crimp 416 Critical

bend radius, continuous ceramic fibers 309

energy, failure criteria 795 load, orthotropic plates 751 processing temperature 326 shear resistance, failure criteria

795 Crooked chain, meta-aramids 205 Cross section

constant 489 shape of 461

Cross sections, strength 613 Crosslinking 31, 48, 100

matrix 460 reversible 887-8 rotational molding 551

Crowfoot satin, weave 145, 145 Crushed core

NDE 854 sandwich 282

Crystal, anisotropy 334 Crystalline

polymers 118, 120 silica 250

Crystallinity advantages of 126 and chemical resistance 120 PET 224

Crystallite melting point, Spectra 26 Crystallization kinetics

injection molding 540 rotational molding 551

CTE 698-9, 704 aluminum 589 aramid4epoxy 589 boron-epoxy 589 cast ceramic 589 compatibility 557 electroformed nickel 558 fiberglass-epoxy 589 graphite-epoxy 589 high-temperature cast epoxy 589 iron (electroformed) 589 M401/F854 704 nickel (electroformed) 589 shrink factors 557-8 silicone rubber 589 tool steel 589 tooling 556-7, 557-8 urethane board stock 558

Cupping 541, 541 polyoxymethylene 541

Cure catalysts 104 control 586-9, 586, 587, 588

objective 588 cycle

anhydride-cured 72 aromatic system 71 autoclave 83-4

stepped 355 carbon-carbon composites

342 elements 67 no-bleed 673

Index 1079

and resin viscosity 354, 355 R1M 433 selecting 585,586 times, tools 559

degree of 587, 587 monitoring 67-9,67,68,69

in situ 69 infrared spectroscopy 68 off-line 67-9

part slippage 432 rate 509-10,509,510

epoxy resins 509 polyesters 509

shrinkage 48 temperature 105

adhesives 661 Cured epoxy resin systems, AS1M

methods 72 Curing 13,16,37,385

agents 49,513,813,832 amine 53-6, 54-6 anhydride 56-9,56-9 anhydride-cured system 72 epoxy resins 509

amine 49-50,51 anhydride 50 autoclave 33 composite tubes 428-9 cyclotrimerization 99-101 dicyanates 100 low temperature 567 non-autoclave 589 ovens 22, 428-9 press 22 reaction 49 R1M 445-6, 445 shrinkage 41 temperatures, carbonized organic

composites 339-40 thermal 499 time 385

Curved beams 791 pultrusion 489-90

Cut-off high pressure water jet 502 saw 502,502 station 502 wastage 502

Cut-outs, in cylinders, GFRP 1013 Cutting

aramid fibers 222 Kevlar 600 plies, surface preparation 870 speed 596-7,598,605 tools 329, 329

(;VI) 27,157,294,296,311,338-9, 339

carbon fibers 335

Page 28: TYPICAL PROPERTIES FOR APPENDIX A - Home - Springer978-1-4615-6389-1/1.pdf · 1054 Typical properties for advanced composites and 5-2 glass. Within each of these glasses are variations

1080 Index

drawbacks 317 isothennal 338-9, 339 silicon carbide 157 temperatures 316 thermal gradient technique 339,

339 CVI 316,316,401

forced flow-thermal gradient processing 317,317

isothermal processing 317 Cyanate

ester, see CE resins 29-30

Cyanates 358 Cyanurate trimer 99,100 CYCAP 93

chemistry of 81 Cycle times, RTM 433 Cycles to failure, Kevlar 213 Cycleweld 255 Cyclic loading, microcracking 801 Cycloaliphatic amines, health effects

832, 832, 833 Cylinders

filament winding 467 Cylindrical shells 466, 752-3, 753

axisymmetric deformation 753--4 buckling 755-7

pressure 756 nonsymmetric deformation

754-5 shear defonnation 756 stiffnesses 756

Czochralski method 160

D-glass 134 Dagger drill 599-{)(}(), 599 Damage

accumulation 797 assessment

composites 880 wet lay-up repairs 866

drivers 801-3 inspection, NDE 854 low velocity impact 839-40 modes 797-800, 798, 799, SOO protective coatings, aircraft

859-60 resistance 801-3 tolerance 107, 111, 794, 794-808

definition 794,794 Darcy's law 447,581

resin flow 578 OCB, tests 124 OCPD 37, 37, 39

low cost 37 maleate half ester 37

Debonding, moisture 811 Debris impacts 814-15,814,815

Debulking 567,569,592 periodic 574

Deburring 565 Decking 925 Decomposition temperature

Kevlar 206 Nomex 206 PBO fiber 238 Technora 206 Teijinconex 206 Twaron 206

Decontamination, PMC 863 Deep delamination, NDE 854 Deep submergence devices 474,475 Defective fibers 303 Defects, inspection methods 733--4,

734 Defibrillation 215 Definitions

ararnid fibers 202 autoclave 577 BMC 379 BMI-DAB 105 BMI-MDA 105 braiding 413 bypass load 620 composites 378 consolidation 576 damage tolerance 794, 794 denier 241 detailed design 710 durability 794, 794 electroforming 591 epoxide 48 equilibrium moisture content 241 extrusion 534 fiber 242

placement 476 hazard 823 heat capacity 532-3 hygrothermal 694 knitting 408 lamina 687 material properties 709 matrix 378 particulate fillers 242 preliminary design 710 prepreg 425 pultrusion 488 pyrolysis 888 reinforcements 378 rheology 527 risk 823 specific heat 532-3 specific modulus 715 steering 482 strength retention 241 tenacity 241 Tex 136,241

textile preforming 397 thermosetting reaction 49 tows 476 toxic 822 viscosity 527 weaving 404

Deflection effect 640 equations 750 fasteners 624, 626 formulas 284-5 lateral 644 sandwich 284

Defonnable, adherends 633, 634 Deformation 398

adherends 630 degree of 448 laminates 691 point 302

Degradation 215, 796 aminolysis 889 chemical 888-9 factor 697 fiber length 536 glycolysis 889 hydrolysis 889 methanolysis 889 NDE 838 PET 889 products obtained 889 strength 796

Degreasing, metal surfaces 871 DEH 20 (Dow) 54 DEH 24 (Dow) 54 DEH 26 (Dow) 54 de Havilland Mosquito 686, 686 Delamination 548, 597-8, 598, 599,

615,798-9,799,801 atedge 798 helical winding 789

Delta Clipper experimental launch vehicle 974-5,974

Demolding 443,446-7 precautions 446

DEN 431 (Dow) 52 DEN 438 (Dow) 52 DEN 439 (Dow) 52 Denier, definition 241 Denitrogenation 183 Densification 314

shuttle parts 343 Density

ABS 258 aluminum 170,558 aromatic system 71 carbon (Type T300) 503 carbon-carbon composites 333 carboni epoxy prepreg 558 cellulois acetate 258

Page 29: TYPICAL PROPERTIES FOR APPENDIX A - Home - Springer978-1-4615-6389-1/1.pdf · 1054 Typical properties for advanced composites and 5-2 glass. Within each of these glasses are variations

ceramic composites 312 ceramics 307 continuous ceramic fibers 309 continuous fiber 162 E-glass 503 electroformed nickel 558 epoxies 258, 511 glass/epoxy 558 high carbon cast steel 558 Invar 558 Kevlar 206, 503 Kulon 305, 306 mahogany 558 meteoroids 815 and modulus 23 monolithic graphite 558 Nomex 206 NR-150 82 PAN-based fibers 170 phenolics 258 pitch-based fibers 170 PMR-1582 polyester 511 polyurethane 258 polyvinyl chloride 258 recycled NBC 897 recycled phenolic 894 regrind RIM 895 resin, aliphatic system 70 S-glass 503 SiC/ AIP3 315 skinned molded foam 258 Spectra 503 staple 162 steel 170, 558 and strength 23 Technora 206 Teijinconex 206 titanium 170 Twaron 206 urethane board stock 558 vinylester 511 VMN-4 305, 306 whiskers 162, 308

Dental applications, hydroxyapatite (HA) 958

Dentin 958 Deoxidizing, metal surfaces 871 Deposition

electrolytic method 293 time, and coating thickness 294

DER 330 (Dow) 51 DER 331 (Dow) 51 DER 332 (Dow) 51 DER 661 (Dow) 51 DER 732 (OOW) 63 DER 736 (OOW) 63 Derivatives, phenolic 382 Description

continuous fiber 162 staple 162 whiskers 162

Design 32 aerospace 709 allowables 709, 758-77

nomenclature 759,759 processing variables 762-3 testing 758

checklist 712, 714 components 709 of composites 18-20, 19 considerations 994-1001 data, using 724-7 detailed 710 laminates 686-708, 697-706 low strain 838 methodology

knitting 410-13 nonwoven textiles 419

preliminary 710 process 710 requirements

aircraft 713, 1022-3 stabilizer 710

automotive industry 713 helicopters 713 industrial pressure vessels

713 marine submersibles 713 recreational 713 rocket motors 713 sailboats 713 satellites 713

team 709, 712, 714, 715 materials supplier 715

values 720-2 verification 733-4, 733

Designations, continuous ceramic fibers 309

Despooling 479 Detailed design 710, 723-34

definition 710 Determinable values 779 Diacids, and glycols 34-5 Diameter

continuous fibers 162 ceramic 309

low 160 staple 162 whiskers 162, 308

3,3' -Diaminodiphenylsulfone, melting point 55

4,4' -Diaminodiphenylsulfone (DDS), melting point 55

Diaphragr.nforming 117 thermoplastics 116

Dibromoneopentyl glycol 43 Dicyanates, curing 100

Index 1081

Dicyandiamide (DICY), melting point 56

Dicyclopentadiene, see DCPD Dicyclopentadienyl bisphenol

homopolymer property 102 structure precursor 102 supplier 102 trade name 102

Dielectric constant 95

E-glass fibers 231 PET 224 Spectra 231 thermoplastics 107 thermosetting 107

properties 106-7 strength, Skybond 95

Dielectrometry 68,69 bulk 68,69

Diels-Alder 101 reverse 80

Dies 497 chrome plated 501 forming 497 heating and curing 498-501 inspecting 501 internal profile 499-500 manufacturing 500 multi-cavity 491, 500 positioning 498 purging 514 steel 500 temperature

control 511-13,512,513 profile 511, 513 stability 514

Diethyl ester diacid derivative 80-1 Diethylaminepropylamine (DEAPA),

viscosity 54 Diethylenetriamine (DETA),

viscosity 54 Different thicknesses, sandwich

structures 744 Diffusion welding, solid stage

production 291 Diglycidyl ether of 1, 4-butanediol

(BDE), viscosity 62 Diglycidyl ether of bisphenol A

(DGEBA) crystallization 51 viscosity 51

Diglycidyl ether of bisphenol F (DGEBF) 52

crystallization 52 Diglycidyl ether of neopentyl glycol,

viscosity 63 Diglycidyl ether of polypropylene

glycol 63 Diluents 61-3,61-3

Page 30: TYPICAL PROPERTIES FOR APPENDIX A - Home - Springer978-1-4615-6389-1/1.pdf · 1054 Typical properties for advanced composites and 5-2 glass. Within each of these glasses are variations

1082 Index

reactive 66, 66 Dimensional

stability, reinforced composites 387

tolerances 560-1 drawings 731

Dimensions, joints 612, 649 DIMOX 315-16,315,316 Dimpling, sandwich 282, 284 Direct wet, chemical oxidation 191 Direction dependence 698 Directional metal oxidation, see

DIMOX Directionally reinforced molding

compotuld, see XMC Disadvantages

AWJ 604 hand lay-up 352 injection pultrusion 497 laser machining 605 preform 438 RTM 434-5 turning 597 twin-screw extruders 539 ultrasonic machining 608

Disbonds inspection 839 NDE 854 surfaces 677

Discontinuous fiber 156 representative volume 804 whisker 156

Discrete, fiber architecture 401,401 Disks, axisymmetric deformation

752-3 Displacements, measuring 779 Disposal

see also recycling, reuse nonrecyclables 899-900 and reuse 883-904

Dissimilar adherends 635 Dissipation factor 95

fiberglass 135 thermoplastics 107 thermosetting 107

Distortion temperature, testing 38 Diving equipment 926-7, 926, 927 Dixie Chemical 57 DMP 30 (Rohm & Haas) 60 DMTA 120, 120 Dodecenyl succinic anhydride

(DDSA), melting point 57 Domes, contours 467 Dornier 328

composite applications 1037, 1039

rear fuselage and fin 1039 Double

cantilever beam see also DCB specimens 124

head, pull winding 496-7 lap

adhesive joints 628 balanced 655 joints

stress distribution 654 thermal stress 662

shea~joints 624,625 strap

adhesive joints 628 joints, tapering 646, 647, 648

Doublers 279-80, 280 Draft 389, 390

zero 389 Drapability, preform 438 Draping simulation 448, 448 Drawings 730-3

construction 730-3 dimensions 731

tolerances 731 material description 731, 731 thickness 731

Drill cutting parameters 600 dagger 599-600,599 fixtures, fabrication 573 fully fluted 600 geometry 599-600 performance 599 templates 573-4 twist 600

Drilling 597-600,598,599 carbon fiber-epoxy 599 coolants 600 and cotultersinking 598-9 damage 729 glass fiber-epoxy 599 machining 602 secondary 598

Drive shafts 911,936-7 Dry spots, eliminating 453, 453 Dry tows, braiding 418 Drying, of composite 811 Dual-shell reflector, Kevlar 1004,

1004 Ductile response 655

adhesives 651-6,652,657 Ductility, adhesives 627-8,629-30,

655-6 DuPont FP fiber 309

elastic modulus 309 Durability 794-808

bonded joints 658-9 definition 794,794 PET 233 predicting 796

Duramite 247,247 Dust particles, milling 597 Dy 023 (Ciba-Geigy) 62 Dy 027 (Ciba-Geigy) 61 DY 062 (Ciba-Geigy) 60 DY 064 (Ciba-Geigy) 60 Dyeing, PET 233 Dyes 516 Dynamic mechanical analysis

(DMA) 816 Dynamic mechanical thermal

analysis, see DMTA Dyneema 223

availability 231 elongation at break 225 fiber type 225 pricing 232 specific gravity 225 tensile modulus 225 tensile strength 225

E-glass 24, 134, 425 composite tanks 985 compression properties 360 constituent properties 766 costs 717 density 503 dielectric constant 231 elastic properties 764-7 elongation at break 503 fiber modulus 360 Kevlar, fiber modulus 360 polyester rods 985 references 774--7 reinforced concrete 984 reinforcement 383 specific

gravity 383 modulus 1049 strength 1049

strength properties 764-7 tensile

failure 383 modulus 360,383,503,716 properties 360 strength 24,383,503

tension-tension ratio 1049 thermal expansion 383 typical properties 1055 uniaxial strength 194 YOtulg's modulus 24

Ears 371 Earthquakes 197 Ease of preparation, composite tools

592 ECN 1273 (Ciba-Geigy) 52 ECN 1280 (Ciba-Geigy) 52 ECN 1299 (Ciba-Geigy) 52 Economics, land transportation

Page 31: TYPICAL PROPERTIES FOR APPENDIX A - Home - Springer978-1-4615-6389-1/1.pdf · 1054 Typical properties for advanced composites and 5-2 glass. Within each of these glasses are variations

905--6,906 Eddy current testing 849-50 Edge

definition, prefonn 438 delamination 111 distances

bearing load 621 bolted joints 617, 617

effects 780,789 turning, reinforced composites

390 Edge-defined film-fed growth, see

EFG Effect of contaminants, aircraft 863 Effluent loss, and carbonization 183 EFG 160 Egg crate structure 569, 570, 572 Eight-harness satin, weave 145, 145,

436,436 Einstein coefficient 531-2

fillers 533 Ejection, part 385 Elastic

constants graphite/epoxies 4 Kevlar 210 preform 449

displacement 195 modulus

aluminum 170 carbon fibers 169 continuous fiber 162 duPont FP fiber 309 Kevlar 205 Kulon 305 PAN-based fibers 170 pitch-based fibers 170 staple 162 steel 170 titanium 170 VMN-4305 whiskers 162

properties E-glass 764-7 graphite epoxies 768-71 Kevlar 764-7 laminate 764-7 52-glass 764-7 Spectra 764-7

response 319,655 stress-strain, microcracking 798 symmetry, axis of 779 zone length 658

Elastomer, tooling 14 Elbows 464 Electric discharge machining (EDM)

605 Electrical

applications 937,937

conductivity carbon black 245 carbon fibers 169 ceramics 307

equipment, pultrusion 519 insulators, aramid fibers 215 properties

aramid fibers 215 carbon fibers 184-5, 185, 186 fiberglass 135

resistance, reinforced composites 387

resistivity, and microtexture 189 Electrically conductive, particulate

fillers 250 Electroformed nickel

CTE 558 density 558 mandrel 591 thennal conductivity 558 tooling 591-2, 592

Electroformmg 591-2 definition 591

Electroless deposition, coating 292-3 Electromagnetic interference, see EMI Electron diffraction 186 Electronics, applications 937, 937 Electroplating 820 Element tapering 624 Eliminating

dry spots 453,453 microcracking 1012

Elongation 26 epoxy resins 29 NR-150 82 nylon 6/6 PCI-glass 899 PMR-1582 PP and granulated SMC 897 recycled NBC 897 recycled PP 895, 896 regrind RIM 895 Skybond 86

Elongation at break Armos 208 carbon (Type T300) 503 Dyneema 225 E-glass 503 epoxy 511 Hoechst Celanese 225 Kevlar 205,208,503 Kulon 306 Nomex 209 particulate fillers 252-3 PHO 235 polyester 511 S-glass 503 Spectra 225, 503 SVM 208 Technora 209

Index 1083

Teijinconex 209 Tekmilon 225 Twaron 208 Vectran 235 vinylester 511 VMN-4306

EMI testing 982

buildings 989, 991, 991 EMI-24 (Air Products) 60 End effects 780 End grain balsa 917 End-capping 81 Energy

equation 586-7 fracture surface 320 release rates 632

Engineering constants

IM6/epoxy 699,700,701 laminates 693

parameters, preforms 421 properties 22

Environmental aspects, recycling 902-3 conditions, adhesives 630 effects 81G-20, 100G-l

composites 879-80 creep 1000 history 810 relaxation 1000

exposure 860-1 extremes, bonded joints 658 properties, aramid fibers 213-15,

214 resistance 3,49,65,564

Epi-Rez 5014 (Hi-Tek Polymers) 62 Epon 826 (Shell) 51 Epon 1001 (Shell) 51 Epotuf 37-053 (Reichold) 62 Epotuf 37-057 (Reichold) 61 Epoxides 51-3,51-3

curing agent ratio 64 definition 48 molecules 49

Epoxies adhesives 275 compressive strength 258 density 258, 505 elongation at break 505 flexural modulus 505 flexural strength 505 heat distortion 505 laminates, tooling 562 maximum service temperature

258 nitrile rubber modified 275 pultrusion 511 reinforced 196, 442

Page 32: TYPICAL PROPERTIES FOR APPENDIX A - Home - Springer978-1-4615-6389-1/1.pdf · 1054 Typical properties for advanced composites and 5-2 glass. Within each of these glasses are variations

1084 Index

resills 28-9,29,30,382,504,832 bismaleimides 6 cure rate 509 curing agents 509 cyanate ester 6 elongation 29 flexibility 63 formulation 63-4, 64 gel times 510, 510 glass content 510 modifiers 105 moisture absorption 29 phenolic triazine (PT) 6 polyirnides 6 pull loads 510 rigidity 63 selection of 5 viscosity vs. time 510, 510

shear modulus 259 shear strength 259 tensile modulus 505 tensile strength 258,505 thermal conductivity 259

Equations of continuity 582 lamina material 760 of motion 738-9,740-1

illertia terms 739 straill-displacment 739

Equilibrium crack spacillg 798 moisture content, definition 241

Equipment selection, consolidation 577 wet lay-up repairs 867

ERL 4206 (Union Carbide) 63 Erosion 813

atomic oxygen 814 Ester formation 34 Esterification 35, 38 EtchUng 667 Ether linkages, Technora 210 2-Ethyl-4-methylimidazole (EMI),

melting poillt 60 Europe, recydillg 884 European retrievable carrier 971 Evacuation,P~C 863 Evaluation, strength 737 Exothermic reactions 827-8 Exotherms 68 Expansion process, honeycomb 257 Expendable materials 359--60 Exposed surface, voids 432 Exposure

alkaline 46 assessment 826 limits 824-5,826

terminology 826 preventing 827

routes 826 to moisture, PET 227

Extended chaill

PET fibers 202, 223-34 manufacture 223-4

exposure,mechanicalproperties 215

Extruder die extrusion 535, 535 shape 535

Extruders sillgle screw 536 twill-screw 536

Extrusion 529 cf. pultrusion 488-9 definition 534 extruder die 535, 535 melt pumping 534-5,535 melting 534 orientation 538 plasticating 534,535 solid stage production 291 solids conveyillg 534, 535 thermoplastics 526, 534-8

Eye protection 830

3F dianhydride 77 3F/36F polyimides, chemistry of 77 FAA advisory circulars 1063,1065 Fabric formation 402 Fabrication 31, 33

composites 879 drill fixtures 573 first article 372 low cost 33 marille applications 919-20 methods 762 quality 33 techniques 13-18,14,15,16

Fabrics, orientation 504 Face

dimpling, formulas 285 sheet

materials removal 864 repair 866-7

wrUnklillg formulas 285 sandwich 282, 284

Facing failure, sandwich 282 material 255-6

Failure 193 adherends 627-9, 628, 657 analysis, composites 880 aramid fibers 210 bond 627-9,628 characteristics

joillts 659,660

lap joillts 643 criteria 193, 795, 802-3, 802

critical energy 795 critical shear resistance 795 laminates 695-7

envelopes 696 load, joillts 615 mechanisms, columns 997 modes 621, 622, 797-800, 798,

799,800,804 properties 194-5 stresses, joillts 626

Fairings 1024 marille applications 923-4, 923,

924 Fasteners

bendillg 625,625,729 deflections 626

clearances 624, 626 countersunk 624, 624, 625, 625 deflections 623,624,625,626 design issues 729 diameter 623-4, 625

illcreasillg 614 effects 612,624-6,624,625 joillt around 612, 612 loads 622 mechanical 517 multi-rowed 620 multiple arrays 612 parameters 517 protrudillghead 624,624 selection 729, 729 tension head 625

Fatigue 811 crack growth 811 low temperature 811 para-aramids 213 properties 386, 387 resistance

aramid fibers 221, 222 PET 230 Technora 213 thermoplastics 115

Feedrates 598 Feldspar 243-4

chemical resistance 243-4 particulate fillers 243-4 refractive illdex 243-4

Female toolillg, large power yachts 921

Femoral components 960-1 design 960 development 961

FEP 362 mold releases 362

Fiber alignment 494 aluminum based 159

Page 33: TYPICAL PROPERTIES FOR APPENDIX A - Home - Springer978-1-4615-6389-1/1.pdf · 1054 Typical properties for advanced composites and 5-2 glass. Within each of these glasses are variations

architecture 398 continuous filament 401-2 discrete 401,401 infiltration 401 integrated 401, 401 interlooped 402 laminar 401, 401 linear 401,401 planar interlaced 402

areal weight 425 breakage,~E 838 breakout 599 breaks, NDE 854 bundles 403 coating 166, 802 composition 158 continuous 156 definition 242 deformation 580-1

consolidation 576 curve 580-1,581

diameter 156 structural hierarchy 778

direction, tensile strength 804 discontinuous 156 distribution 154, 154

preform 438 dominated, composites 795 flow 527-31

d. particulate flow 530 fracture 799, 799 fragments, inhaling 835 length, degradation 536 low risk 835 manufacturers 158 manufacturing processes 158 modulus 360 orientation 527-31

compression molding 548 injection molding 543, 543 preforms 421

packing fraction 412 placement 17, 476--87, 477

definition 476 head 476 inspection 486-7,487 machines 478,482 materials 478--9 steering 482 surface geometry 484--6 tooling 479-80

properties 400,400 pull-out 320, 323-4, 323 rayon-based 173 reinforced polymers, see FRP reinforcement 22,23,216,435-6 for reinforcing 166 and resin 425 rovings 492, 503

separation 615 shape, carbon fiber 335,336,337 strength, degradation 806 tensioning 457 to resin ratio 509 trade names 158,225 type 225 volume 721

fraction 21,404,412,416,578 3-D fabric 416 and braiding angle 417 carbon fiber 335 and compressive fiber,

stress 581 Gutowski's model 588 high 585--6 and permeability 399-400,

400 processing window 412,

412 waviness 780

Fiberfrax 160 Fiberglass

acoustical properties 135 aircraft industry 136 antistatic agents 146-7 binders 147 breaking strength 139-40,141-4 bushing 138 chemical composition 147-8 chemical resistance 134 circuit boards 136 composition 133-4, 134, 138--9 continuous 131

strands 147 count 141-4 coupling agent 146-7 dissipation factor 135 electrical properties 135, 136 epoxies 153 fabric count 140 fibers

attributes 358 hollow 134 milled 146

filament designations 133 filament diameter 133 filling yarn 141-4 fire resistance 134 fluted core fabrics 146 heat resistance 134 laminates 356 lubricants 146-7 manufacturing 132 mat 137--8 mechanical properties 135 optical properties 135 platforms 989 proof testing 849

Index 1085

rebars 999 reinforced plastics 23 reinforced polyesters, see FRP reinforcing 38 rovings 136,146-7,353 specific gravity 135 spire 991 staple fibers 131 strand 131 suppliers 136 surface resistivity 135 tapes 146 Te glass 134 tensile strength 134 thermal properties 135 thickness 141-4 three-dimensional fabrics 146 volume resistivity 135 warp yam 141-4 water resistance 136 weave 141-4 weight 141-4 yarn 138

designation 139-40 yield 139-40

Fiberglass-epoxy, CTE 589 Fiberite 99 Fibrous

dust 835 reinforcement types 795,796

Filament angle of 456 cross-section, PET 225 diameter 139,148--9

Kevlar 206 Kulon 306 Nomex 206 PET 225 Technora 206 Teijinconex 206 Twaron 206 VMN-4306

directionality, carbon fibers 335 equilibrium,equation 459 equilibrium 459-61 lay-up 457 shape 206 strength, S-glass 24 on surface 459-61 tension 457 winding 17,17,66,116,117,

456-75,762 applications 471-5 continuous fiber 338 cylinders 467 low costs 463 machine 463,464 marine applications 920 pressure vessels 471

Page 34: TYPICAL PROPERTIES FOR APPENDIX A - Home - Springer978-1-4615-6389-1/1.pdf · 1054 Typical properties for advanced composites and 5-2 glass. Within each of these glasses are variations

1086 Index

rackets 1050 spherical shapes 466-7 sporting goods 1046, 1047 wet 762-3

Filed inspections, neutron radiography 848

Fill,yarns 407,407 Fillers 382, 516

barium ferrite 527 barium sulfate 527 calcium carbonate 527 carbon 527 cellulosic 527 clay 516 coarse, disadvantages 516 comminuted polymers 527 effect on processing 552 Einstein coefficients 533 fine 516 functional 382 glass 527 ground limestone 382 ground petroleum coke 527 inorganic phosphate-based 957 medical applications 957 metallic oxides 527 mica 527 molybdenum disulfide 527 non-functional 382 pultrusion 516 shape of 531 silica products 527 silicon carbide 527 specific heat 533

Fillet forming, adhesives 271 Filling 301,301,302

mold 442 single-yam 151 yam 140

fiberglass 141-4 Film impregnation 8 Film-stacking 117-18,118 Filter cloths, PET 233 Finish 215

5-glass epoxies 152 Fire

prevention 367 resistance, fiberglass 134 retardance 36,42-5

halogen inclusion 43 retardants, particulate fillers 249

Firefighter breathing apparatus 937-8

Fishing poles 427, 1045, 1051 FIT-technology 117 Flags

bias 425,426 longitudinal 425

Flakes 248

impact strength 249 mica 249 silver 249, 250

Flame polishing 157 spread 44

Flammability, evaluating 44 Flank wear 599 Flat

cylinders, filament winding 467 specimens

compression testing 787 testing 781, 786-7

tension 786-7 tape, lay-up 16

Flat-layer, microstructures 177 Flaws, planar 840 Flex modulus

NR-150 82 PMR-15 laminates 88 Skybond 86

Flex strength AFR700B/S21aminates 93,95 Cellon 87 NR-150 82 PMR-15 laminates 88 Skybond 86

Flexibility 161 Flexible

backbone polyester resin 381 mold wall 444

Flexural modulus

BMC 386,386 epoxy 511 LPMC 386, 386 nylon 6/6 PCI-glass 899 polyester 511 polyetherirnide 545, 546 polysulfone 546 PP and granulated SMC 897 recycled NBC 897 recycled PET 894 recycled PP 895, 896 recycled SMC 890, 892, 893 regrind RIM 895 SMC 386,386 vinylester 511 ZMC 386,386

properties Spectra 226, 226 testing 38

strength BMC 386,386 epoxy 511 fibreglass epoxies 153 LPMC 386, 386 marine laminates 920 nylon 6/6 PCI-glass 899

plied-yam 151 polyester 511 recycled PET 894 recycled phenolic 894 recycled SMC 890, 892, 893 5-glass epoxies 152 short fiber mat 401 single-yam 151 SMC 386,386 unidirectional tape 401 vinylester 511 woven laminates 401 yam distribution 154 ZMC 386,386

stress PP and granulated SMC 897 recycled PP 895, 896

Flexure TEOS 346 testing 195

Float 150 Floc 216 Flocking lay-up, short fibers 337, 338 Flow

measurements 357 and rigidity 67

Fluid contamination, aircraft 859 Fluids

aircraft 812 automotive 812 methylene chloride 812 Newtonian 527, 528

Fluorine, toxicity 362 Fluoroethylene propylene, see FEP Flushing contaminants 864 Fluted core fabrics, fiberglass 146 Flywheel mechanical battery systems

938,938 Flywheels 474-5 Foam

adhesive voids, NDE 854 core materials 256-7 cores for fiberglass 256 injection 256 insulation 256 in place system 257 polystyrene 256-7 PVC 257 radar transparency 256 shear strength 257

Folding 547 low-cost 117 thermoplastics 116

Forced flow-thermal gradient processing, CVl 317, 317

Foreign materials NDE 854 X-ray imaging 844

Formability

Page 35: TYPICAL PROPERTIES FOR APPENDIX A - Home - Springer978-1-4615-6389-1/1.pdf · 1054 Typical properties for advanced composites and 5-2 glass. Within each of these glasses are variations

jamming angles 399 preforming 398-9 weft knitted fabrics 399 woven glass fabrics 399 yarn slippage 399

Forming dies 497 fabrication 497 materials used for 497

Forms aramid fibers 216 boron 161-3 ceramic fibers 161-3 high silica 161-3 quartz 161-3 Vectran 236

Formulas bending stress 284 core shear stress 284 deflection 284-5 face dimpling 285 face wrinkling 285 moment of inertia 285 safety factor 285

Formulation diglycidyl ether of bisphenol A

hexahydrophdlalic anhydride 64

diglycidyl ether of bisphenol A triethylene diamine 64

diglycidyl ether of bisphenol A triethylene tetramine 64

Fortafil 1054 properties of 170

Fountain flow, injection molding 542 Fractionizing plant 887 Fracture 597

effects, isolating 799 elongation 170 fixation devices 961-2 mechanics, joints 631-2 path 324, 324 strength 325 toughness

alumina composites 325 Celion 87 ceramic composites 312 high silica 156 moisture 811 NR-150 82 PMR-1582 Sliar 325 Tateho 325 thermoplastics 122, 124

Free radical generators 104 FRP 38,41

composites, pultrusion 517 corrosion resistant 44 corrosive attack 45 durability 959

fire retardant 42 flame resistant 44 low bending stiffness 960 orthopedic applications 959 permeability 959 pins 959 properties of 46 pultrusion 47 strength of 45 thermal performance 45 total hip arthroplasty 959

Fuel tanks 939-40 Fully fluted drill 600 Functional fillers 382 Fungal growth 810-11 Fusion 157

bonding 127 PEEK 127

Future directions, transportation 915

Galvanic, corrosion 108-9 Gap 487 Gas laser

applications 605 C02 605

Gas-spargmg 174-5 Gate 541, 542

fiber orientation 543 Gating 450-1 Gel

coat 567 spinning 223-4 time 37,66,357,446

aromatic system 71 zone 50S

Gelation pressure during 508 resins 499

Gelstar Thermal Analyzer 515 General

aviation, applications 1039-40 equations 738-45

Geodesic curvature 459 deviation, angle of 460 line 457

Geometry joints 638-51 single lap joint 641

Germany recycling 902 standards 1065,1066

GFRP 1004-21 aerospace applications 1007 anisotropic behavior 1012-14 anisotropy 1006 applications 1016 assembly bowing 1013, 1014,

1014

Index 1087

cut-outs in cylinders 1013 development 1016 diffusivity 1008 economics 1020 hygroscopic nature 1006 impact damage 1006 joints 1012, 1012 material cost 1006 microcracking 1006 moisture effects 1007-10 new materials 1019-20 peel strength 1006 predictions 1019 properties 1005

undesirable 1006 springback 1013 temperature extremes 1004-21 warping 1013, 1013 woven broadgoods 1024

Gibbsite 245 Glass

bottle industry 97 content

epoxy resins 510 nylon 6/6 PCl 899 pP/PCI 898

fabrics, knitted 917 fiber-epoxy, drilling 599 fibers 24-5,25

alkaline environment 1000 applications 24 availability 24 cost 24 handling 24 health effects 835 history 131 processing 24 reinforced plastics (GFRP)

1024 reuse 884 S-glass 24 silane coupling 24 toxicity 24

fillers 527 history 131 length, recycled PP 895, 896 mat thermoplastics, see GMT reinforced plastic, see GRP rovings 502 to resin, ratio 150-4, 153 transition temperature

see also T aromaticgsystem 71 moisture 811 RIM 440

Glass/epoxy coefficient of thermal expansion

558 density 558

Page 36: TYPICAL PROPERTIES FOR APPENDIX A - Home - Springer978-1-4615-6389-1/1.pdf · 1054 Typical properties for advanced composites and 5-2 glass. Within each of these glasses are variations

1088 Index

thermal conductivity 558 Gloves 828-9, 828

resistant 829 types 829

Glued laminated timber 991 beams 940-1

Glycidyl amines, health effects 832 compounds 831-2,832 ethers, health effects 832

Glycol and diacids 34-5 propylene 35 selection 39

Glycolysis, degradation 888 GMT 115

automotive market 127 compression molding 117 extrusion compounded 118 semi-finished 118, 118

Goland-Reissner 641 Golf shafts 429,463,465,698,1051

filament wound 1051 test methods 1051

Grafil 1054 Granulation

knife 886 recycling 886-7

Graphite 245, 334, 334 3-D lattice 334 composites, machining 599 compression properties 360 costs 717 epoxies

elastic properties 768-71 references 774-7 strength properties 768-71

fibers 25-6 competitive prices 25 health effects 835 modulus 360 price 716 production 25 reinforced plastics, see GFRP

reinforcement 353 specific gravity 383 tensile

failure 383 modulus 360,383,715,716 properties 360 strength 383

thermal expansion 383 turbostratic layers 184

Graphite/epoxies 4 CIE 589 elastic constants 4 physical properties 4 strains 4 strength properties 4

thermal data 818 weathering 813

Graphite/polysulfone, weathering 813

Graphite/wood, hybrids 354 Graphitization 169,183

alignment 191 large regions 170

Grating 936 Green form 314 Green strength 446 Grill opening panels, SMC 907 Grinding 600

accuracies 600 cryogenic 886 polymer matrix composites 600 silicon carbide wheels 600 surface speeds 600

Grit blasting, surface preparation 870-1

Ground limestone 382 Ground petroleum coke, fillers 527 Growth factors 558 GRP 839 Grumman F-14 1030 Grumman X-29 aircraft 698, 698 Guide pins 442

compression molds 395 Gutowski's model 578,580,581,582,

583,585 fiber volume fraction 588 numerical schemes 586

GY 281 (Ciba-Geigy) 52 GY 6010 (Ciba-Geigy) 51 Gypsum 564

Half-discs, testing 782 Halogens 44

bromine 43 Hammer handles, pultrusion 491 Hand lay-up 352-77, 762

advantages 352 applications, aerospace 375 disadvantages 352 large power yachts 921 marine applications 376, 919-20 precautions 363

Handling aramid fibers 222 glass fibers 24 PET 233

Hardeners 49, 832 Hardness

ceramics 307 regrind RIM 895 tooling materials 577

HarrierVTOL 1031-2 Hazard 823

definition 823

fibrous dust 832 HDPE

glass-fiber reinforced 549 graphite filled 549 mica flake reinforced 549

HDT 126,126 recycled PET 894

Health applications 943-4, 944 effects

aliphatic amines 832, 833 amino resins 834 anhydride curing agents 832,

833 aramid fibers 835 aromatic amines 832, 833 bisphenol A-based 832 carbon fibers 835 ceramic fibers 835 chlorinated solvents 836 cycloaliphatics 832, 832, 833 glass fibers 835 glycidyl amines 832 glycidyl ethers 832 graphite fibers 835 imides 834 ketones 836 phenolics 834 polyamides 832, 833 polyaminoamides 832, 833 polyurethanes 834 thermoplastic resins 834

hazards asbestos 252 beryllium oxide 252 composite processes 831 particulate fillers 252

and safety, composites 880 Heat

application heating blankets 874 repairs 874-7 risks of 875,877

capacity definition 532-3 thermoplastics 532-4

cleaned, reinforcements 898-9 deflection temperatures, see HDT distortion 41

epoxy 511 polyester 511 vinylester 511

distortion temperature 38 aliphatic 70 anhydride-cured 72 aromatic 71

lamps, wet lay-up repairs 865, 866

resistance, fiberglass 134

Page 37: TYPICAL PROPERTIES FOR APPENDIX A - Home - Springer978-1-4615-6389-1/1.pdf · 1054 Typical properties for advanced composites and 5-2 glass. Within each of these glasses are variations

treatment, carbon fibers 335 Heated curing dies 500-1

design 500 Heating

blankets repairs 869 wet lay-up repairs 865

radio frequency 499 rate 181, 499 single zone 511, 513

Heavy liquids, adhesives 275-6 Heel blocks, compression molds 394 Helical winding 460

delamination 789 reinforcement 461

Helicopters applications 1040 current prices 1026 design requirements 713 rotor blades 1024

Heloxy WC -63 (Wilmington Chemical) 62

Hercules 3501-6 epoxy resin 579,579 IM7 fiber, thickness 478

HETacid 36 Hexachlorocyclopentadiene, see HET Hexafluorobisphenol A

homopolymer property 102 structure precursor 102 supplier 102 trade name 102

Hexafluoroisopropylidene, bridging 77

Hexahydrophthalic anhydride (HHPA), melting point 57

High carbon cast steel

CTE 558 density 558 thermal conductivity 558

local stresses 729 modulus, carbon fibers 335 pressure water jet, cut-off 502 silica

applications 163, 165, 166 continuous fibers 163 forms 161-3 fracture toughness 156 manufacture 156-7 properties 161

strength carbon fibers 335 molding compound, see HMC PET 233 reinforced composites 387

temperature adhesives 658 applications 818

carbon-carbon composites 344

cast epoxy, CTE 589 resins 818 sandwich 288

High-pressure tubing 941 High-speed train brakes 941 Higher temperatures, and tensile

strength 182 History

consolidation 578-86 pultrusion 488 recycling 883-4

HMC 381 Hoechst Celanese

availability 231 elongation at break 225 fiber type 225 pricing 232 specific gravity 225 tensile modulus 225 tensile strength 225

Hole fittings, tooling 562 Hollow fiber, fiberglass 134 Holography 851-3,852

laser interferometric 852 phase locked loop 852

Homopolymerization 40,50-1,51, 511

catalysts 49,59, 60-1 Homopolymerized BF3MEA 65 Homopolymers, creep 212 Honeycomb 257, 260-71

aluminum 268 alloy

compressive strength 264-5

plate shear modulus 264-5

plate shear strength 264-5 alloys 268 thermal resistance 260

aramid paper 260, 269-70 assemblies, acoustic emission 849 carbon fiber 270-1 carving bits 289 cell configurations 262 cell shape 261-3,262 cell size 263 compressive strength 264-5,

266-7 core shear strength 261 corrugation process 257 defects, X-ray imaging 845 density 261, 261, 262 expansion process 257 glass-reinforced 268

applications 268 compressive strength 266-7,

Index 1089

269 plate shear modulus 266-7,

269 plate shear strength 266-7,

269 Kevlar 271, 272, 273

paper 271 metal, roll-forming 289 non-metallic, thermal resistance

260 panels, repairs 871-7 paper 263, 268 plate shear modulus 264-5,

266-7 plate shear strength 264-5, 266-7 specimen geometry 263 stainless steel based 257 test method 263, 263 thickness 263 titanium based 257

Hoop stresses 621 winding, reinforcement 461 wound, rings 789

Horizontal drawing 299 tape wrapper 428, 428

Hot air blowers, wet lay-up repairs

865 extrusion

compression 298 MMC 291

oil jackets 499 pressing 314 spots, particulate fillers 242

Hot-wet service 99 HRDI optical bench 1017, 1018 HS carbon composites

shear modulus 1057 tension 1057

HT 972 (Ciba-Geigy) 55 HT 976 (Ciba-Geigy) 55 HT 9720 (Ciba-Geigy) 55 Hubble Space Telescope 967, 969 Humidity 3 Humphrey Chemical 57 HY 906 (Ciba-Giegy) 57 Hybridization, PET 233 Hybrids 795

aramid/graphite 354 composites, reuse 883 graphite/wood 354 materials 359 Spectral graphite 354

Hydraulic ejection, part removal 446 system, testing 782 test technique 782, 788

Page 38: TYPICAL PROPERTIES FOR APPENDIX A - Home - Springer978-1-4615-6389-1/1.pdf · 1054 Typical properties for advanced composites and 5-2 glass. Within each of these glasses are variations

1090 Index

liydrocarbons 37 liydrocodes 815 liydrogen

fuel storage 941 reduction 161

liydrogenation 179 liydrolic stability 38 liydrolysis

BMI 112 CE 112 degradation 888 resistance 41

liydrophobic, PET 230 liydrous aluminosilicate 244 liydroxyapatite (lIA) 958

dental applications 958 glass-reinforced 958

liygroscopic nature, GFRP 1006 Hygrothermal

definition 694 effects 694-5 load 695 properties 96

Kevlar 212 Hypersonic vehicles, materials for

973

ICBM equipment 375 Identical adherends 639 IM6/epoxy

engineering constants 699, 700, 701

longitudinal CTE 699 extension 701 strain 701 tensile modulus 699

Poisson's ratio 699 shear modulus 699 stiffness coefficients 702, 703 strength ratio 701 transverse

CTE 699 extension 701 modulus 699 strain 701

volume fraction 699 IM-7/PEEK, strength 125 Imidazoles 104 Imides, health effects 834 Impact

damage aircraft 858-9 carbon-carbon composites

334 GFRP 1006 tap testing 858

energy, thermoplastics 125 resistance, moisture 811

strength aliphatic system 70 flakes 249 testing 38

TEOS 346 Imperfections 780 Implants, biologic response 960 Impregnation

carbonized organic composites 340

powder 118 prepolymer 118

Impregnators, marine applications 919-20

In-mold coating (IMC) 385 In-plane shear

Kevlar 212 methods, testing 783 modulus, AS-4 carbon fiber 124

Incineration 888 nonrecyclables 899-900

Inclination angle, yarns 407 Inclusion of particulates, polymers

528 Inconel329 Industrial

equipment 951 hygiene 825-30, 827, 828, 829

order of priorities 828 pressure vessels, design

requirements 713 Indm.try, pulp and paper 45 Inert, PET 230 Inertia 3 Infiltration

carboni aluminum 303 fiber architecture 401 improving 300 isothermal gradient 338 of preforms 299 pressure gradient 338 pressure pulsation 338 spontaneous 300 technology 300 under pressure 299-300 vacuum 299-300

Inflatable bladders 874 Infrared thermography 850--1, 850,

851, 1059 aerospace 851 marine applications 851

Inhalation, measure by 824 Inhibitors, and initiators 382 Inhomogeneities, NDE 838 Inhomogeneous, composites 797 Initial rise 646,647 Initial tensile modulus

Armos 208 Kevlar 208

Nomex 209 SVM 208 Technora 209 Teijinconex 209 Twaron 208

Initiators, and inhibitors 382 Injection

cycle 442 gate 452 molded 380 molding 22,529,532

cavity filling 542 clamp 539-44, 540 crystallization kinetics 540 fiber orientation 543,543 fountain flow 542 particulate fillers 242 plasticating 538, 538 polymer 540 pumping section 538 rackets 1050 resins 122 screws 539 thermoplastics 116,526

ports 442-3 centred 451, 451 comer 451,451

pressure 444 RTM 433

pultrusion 497, 498 sensor controlled 452-3

Inplane shear 374 Inspection

bonding 668 composites 880 criteria 487, 838 disbonds 839 fiber placement 486-7, 487 first article 486 in-service 839 methods

adhesive joints 627 defects 733-4, 734

and nondestructive testing 1059 on-aircraft 849 paint surfaces 839 part 733 post cure 572-3 speeds 842 subsurface damage 839 times 839 ultrasonic 1059 visual 839, 839-40

Insulation foam 256 resistance, Skybond 95

Integrated, fiber architecture 401, 401

Inter-yam slip 448

Page 39: TYPICAL PROPERTIES FOR APPENDIX A - Home - Springer978-1-4615-6389-1/1.pdf · 1054 Typical properties for advanced composites and 5-2 glass. Within each of these glasses are variations

Interaction, constituents 801-2 Intercontinental ballistic missile

program 353 Interface, fiber/matrix 123 Interlacing patterns, braiding 415,

415 Interlaminar

fracture 682 shear 790-2

TEOS 346 shear strength

Celion 91 PMR-15 laminates 88

stresses 738 eliminating 801

tension, TEOS 346 Internal

bone fixation 957 friction background 296, 296 mold release 383

International Organization for Standardization 1066, 1067

Interphase, toughening 802 Invar

CTE 558 density 558 linear thermal expansion 705 thermal conductivity 558

Inverse method, contact 611 Ionic spraying 300 Ionizing radiation 816 Iosipescu shear test 790 Iron (electroformed), CTE 589 ISO standards, carbon fiber

composites 1067 Isophthalics 39

polyester blistering 918 marine applications 916 resins 504

resins 35,36 Isothermal

processing, CVI 317 thermal gradient, infiltration 338

Isotropic casting, short fibers 337, 338 layers, different moduli of

elasticity 744 materials 687 metallic tape, winding 468 nonwoven fabric 164 plates 614

Italian, talc 248-9,248 Izod

impact BMC 386,386 nylon 6/6 PCI-glass 899 PP and granulated SMC 897 recycled

NBC 897 PET 894 phenolic 894 PP 895,896 SMC 892,893

SMC 386,386 LPMC 386, 386 recycled, SMC 890 ZMC 386,386

Jamming 412, 417 angles 399

Japan bathtub manufacture 889 recycling 887,888,903

Japanese Industrial Standards 1065, 1066

Jeffamine T 403 (Texaco) 54 Joining 727-30,728,729

selection process 727, 728 thermoplastics 127 thermosets 127

Joints adhesive 517-18,610-63,627-63 bearing load 626 bearing strengths 618-19 bending failures 617, 617 bolted 611, 617, 617, 1015 bonded 658-9, 1015

step lap 627 and bonding 374 bypass load 626 clamping pressure 618 computer codes 624, 627, 630 design 728 dimensions 612, 649 disassembly 611,728 double shear 624 failure 615,618,618,626,659,660 fracture mechanics 631-2 geometry 613-17,613,628,629,

638-51 GFRP 1012, 1012 load magnitude 728 materials 618-19,618,619 mechanical response 630 mechanically fastened 610-63

advantages 517 d. adhesive 610-11

metallic 613 multi-fastener 612, 613, 619-24,

620, 621, 622, 623 multi-row 616 open hole coupon strength 626 predicting peak stresses 613 pure bearing load 626 scarf 611,623 selecting design 627 single fastener 612,612,613

Index 1091

single lap 626, 627, 729 single shear 624

bending moments 624, 625 step lap 645-6,645,649,650,651,

652,659 strength

experimental 616 predicting 615 tests 626

stress analysis 611 structural performance 613 test methods 626 two fastener 623 untapered 624

Kaolin calcined, hardness 244 particulate fillers 244

Kapton 820 Kardos' model 578, 583 Kerf

cutting 604, 606 width 606, 695

Kerimid 99 Ketones, health effects 836 Kevlar 108,472,598,761,1024

availability 217-18 breaking strength 214 charring 815 chemical

resistance 214 stability 214

colored 216 constituent properties 766-7 cutting 600 cycles to failure 213 decomposition temperature 206 density 206,503 dual-shell reflector 1004, 1004 E-glass 360 elastic

constants 210 modulus 205 properties 764-7

elongation at break 205, 208, 503 filament

diameter 206 shape 206

hygrothermal properties 212 in-plane shear 212 initial tensile modulus 208 linear thermal expansion

coefficient 206 longitudinal compression 212 longitudinal tension 212 machining 600 marine applications 917 melting 815

temperature 206

Page 40: TYPICAL PROPERTIES FOR APPENDIX A - Home - Springer978-1-4615-6389-1/1.pdf · 1054 Typical properties for advanced composites and 5-2 glass. Within each of these glasses are variations

1092 Index

milling 600 modulus and temperature 210,

211 moisture content 206 properties 205 references 774-7 refractive index 215 reinforcement 383 sources of information 221 specific

gravity 208, 383 heat 206 modulus 1049 strength 1049

strength retention 205, 215 stress rupture 212-13,213 tensile

failure 383 modulus 383,503 strength 208,383,503

and temperature 210, 211 tension-tension ratio 1049 thermal

coefficient 383 conductivity 206

transverse compression 212 tension 212

trimming 600 turning 600 twist 215-16 ultimates 210 weight loss 205

Kevlar / epoxy thermal data 818 weathering 813

Kinel99 Kinematics, laminates 690-1 Kinking 302 Kneaded molding compound 381 Knitted

glass fabrics 917 reinforcements 916-17

Knitting 402,402,408-13,409,410, 411,412

3-D fabrics 409 definition 408 design methodology 410-13 machines 409 multiaxial warp knit, see MWK stitch formation 409 unit cell geometry 411 warp 408, 409 weft 408,409

Kortex 108, 271 Kozeny constant 579 Kozeny-Carman equation 400, 422,

422,579 Kraft paper 268

Kulon 300 bending strength 305 carbon content 306 coating thickness 306 compressive strength 305 density 305, 306 elastic modulus 305 elongation at break 306 filament diameter 306 longitudinal CTE 306 specific modulus 305 strand properties 306 tensile modulus 306 tensile strength 305, 306

Labour requirements, pultrusion 489 Ladder polymer 178-9,178 Ladders

applications 936 pultruded 518

Lamina 687-9,688 allowables 759-62 definition 687 macromechanics 192-3 material

equations 760 properties 760

properties adjusting 763 estimating 761-2 references 772-3, 774-7 three-dimensional 761 two-dimensional 760-1

thickness, structural hierarchy 778

Laminar discontinuities 843 fiber architecture 401,401

Laminated plate theory 689, 690-2 structures 585

Laminates advantages of 322 allowables 762 analysis of 11 balanced 194, 693 bending 730 boundary conditions 689 carbon-epoxy 669 coefficient of thermal expansion

322 compressive strength 616 cross-ply 322 deformation 691 design 686-708 elastic properties 322, 764-7 engineering constants 693 failure criteria 695-7 failure in tension 696

fiberglass 356 D\16/epoxy 699,700,701 kinematics 690-1 linear bending 749-50 load carrying capability 696 loads on 689, 693 macromechanics of 193-4 mechanical properties 717 nonsymmetric 752 off-axis stiffness 689-90 with plies 697 ply angle 689,689 ply stacking sequence 692 quasi-isotropic 9-11,697 reinforced 321-3,321,619 resulting strain state 693-4 selection, carpet plots 720 skin 694 stacking sequence 616,630 stiffness matrix 693 strength 695,696,764-7

ratio 696 stress

patterns 322 resultants 691-3

symmetric 194,692,749 thermal stresses 322,589 void free 588

Land transportation 905-15 economics 905-6,906 history 906-8, 907 market growth 905-6,906

Landfill, nonrecycIables 899-900 Lap joints 638-44

abrasive cleaning 872 failure characteristics 643 peel stresses 637-8,637,638 single 640, 641 symmetric 639

Laptop computers 942 Large Area Composite Inspection

System (LACIS) 842, 842 Large diameter, PAN 180,181 Large power yachts

blister protection 921 displacement hulls 922 female tooling 921 hand lay-up 921 marine applications 921-2 variable mold 921

Laser beam 601 heated floating zone, see LHFZ machining 605 shearography 853, 853

immunity to vibration 853 Lateral

cohesion 184 compression tests 449

Page 41: TYPICAL PROPERTIES FOR APPENDIX A - Home - Springer978-1-4615-6389-1/1.pdf · 1054 Typical properties for advanced composites and 5-2 glass. Within each of these glasses are variations

deflections 642 bond stresses 640

Lathes, CNC 597 Lattice

fringe imaging 186 structures 743,744

Lay-up 15, 16 carbon-carbon composites 342 contoured tape 16 cornertechrUques 373 filament 457 flat tape 16 manual 16 molds 566-7 operation 576 sequence, carpet plots 719 wet 353,355

Layer reinforced, carboni aluminum 304

Layered, adherends 646 Layers

coordillates 740,746 orthotropic 742

LOEF 970-2, 970, 971, 972 composite specimen testbed

970-1 orientation ill orbit 971

Lead powders 249 Leaf springs 910,910

Liteflex 910 Leak paths, aircraft 859--60 Leakage 456 Legal aspects, recycllllg 902-3 Length

to diameter ratio, aramid fibers 204

whiskers 308 LEO 813-17 Lewis

acids 50-1,60--1 bases 50-1,60--1

LHFZ, directional solidification 160 Life expectancy, tools 559 Light

aircraft 1024 grit-blasting 668, 670, 671

alumllla grit 675, 676 machllle 677, 677

liquids, adhesives 275-6 weight, reinforced composites

387 Lighting poles 948-9, 948 Lightweight fillers, particulate 249 Limitations, aramid fibers 207 LIMS 447, 453 Lilldau 59 Lille source 453 Linear

bendlllg 745-7

lamillates 749-50 cutting, machllllllg 602 elastic response to failure 615 fiber architecture 401,401 thermal expansion

aliphatic system 70 alumillum alloy 705 aromatic system 71 concrete 705 Invar 705 steel 705 titanium alloy 705

thermal expansion coefficient carbon--carbon composites

333 Kevlar 206 Nomex 206 Technora 206 Teijillconex 206 Twaron 206

yarns,lllsertion 410,410 Llllkages, flexible 75 Liquid

illjection moldlllg simulation, see LIMS

processillg 314-16 stage, MMC 291 waste 889

as fuel 889 Lithium alumino silicate (LAS) 318 LMOs 179, 182

size of 179--80 Loading

conditions 736 history, remallllllg strength 804 levels, particulates 528 methods 779

selecting 787 sections, test specimen 786 slow cyclic 627 stress, adherends 642

Loads bypass vs. bearillg 620,620 carryillg capability, lamillates 697 direction of 779 distribution 621 enhancement 655 fastener, variable 622 hygrothermal 695 measuring 779 path eccentricity 637, 637

sillgle lap joillt 637, 637 transfer 610

Local molecular order, see LMOs Localised, microbuckllllg 800 Logging 3 Long Duration Exposure Facility; see

LOEF Long-term

Index 1093

loadillg 213 microcrackillg 801

use temperature 206 Longitudlllal

bendillg 747 compression, Kevlar 212 CTE

IM6 I epoxy 699 Kulon 306 M401/F854 699 PBO fiber 238

extension, IM6/epoxy 701 ply wavilless 432 straill, IM6/epoxy 701 tensile modulus 699 tension

Kevlar 212 test 688

Loomcomponents 942 Lot-to-Iot variation

tensile modulus 725 tensile strength 725

Low bendillg stiffness, FRP 960 cost parts, RTM 433 density

composite tools 592 polyethylene, viscosity 528

K-glass 134 pressure

grit blasting 631 moldlllg compound, see

LPMC temperature, fatigue 811 toxicity; thermoplastics 115 viscosity, ZMC 380 void, composites 79 voltage anodizillg, metal surfaces

871 Low-earth-orbit, see LEO LPMC 381

flexural modulus 386, 386 flexural strength 386, 386 formulation 384 IZOO 386, 386 shelf life 381 specific gravity expansion 386,

386 tensile modulus 386, 386 tensile strength 386,386 thermal coefficient 386, 386

Lubricants, fiberglass 146-7

M60Jtape mechanical properties 718 strengths 718

M401/F854 CTE 704

longitudillal 699

Page 42: TYPICAL PROPERTIES FOR APPENDIX A - Home - Springer978-1-4615-6389-1/1.pdf · 1054 Typical properties for advanced composites and 5-2 glass. Within each of these glasses are variations

1094 Index

transverse 699 longitudinal tensile modulus 699 Poisson's ratio 699 shear modulus 699 transverse modulus 699 volume fraction 699

m-phenylenediamine (MPD) 55, 76 McDonnell Douglas

Bea AV-8B, material usage 1032 C-17A, composite applications

1033 F / A-18E/F, material usage 1031 MD-11, composite structure 1036,

1037 Machinery, marine applications

925-8 Machines

caterpillar type 502 dual mandrel stations 477, 478 fiber placement 478 light grit-blasting 677, 677 tools 363-5

MachWning 363-5,364,596-608 abrasives 606 advantages 596 aramid fibers 222 characteristics 596 closed loop 364--5, 364 drilling 602 electric discharge 605 graphite composites 599 Kevlar 600 linear cutting 602 milling 602 PET 233 requirements 602 turning 602 ultrasonic 605-8

Macromechanics, of laminae 192-4 Maglev 979

train guideways 943 Magnamite 1054 Magnesium oxide, particulate fillers

250 Magnetic transparency 983 Mahogany

CTE 558 density 558 thermal conductivity 558

Maleic anhydride 35 isomerization 35 melting point 58

Mandrels 429,459,464--6, 46S basic requirements 465 collapSible 466 cone-shaped 482, 483 dissolvable materials 465 electroformed nickel 591 fusible materials 465

graphite 464 instrumented 468 low cost materials 464 metallurgy 429 pressure on 468 puller 428 removable 464-5 removal 466, 467 selection 465 spider/plaster 466 surface 591 table rolling 429 tensometric 468 water-soluble sand 465-6

Manufacturers continuous fibers 162

ceramic 309 fibers 158 PAN-based tow 198 pitch-based tow 199 staple 162 whiskers 158, 162

Manufacturing 6 aramid fibers 203-4 boron 156-7 ceramic fibers 156-7 deficiencies, adhesive joints 611 extended chain PET fibers 223-4 fibreglass 132 high silica 156-7 options 22 quartz 156-7 SMC 381

Marine applications 916-28

adhesives, paste 918 America's Cup yachts 922 blistering 918, 918 buoys and floats 927--8 cables 927 concrete forms 925 control surfaces 924 cores 917-18 decking 925 diving equipment 926-7, 926,

927 environmental effects 918-19 fabrication 919-20 fallings 923-4, 923, 924 filament winding 920 future developments 928 hand lay-up 919-20 impregnators 919-20 isophthalic polyester 916 Kevlar 917 large power yachts 921-2 machinery 925--a microbial degradation 919 mine counter measure vessels

920-1 oil platforms 924-5, 925 phthalic anhydride 916 piping systems 926 pressure hulls 922 propulsion shafting 925 reinforcements 916-17 resins 916

transfer molding 919-20 shipboard armor 925 small boats 921 sonar domes 922 Spectra 917 vacuum bag processing

919-20 vinyl esters 916

bacteria 919 construction 994 fouling 810-11 laminates 920 submersibles, design

requirements 713 Market growth, land transportation

905-6,906 Mass transit applications 914 Master models 563-6, 592

fabricating materials 563 storing 563

Mat 164 chopped strand 138, 155 continuous strand 138 fiberglass 137-8 surface 138

Matched die, molding 361 Materials

anisotropic 687, 688 cost, GFRP 1006 definition 731 density, X-ray backscattering 846 description 731, 731 difficult to roll 430-2 fabrication 786 isotropic 687 monolithic 460 preliminary design 715-22 procurement costs 722 properties 736

definition 709 T50 graphite 724, 724 T50/F584 epoxy 726, 726

property, equations 760 quality 780 quasi-isotropic 687 selection 45, 712

applications aerospace 1009 construction 982

tools 559 specification 722

Page 43: TYPICAL PROPERTIES FOR APPENDIX A - Home - Springer978-1-4615-6389-1/1.pdf · 1054 Typical properties for advanced composites and 5-2 glass. Within each of these glasses are variations

table rolling 429-30 weights 1027 wet lay-up repairs 867 for winding 458-9

Matrix 28 adhesion 215 cracking 319,798

rate of 806 cracks

NDE 854 X-ray imaging 844

crosslinking 460 definition 378 formulation 101-5 materials 356--8

ceramic composites 311-12 polyester 28 systems 4--6

moisture absorption 5 thermosetting 28 transfer molding 315 vinyl ester resins 28

Maximum bond

peel stress 642,642-3,644 shear stress 642-3, 644

service temperature 258 stress

anhydride-cured system 72 aromatic system 71

Maypole machines, braiding 413, 414

Measuring displacements 779 loads 779 strains 779

Mechanical fastening 727 joints, design process 729 pressure 874 properties

aramid 207-13,208-9,209, 210, 211, 212, 718

carbon-carbon composites 344-5,345

extended exposure 215 fiberglass 135 laminates 717 M60J tape 718 P100 tape 718 T300 fabric 718 and weave pattern 152

strength 111 tests 778-92

Mechanically fastened

joints 610--63 disadvantages 517

repairs 877

resistant, gloves 829 Mechanics 18,18 Median lethal dose 824 Medical applications 943-4, 944,

957--M coatings 957 fillers 957 polylactids 957 polyorthoesters 957 strength retention 957

Melt extrusion, PET 224 flow index, see MFI impregnation 117,118 infiltration 315 pumping, extrusion 534-5,535 spun, Vectran 235 stretching 529-30

Melting aramid fibers 205 extrusion 534 point

carbon-carbon composites 333

ceramic composites 312 4,4' -diaminodiphenylsulfone

(DDS) 55 PET 225 recycled NBC 897 S-glass 24

temperature see also Tm ceramics 307, 311 Kevlar 206 Nomex 206 Technora 206 Teijinconex 206 Twaron 206 Vectran 235

Mesophase injection 176 pitch, precursors 335,336

Meta-aramids cost of 205 crooked chain 205 manufacture 203-4

Metal matrix composites, see MMC molten 812 repairs, aircraft 857 surfaces 871

Metallic devices, total hip arthroplasty

960 joints 613 oxides, fillers 527

Metallurgy, mandrels 429 Metals, costs 717 Meteoroids 814-15

density 815 impacts

angle of 815

Index 1095

space 814-15,814,815 Whipple-type shield 814-15,

814 size of 815 velocity 815

Methacrylic acid 40 Methanolysis, degradation 888 Methylene chloride 812 4,4'-methylenedianiline (MDA) 55,

76 Methyltetrahydrophthalic

anhydride, melting point 59 MFI 529 Mica 245--6

fillers 527 Microbial degradation, marine

applications 919 Microbuckling 799-800, 800

aramid fibers 207 localised 800

Microcracking 323-4,323,797-8, 798,801,1011-12,1012

cyclic loading 801 elastic stress-strain 798 eliminating 1012 GFRP 1006 long term loading 801 minimizing 1012 stiffness changes 796

Micromechanics 191-2,796-7 Microspheres 246, 248

hollow 246 particulate fillers 246 types of 246

Microstructures 803 flat-layer 177 onion-skin 177 radial 177 random 177

Microtexture and electrical resistivity 189 and tensile strength 188 and Young's modulus 189

Microwaves radome wall 113 testing 853 transparency 109

Migration 577 Military

aircraft certification requirements

1023 components 1030-5

applications 914-15 specifications 1062, 1064

Milling 596-7

Page 44: TYPICAL PROPERTIES FOR APPENDIX A - Home - Springer978-1-4615-6389-1/1.pdf · 1054 Typical properties for advanced composites and 5-2 glass. Within each of these glasses are variations

1096 Index

AWJ 604 ball or hammer 886 climb 596 disadvantages 597 dust particles 597 Kevlar 600 machining 602 with polycrystalline diamond

596 recycling 886-7 square pockets 604

Mine counter measure vessels 920-1 Minimizin~ microcracking 1012 Minor damage

aircraft 859 dent fillers 859

Minor impact resistance, reinforced composites 387,388

Mix viscosity, resin 441 ~C 27,291-306,944-5

alumina/ carbon 291 applications 1005 boron/aluminum 299 by hot extrusion 291 carbon reinforced 291 continuous casting 298-9 cross sections 298, 298 liquid stage 291 production 291 recyclability 944 solid stage production 291 solution sedimentation 291

Mobile storage 945 Modulus

adherends 643 and density 23 of elasticity

aliphatic system 70 anhydride-cured system 72 aromatic system 71 carbon-carbon composites

333 and conductivity 186 fiberglass epoxies 153 plied-yam 151 S-glass epoxies 152 single-yam 151 yam distribution 154

quasi-isotropic 12 of rupture, ceramics 312 5-glass 24 transverse 12

Mohs ratings 251-2 Moisture 811-12

absorbancy adherends 630 RTM 440

absorption 695,811 aramids 26, 221

CE 107 epoxy resins 29 PET 224 PMR-1582 resins 440 tooling 561

barrier removal, aircraft 863-4 contamination, X-ray imaging

858 content 206 debonding 811 desorption 817 detectors 858 diffusion, GFRP 1007-8 effects 96 fracture toughness 811 glass transition temperature 811 impact resistance 811 prebond 670 regain, PBO fiber 238 resistance, PBO fiber 238 transverse strength 811 vs. time, P755/cyanate 1010

Moisturizers 829-30, 830 Molded surfaces 392 Molded-in

color, reinforced composites 388 threads 392

Molding autoclave 367 autoclave/oven 361 bag 366-72,368,369,370,371 bleeder ply 584--6, 585 blovv 529-30,529,532 compounds

applications 945-6 BMI 114

compression 127, 365, 384, 545 enclosed 366 matched die 361 matched metal compression

378-88 negative draft 366 oven/press cure 366 preparations 361-2 pressure 385, 545

bag 367 resin transfer 374,492

see also RTM sheet 374 thermal expansion 365-6, 365,

366,593 vacuum 385

bag 361,366,577 waste 374

Moldless construction 257 Molds 441

aluminum 361 backing up 442

cavity design 442 closing 385,442

speed 385 construction 447 design 362 dual steel 361 elements of 541 filling 385,442,444-5

pressure during 452, 452 simulation 450-1

graphite-epoxy 590 maintenance 361 making 390,390 materials 441-2 metal 441 polymeric composite 441 preparation 442 release 361,362,428,429-30,514

problems and solutions 568 secondary 430

RTM design 441 sealing 443 shrinkage

nylon 6/6 PCI-glass 899 recycled NBC 897

steel 442 selection 393

stops, compression molds 395 stresses 392-3 temperature control 541

Molecular arrangement 133 characteristics, rotational

molding 551 orientation 27 vveight, thermoplastics 116

Molybdenum disulfide, fillers 527 Moment of inertia, formulas 285 Monobands, sealed 304 Monofilaments 164, 307

reinforcements 311, 311 Monolithic

graphite 559,561,562-3 coefficient of thermal

expansion 558 density 558 low CTE567 thermal conductivity 558

material 460 Monolithicity

loss of 469 thick-walled structures 456

Monomers BMI100 ratios 79 reactive 34, 37

Montana talc 248-9, 248 Morphology, resins 505 MPDA/MDA, viscosity 56

Page 45: TYPICAL PROPERTIES FOR APPENDIX A - Home - Springer978-1-4615-6389-1/1.pdf · 1054 Typical properties for advanced composites and 5-2 glass. Within each of these glasses are variations

~ullite 313,314,318 heat treatment 310

~ulti-fastener joints 619-24, 620, 621, 622, 623

Multi-rowed, fasteners 620 Multifilament, continuous 28 ~ultilayer locking, continuous fiber

338 ~ultiple

gates 444 ply angles 19-20 stage drawing, PET 224

~ultiwarp, weaving 406 ~usical instruments 946 ~utagenicity 824 ~WK

3-D 409,410 LmA system 411

MY 0510 (Ciba-Geigy) 53 MY 720 (Ciba-Geigy) 53 Mylar

film sheet 574 template 487

N, N, N', N'- tetraglycidyl methylenedianiline 53

N/C ratio 182 Nadic methyl anhydride (NMA) 57 Nanoporous, carbon fiber 183 NASA standards 1063, 1064 NASP 972, 972, 974 National Aerospace Plane, see NASP Natural composites

cartilage 958 cortical bones 958 dentin 958 wood 958

Nd-YAG applications 605 solid state laser 605

NDE 733,838-55 blown core 854 bondline adhesive voids 854 condensed core 854 core 854 damage inspection 854 deep delamination 854 degradation 838 disbonds 854 fiber breaks 838,854 foam adhesive voids 854 foreign material 838, 854 inhomogeneities 838 matrix cracks 854 porosity 854 records 733 shallow delamination 854 test methods 733-4, 734 water intrusion 854

Neat polymers, shrinkage 541 Nepheline 243-4

chemical resistance 243-4 oil absorption 244 particulate fillers 243-4 refractive index 243-4 syenite 244

Neutral hydrolysis 887 Neutron radiography 847-9, 848

field inspections 848 military aircraft 849

New York, talc 248-9, 248 Nextel 309, 309, 310, 316, 403

312 fiber 159

Nibbling 601 Nicalon 310-11,311,316,318 Nickel 249

coating 292 electroformed, CTE 589 powder 250 vapor-deposited coating 819

Nitride, coating 296 Nitrogen release, and tensile

strength 182 Nomex 203-4,269

compressive strength 272, 273 cores 270 decomposition temperature 206 density 206 elongation at break 209 filament 206 initial tensile modulus 209 linear thermal expansion

coefficient 206 long-term use temperature 206 melting temperature 206 moisture content 206 plate shear

modulus 272, 273 strength 272, 273

specific gravity 209 specific heat 206 tensile strength 209 thermal conductivity 206

Nominal thickness, reinforced composites 390, 391

Non-aerospace, applications 935 Non-functional, fillers 382 Non-metallic core removal 862 Non-symmetric

bending, testing 783 deformation, cylindrical shells

754-5 laminates 752

Noncomposites 166 Nondestructive

evaluation, see NDE testing, and inspection 1059

Index 1097

Nonlinear, bending 747 Nonrecyclables

disposal of 899-900 incineration 899-900 landfill 899-900

Nonwoven fabrics 402, 402 textiles 418-20

3-D technology 418 design methodology 419 orthogonal 3-D 418,419, 420 processing 418 structural geometry 419

Normalization 721 compression strength 721

Notation, stacking sequence 619 Notched fatigue behavior 802 Novolac resin

homopolymer property 102 structure precursor 102 supplier 102 trade name 102

Novoltex 418, 418 NR-150

char yield 82 chemistry of 77, 78 density 82 elongation 82 flex modulus 82 flex strength 82 fracture toughness 82 neat cured 82 Rockwell hardness 82 tensile strength 82 T 82 t6ermal expansion 82

Nuclear magnetic resonance (~R) 982

Nylon 6/6 PCI-glass elongation 899 flexural modulus 899 flexural strength 899 glass content 899 izod impact 899 mold shrinkage 899 tensile strength 899

Nylon modulus and temperature 210,

211 peel plies 673

imprint 682 tensile strength and temperature

210,211 weld line strength 544

O-rings 443, 953 nitrile rubber 443

Observed life, AS-4/PEEK(APC) 806,807

Page 46: TYPICAL PROPERTIES FOR APPENDIX A - Home - Springer978-1-4615-6389-1/1.pdf · 1054 Typical properties for advanced composites and 5-2 glass. Within each of these glasses are variations

1098 Index

Octyl, decyl glycidyl ether blend, viscosity 61

Off-axis tension, testing 781 Oil

absorption nepheline 243 number, particulate fillers 251

containment, Spectra 233-4 and gas

applications 946-7,947 industry, pultrusion 521

platlo~ 924-5,925 One-dimensional

consolidation equation 584 flow, compression molding

583-4,584 stress analysis 627

One-sided, pulse-echo testing 842 Onion-skin, microstructures 177 Opaque, aramid fibers 221 Open core evacuation, aircraft 865 Open hole coupon strength, joints

626 Open packing 403, 403 Open unloaded holes 614 Openings 373,373 Operational requirements 737 Optical properties

aramid fibers 215 fiberglass 135

Organic solvents, thinning 65 Orientation angle, yarns 412 Orifice plates 495 Orthogonal nonwoven fabrics 163,

164 Orthopedic applications 95~

FRP 959 hydroxyapatite (HA) 958 PMMA 962

Orthophthalics 35,39 polyester, blistering 918

Orthotropic layers 742

nonzero stiffness 742,743 thermal coefficients 742

plates, critical load 751 Outgassing

measuring 817 and vacuum 817

Oven/press cure, molding 366 Ovens, with thermocouples 429 Overheat, environmental exposure

860-1 Overshoots 531 Oxidation

PAN-based fibers 818 resistance 818

carbon-carbon composites 333

4,4'-oxydialinine (ODA) 75,76

P75S/cyanate, moisture vs. time 1010

Pl00 tape mechanical properties 718 strengths 718

p-t-butyl phenyl glycidyl ether, viscosity 62

PA6, 6, water absorption 127 Packages

style of 493-4, 493 weight 494 wound 493

Packing fraction 531-2 interfiber 403 powder processing 313 pressure 539

Paintsurface~Unspection 839 PAN 25,169,171-3,172

anisotropicity 185 cyclization 172 cyclized 179, 181 dry spinning 175 large diameter 180, 181 modified polymers 175 molecule structure 172 spinning 175 stabilization 172, 177-80, 178, 179 stabilized, thermal degradation

181 wet spinning 175

PAN-based fibers density 170 elastic modulus 170 fracture elongation 170 oxidation 818 tensile strength 169, 170

PAN-based tow manufacturers 198 trade names 198

Para-aramids available 203 creep 212 fatigue 213 stress rupture 212

Para-phenylene terephthalamide 26 see also aramids

Parallel axis theorem 694 Part

consolidation 386 ejection 385 geometry 526,530 inspection 733

methods used 733-4 removal 446

hydraulic ejection 446 system 541

shape, and tooling 589-94 slippage, during cure 432

Particle accelerators 976-9,977,978 size

clay 244 distribution, rotational

molding 551 Particulate fillers

abrasion 252 alumina trihydrate 245 aluminum oxide 250 antimony oxide 244-5 calcium carbonate 243, 247 carbon black 245 clay 244 common 243-6 cost 242 definition 242 electrically conductive 250 elongation at failure 252-3 end uses 253 feldspar 243-4 fire retardants 249 flakes 248

orientation 252 graphite 245 hardness 251 health hazards 252 high

density 249 hardness 249-50 thermal conductivity 250

hot spots 242 injection molding 242 kaolin 244 lightweight fillers 249 low density 243 low friction 250 magnesium oxide 250 mica 245-6 microspheres 246 natural 246 nepheline 243-4 oil absorption number 251 organic 243 packing 252 production 246-8,247 shrinkage 242, 252 silica 244 specific 243 surface

properties 250-1 treatments 250

synthetic 246 talc 246 thermal conductivity 242 toxicity 252 types of 242-3

Page 47: TYPICAL PROPERTIES FOR APPENDIX A - Home - Springer978-1-4615-6389-1/1.pdf · 1054 Typical properties for advanced composites and 5-2 glass. Within each of these glasses are variations

use of 242 Particulates 307

flow, d. fiber flow 530 inhaling 827 rrregularshaped 249 loading levels 528 radiation 816

Parts, RTM process 762 Pastes, adhesives 275--6 Patterns 362-3

control 463-4 PBI 237,237

chemical resistance 237 chemical warfare applications

237 solvent resistance 237 structural formula 237

PBu\ 203,203,205 PBU\-based fibers, SVM 210 PBO 26-7

elongation at break 235 fiber 236,237-8,237 specific gravity 235 structural formula 237 tensile modulus 235 tensile strength 235

PDI fibers, sources of information 236

Pedestrian bridges 991-2, 992, 993 PEEK 31,120

glass transition temperature 812 Peel

plies 668, 669 bonded joints 669 dry 672 evaluation 670 imprint 678

nylon 682 sanding 680

nylon 673 polyester 681, 681 preimpregnated 672 removing 683 silicon transfer 670 surface preparation 683, 870

strengths adhesives 274-5 GFRP 1006

stress 629,631,637-8,637,638, 647,655,662

adhesives 628 eliminating 644-5 lap joints 637-8, 637, 638 linear variation 643 maximum bond 642 reducing 644-5 tapering 646

PEKK 31 PEL 825,826

Penetration 814 Percolation 547

matrix 548 Perlite 249

low cost 249 Permeability 399-400, 1000

axial 579 bleeder 581 composite layer 581 and fiber volume fraction

399-400,400 preforms 438, 439, 449, 578-9

Permeation barrier 918 Permissible exposure limits, see PEL Peroxides 382 Personal protective equipment 828 PET 35,120

ability to float 225 abrasion resistance 224, 226, 233 anisotropy 224 applications 230,233-4 artificial ligaments 234 availability 231 axial orientation 224 chain folding 224 characteristic temperatures 121 chemical resistance 224, 230 cleaning 230 creep resistance 227 crystallinity 223, 224 degradation 889 design 232-3 dielectric constant 224 durability 233 dyeing 233 energy to break 227 exposure to moisture 227 fatigue resistance 230 fibers, extended chain 202 filament 225 filter cloths 233 forms 231 gel-spun 225--6 handling 233 high strength 233 hybridization 233 hydrophobic 230 inert 230 machining 233 melt extrusion 224 melting point 225 moisture absorption 224 multiple stage drawing 224 non-conductive 231 non-woven 234 processing temperatures 233 recycling 883 for reinforcing 234 resin penetration 233

Index 1099

scrap 36 seawater resistance 233 shear modulus 120, 120 sources of information 232 specific

gravity 224 modulus 224 strength 224

stiffness-to-weight ratio 223 strength retention 227 strength-ta-weight ratio 223 structure 224,224 surface treatments 231-2 sutures 234 use temperature 225 UV

resistance 224,230,233 stability 233

Phase locked loop, holography 852 Phenolics 504-5

adhesives 255 compressive strength 258 density 258 health effects 834 maximum service temperature

258 polypropylene, density 258 pulling 504-5 pultrusion grades 505 resins 268, 504 resistance to fire 505 shear modulus 259 shear strength 259 SMC 382 spall liners 914 tensile strength 258 thermal conductivity 259

Phenoxides allyl functional 101 propenyl functional 101

Phenyl glycidyl ether (PGE), viscosity 62

Phosphoric acid anodized, aluminum foil 820

Phthalic anhydride 35 chemical resistance 35 marine applications 916 melting point 57 thermal stability 35

Physical properties aramid fibers 205-7,206 graphite/epoxies 4

Pick-up trucks 936-7 Pigments 516

inorganic 516 titanium oxide 516 zinc sulfide 516

Pins, FRP 959 Pipelines 466

Page 48: TYPICAL PROPERTIES FOR APPENDIX A - Home - Springer978-1-4615-6389-1/1.pdf · 1054 Typical properties for advanced composites and 5-2 glass. Within each of these glasses are variations

1100 Index

rehabilitation 948 Piping 936

systems 926 Pitch 175-7, 176

fibers 169,352 graphitized 183

flow through spinneret 177 forming coke 173 mesophase 176 precursors 173

carbon yield 197 treatments 173-5,174

pretreatments 173, 197 softening 197 spinning conditions 175-7, 176 stabilization 177 stirring 177

Pitch-based fibers 170 density 170 elastic modulus 170 fracture elongation 170 tensile strength 170

Pitch-based tow manufacturers 199 trade names 199

Placement, on mold 384-5 Plain

strain 801 weave 140,145,405,406

biaxial 399 fiber volume fraction 408, 408 triaxial 399

Planar flaws 840 Plane

source 453 stress, stiffness 689

Plasma assisted CVD (PACVD) 316 Plasma spraying 300 Plaster masters 564-{;, 564

follow board method 565, 565 NC machining 566 sweep method 565-6 template method 564-5

Plasters, breakout/washout 465 Plastic faced plaster 567, 573

preparing 573 Plastic zones 654 Plasticating 538

extrusion 534, 535 injection molding 538, 538

Plasticization 107 moisture 112

Plastics, recycling 883 Plate

elements 621 reinforced, carbon/aluminum

304 shear modulus

honeycomb 264-5,266-7

Nomex 272,273 shear strength

honeycomb 264-5,266-7 Nomex 272, 273

stiffness 622 thickness 790

structural hierarchy 778 Platelets 307 Platens, heated 499 Platforms 989

fiberglass 989 well bay 989,990

Pleating 547 Plied-yam

compressive strength 151 count 151 flexural strength 151 modulus of elasticity 151 tensile strength 151 warp 151 weave 151

Plugs 362-3 Ply

alignment 689 angle 699-700 boundaries 481-2,481 locating, templates 574--5 orientation 9,10-11,374

interspersing 19 properties 8,737 reinforcement 730,730 sequence, table 732 shape 481-2,481,482

generating 481 stacking sequence 692 strength 745

Plycosite 255 PMC

decontamination 863 evacuation 863

PMDA/ODA polyimide 76 PMMA

fatigue resistance 959 orthopedic applications 962

PMR-1580 air aging 89 chemistry 79-80, 79 compressive strength 82 density 82 elongation 82 fracture toughness 82 laminates 88, 89 moisture absorption 82 neat cured 82 processing 84 tensile modulus 82 tensile strength 82 T 82 ~ermal expansion 82

PMR-ll d. PMR-15 90, 93 chemistry of 80-1,80 processing conditions 84-5

PMR-ll-50 flex strength 92 PMR-ll-30 90 reinforced 90

Poisson's ratio 19,698 ceramic composites 312 IM6/epoxy 699 M401/F854 699

Polar backscatter, ultrasonic 843 Polar winding 461-2,462 Poly (p-phenylene benzobisoxazole)

seePBO Poly (p-phenylene benzobisthiazole)

see PBT Poly-2, 2' -m-phenylene-5, 5'­

benzimidazole, see PBI Poly-m-phenylene isophthalamids

203,203 Poly-p-phenylene terephthalamide,

seePPTA Poly-p-phenylene-benzimidazole-

terephthalamide, see PBIA Polyacrylonitrile, see PAN Polyaluminoxane 159 Polyamide 6,6, characteristic

temperatures 121 Polyamide 12, characteristic

temperatures 121 Polyamide-imides

chemical name 121 processing temperature 121 structure 121 suppliers 121 T 121 r:. 121 trade name 121

Polyamides characteristic temperatures 121 health effects 832, 833

Polyaminoamides, health effects 832,833

Polyarylene ether chemical name 121 processing temperature 121 structure 121 supplier 121 T 121 r:. 121 trade name 121

Polybutylene-terephthalate, characteristic temperatures 121

Polycarbonate, weld line strength 544

Polycrystalline diamond, milling

Page 49: TYPICAL PROPERTIES FOR APPENDIX A - Home - Springer978-1-4615-6389-1/1.pdf · 1054 Typical properties for advanced composites and 5-2 glass. Within each of these glasses are variations

596 Polyester 28, 34--9

characteristic temperatures 121 chemical name 121 cure rate 509 density 505 elongation at break 505 flexural modulus 505 flexural strength 505 glass fiber reinforced 28 heat distortion 505 linear 34, 34 modulus and temperature 210,

211 peel plies 681, 681 polyarylate 235 processing temperature 121 reinforced 442 resins, shut down 515 shrinkage 507 structure 121 supplier 121 tensile modulus 505 tensile strength 505

and temperature 210, 211 T 121 r:, 121 trade name 121 unsaturated 35

Polyether ether ketone, see PEEK Polyether ketone ketone, see PEKK Polyetherimide, flexural modulus

545,546 Polyethylene

recycling 883 terephthalate, see PET

Polyglycidyl ether of o-cresol­formaldehyde Novolac

melting point 52 viscosity 52

Polyglycidyl ether of phenol­formaldehyde Novolac

viscosity 52 Polyimide

addition chemistry 78-81 aromatic 75 binder solutions 76 chemical name 121 compression molding 545 condensation 78 epoxy resins 6 precursor solutions, see binder

solutions processing temperature 121 structure 121 supplier 121 T 121 r:,121 trade name 121

Polymers composites 378

properties 385-6,386 resin 382

compound grades 525 crystalline 118, 120 economics 525 extrudate swell, injection

molding 540 fire retardant 42-5 frictional coefficients, injection

molding 540 inclusion of particulates 528 major processes 526 matched metal dies 546 matrix composites

see PMC grinding 600

matrix lamina, fiber fracture 799 melt compressibility, injection

molding 540 melt fracture potential, injection

molding 540 polymerization

condensation 75-6 shrinkage at 515

pressure dependent shrinkage, injection molding 540

processes 529, 532 unit costs 532

processing 525 properties, blow molding 550 rheological concerns 525 selection 525 semi-crystalline 534

processing temperature 120 shear sensitivity, injection

molding 540 thermal properties, injection

molding 540 thermoplastic, adducts in 526 thermoset 34 viscosity, injection molding 540

Polymethylmethacrylate, see PMMA Polyolefin 549

characteristic temperatures 121 Polyorthoesters 957 Polyoxymethylene

cupping 541 shrinkage 541 warping 541

Polyphenylene sulfide, see PPS Polypropylene

see also PP and acrylic acid 251 characteristic temperatures 121 mica-reinforced 253 phenolics 258 shear modulus 259

Index 1101

shear strength 259 thermal conductivity 259 viscosity 530, 531 weld line strength 544

Polysulfone see also PSU chemical name 121 flexural modulus 546 processing temperature 121 structure 121 supplier 121 T 121 r:, 121 trade name 121 weld line strength 544

Polytetrafluoroethylene, see PTFE Polyurethane

coatings 813 compressive strength 258 density 258 health effects 834 maximum service temperature

258 shear modulus 259 shear strength 259 tensile strength 258 thermal conductivity 259

Polyvinyl chloride compressive strength 258 density 258 maximum service temperature

258 shear modulus 259 shear strength 259 tensile strength 258 thermal conductivity 259

Pontoon pier 995 Poor bonding, adhesive joints 611 Porosity 90,300,630-1

bond layer 656 NDE 854 preform 439 X-ray imaging 844

Ports and harbors 949 Post-curing 84--5,385,446-7,589 Post-fabrication 732-3 Post-processing 446-7 Post-tensioning 986, 987

anchors 987 Pot life 66,510,510

anhydride-cured system 72 NMA 66 resins 440,513

Potassium alurninosilicate 245-6 metaphosphate 957

Powder alloys 300 consolidation of 343

Page 50: TYPICAL PROPERTIES FOR APPENDIX A - Home - Springer978-1-4615-6389-1/1.pdf · 1054 Typical properties for advanced composites and 5-2 glass. Within each of these glasses are variations

1102 Index

impregnation 118 processing

ceramic composites 312-14, 313,314

packing 313 sintering 343

Powdered amorphous thermoplastics (TPs) 105

Power poles 948-9,948 shears 426 trowels 461

Powertrain applications 911-12, 911, 913

PP and granulated SMC elongation 897 flexural modulus 897 flexural stress 897 izod impact 897 tensile modulus 897 tensile stress 897

PP IPCI-glass glass content 898 strain at break 898 tensile modulus 898 tensile strength 898 yield stress at break 898

PPD 81 PPS 31

weld line strength 544 PPTA 203,205

chemical stability 213 hydrogen bonding 204 structural formula 203

Prebaking 871 Precarbonization 180 Preceramic polymer chemistry 157 Precured patching 867-8

limitations 867-8 Precursors 335

fiber, pyrolysis 157 materials 173 mesophase pitch 335, 336 PAN 335,336 pitch 173 polymeric 157 rayon 335 treatments, pitch 173-5, 174

Predicted life, AS-4/PEEK(APC) 806,807

Predicting durability 796 joint strength 615 peak stresses, joints 613

Preform advantages 438 ceramic 314 comers 438 designing 438

disadvantages 438 drapability 438 edge definition 438 elastic constant 449 engineering parameters 421 fabricated 438 fiber distribution 438 fiber orientation 421 heating 458 infiltration 299 permeability 438, 439, 449, 578-9,

578 porosity 439 prefabricated 438 processing parameters 421 Rlld 436-9,437,438 textile 401-2 thickness 438-9,438 uncured 456 winding 458

Preforming 397-422,448 3-D 398 formability 398-9

Preliminary design 710-11,715-23

definition 710 materials 715-22 support data 711

materials, aircraft stabilizer 711 Preload relaxation 729 Prepegging 6-7,7,32-3

advantages of 7 hot melt 7 roving 7 thermoset matrices 7

Prepolymers 105 Prepregs

aerospace industry 885 availability 82 braiding 418 co-curing 868, 870 combining 117 composite tools 566, 567-71 consolidation 117 definition 425 dry 425,430 facing material 255 lay-up 576 low tack 425 over metal substrates 870 ply kits 374 repairs 868-70,869 resins 352

matrix 577 reuse 884-5 shredding 885 suppliers 109 tapes 430 thermoplastics 357

tooling 562 unidirectional 118 waste 885

hazardous 885 wet 355

Pressing temperature, SiC I A403 315 time, SiC I AlP3 315

Pressure compliant ring, testing 782 consolidation 577 damage 874,875,876 gradient, infiltration 338 hulls, marine applications 922 pulsation, infiltration 338 vessel, acoustic 472, 472 vessels 471

X-ray backscattering 846 PRESTEK 992 Prestressed concrete 985-6

anchorage 985-6 bridge deck 986, 986 bridges 987 steel tendons 985

Preventive maintenance, composites 880

Pricing aramid 216, 716 Dyneema 232 graphite fiber 716 Hoechst Celanese 232 Spectra 232

Primary Adhesively Bonded Structures Technology (PABST) 667-8,669

Principle strengths 803 Processing 64-9

composites 879 glass fibers 24 parameters, preforms 421 polymers 525 speeds

d. pull loads 506, 506 pultrusion 514

technology, braiding 413-15 temperature

PET 233 polyamide-imides 121 polyarylene ether 121 polyester 121 polyimides 121 polysulfones 121

thermoplastics 115,525-52 time, terephthalic resins 36 window 176

Procurement costs, materials 722 Producing, carboni aluminum 303 Production

costs, aircraft 1024

Page 51: TYPICAL PROPERTIES FOR APPENDIX A - Home - Springer978-1-4615-6389-1/1.pdf · 1054 Typical properties for advanced composites and 5-2 glass. Within each of these glasses are variations

MMC 291 particulate fillers 246-S, 247

Profile extrusion 532 Programmed winding 469-70 Propeller shafts 911 Properties

aramid fibers 205-15 boron 161 casting, CE 108 ceramic fibers 161 elastic 194-5 high silica 161 Kevlar 205 lamina material 760 polymer composites 385-6, 386 quartz 161 Technora 205 thermoplastics 115 Twaron 205 using recyclate 892 Vectran 235-6

Proprietary specifications 1066--7 Propulsion

shafting 925 systems 1041,1041

Prostheses 963 Protective coatings 292

composites 879 Protruding head, fasteners 624, 624 Pseudoisotropic laminates, CMEs

1011 PTFE 362

see also Teflon compression molding 545 velocity cf. temperature 843-4,

844 Pull

forming 490-2,490 automation 492 cf. pultrusion 490, 491 curved 490,491,491 straight 490,491-2

loads 512 cf' processing speed 506, S06 epoxy resins 510

winding 489,490,496--7 Pullers

continuous belt SOl intermittent 501

Pulling SOl-2,501 continuous SOl

Pulp molding, short fibers 337, 338 PuIse-echo testing

advantages 842-3 C-scan 842, 842 one-sided 842 ultrasonic 842-3, 842

Pultrusion 17-18,33,117,488-521, 529,532

additives 515-18 advantages 489 applications 518-21 basic process 489 cf. extrusion 488-9 cf. pull forming 490, 491 civil engineering 519-20 and compression molding 490 construction 519-20 continuous production 489 creel 492-5 curved 489-90 definition 488 dies 497 electrical equipment 518-19 epoxy 511 fibers used 503 fillers 516 FRP 47,517 hammer handles 491 history 488 injection 497, 498 labour requirements 489 machine 488 oil and gas industry 521 pigments 516 processing speeds 514 products 489 pull-winding 496--7 resins 504

impregnation 495 shapes 989 shut down 515 sloughing 514 sporting goods 1045-6 start-up 514-15 surface finish 514 thermoplastics 116 three zone model 505, 505 transportation 520-1 tubular structures 496--7 vertical 495-6 wastage 489 and winding 496--7 windmills 521

Pure bearing load, joints 626 Purging 515 Putties, adhesives 275-6 PVC

foam 257 crosslinked 917 linear 917

Pyrex 318 Pyrolys~ 159,182,888

carbon fibers 335 carbon-carbon composites 341,

342 carbonized organic composites

340

Index 1103

definition 888 precursor fiber 157, 159 recycling 896--8 tooling 341 yields from 895

Pyromellitic dianhydride (PMDA) 75,76

Quadratic failure 695-7 criteria 707-8

Qualification tests 1060 Quality controls, composites 880 Quartz

applications 163, 165, 166 drawing 157 fibers 24-5

fused 163 forms 161-3 fused rods 157 manufacture 156--7 properties 161

Quasi-~tropic

laminates 9-11,697 materials 687 modulus 12

Quaternary ammonium salts 382

R-glass 134 Race tracking 443

pattern 461-2 winder 462

Racing yachts 353-4 Rackets 1049-SO, 1050

braiding 1050 compression molding 1049 filament winding 1050 injection molding 1050 resin transfer molding 1050

Radar signals, trans~sion 472 transparency, foam 256

Radial microstructures

folded 177 with wedge 177

Radiation 3,816 Bremsstrahlung 816 ionizing 816 particulate 816 solar 816 thermal 816 ultraviolet 817, 817

Radio frequency seealsoRF heating 499

Radius of curvature 459 sheets 186, 187

Radius of tw~t 459

Page 52: TYPICAL PROPERTIES FOR APPENDIX A - Home - Springer978-1-4615-6389-1/1.pdf · 1054 Typical properties for advanced composites and 5-2 glass. Within each of these glasses are variations

1104 Index

Radomes 1024 composites, quartz reinforced

110 Rail shear, testing 783 Railroad

applications 912-14 rolling stock 949-50

Railways 950 Random, microstructures 177 Rapid cure, resins 440 Rate of relaxation, water absorption

811 Ratio, glass-to-resin 150-4, 153 Raw materials, falling cost 838 Rayon 25 RD-1 (Ciba-Geigy) 61 RD-2 (Ciba-Geigy) 62 Reaction efficiency, atomic oxygen

814 Reactive rubber, tougheners 106 Reactivity, resins 440 Reaming 598 Rebars 984--5, 984

fiberglass 999 placement 985 pultruded 999

Recreation, design requirements 713 Rectangular plates 749-53,749,751

in-pane loading 750-1, 751 Recyclability, MMCs 944 Recycled

materials 889-99 NBC 897 PET 894 phenolic 894 PP 895,896 S~C 890,892,893

Recycling see also reuse, disposal automotive industry 901-2 B~C 890-3 building construction 901-2 electrical parts 902 environmental aspects 902-3 Europe 884 Germany 887, 902 glass-filled PP 893 granulation 886-7 heat cleaning 889 history 883-4 Japan 887,888,903 legal aspects 902-3 mechanical 886-7 milling 886-7 organizations 903 PET 883 phenolic composites 893 plastics 883 polyethylene 883

polyurethane composites 893 pyrolysis 896-8 reinforced composites 388 5~C 890-3 5weden 887 thermoplastics 893-5

Redux 255 bonding 667, 669

Re-entry temperatures, spacecraft 816

References E-glass 774-7 graphite epoxies 774-7 Kevlar 774-7 lamina property 772-3,774-7 52-glass 774-7 Spectra 774-7

Reflectors 1015 ACTS 1017

Refractive index feldspar 243-4 Kevlar 215 nepheline 243-4

Regrind RIM density 895 elongation 895 flexural modulus 895 hardness 895 tensile modulus 895 tensile strength 895

Rehabilitation bridges 988 building construction 988 chimneys 988 concrete 988 steel 988 wood 988

Reinforced composites 712, 713

applications 386-8 carbon fiber 358--9 chopped-fiber 355 continuous-fiber 355 continuously 358 corrosion resistance 387 corrugated configuration 389 dimensional stability 387 edge stiffening 390,391 edge turning 390 electrical resistance 387 high strength 387 inserts 392 light weight 387 minor impact resistance 387,

388 molded-in color 388 nominal thickness 390,391 non-structural requirements

388

recycling 388 ribs 389,391,391 shell and plate construction

389,389 size and shape 388 spray-up 355 structural requirements 388 surface quality 387

concrete 983-8 beams 1000

cracking 1000 E-glass 984 steel reinforced 983

epoxies 442 polyester 442 reaction injection molding, see

RRIM Reinforcement

CE 111 circumferential 461 composites

continuous unidirectional 318--20,318,319

discontinuous 320-1, 320 configurations 461-4 continuous 308--11,309,310,502,

762 definition 378 E-glass 383,916 geometry 797 glass fibers 378,383 graphite 353 heat cleaned 898--9 helical winding 461 hoop winding 461 Kevlar 383 knitted 916-17 local 730,730 marine applications 916-17 materials 832, 835, 835

RN 435 monofilament 311, 311 multi-directional 718 plies 730, 730 polar winding 461-2,462 52-glass 383 spatial 471 specific heat 533 thermoplastic polymers 526 three-dimensional 456, 801 two-dimensional 456 types

fibrous 795, 7% unidirectional 438 volume 510-11,510 woven 361,916-17

Reinforcing bars, see also rebars ceramics 307-11,308,308,309,

Page 53: TYPICAL PROPERTIES FOR APPENDIX A - Home - Springer978-1-4615-6389-1/1.pdf · 1054 Typical properties for advanced composites and 5-2 glass. Within each of these glasses are variations

310,311 load carrying capabilities 307

Relaxation, environmental effects 1000

Release agents 362 Releases 429-30

fluorocarbon 361,362 molds 361, 362 silicon 429-30

Remaining life 804-7,804,805,806,807 strength 797,804-7,804,805,806,

807 estimating 797 loading history 805 normalized 805,805 predictions 806

Removal of peel ply 631 Repairs

adhesives 869 advanced fibers 877 aircraft 857-80 autoclave 868 heat application 874-7 heating blankets 869 honeycomb panels 871-7 joint preparation 871 mechanically fastened 877 metal bondments 871-7 methods 880 non-autoclave 868-9 prepreg 868-70,869 resins 869 skill requirements 878 standardization 878 surface preparation 870-1 technical training 878 vacuum pressure 869

Repeatability 8 turning 603

Representative volume 796, 804, 804 discontinuous 804

Reproducibility 3 Reproductive toxicity 824 Residual

strength, AS-4/PEEK(APC) 806, 807

stresses, control of 470, 472 Resins 382

bath life 496 bleed sequence 367 catalyzed 507 changing 497 chemistry 99-1,382 comparing 505-7, 505, 506 consumption 513 content 425

by volume 503 fibreglass epoxies 153

marine laminates 920 minimizing 673

epoxies 382, 504 and fibers 425 flow 578-80

consolidation 576 continuity condition 582-3 Darcy's law 578

gelation 499 high performance 122 high temperature 818 impregnation 495 ingredients 513 injection 117

molding 122 system 433,434,440-1 thermoplastics 116

isophthalic polyester 504 matrix 504

prepreg 577 mixing 513-14

temperature 441 viscosity 441

moisture absorption 440 morphology 505 penetration, PET 233 phenolic 504 polymerization 499 potlue 440,496,513 pultrusion 504 rapid cure 440 reactivity 440 recycling 515 removing excess 576, 673 repairs 869 replenishing 513 safety 831-2 selection 45,440, 504 solvent based 431 T point 440 ~ermoplastic

matrix 496 mechanical properties 122

toughness 440 transfer

molding 17,374,492 see also RIM marine applications

919-20 rackets 1050

transverse modulus 1056 tensile strength 1056

uncatalyzed 506 unsaturated polyesters 382 used

RIM 440 selecting 440

vinyl esters 382, 504

Index 1105

viscosity 64,440,578,579,579 and cure cycle 354, 355

volume fraction 478 weather resistant 813 Young's modulus 440

Resistance chemical 39 to fire, phenolics 505 water 39

Resonance, ultrasonic 843 Respirators, filter 830 Respiratory protection 830 Restoration of coatings 867 Resulting strain state, laminates

693-4 Reticulating films, adhesives 276 Reusable bags, silicone rubber 371,

371 Reuse

see also recycling, disposal appliances 901 automobiles 900-1 carbon fiber 884 cutting 885 and disposal 883-904 glass fiber 884 hybrid composites 883 prepregs 884-5 sheet molding compound 883 shredding 885 technologies 885-9

RF preheating 513, 513,515 Rheology 527-31

definition 527 Ribs

designing 391 geometry 391 mold making 390 parameters 743 reinforced composites 391, 391

Rigid adherends 633,633,634 fiber 802 tool, thickness 450,450

Rigidity, and flow 67 Ring specimens

bending 785 testing 782, 784

Rings compression testing 782, 788-9 hoop wound 789 thick-walled 789 thin-walled 789

Risk 823 definition 823

Rivets, aluminum 668 RK, properties of 170 Rocket

motor

Page 54: TYPICAL PROPERTIES FOR APPENDIX A - Home - Springer978-1-4615-6389-1/1.pdf · 1054 Typical properties for advanced composites and 5-2 glass. Within each of these glasses are variations

1106 Index

cases 23,465 X-ray backscattering 846

design requirements 713 nozzles, carbon-carbon 712

Rockwell hardness, NR-150 82 Rods, testing 784 Roll

fomting 117, 289 wrap process, sporting goods

1045 Roller press 426, 427 Rollers 461,495 Rolling

carboni aluminum 303 compaction 477 rate of 302 solid phase 302 solid stage production 291 table 427,427 in vacuum 300-6, 301, 302, 305

temperature conditions 300 Rolls and air shafts 950-1,951 Rotational molding 529, 532, 550,

551 crosslinking 551 crystallization kinetics 551 molecular characteristics 551 particle size distribution 551 polymer properties 551 thermal properties 551 zero-shear viscosity 551

Router speeds 289 Routing 601 Rovings 163, 164

carbon fiber 502 for chopping 146 continuous glass 492 fiber 492 fiberglass 136 glass 502 harder 146 nonwoven 164 5-glass based 147 single strand 136,146 woven 136-7,137,164,917

reinforced 137 yields 136

RRlM 907 RTM 433-54, 762

advanced technology 447 advantages 434-5 cavity design 441 compounds, rheology 101 cure cycle 433 curing 445--6,445 cycle times 433 disadvantages 434-5 gate and vent 441 glass transition temperature 440

heating/ cooling 441 injection pressure 433 low cost parts 433 moisture absorbance 440 mold sealing 441 optimum viscosity 440 reinforcement materials 435 resin 440

Tl!.446 sporting goods 1046 tensile elongation 440 tensile modulus 440 vacuum assisted 433, 453 viscosity 440

Rubbery sheet deformation 526 Rule of mixtures 150, 318, 588, 697 Runner system 444

52-glass 134 compression properties 360 constituent properties 766 cost of 917 elastic properties 764-7 references 774-7 specific gravity 383 strength properties 764-7 tensile failure 383 tensile modulus 383 tensile strength 383 thermal expansion 383

5 twist, yarn 138 5-glass 23, 24, 425

based, rovings 147 density 503 elongation at break 503 epoxies 152 fibers, stress rupture 212-13,213 filament strength 24 melting point 24 modulus 24 tensile modulus 503 tensile strength 503

5-S2-glass reinforcement 383 specific modulus 1049 specific strength 1049 tensile modulus 360 tension-tension ratio 1049

5-S2-giass, fiber modulus 360 5-triazine ring 99,100 SAAB JAS39 Gripen, composite

applications 1034 SACMAstandards 1061-2,1062 Safety

applications 943-4, 944 aramid fibers 222 epoxy resins 831-2,831 factor, fonnulas 285 hazards, composite processes 831

resins 831-2 Saffil 159

grades of 155Hi0 Sailboats, design requirements 713 Same materials, sandwich structures

744 SAN, weld line strength 544 Sand bags 874 Sanding 672,672,678-80,679,683

peel-ply imprint 680 scuff 679

Sandwich adhesive flow 288 beam type 281 buckling 282 construction 694

aramidfibers 221 conversion to 255 core

crushing 282 selection 276, 278, 279, 284 size 288

deflection 284 limitations 281, 284

design 281, 284 compressive modulus 281 core 281 facings 281 notation 280-1

designing 276-80,277,278,279 dimpling 282, 284 fabrication 276 face wrinkling 282, 284 facing failure 282 high temperatures 288 manufacturing 287-9,289,290 modes of failure 282, 282 shear crimping 282 skin materials 284 structures 467--8

design 467--8 different thicknesses 744 elements of 254, 254 same materials 744 space vehicles 254

thickness 284 transverse shear failure 282 wall 742,743

transverse shear defonnation 743

Satellites central cylinder 375--6 design requirements 713

Satin weave 405, 406 Saturated acids 37 Sawing 601 Scarf

adhesive joints 628, 629 joints 611, 623, 645

Page 55: TYPICAL PROPERTIES FOR APPENDIX A - Home - Springer978-1-4615-6389-1/1.pdf · 1054 Typical properties for advanced composites and 5-2 glass. Within each of these glasses are variations

shear stress 649 distributions 647-8, 648,

649 Scarfing 623-4 Scientific applications 967-80 Screws, injection molding 538 SCRIMP 919 Scuff sanding 679 Sealants, composites 879 SeaIing577

composites 302 Seals 953 Seawater resistance, PET 233 Secondary, drilling 598 Section

failure curves 615-16,615 load, last fastener 620 stress 615

Secured Modular Automotive Rail Transport (SMART) 914

Selection process, joining 727, 728 Self-adhesive skins 276 Self-screening, aramid fibers 215 Semifabricated composite, winding

468 Sensitization 824

cross 824, 825 equations 825

Sensors pressure 499--500 temperature 499-500

Separation 597 Shallow delamination, NDE 854 Shear 394, 395

coupling, coefficient 193 crimping, sandwich 282 deformation 448

cylindrical shells 756 edges 394 failure 195 in-plane 783,789-90 interlaminar 790-2 knife edge 394 lag analysis 633-4 modulus

ABS 259 cellulois acetate 259 epoxies 259 IM6/epoxy 699 M401/F854 699 PET 120 phenolics 259 polypropylene 259 polyurethane 259 polyvinyl chloride 259 skinned molded foams 259

properties aliphatic system 70 aromatic system 71

rail test 789 strength

ABS 259 AFR700B/S2laminates 93 carbon fibers 295 Celion 87 cellulois acetate 259 epoxies 259 interlamina 196 phenolics 259 polypropylene 259 polyurethane 259 polyvinyl chloride 259 skinned molded foams 259

stress 636,636 5-step 649, 650 10-step 649,651 adhesive 632-7, 633, 634, 635,

636 distribution 636

scarf joints 647-8, 648, 649 maximum bond 642 peak-to-average 648 scarf joints 649

TEOS 346 test 688

in-plane 196 Shearing, weave 439 Shearoutfailures 618,619 Sheet

extrusion 532 molding 374 molding compound

see also SMC reuse 883

radius of curvature 186, 187 Shelf life, before molding 31 Shell and plate construction,

reinforced composites 389, 389

Shells, netted-ribbed 473 Shims 570,572 Shipboard armor 925 Shipments 955 Short

beam shear properties, Spectra 226,226

fiber mat, flexural strength 401 fibers 337,338 term exposure limit, see STEL

Shredding mobile 887 prepregs 885

Shrink factors 557-8 Shrinkage 5,179,506,507-9,507,

508 fillers 508 following gelation 508 neat polymers 541

Index 1107

particulate fillers 242, 252 polyester 507 polyoxymethylene 541 rate 509 recycled SMC 892, 893 volumetric 507

Shut down, pultrusion 515 Sialon 329 SiC/A1P3

density 315 pressing

temperature 315 time 315

SiC/SiC composites 401, 401 Signal-to-noise ratio, ultrasonic 834 Silanes 250-1

coupling agent 147 organofunctional 147

Silar fracture

strength 325 toughness 325 work of 325

Young's modulus 325 Silica

crystalline 249 fillers 527 flocculated varieties 244 fumed 247-8 fused 244 natural 244 particulate fillers 244 surfaces 244 thixotropic effect 244

Silicates, fillers 527 Silicon

carbide 27, 319 coating 294 CVD 157 fillers 527 wheels, grinding 600

nitride, whiskers 161 releases 429-30

Silicone rubber 365, 366 CTE 589 reusable bags 371, 371

Silver flake 250 Simple twist 138 Single

head, pull winding· 496-7 lap

joints 626, 627, 628, 729 bending deflections 641 load path eccentricity 637,

637 shear, joints 624 strand, rovings 146 strap, adhesive joints 628 yam

Page 56: TYPICAL PROPERTIES FOR APPENDIX A - Home - Springer978-1-4615-6389-1/1.pdf · 1054 Typical properties for advanced composites and 5-2 glass. Within each of these glasses are variations

1108 Index

compressive strength 151 count 151 filling 151 flexural strength 151 modulus of elasticity 151 tensile strength 151 warp 151 weave 151

Size, meteoroids 815 Sizing 802

agent 495 fiber reinforcement 435

Skill requirements, repairs 878 Skin

core, bonding 917-18 creams 829-30,830 grafts 963 materials, sandwich 284 penetration

aircraft 858, 859 foil tape repairs 858

protection 828-30 Skinned molded foam

compressive strength 258 density 258 maximum service temperature

258 shear modulus 259 shear strength 259 tensile strength 258 thermal conductivity 259

Skybond 76-7, 77 dielectric strength 95 electrical properties 95 elongation 86 flex modulus 86 flex strength 86 insulation resistance 95 processing conditions 84 surface resistivity 95 tensile strength 86 volume resistivity 95 weight loss 86

Skylab oxygen tank 471, 471 Slip forming 547, 547 Slot camera, X-ray backscattering

846,846 Sloughing 508, 510 Slurry-spinning 159 Small boats 921 SMC 380-1,890-3,892,893,895-6,

897 automobile industry 381 current use 381 early applications 380 fatigue properties 386, 387 flexural modulus 386, 386 flexural strength 386, 386 formulation 384

grill opening panels 907 IZOD impact 386, 386 lower density 381 manufacturing 381 molding 384 phenolics 382 recycling 890-3 regrinding 890,891 specific gravity expansion 386,

386 tensile modulus 386, 386 tensile strength 386, 386 thermal expansion 386, 386

SMEs 952 Snowflake P.E. 247, 247 Sodium-calcium-aluminum-

polyphosphate 957 Soft gauge, machine tools 364 Soft tissues, composites for %3-4 Sol-gel technology 156-7 Solar

absorptance 816 array

backing 820 panels 353

radiation 816 Soldering, carboni aluminum 303 Solid

conveying, extrusion 534,535 phase, rolling 302 rubber, tooling 670 stage production 291 state laser, Nd-YAG 605

Solution sedimentation, MMC 291 Solvents 812, 835-7, 836

absorption,anhydride-cured system 72

aramid fibers 204 impregnation 117, 118 polar 175 removal 159, 175 resistance

PBI237 thermoplastics 115, 127

toxicity 361, 362 trichloroethylene 64

Sonar domes, marine applications 922

Sonotrode material 607, 608 non-rotating steel 608

Sources of information Armos 221 Kevlar 221 PBO fibers 236 PDI fibers 236 SYM 221 Technora 221 Twaron 221

Vectran 236 Sources of pressure 460 Space 813-17

atomic oxygen 813-14 composite systems 814 debris impacts 814-15,814,815 meteoroid impacts 814-15,814,

815 shuttle 344,345,347,472 tooling development 1015-16

Spacecraft 968-72,969,970,971 heat sources 816 LDEF 970-2,970,971,972 re-entry temperatures 816 thermal cycling 818 truss structure 968-70

Spall liners, phenolic 914 Spallation 814 Sparging 174-5

gas 174-5 Spatial reinforcement 471 Spatially sewn structures 456 Special tests 792 Specific gravity

Armos 208 Dyneema 225 E-gIass 383 expansion 386, 386 fiberglass 135 graphite 383 Hoechst Celanese 225 Kevlar 208,383 Nomex 209 PBO 235 PET 224 recycled SMC 890, 892, 893 S2-g1ass 383 Spectra 225 SYM 208 Technora 209 Teijinconex 209 Tekmilon 225 Twaron 208 Vectran 235

Specific heat aromatic system 71 definition 532-3 fillers 533 Kevlar 206 Nomex 206 reinforcements 533 Teijinconex 206 Twaron 206

Specific modulus 715, 716 aluminum 1049 carbon 1049 definition 715 E-glass 1049 Kevlar 1049

Page 57: TYPICAL PROPERTIES FOR APPENDIX A - Home - Springer978-1-4615-6389-1/1.pdf · 1054 Typical properties for advanced composites and 5-2 glass. Within each of these glasses are variations

Kulon 305 PET 224 S2-glass 1049 Spectra 1049 steel 1049 titanium 1049 VMN-4305

Specific stiffness, aramid fibers 207 Specific strength

aluminum 1049 aramid fibers 207 carbon 1049 continuous fiber 162 E-glass 1049 Kevlar 1049 metals, vs. composites 1047,1048 PET 224 S2-glass 1049 Spectra 1049 staple 162 steel 1049 titanium 1049 whiskers 162

Specifications materials 722 and standards 1059--67

Specimen geometry, honeycomb 263 Specimen width 780 Spectra 23,26,223,228,229,761

attributes 358 availability 231 axial compressive properties 226,

226 axial tensile properties 226, 226 carbon 359 constituent properties 767 creep resistance 227,228-9,230,

233 crystallite melting point 26 density 503 dielectric constant 231 elastic properties 764-7 elongation at break 225, 503 fiber type 225 flexural properties 226, 226 graphite, hybrids 354 marine applications 917 for oil containment 233-4 pricing 232 references 774-7 short beam shear properties 226,

226 specific

gravity 225 modulus 1049 strength 1049

strength retention 230 tensile modulus 225,503 tensile strength 225, 503

Spectra Shield 234 Spectroscopy

fluorescence 69 infrared 69 Raman 69

Speed sensitivity 463 Speed tape repairs, aircraft 859 Spherical shapes, mament winding

466-7 Spherulites 120 Spin process, Technora 213 Spinning 175-7

conditions, pitch 175-7, 176 PAN 175 temperatures 175

Spirit of Australia 354, 376-7, 376, 377

carboni epoxy mast 377 Split rings, testing 784 Sporting goods 1044-52

braiding 1045--6 mament winding 1046, 1047 manufacturing techniques

1045-9 pultrusion 1045--6 roll wrap process 1045 RTM 1046

Sports cars 910 Spray lay-up, short fibers 337,338 Spray metal, tooling 442 Spray-up 436,437 Spraying

ionic 300 plasma 300

Springback 557 GFRP 1013

Springer's model 578,581, 582, 585 compacted plies 588 numerical schemes 586

Sprue and runner 541,542 Square packing 403, 403 Squeeze flow 548 SRlM433

machine 434 Stability

color 43 PBO fiber 238 and temperature 49 thermal-oxidative 75,92

Stabilization anisotropic pitches 178 commercial 178 oxygen addition 173 PAN 172,177-80,178,179 rate of 180

Stabilizers covers, boron-epoxy 1030-1 UV 43

Stacking sequence

laminate 616, 630 notation 619

Index 1109

Stackup, laminate pre-bleed 569 Stainless steel, thermal data 818 Stamping 545 Standard tests, composites 880 Standards, organizations 1060-1 Staple 159--60,216

alumina 159 alumina-silica 160 density 162 description 162 diameter 162 elastic modulus 162 green 159 manufacturers 162 specific strength 162 thermal expansion coefficient 162 trade names 162 unfired 159

Static mixers 441 Steel

CTE 558 density 170, 558 dies 426-7,429,430

thermal expansion 507 elastic modulus 170 fracture elongation 170 linear thermal expansion 705 rehabilitation 988 selection, mold 393 specific modulus 1049 specific strength 1049 tendons, prestressed concrete 985 tensile strength 170 tension-tension ratio 1049 thermal conductivity 558

Steering 482, 483 definition 482 radii 482

Stefan-Boltzmann law 850 STEL 826 Step lap

joints 628,629,645--6,645,649, 650,651,652,659

design 652 Stiffness

adherends 636 carbon-carbon composites 333 changes

microcracking 796 with time 800

coefficients constitutive equations 743-4 determining 737 ~6/epoxy 702,703

and coupling 700 cylindrical shells 756 matrix, laminates 693

Page 58: TYPICAL PROPERTIES FOR APPENDIX A - Home - Springer978-1-4615-6389-1/1.pdf · 1054 Typical properties for advanced composites and 5-2 glass. Within each of these glasses are variations

1110 Index

plane stress 689 to weight ratio, PET 223 tooling materials 577 unbalance, adherends 629 weight ratio 21

Stitched fabric 436, 436 Stitching 801 Storage 357--8

freezer 425 Strains

at break, PP /PCI-glass 898 displacment, equations 739 energy, adhesives 653 graphite/epoxies 4 measuring 779 to failure 319

Strand mat continuous 503 fiber structure 503

Strand properties Kulon 306 VMN-4306

Strands 164 Strap joints, tapering 645 Strength

alumina silicate 309 aramid 718 bending 791 and density 23 efficiency, carbon-carbon

composites 344 envelopes 802, 802 evaluation 737 M60J tape 718 P100 tape 718 properties

E-glass 764-7 graphite/epoxies 4,768-71 laminate 764-7 predicting 318, 318, 319 S2 glass 764-7 T50/F584 epoxy 726,726

ratio lM6/epoxy 701 laminates 696

retention 213 aramids 230 definition 241 Kevlar 205, 215 medical applications 957 Spectra 230 Technora 205

structural 795 T300 fabric 718 tests, joints 626 three-dimensional 489 tooling materials 577 values

carpet plots 719

T50 graphite 724, 724 weight ratio 21

Stress

aramid fibers 223 PET 223

analysis joints 611 one-dimensional 627

concentration 610,613,614,788 distribution, double lap joint 654 interlaminar 738 patterns, laminates 322 residual 466 resultants, laminates 691-3 rupture

failure 24 Kevlar 212-13,213 para-aramids 212 5-glass fibers 212-13, 213

strain curve 319 thermally induced 640 thermoelastic 466 transfer 149

Stretching elongations 633 Strip heaters 499 Structural

applications 709 aircraft 1027--8,1027,1028

formula, POO 237 geometry

braiding 415-16 nonwoven textiles 419

hierarchy 778 reaction injection molding see

SRIM testing 792

Structure aramid fibers 204-5 PET 224,224 polyamide-imides 121 polyarylene ether 121 polyester 121 polyimides 121 polysulfones 121

Styrene addition 34 polyester 382

Submarines 473 Substrates 157

heating 293 Subsurface damage, inspection 839 Succinic anhydride (SA), melting

point 58 Superconducting

magnetic energy storage systems, see SMEs

SupeM:ollidermagnets 978,978 Supennite 247, 247 Suppliers

polyamide-imides 121 polyarylene ether 121 polyester 121 polyimides 121 polysulfones 121 prepreg 109 thermoplastics 119

Supported films, adhesives 276 Surface

area 607--8 compressive stress 321 crusting 339 of curvature 479 damage 322 defect healing 295 disbonded 677 energies 316,316 finish

pultrusion 515 tools 597

flaws 840 geometry

concave surface 484 fiber placement 484--6 radii of curvature 484, 486 types of 484

ply, veil 503 polish, compression molds 395 preparation 630-1,667--84

abrading 669 adhesive joints 611 aerospace industry 669 aluminum 871, 876 automotive industry 669 cutting plies 870 grit blasting 870-1 history of 667-71 non-autoclave 871-2 peelplies 683,870

removal 631 repairs 870-1 testing 669

properties, particulate fillers 250-1

quality, reinforced composites 387

resistivity fiberglass 135 Skybond 95

roughness, tooling materials 577 slick 682 speed~grinding 600 treatment 190-1 waviness 603 weave, yarns 407,407

Sutures, PET 234 SVM

availability 220 elongation at break 208

Page 59: TYPICAL PROPERTIES FOR APPENDIX A - Home - Springer978-1-4615-6389-1/1.pdf · 1054 Typical properties for advanced composites and 5-2 glass. Within each of these glasses are variations

initial tensile modulus 208 PBIA-based fibers 210 sources of infonnation 221 specific gravity 208 tensile strength 208

Sweden, recycling 887 Sweep method, plaster masters

565-6 Swelling stresses, water absorption

811 Symmetric, laminates 692, 749 Symmetry 9,1(}-11 Synergism 43 Syntactic foams, adhesives 275--6 Synthetic marble 253

T50 graphite material properties 724, 724 strength values 724, 724

TSO/F584 epoxy material properties 726,726 strength properties 726,726

T300 fabric mechanical properties 718 strengths 718

Table rolling 425-32 equipment, suppliers 431 mandrels 429 materials 429-30

Tabs 787 Tack 356-7,479

controls 356-7 desired 479 excessive 357 heavy on prepregs 357 requirements 357

Tactical aircraft, material weights 1027

Talc 246 composites 246 impact strength 246 Italian 248-9,248 low cost 246 110ntana 248-9,248 New York 248-9, 248 polypropylene filled 246

Tank solution processing 871 Tap test 840

laminar type flaws 840 Tape 164

braiding 418 collimated 359 fiberglass 146 non-woven 359 placement 456 reinforcement 15 slit 478 unidirectional 298,359

Tapered

adherends 653 adhesive joints 628

Tapering adherends 627, 629, 644-51, 645,

647,648,649,650,656,658 advantages 646, 647 peel stresses 646 strap joints 645, 647, 648

double 646, 647, 648 Tappers, mechanical 840 Tateho

fracture strength 325 fracture toughness 325 work of fracture 325 Young's modulus 325

Te glass 134 Technical training, repairs 878 Technology

reuse 885-9 winding 458-66

Technora 204 availability 220 breaking strength 214 chemical resistance 214 chemical stability 214 decomposition temperature 206 density 206 elongation at break 209 ether linkages 210 fatigue resistance 213 filament diameter 206 filament shape 206 fonns of 216 initial tensile modulus 209 linear thennal expansion

coefficient 206 long-tenn use temperature 206 melting temperature 206 modulus and temperature 210,

211 moisture content 206 properties 205 sources of infonnation 221 specific gravity 209 spin process 213 strength retention 205 tensile strength 209

and temperature 210, 211 thennal conductivity 206

Teflon 250,360,834 Teijinconex 205

decomposition temperature 206 density 206 elongation at break 209 filament diameter 206 filament shape 206 initial tensile modulus 209 linear thennal expansion

coefficient 206

Index 1111

long-tenn use temperature 206 melting temperature 206 moisture content 206 specific gravity 209 specific heat 206 tensile strength 209 thenna! conductivity 206

Tekmilon 223,228 availability 231 elongation at break 225 fiber type 225 specific gravity 225 tensile modulus 225 tensile strength 225

Telescopes 1014-15 Temperature 817-19

consolidation 577 control, dies 511-13,512,513 cryogenic 817

modulus 212 decomposition 76 elevated 817 extremes, GFRP 1004-21 glass transition 75 gradients 470-1 profile, dies 511, 512 resistance, aramid fibers 205 spinning 175 stability 49

dies 514 and viscosity 173-4, 174

Template method, plaster masters 564-5

Templates ply locating 574-5 trim and router 574

Tenacity, definition 241 Tennis rackets 463 Tensile

elongation 41, 42 recycled PET 894 RN 440

failure 383 forces, transmission 787 load, fibreglass epoxies 153 modulus

aramid fiber 715, 716 AS-4 carbon fiber 123 B11C 386, 386 carbon fibers 335 carbon (Type BOO) 503 carpet plots 719 Celion 87 continuous ceramic fibers 309 Dyneema 225 E-glass 360,383,503,715, 716 epoxy 511 graphite 360,383,715,716 Hoechst Celanese 225

Page 60: TYPICAL PROPERTIES FOR APPENDIX A - Home - Springer978-1-4615-6389-1/1.pdf · 1054 Typical properties for advanced composites and 5-2 glass. Within each of these glasses are variations

1112 Index

Kevlar 383, 503 Kulon 306 lot-to-lot variation 725 LPMC 386, 386 marine laminates 920 PBO 235,238 PMR-1582

laminates 88 polyester 511 PP and granulated SMC 897 PP IPCI-glass 898 recycled NBC 897 recycled PP 895, 896 recycled SMC 890,892, 893 regrind RIM 895 RTM 440 52-glass 360,383,503 SMC 386,386 Spectra 225, 503 and strength 21,21 Tekmilon 225 thermoplastic resins 122 Vectran 235 vinylester 511 VMN-4306 ZMC 386,386

properties aliphatic system 70 anhydride-cured system 72 E-glass 360 graphite 360 testing 38

stiffness, aramid fibers 209 strength

ABS 258 AFR700B/S21aminates 93 aluminum 170 aramid fibers 209 Armos 208 AS-4 carbon fiber 123 BMC 386,386 carbon fibers 169 carbon (Type T300) 503 carbon-carbon composites

333 carboni aluminum MMC 300 carpet plots 720,720 CE 108 Celion 87 cellulois acetate 258 continuous ceramic fibers 309 Dyneema 225 E-glass 24, 383,503 epoxies 258, 511 fiberglass 134

epoxies 153 graphite 383 and higher temperatures 182 Hoechst Celanese 225

Kevlar 208, 383,503 Kulon 305, 306 lot-to-lot variation 725 LPMC 386, 386 marine laminates 920 and microtexture 188 and modulus 21, 21 and nitrogen release 182 Nomex 209 NR-150 82 nylon 6/6 PCI-glass 899 PAN-based fibers 169, 170 PBO 235,238 phenolics 258 pitch-based fibers 170 plied-yarn 151 PMR-15 82,88 polyester 511 polyurethane 258 polyvinyl chloride 258 pp IPCI-glass 898 recycled PET 894 recycled SMC 890, 892, 893 regrind RIM 895 52-glass 383 S-glass 503

epoxies 152 single-yam 151 skinned molded foam 258 5kybond 86 5MC 386,386 5pectra 225, 503 steel 170 SVM 208 Technora 209 Teijinconex 209 Tekmilon 225 thermoplastic resins 122 titanium 170 Twaron 208 Vectran 235 vinylester 511 VMN-4 305, 306 yam distribution 154 ZMC 386,386

stress PP and granulated SMC 897 recycled NBC 897 recycled PP 895, 896

Tension and compression 786-9 failure in 787 head, fasteners 625 tension ratio 1049 TEOS 346 testing 781, 782, 788

rings 782, 788 Tensioning 469 TEOS 340

carbon-carbon composites 349 compression 346 flexure 346

comer 346 impact 346 impregnation 341, 343-4, 344 interlaminar shear 346 interlaminar tension 346 process 341 shear 346 tension 346 thermal expansion 346

Terephthalic acid 35 Terephthalics 36, 39

processing time 36 reactivity 36 solubility 36

Tertiary amines 104 Test

direction, yam distribution 154 methods 721

adhesives 630 joints 626

specimen dimensions 786-7 loading sections 786 transition sections 786

Testing barcol hardness 38 bars 784 compression 38, 781 distortion temperature 38 eddy current 849-50 flat specimens 786-7 flexural properties 38 half-discs 782 history 779 hydraulic system 782 impact strength 38 in-plane shear methods 783 incoming materials 20 microwave 853 non-symmetric bending 783 off-axis tension 781 pressure compliant ring 782 rail shear 783 requirements 779-80 ring specimens 782, 784 rods 784 selecting techniques 779 special tests 792 specimens 780,786 split rings 784 structural 792 tensile properties 38 tension 781 torsion of square plate 783 tubes 784 ultrasonic through-transmission

Page 61: TYPICAL PROPERTIES FOR APPENDIX A - Home - Springer978-1-4615-6389-1/1.pdf · 1054 Typical properties for advanced composites and 5-2 glass. Within each of these glasses are variations

840-2,841 Tetraethylenepentamine (TEPA),

viscosity 54 Tetraethylorthosilicate, see TEOS Tetramethylbisphenol F

homopolymer property 102 structure precursor 102 supplier 102 trade name 102

Tex,defirrition 136,241 Textile

fibers 307 preforming

defirrition 397 linear 398 planar 398 three-dimensional 398

preforms 401-2 role of 398-401 selecting 401

T 120 g NR-150 82

PMR-1582 polyarylene ether 121 polyester 121 polyimides 121 polysulfones 121 resins 440

Thermal accelerators 509 coefficient

BMC 386,386 Kevlar 383 LPMC 386, 386 ZMC 386,386

coefficients, orthotropic layers 742

conductivity ABS 259 aliphatic system 70 aluminum 558 aromatic system 71 carbon fibers 169 carbon-carbon composites

333,349 carboni epoxy prepreg 558 cellulois acetate 259 ceramics 307 electroformed nickel 558 epoxies 259 glass/epoxy 558 high carbon cast steel 558 Invar 558 Kevlar 206 mahogany 558 monolithic graphite 558 Nomex 206 particulate fillers 242 phenolics 259

polypropylene 259 polyurethane 259 polyvinyl chloride 259 skinned molded foams 259 steel 558 Technora 206 Teijinconex 206 thermoplastics 531-2 Twaron 206 urethane board stock 558

control tape 819 cycling 89,89,816,817

aircraft 818 spacecraft 818

data 818 decomposition, carbonyls 293-4 degradation 31 diffusivity, thermoplastics 534 expansion 3,5, 19

adherends 630, 661 carbon-carbon composites

333 ceramic composites 312 coefficient

continuous fiber 162 staple 162 whiskers 162

composite tools 592 correction, tooling design 590 E-glass 383 graphite 383 molding 593 NR-150 82 PMR-1582 52-glass 383 SMC 386,386 steel dies 507 TEOS 346 thermoplastics 127 tooling materials 577

extremes 816-17 gradients, carbon-carbon

composites 333 inertia technology 444 mismatch 638, 661, 662 oxidation 79

carbon-carbon composites 345,347-8

properties aramid fibers 205-7,206 BMI 106,109 carbon fibers 184-5, 185, 186 CE 106,109 composites 661 fiberglass 135 rotational molding 551

radiation 816 resistance, aramid fibers 205 stability, composite tools 592

Index 1113

stress 659,660,661-2 laminates 322

Thermally induced stresses 640 resistant gloves 829

Thermoelastic behavior, anisotropic bodies 470-1

Thermoforming 436, 437, 526, 529-30,529,532,545-9

polymer properties 545 Thermoplastics 356

aerospace 115 aging 127 amorphous, HDT 126 automotive market 115 chemical resistance 126 composite density 534 composites

extrusion 526 injection molding 526 processing 525-52

compression molding 116, 544-9 compressive properties 124, 125 diaphragm forming 116 dielectric constant 107 dissipation factor 107 extrusion 534-8 fatigue resistance 115 fiber content 117 folding 116 fracture toughness 124 heat capacity 532-4 high price of 1024 impact energy 125 injection molding 116 joining 127 low toxicity 115 manufacturing 116-17 matrices, aramid fibers 221 melt, high viscosity 116 molecular weight 116 polymers

adducts 526 fillers for 527 reinforcements 526

prepregs 357 processing 115 properties 115 pultrusion 116 reinforcing 528 remelting 115 resins 31-2

fracture toughness 122 health effects 834 injection 116 tensile modulus 122 tensile strength 122

solvent resistance 115, 127 structure 118

Page 62: TYPICAL PROPERTIES FOR APPENDIX A - Home - Springer978-1-4615-6389-1/1.pdf · 1054 Typical properties for advanced composites and 5-2 glass. Within each of these glasses are variations

1114 Index

suppliers 119 thermal

conductivity 531-2 diffusivity 534 expansion 127

thennoforming 544-9 tougheners 106 trade names 124, 125 transverse modulus 123 transverse strength 123 unidirectional

compression strength 125 trade names 125

winding 458 Thermosets

amorphous 118 compressive strength 124 joining 127 polymers 34

Thermosetting 37,356 binders 458 dielectric constant 107 dissipation factor 107 reaction, definition 49 resins 518

Thermostamping 22 Thick composites, consolidation 585 Thick molding compound, see 1MC Thick-walled structures 456, 46&-71

loaded in torsion 473-4 monolithicity 456 residual stresses 469 torsion strength 473

Thickeners 383 Thickness

adherends 627-9,628,628,658 bond 631

layer 628, 656 to adherend 641

drawings 731 flberglass 141-4,153 Hercules 1M7 fiber 478 honeycomb 263 preform 438-9, 438 sandwich 284 section 512 variation 372-3

Thin composites, consolidation 585 Thin-walled

beams 747-9,748 shear stress resultants 748,

748 uses 747

shells 456 structures 466-8

Thinning, organic solvents 65 Thixotropic liquids, adhesives 275-6 Thornel 1054

properties of 170

Three zone model, pultrusion 505, 505

Three-dimensional fiberglass 146 lamina properties 761 reinforcement 456, 801

Threshold limit values, see TLV Through-the-facesheet evacuation,

aircraft 865 TIme weighted average, see TWA Tune window, consolidation 588 Tltanates, coupling agents 251 TItanium

alloy- linear thermal expansion 705

carbide 319 density 170 diboride 319 elastic modulus 170 fracture elongation 170 specific modulus 1049 specific strength 1049 tensile strength 170 tension-tension ratio 1049

TLV 825,826 Tm

polyamide-imides 121 polyarylene ether 121 polyester 121 polysulfones 121

1MC380 Tolerance

stackup 561 to flaws, ceramics 307

Tonox 60-40 (Uniroyal Inc) 56 Tool

geometry 439 life 599

factors 596-7 pins 574 separating from master 570 steel, erE 589 surface

area 480 strength 480

usage 559 wear 599

Tooling 14, 361-ii, 392-5,429-30, 447, 479-80, 480, 556-75

alternative 449-50,449,450 balls 565 bushings 562 cast aluminum 442 correction method 590-1 eTE 556-7, 557-8 design 590

coordinating partial plies 590 thermal expansion correction

590

use of caul plates 590 development, space 1015-16 elastomer 14 elastomeric 593-4, 593 electroformed nickel 591-2,592 employee induced damage 563 epoxy laminates 562 fiber placement 479-80 fiber separation 562 fixed-volume method 593, 593 graphite-epoxy 592-3,593 hole fittings 562 leakage 562 master models 563-ii materials 589

bleeder 577 consolidation 577 hardness 577 metals 577 properties of 558 stiffness 577 strength 577 surface roughness 577 thermal behavior 589 thermal expansion 577

moisture absorption 561 and part shape 589-94 prepreg 562 resin system 562 rubber 366 sealers 561 selecting materials 557 sheet wax 574 solid rubber 670 spray metal 442 urethane based 567 variable volume method 593, 594 wet lay-up repairs 867

Tools composite 361 cure cycle times 559 depth of cut 597 design 556-63 durability 558 fabrication, cost 558, 559-60 life expectancy 558,559,561 machinability 558 materials available 560 materials selection S59 methods of fabrication 560 mounted 480 multi-cavity 500 resistance to failure 561-3 selection 598 surface finish 597 usage rates 558 wear ratio 597

Torayca 1054 fiber types 1054

Page 63: TYPICAL PROPERTIES FOR APPENDIX A - Home - Springer978-1-4615-6389-1/1.pdf · 1054 Typical properties for advanced composites and 5-2 glass. Within each of these glasses are variations

properties of 170 Torque levels 625

bolt tensions 626 Torsion 784, 790

square plate, testing 783 strength, thick-walled structures

473 Total hip arthroplasty 960-1

femoral components 960-1 FRP 959 metallic devices 960

Total overlap length 658 Tougheners

reactive rubber 106 thermoplastic 106

Toughening 104-5 interphase 802, 802

Toughness 801 a~ives 274-5,274 aramid fibers 221 interlaminar 124, 124 measuring 274,274 resins 440

Tows 164 bridging of 487 buckled 480 carbon fiber 292, 293 cutting 483 definition 476 dropping and adding 483-4 end locations 481 folded 487 selecting 478 thickness 478 twisted 487 wandering 487 width

histogram 479,479 of material 479

Toxic 822-4 definition 822

Toxicity acute and chronic 823-4 fluorine 362 particulate fillers 252 reproductive 824 solvents 361, 362

Trade names continuous fiber 162 fibers 158 PAN-based tow 198 pitch-based tow 199 polyamide-imides 121 polyarylene ether 121 polyester 121 polyimides 121 polysulfones 121 staple 162 thermoplastics 124,125

whiskers 158,162 Transfer molding 22 Transformation relations 707 Transition, areas of 731-2,732 Transportation 905-15

future directions 915 land 905-15 pultrusion 520-1

Transverse compression, Kevlar 212 erE 699 extension, IM6/epoxy 701 modulus 12

IM6 / epoxy 699 M401/F854 699 resins 1056 thermoplastics 123

shear adherends 630 failure, sandwich 282

strain, IM6/epoxy 701 strength

moisture 811 thermoplastics 123

tensile strength, resins 1056 tension

Kevlar 212 test 688

Treatments, Vectran 236 Triaxial, plain-weave 399 Triethylenetriamine (TETA),

viscosity 54 Triglycidyl p-aminophenol 53 Trimellitic anhydride (TMA),

melting point 58 Trimming 446

Kevlar 600 2,4,6-Tris(dimethylaminomethyl)-

phenyl 60 Trucks 912 Truss structure, spacecraft 968-70 TRW-R-8XX 94

chemistry of 81 Tubes, testing 784 Tubular structures 425-32

pultrusion 496-7 Tunnels 950 Turning 597,598,601

advantages 597 withAWJ 603-4 disadvantages 597 Kevlar 600 machining 602 repeatability 603 surface finish 603-4

TWA 826 Twaron

availability 219-20 decomposition temperature 206

Index 1115

density 206 elongation at break 208 filament diameter 206 filament shape 206 forms of 216 initial tensile modulus 208 linear thermal expansion

coefficient 206 long-term use temperature 206 melting temperature 206 moisture content 206 properties 205 sources of information 221 specific gravity 208 specific heat 206 tensile strength 208 thermal conductivity 206

Twill, weave 145,145,405,406 Twin-screw extruders 535-6

advantages 539 classification 537 disadvantages 539

Twist drill 600 Kevlar 215-16

Two-dimensional flow, compression molding 584 lamina properties 760-1 reinforcement 456

'JYpical compression strength, carbon

fiber composites 1055 properties 1053-8

E-glass 1055 selecting 1057-8

'JYranno 316

UHMWPE 959, 962 compression molding 545 reinforcement 963

Ultimates, Kevlar 210 Ultrahigh molecular weight

polyethylene, see UHMWPE Ultrasonic

correlation 843-4, 844 cutting 601 machining (USM) 605-8

advantages 608 applications 607-8 brittle materials 605 ceramic matrix composites

605 disadvantages 608 rates 608

polar backscatter 843 pulse-echo testing 842-3,842 resonance 843 signal 840

to noise ratio 834

Page 64: TYPICAL PROPERTIES FOR APPENDIX A - Home - Springer978-1-4615-6389-1/1.pdf · 1054 Typical properties for advanced composites and 5-2 glass. Within each of these glasses are variations

1116 Index

through-transmission testing 840-2,841

automation 840 C-scan 841,841

vibrations 607 Ultraviolet Coronagraph

Spectrometer, see UVCS Ultraviolet resistance, PET 224 UMC 381 Uniaxial loading, allowable 802 Unidirectional

composites 107-8 compression testing 787

fabrics, weave 145,145 laminates 4, 8 molding compound, see UMC ply 741 tape, flexural strength 401

Uniformity 301, 301, 302 Unit costs, polymer processes 532 Unsaturated polyesters, resins 382 Unsaturation 39 Unsupported

films, adhesives 276 single lap, adhesive joints 628

Untapered, joints 624 Uranium enrichment centrifuges

953-4 Urea-formaldehyde, adhesives 255 Urethane board stock

ceofficient of thermal expansion 558

density 558 thermal conductivity 558

US Air Force Materials Laboratory 22-3

US Federal Aviation Regulations (FAR) 1022

Use temperature, PET 225 UV

absorption, aramid fibers 221 radiation, carbon black 245 resistance, PET 230,233 stability

PBO fiber 238 PET 233

UVCS 1017-18,1018

V-cap 93 chemistry of 81 processing conditions 84-5

Vacuum assisted resin injection, see VARI assisted resin transfer molding,

seeVARTM bag 14,14

autoclave tooling 589 molding 361, 577 nylon 577

pressure 918 processing 919-20 silicone rubber 577

bagging 569,593,872-3 applications, aerospace 375 with autoclave 593 bridging 369-71,369

eliminating 369, 370, 371 edge bleeder 368 expendable 367-71

bags 371 precautions 363 reusable 371-2 thermoset composites 371 vertical bleeder 368

drying 818 infiltration 299-300 pressure

cures 870 repairs 869

Valves 954 Vapor

barriers 817 processing 316-17,316

VARI 910 VARTM 919

advantages 919 Vectran 234-7, 234, 235

aerospace applications 236 applications 236-7 availability 236 cost of 234-5 dielectric constant 236 elongation at break 235 forms 236 melt spun 235 melting temperature 235 properties 235-6 protective garments 236 resin 235 safety materials 236 sources of information 236 specific gravity 235 tensile modulus 235 tensile strength 235 treatments 236

Veils 436, 438 surface ply 503 surfacing, application 436

Velocity, meteoroids 815 Velsicol 58 Venetian blinding 482 Vent design 442-3 Ventilation 830

volatiles 683 Venting 450-1

ports 443 Verification, design 733-4, 733 Vertical

pultrusion 495-6 advantages 495

tape wrapper 427,428 Vmyl cyclohexene dioxide, viscosity

63 Vmyl esters

applications 41-2 corrosion resistance 41, 42, 42 density 505 elongation at break 505 flexural modulus 505 flexural strength 505 general purpose 40 heat distortion 505 heat resistant 40-1 marine applications 916 properties 41-2 resins 28,382,504

structure 40 tensile modulus 505 tensile strength 505

VIscoelasticity 122 VISCosity 37

aliphatic system 70 anhydride-cured system 72 aromatic system 71 coupling agents 250 definition 527 elongational 529-30 low density polyethylene 528 polypropylene 530, 531 predicting 528-9 resins 440, 578 RTM 440 shear rate-dependent 528 and temperature 173-4, 174 vs. time, epoxy resins 509, 510

VIsual inspection 839-40 VIS 160

time needed 160 VMN-4

bending strength 305 carbon content 306 coating thickness 306 compressive strength 305 density 305, 306 elastic modulus 305 elongation at break 306 filament diameter 306 specific modulus 305 strand properties 306 tensile modulus 306 tensile strength 305,306

Voids 430,548,588,630--1 capture 450--1 content

checks 430 marine laminates 920

exposed surface 432

Page 65: TYPICAL PROPERTIES FOR APPENDIX A - Home - Springer978-1-4615-6389-1/1.pdf · 1054 Typical properties for advanced composites and 5-2 glass. Within each of these glasses are variations

stability map 588, 588 Volatiles

content 356 elimination 78, 79 ventilation 683

Volkersen model 662-3 solution 635

Volume expansion, water absorption 811 fraction

fiber reinforcement 435 IM6/epoxy 699 M401/F854 699

resistivity fiberglass 135 Skybond 95

Volumetric shrinkage aliphatic system 70 aromatic system 71

Von Mises criterion 708 Vortex, tennis rackets 1046 Voyager aircraft 32, 32

Wall effects 153 Warp 541

knitting 408,409 plied-yam 151 single-yam 151 yam 140

fiberglass 141-4 Warpage 374,467,557 Warping

GFRP 1013, 1013 polyoxymethylene 541

Wash resistance, fiber reinforcement 435

Wastage cut-off 502 pultrusion 489

Water absorption 110,811

aliphatic system 70 aramid fibers 215 aromatic system 71 rate of relaxation 811 recycled NBC 897 recycled PET 894 recycled SMC 890 swelling stresses 811 volume expansion 811

evacuation, aircraft 863 immersion 110 ingestion, aircraft 859 intrusion, NDE 854 jet 601 resistance 3 soluble sand mandrels 465--6

Weak bonds 671-5,671

Weather resistant, resins 813 Weathering 813

climate 813 graphite/epoxy 813 graphite/polysulfone 813 Kevlar/epoxy 813

Weave aramid fibers 222 basket 140,145 crowfoot satin 145, 145 eight-harness satin 145, 145 fiberglass 141-4 non-woven 145,146 patterns 140, 145, 150

and mechanical properties 152

plain 140,145 biaxial 407

plied-yam 151 shearing 439 single-yam 151 twill 145, 145 unidirectional fabrics 145, 145

Weavers 407, 407 Weaves

hybridized 118 reinforcing 118

Weaving 18,402,402,404-8,405, 406,407,801

biaxial 406 plain weave 405 satin weave 405 twill weave 405

definition 404 design methodology 407-8 multiwarp 406

loom 405 three-dimensional 405, 405 triaxial 405,405,406 two-harness loom 405

Web, yarns 407, 407 Weft, knitting 408,409 Weibull distribution 189 Weight

aramid fibers 223 fiberglass 141-4 fraction 1027-8 loss

AFR700B/S21aminates 94 PBO fiber 238 Skybond 86

savings 1028, 1028 Weld

lines 542, 544 strength 544

Wet lay-up 355,571-3 composite tools 566 repairs

aircraft 865-7

Index 1117

core plug 866 damage assessment 866 elevated temperatures 868 equipment 867 face sheet 866-7 heat lamps 865, 866 heating blankets 865 hot air blowers 865 materials 867 precured patching 867-8 procedures 866-7 repair environment 867 restoration of coatings 867 tooling 867

two resins 571 Wet mat molding 43 Wetout 443 Wettability, fiber reinforcement 435 Wetting agents, additives 516 Wetting speed 495 Whipple-type shield 814-15,814 Whiskers 160-1,308,308,308,314

alumina 161 coating 166 commercially available 308 composition 158 continuous 156, 160 CTE 308 density 162, 308 description 162 diameter 162,308 discontinuous 156,160-1 elastic modulus 162 length 308 manufacturers 158, 162 manufacturing processes 158 for reinforcing 166 SiC 308

elastic modulus 327 fracture strength 325, 326,

326,327 fracture toughness 325, 326,

326,327 silicon nitride 161 specific strength 162 thermal expansion coefficient 162 trade names 158, 162 vapor-liquid-solid process 160-1,

326 Young's modulus 308

Whole rings, bending 785 Width of material 479 Wind

eye 461 tunnel blades 975-6,976 turbine blades 954

Winders lathe type 461 race-track 462

Page 66: TYPICAL PROPERTIES FOR APPENDIX A - Home - Springer978-1-4615-6389-1/1.pdf · 1054 Typical properties for advanced composites and 5-2 glass. Within each of these glasses are variations

1118 Index

stationary whirling arm type 461 Winding

angle 496-7 with braiding 473 chord 462 direction 496-7 dry 458 extra pressure 470, 470 geometry 459 helical angle 460 history of 458 inaccuracies 463 isotropic metallic tape 468 layer-by-layer curing 470 materials for 458-9 non-geodesic 457 pattern 459

closure 459 control 463-4

pitch of 496-7 planar-polar 462 preform 458 process 456, 457 programmed 469-70 pull 489, 490 and pultrusion 496-7 semifabricated composite 468 speeds 463 stages 469 technology 458-66 theory of 468-9 thermoplastics 458 of a torus 462 wet 458

Wmdmills 521 Wood 256, 838, 958

durability 256 end-grain balsa 256 low cost of 256 rehabilitation 988

Work of fracture alumina composites 325

Silar 325 Tateho 325

Work-around technique 1006,1011 Workmanship 715 Woven

fabric 359 laminates 818

flexural strength 4{)1 reinforcements 91~17

Wrapping tapes 429 Wrinkles 487

X-ray backscattering 845-6,846,847 imaging 844-9

cost advantages 845 foreign materials 844 honeycomb defects 845 matrix cracks 844 moisture contamination 858 non-film 845 porosity 844

XMC 381

Yarns classification 4{)2 content, distribution 154 crimp 416 cross sections 411 designation, fiberglass 139-40 distribution 154 filament 164 fill 4{)7, 407 filling 140 geometry 4{)3-4, 403 identification 138-9 inclination angle 4{)7 jamming 412 longitudinal 415 orientation angle 412 S twist 138

slippage 399 surface weave 407, 407 textured 138 twisted, geometry 404 warp 14{) web 4{)7, 407 Z twist 138

Yield fiberglass 139-40 stress at break, PP /PCI-glass 898

Young's modulus alumina composites 325 alumina silicate 309 carbon fIbers 295 CE 108 ceramic composites 312 ceramics 307 E-glass 24 and microtexture 189 resins 440 Silar 325 Tateho 325 whiskers 308

Z molding compound, see ZMC Z twist, yarn 138 Zero-shear viscosity, rotational

molding 551 Zirconates, coupling agents 251 ZMC380

flexural modulus 386, 386 flexural strength 386, 386 formulation 384 injection machine 380 lZOD 386, 386 low viscosity 380 specific gravity expansion 386,

386 tensile modulus 386, 386 tensile strength 386, 386 thermal coefficient 386, 386

Zonyl 251