two-dimensional optical lattice clock · i ≠ 0 (e.g. 87sr, 171yb, 199hg) boyd, et al, pra 76,...

41
Optical Lattice Clock with Spin-1/2 Ytterbium Atoms Nathan D. Lemke

Upload: others

Post on 15-Oct-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Two-Dimensional Optical Lattice Clock · I ≠ 0 (e.g. 87Sr, 171Yb, 199Hg) Boyd, et al, PRA 76, 022510 (2007) Barber, et al, PRL 96, 083002 (2006) Ytterbium Energy Levels 1S 0 1P

Optical Lattice Clock with Spin-1/2 Ytterbium Atoms

Nathan D. Lemke

Page 2: Two-Dimensional Optical Lattice Clock · I ≠ 0 (e.g. 87Sr, 171Yb, 199Hg) Boyd, et al, PRA 76, 022510 (2007) Barber, et al, PRL 96, 083002 (2006) Ytterbium Energy Levels 1S 0 1P

103

106

109

1012

1015

1018

1100 2010 AD 1500 1250 1750 num

ber

of

seco

nd

s t

o g

ain

/lo

se o

ne

seco

nd

Water clock Huygen’s pendulum Harrison’s chronometer

Shortt clock

Quartz crystal

Cesium beam

Cesium fountain

Optical lattice

Single ion (Al+)

one second per day

one second per year

one second per million years

one second per thousand years

one second per billion years

roughly reproduced from ScienceNews 180(9)

2011

Clocks, past & present

Page 3: Two-Dimensional Optical Lattice Clock · I ≠ 0 (e.g. 87Sr, 171Yb, 199Hg) Boyd, et al, PRA 76, 022510 (2007) Barber, et al, PRL 96, 083002 (2006) Ytterbium Energy Levels 1S 0 1P

Yb Yb

Yb

Yb

Yb

Yb Yb

Yb

Yb

Yb

Yb

Yb Yb

578 nm

laser

Fast feedback Slow feedback

Why atoms?

• Identical

• Ageless

• High Q

• Easily isolated

from environment

fs-laser comb

Optical Atomic Clocks

reference cavity atomic system

Ca, Sr, Hg..., Sr+, Yb+, Ca+, Al+, Hg+...

Page 4: Two-Dimensional Optical Lattice Clock · I ≠ 0 (e.g. 87Sr, 171Yb, 199Hg) Boyd, et al, PRA 76, 022510 (2007) Barber, et al, PRL 96, 083002 (2006) Ytterbium Energy Levels 1S 0 1P

Very high stability

Potential for high accuracy

Sr lattice ~ 1.5e-16

Al + ion ~ 9e-18

Will enable

Tests of relativity

Searches for variation of constants

Other science: Synchrotron, radio telescopes, ultralow-noise microwaves

Technology: communications, navigation

Rosenband et al., Science 319, 1808 (2008)

(graph reproduced)

Heavner et al., Metrologia 42, 411

(2005)

Yb, current projected stability

Optical Atomic Clocks Yb

Yb Yb

Yb

Yb

Yb Yb

Yb

Yb

Yb

Yb

Yb Yb

578 nm

laser

reference cavity

Page 5: Two-Dimensional Optical Lattice Clock · I ≠ 0 (e.g. 87Sr, 171Yb, 199Hg) Boyd, et al, PRA 76, 022510 (2007) Barber, et al, PRL 96, 083002 (2006) Ytterbium Energy Levels 1S 0 1P

Key features of lattice clocks

Long interaction times narrow lines Large numbers (~104) high S/N

3P0

1S0

Doppler- & recoil-free Stark-free

λmagic

Page 6: Two-Dimensional Optical Lattice Clock · I ≠ 0 (e.g. 87Sr, 171Yb, 199Hg) Boyd, et al, PRA 76, 022510 (2007) Barber, et al, PRL 96, 083002 (2006) Ytterbium Energy Levels 1S 0 1P

Choosing the atom

Page 7: Two-Dimensional Optical Lattice Clock · I ≠ 0 (e.g. 87Sr, 171Yb, 199Hg) Boyd, et al, PRA 76, 022510 (2007) Barber, et al, PRL 96, 083002 (2006) Ytterbium Energy Levels 1S 0 1P

Benefits of I = 1/2

Simple sub-structure (mF = ± 1/2)

Straightforward optical pumping

No tensor shift

Fermion no collisions?

Choosing the isotope I = 0 (e.g. 88Sr, 174Yb, 202Hg)

I ≠ 0 (e.g. 87Sr, 171Yb, 199Hg)

Boyd, et al, PRA

76, 022510 (2007) Barber, et al, PRL

96, 083002 (2006)

Page 8: Two-Dimensional Optical Lattice Clock · I ≠ 0 (e.g. 87Sr, 171Yb, 199Hg) Boyd, et al, PRA 76, 022510 (2007) Barber, et al, PRL 96, 083002 (2006) Ytterbium Energy Levels 1S 0 1P

Ytterbium Energy Levels

1S0

1P1

λ = 399 nm

Δν = 28 MHz

3P1

λ = 556 nm

Δν = 180 kHz

3P0

λ = 578 nm

Δν =10 mHz

λmagic = 759 nm

Page 9: Two-Dimensional Optical Lattice Clock · I ≠ 0 (e.g. 87Sr, 171Yb, 199Hg) Boyd, et al, PRA 76, 022510 (2007) Barber, et al, PRL 96, 083002 (2006) Ytterbium Energy Levels 1S 0 1P

Spectroscopy and Detection

1P1

3P1

3P0

1S0

3D1

λ = 1388 nm

repump

Ground state

Background Excited

state

time 5 ms

Clock pulse

λmagic = 759 nm

Page 10: Two-Dimensional Optical Lattice Clock · I ≠ 0 (e.g. 87Sr, 171Yb, 199Hg) Boyd, et al, PRA 76, 022510 (2007) Barber, et al, PRL 96, 083002 (2006) Ytterbium Energy Levels 1S 0 1P

171Yb Spectra

Sideband fit

Blatt, et al, PRA 80,

052703 (2009)

Temperature

~15 μK

Ex

cita

tion

fr

acti

on

Page 11: Two-Dimensional Optical Lattice Clock · I ≠ 0 (e.g. 87Sr, 171Yb, 199Hg) Boyd, et al, PRA 76, 022510 (2007) Barber, et al, PRL 96, 083002 (2006) Ytterbium Energy Levels 1S 0 1P

171Yb Spectra

Lemke, et al, PRL

103, 063001 (2009)

π π

mF =1/2 mF = ‒1/2

mF =1/2

mF = ‒1/2

1S0

3P0

Page 12: Two-Dimensional Optical Lattice Clock · I ≠ 0 (e.g. 87Sr, 171Yb, 199Hg) Boyd, et al, PRA 76, 022510 (2007) Barber, et al, PRL 96, 083002 (2006) Ytterbium Energy Levels 1S 0 1P

Optical cavity design

Legero, et al, JOSA B

27, 914 (2010)

f

f

L

L

L~30 cm

Thermal noise, vibration isolation,

high vacuum, stable temperature…

Page 13: Two-Dimensional Optical Lattice Clock · I ≠ 0 (e.g. 87Sr, 171Yb, 199Hg) Boyd, et al, PRA 76, 022510 (2007) Barber, et al, PRL 96, 083002 (2006) Ytterbium Energy Levels 1S 0 1P

Coherence measurement Noise levels for 1 cavity

Jiang, et al, Nature

Photon. 5, 158 (2011)

Page 14: Two-Dimensional Optical Lattice Clock · I ≠ 0 (e.g. 87Sr, 171Yb, 199Hg) Boyd, et al, PRA 76, 022510 (2007) Barber, et al, PRL 96, 083002 (2006) Ytterbium Energy Levels 1S 0 1P

Narrow lines

900 ms probe time

400 ms trap lifetime (1/e)

Δν = 1 Hz Q = 5 × 1014

Jiang, et al, Nature

Photon. 5, 158 (2011)

Open loop

In-loop Interleave

Dick limit

Page 15: Two-Dimensional Optical Lattice Clock · I ≠ 0 (e.g. 87Sr, 171Yb, 199Hg) Boyd, et al, PRA 76, 022510 (2007) Barber, et al, PRL 96, 083002 (2006) Ytterbium Energy Levels 1S 0 1P

Blackbody -25.0 2.5

Density-dependent -16.1 0.8

Lattice scalar 0.4 1.0

Lattice hyper-polarizability 3.3 0.7

Lattice multi-polar (M1/E2) 0 1.0

Linear Zeeman 0.4 0.4

Quadratic Zeeman -1.7 0.1

Probe light 0.05 0.2

AOM phase chirp 0 0.1

Others 0 0.1

Total -38.7 3.4

Systematic uncertainty

Effect Shift (10-16) unc. (10-16)

Lemke, et al, PRL

103, 063001 (2009)

Page 16: Two-Dimensional Optical Lattice Clock · I ≠ 0 (e.g. 87Sr, 171Yb, 199Hg) Boyd, et al, PRA 76, 022510 (2007) Barber, et al, PRL 96, 083002 (2006) Ytterbium Energy Levels 1S 0 1P

Absolute Frequency

νYb-171= 518,295,836,590,865.0 ± 0.5 Hz

Page 17: Two-Dimensional Optical Lattice Clock · I ≠ 0 (e.g. 87Sr, 171Yb, 199Hg) Boyd, et al, PRA 76, 022510 (2007) Barber, et al, PRL 96, 083002 (2006) Ytterbium Energy Levels 1S 0 1P

Absolute Frequency

νYb-171= 518,295,836,590,865.0 ± 0.5 Hz

Park, et al,

arXiv:1112.5939

Page 18: Two-Dimensional Optical Lattice Clock · I ≠ 0 (e.g. 87Sr, 171Yb, 199Hg) Boyd, et al, PRA 76, 022510 (2007) Barber, et al, PRL 96, 083002 (2006) Ytterbium Energy Levels 1S 0 1P

Outline for the rest

1. Cold collisions of fermions

2. High-accuracy polarizability measurement

“Taking stock of a locked clock’s tick-tock

shocks from knocks and a mock hot-box”

- J. Sherman

Page 19: Two-Dimensional Optical Lattice Clock · I ≠ 0 (e.g. 87Sr, 171Yb, 199Hg) Boyd, et al, PRA 76, 022510 (2007) Barber, et al, PRL 96, 083002 (2006) Ytterbium Energy Levels 1S 0 1P

Fermionic collisions

Identical & Ultracold No s-wave scattering amplitude

(quantum statistics) Small p-wave scattering amplitude

(threshold at 30 – 45 µK)

Campbell et al,

Science 324, 360

(2009)

DeMarco et al,

PRL 96, 4280 (1999)

Page 20: Two-Dimensional Optical Lattice Clock · I ≠ 0 (e.g. 87Sr, 171Yb, 199Hg) Boyd, et al, PRA 76, 022510 (2007) Barber, et al, PRL 96, 083002 (2006) Ytterbium Energy Levels 1S 0 1P

Excitation Inhomogeneity

zyx nnn ,,Rabi frequency

depends on atom

temperature

Page 21: Two-Dimensional Optical Lattice Clock · I ≠ 0 (e.g. 87Sr, 171Yb, 199Hg) Boyd, et al, PRA 76, 022510 (2007) Barber, et al, PRL 96, 083002 (2006) Ytterbium Energy Levels 1S 0 1P

Singlet – triplet basis

Lemke, et al,

PRL 107, 103902 (2011)

Gibble,

PRL 103, 113202 (2009)

Swallows, et al,

Science 25, 1043 (2011)

Page 22: Two-Dimensional Optical Lattice Clock · I ≠ 0 (e.g. 87Sr, 171Yb, 199Hg) Boyd, et al, PRA 76, 022510 (2007) Barber, et al, PRL 96, 083002 (2006) Ytterbium Energy Levels 1S 0 1P

Identifying p-wave collisions

Lemke, et al, PRL

107, 103902 (2011)

1-D lattice 2-D lattice 1-D lattice

bgg = 0

beg = ‒74 a0 bee

3 = 0.1 beg3

s-wave only

p-wave only

p-wave + smaller s-wave

Page 23: Two-Dimensional Optical Lattice Clock · I ≠ 0 (e.g. 87Sr, 171Yb, 199Hg) Boyd, et al, PRA 76, 022510 (2007) Barber, et al, PRL 96, 083002 (2006) Ytterbium Energy Levels 1S 0 1P

Canceling the collision shift

Weighted mean: 2.5 2.4 mHz Ludlow, et al, PRA

84, 052724 (2011)

Page 24: Two-Dimensional Optical Lattice Clock · I ≠ 0 (e.g. 87Sr, 171Yb, 199Hg) Boyd, et al, PRA 76, 022510 (2007) Barber, et al, PRL 96, 083002 (2006) Ytterbium Energy Levels 1S 0 1P

Outline for the rest

1. Cold collisions of fermions

2. High-accuracy polarizability measurement

“Taking stock of a locked clock’s tick-tock

shocks from knocks and a mock hot-box”

- J. Sherman

Page 25: Two-Dimensional Optical Lattice Clock · I ≠ 0 (e.g. 87Sr, 171Yb, 199Hg) Boyd, et al, PRA 76, 022510 (2007) Barber, et al, PRL 96, 083002 (2006) Ytterbium Energy Levels 1S 0 1P

Blackbody radiation shift

400 K

300 K

200 K

Page 26: Two-Dimensional Optical Lattice Clock · I ≠ 0 (e.g. 87Sr, 171Yb, 199Hg) Boyd, et al, PRA 76, 022510 (2007) Barber, et al, PRL 96, 083002 (2006) Ytterbium Energy Levels 1S 0 1P

Fused silica

substrate

Conductive &

transparent ITO

2 nm Cr / 33 nm Au

~90% R @ 760 nm

Electrodes

Page 27: Two-Dimensional Optical Lattice Clock · I ≠ 0 (e.g. 87Sr, 171Yb, 199Hg) Boyd, et al, PRA 76, 022510 (2007) Barber, et al, PRL 96, 083002 (2006) Ytterbium Energy Levels 1S 0 1P

Fused silica

substrate

Set of precision ground fused silica spacers

Length matched ~ 200 nm, < 1 arcsecond wedging

Conductive &

transparent ITO

2 nm Cr / 33 nm Au

~90% R @ 760 nm

Electrodes

Page 28: Two-Dimensional Optical Lattice Clock · I ≠ 0 (e.g. 87Sr, 171Yb, 199Hg) Boyd, et al, PRA 76, 022510 (2007) Barber, et al, PRL 96, 083002 (2006) Ytterbium Energy Levels 1S 0 1P

Electrodes

Page 29: Two-Dimensional Optical Lattice Clock · I ≠ 0 (e.g. 87Sr, 171Yb, 199Hg) Boyd, et al, PRA 76, 022510 (2007) Barber, et al, PRL 96, 083002 (2006) Ytterbium Energy Levels 1S 0 1P

Electrodes

Page 30: Two-Dimensional Optical Lattice Clock · I ≠ 0 (e.g. 87Sr, 171Yb, 199Hg) Boyd, et al, PRA 76, 022510 (2007) Barber, et al, PRL 96, 083002 (2006) Ytterbium Energy Levels 1S 0 1P

Laser frequency (GHz)

Tra

nsm

issio

n

Fringe center uncertainty:

50 MHz

ECDL

760 nm

0 10

Plate separation

Page 31: Two-Dimensional Optical Lattice Clock · I ≠ 0 (e.g. 87Sr, 171Yb, 199Hg) Boyd, et al, PRA 76, 022510 (2007) Barber, et al, PRL 96, 083002 (2006) Ytterbium Energy Levels 1S 0 1P

Tra

nsm

issio

n

Laser frequency (GHz)

ECDL

760 nm

Plate separation

Page 32: Two-Dimensional Optical Lattice Clock · I ≠ 0 (e.g. 87Sr, 171Yb, 199Hg) Boyd, et al, PRA 76, 022510 (2007) Barber, et al, PRL 96, 083002 (2006) Ytterbium Energy Levels 1S 0 1P

Tra

nsm

issio

n

Tuning ~17 THz

(1700 fringes)

ECDL

760 nm

1-2 ppm

statistical error

Plate separation

Laser frequency (GHz)

Page 33: Two-Dimensional Optical Lattice Clock · I ≠ 0 (e.g. 87Sr, 171Yb, 199Hg) Boyd, et al, PRA 76, 022510 (2007) Barber, et al, PRL 96, 083002 (2006) Ytterbium Energy Levels 1S 0 1P

Field Reversal

Page 34: Two-Dimensional Optical Lattice Clock · I ≠ 0 (e.g. 87Sr, 171Yb, 199Hg) Boyd, et al, PRA 76, 022510 (2007) Barber, et al, PRL 96, 083002 (2006) Ytterbium Energy Levels 1S 0 1P

Measurement Results

Sherman, et al, PRL

108, 153002 (2012)

Page 35: Two-Dimensional Optical Lattice Clock · I ≠ 0 (e.g. 87Sr, 171Yb, 199Hg) Boyd, et al, PRA 76, 022510 (2007) Barber, et al, PRL 96, 083002 (2006) Ytterbium Energy Levels 1S 0 1P

Measurement Results

Sherman, et al, PRL

108, 153002 (2012)

Page 36: Two-Dimensional Optical Lattice Clock · I ≠ 0 (e.g. 87Sr, 171Yb, 199Hg) Boyd, et al, PRA 76, 022510 (2007) Barber, et al, PRL 96, 083002 (2006) Ytterbium Energy Levels 1S 0 1P

Measurement Uncertainty

a

b

c

Porsev, et al, PRA 74, 020502 (2006)

Porsev, et al, PRA 60, 2981 (1999)

Dzuba, et al, J. Phys B 43, 074011 (2010) a

b

c

Sherman, et al, PRL

108, 153002 (2012)

Page 37: Two-Dimensional Optical Lattice Clock · I ≠ 0 (e.g. 87Sr, 171Yb, 199Hg) Boyd, et al, PRA 76, 022510 (2007) Barber, et al, PRL 96, 083002 (2006) Ytterbium Energy Levels 1S 0 1P

Dynamic correction

Page 38: Two-Dimensional Optical Lattice Clock · I ≠ 0 (e.g. 87Sr, 171Yb, 199Hg) Boyd, et al, PRA 76, 022510 (2007) Barber, et al, PRL 96, 083002 (2006) Ytterbium Energy Levels 1S 0 1P

Extracting the BBR shift

Inside an ideal blackbody at 300 K

Δν = –2.465(1) × 10-15

ΔT = 1 K causes clock uncertainty of 3.3 ×10-17

Is this a blackbody?

Page 39: Two-Dimensional Optical Lattice Clock · I ≠ 0 (e.g. 87Sr, 171Yb, 199Hg) Boyd, et al, PRA 76, 022510 (2007) Barber, et al, PRL 96, 083002 (2006) Ytterbium Energy Levels 1S 0 1P

Systematic table: update

Effect Shift (10-16) unc. (10-16)

Blackbody -25.0 2.5

Density-dependent -16.1 0.8

Lattice scalar 0.4 1.0

Lattice hyper-polarizability 3.3 0.7

Lattice multi-polar (M1/E2) 0 1.0

Linear Zeeman 0.4 0.4

Quadratic Zeeman -1.7 0.1

Probe light 0.05 0.2

AOM phase chirp 0 0.1

Others 0 0.1

Total -38.7 3.4

-24.65 0.3

0.05 0.05

0.4 ?

Page 40: Two-Dimensional Optical Lattice Clock · I ≠ 0 (e.g. 87Sr, 171Yb, 199Hg) Boyd, et al, PRA 76, 022510 (2007) Barber, et al, PRL 96, 083002 (2006) Ytterbium Energy Levels 1S 0 1P

What’s next for lattice clocks?

• 10-17 level uncertainty (collisions, lattice light shifts…)

• Cryogenic apparatus

• Frequency ratios

• Transportable systems

Page 41: Two-Dimensional Optical Lattice Clock · I ≠ 0 (e.g. 87Sr, 171Yb, 199Hg) Boyd, et al, PRA 76, 022510 (2007) Barber, et al, PRL 96, 083002 (2006) Ytterbium Energy Levels 1S 0 1P

Acknowledgements

Yb Clock Chris Oates, Andrew Ludlow, Jeff Sherman, Rich Fox, Nathan Hinkley, Kyle Beloy, Nate Phillips

Frequency Comb Tara Fortier, Scott Diddams, et al

Collisions (Theory) Ana Maria Rey, Javier Von Stecher

Al+, Hg+ Clocks Jim Bergquist, Till Rosenband, et al

Sr Lattice Clock Jun Ye and his group

Cs Fountain & Timescale Steve Jefferts, Tom Heavner, Tom Parker