tutorial on optimal mass transprot for computer...

56
Tutorial on Optimal Mass Transprot for Computer Vision David Gu State University of New York at Stony Brook Graduate Summer School: Computer Vision, IPAM, UCLA July 31, 2013

Upload: others

Post on 19-Jun-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Tutorial on Optimal Mass Transprot for Computer Visionhelper.ipam.ucla.edu/publications/gss2013/gss2013_11366.pdf · Tutorial on Optimal Mass Transprot for Computer Vision David Gu

Tutorial on Optimal Mass

Transprot for Computer Vision

David Gu State University of New York at Stony Brook

Graduate Summer School: Computer Vision, IPAM,

UCLA July 31, 2013

Page 2: Tutorial on Optimal Mass Transprot for Computer Visionhelper.ipam.ucla.edu/publications/gss2013/gss2013_11366.pdf · Tutorial on Optimal Mass Transprot for Computer Vision David Gu

Joint work with Shing-Tung Yau,

Feng Luo and Jian Sun

Page 3: Tutorial on Optimal Mass Transprot for Computer Visionhelper.ipam.ucla.edu/publications/gss2013/gss2013_11366.pdf · Tutorial on Optimal Mass Transprot for Computer Vision David Gu

Optimal Mass Transportation Problem

Page 4: Tutorial on Optimal Mass Transprot for Computer Visionhelper.ipam.ucla.edu/publications/gss2013/gss2013_11366.pdf · Tutorial on Optimal Mass Transprot for Computer Vision David Gu

Motivation

• Tannenbaum: Medical image registration

Page 5: Tutorial on Optimal Mass Transprot for Computer Visionhelper.ipam.ucla.edu/publications/gss2013/gss2013_11366.pdf · Tutorial on Optimal Mass Transprot for Computer Vision David Gu

Motivation: Surface registration

Page 6: Tutorial on Optimal Mass Transprot for Computer Visionhelper.ipam.ucla.edu/publications/gss2013/gss2013_11366.pdf · Tutorial on Optimal Mass Transprot for Computer Vision David Gu

Optimal Mass Transportation Problem

Page 7: Tutorial on Optimal Mass Transprot for Computer Visionhelper.ipam.ucla.edu/publications/gss2013/gss2013_11366.pdf · Tutorial on Optimal Mass Transprot for Computer Vision David Gu

Optimal Mass Transportation Problem

Page 8: Tutorial on Optimal Mass Transprot for Computer Visionhelper.ipam.ucla.edu/publications/gss2013/gss2013_11366.pdf · Tutorial on Optimal Mass Transprot for Computer Vision David Gu

Cost Functions

Page 9: Tutorial on Optimal Mass Transprot for Computer Visionhelper.ipam.ucla.edu/publications/gss2013/gss2013_11366.pdf · Tutorial on Optimal Mass Transprot for Computer Vision David Gu

Optimal Mass Transportation Problem

Page 10: Tutorial on Optimal Mass Transprot for Computer Visionhelper.ipam.ucla.edu/publications/gss2013/gss2013_11366.pdf · Tutorial on Optimal Mass Transprot for Computer Vision David Gu

Applications

Page 11: Tutorial on Optimal Mass Transprot for Computer Visionhelper.ipam.ucla.edu/publications/gss2013/gss2013_11366.pdf · Tutorial on Optimal Mass Transprot for Computer Vision David Gu

Duality and potential functions

Page 12: Tutorial on Optimal Mass Transprot for Computer Visionhelper.ipam.ucla.edu/publications/gss2013/gss2013_11366.pdf · Tutorial on Optimal Mass Transprot for Computer Vision David Gu

Duality and potential functions

Page 13: Tutorial on Optimal Mass Transprot for Computer Visionhelper.ipam.ucla.edu/publications/gss2013/gss2013_11366.pdf · Tutorial on Optimal Mass Transprot for Computer Vision David Gu

Brenier’s Approach

Page 14: Tutorial on Optimal Mass Transprot for Computer Visionhelper.ipam.ucla.edu/publications/gss2013/gss2013_11366.pdf · Tutorial on Optimal Mass Transprot for Computer Vision David Gu

Brenier’s Approach

Page 15: Tutorial on Optimal Mass Transprot for Computer Visionhelper.ipam.ucla.edu/publications/gss2013/gss2013_11366.pdf · Tutorial on Optimal Mass Transprot for Computer Vision David Gu

Brenier’s Approach

Page 16: Tutorial on Optimal Mass Transprot for Computer Visionhelper.ipam.ucla.edu/publications/gss2013/gss2013_11366.pdf · Tutorial on Optimal Mass Transprot for Computer Vision David Gu

Minkowski problem and several related problems

Eg. A convex polygon P in R2 is determined by its edge lengths Ai and unit normal vectors ni.

Page 17: Tutorial on Optimal Mass Transprot for Computer Visionhelper.ipam.ucla.edu/publications/gss2013/gss2013_11366.pdf · Tutorial on Optimal Mass Transprot for Computer Vision David Gu

THM (Minkoswki) P exists and is unique up to translations. Minkowski’s proof is variational and constructs P.

Page 18: Tutorial on Optimal Mass Transprot for Computer Visionhelper.ipam.ucla.edu/publications/gss2013/gss2013_11366.pdf · Tutorial on Optimal Mass Transprot for Computer Vision David Gu
Page 19: Tutorial on Optimal Mass Transprot for Computer Visionhelper.ipam.ucla.edu/publications/gss2013/gss2013_11366.pdf · Tutorial on Optimal Mass Transprot for Computer Vision David Gu

P.S. Alexandrov:

Q1. What is Minkowski problem for non-compact polyhedra?

Pogorelov: Their results: MP solvable for bound faces with unbounded faces fixed.

Discrete optimal transport

Discrete Monge-Ampere equation

Polyhedron P

Page 20: Tutorial on Optimal Mass Transprot for Computer Visionhelper.ipam.ucla.edu/publications/gss2013/gss2013_11366.pdf · Tutorial on Optimal Mass Transprot for Computer Vision David Gu
Page 21: Tutorial on Optimal Mass Transprot for Computer Visionhelper.ipam.ucla.edu/publications/gss2013/gss2013_11366.pdf · Tutorial on Optimal Mass Transprot for Computer Vision David Gu

PL convex function

Wi

Page 22: Tutorial on Optimal Mass Transprot for Computer Visionhelper.ipam.ucla.edu/publications/gss2013/gss2013_11366.pdf · Tutorial on Optimal Mass Transprot for Computer Vision David Gu

Alexandrov’s proof is not variational and is topological. On page 321 of his book “Convex polyhedra”, he asked if there exists a variational proof of his thm. He said such a proof “is of prime importance by itself”.

Page 23: Tutorial on Optimal Mass Transprot for Computer Visionhelper.ipam.ucla.edu/publications/gss2013/gss2013_11366.pdf · Tutorial on Optimal Mass Transprot for Computer Vision David Gu

Pogorelov theorem

max{x.vj+gj} unbounded faces max{x.pi +hi} , bounded faces

Page 24: Tutorial on Optimal Mass Transprot for Computer Visionhelper.ipam.ucla.edu/publications/gss2013/gss2013_11366.pdf · Tutorial on Optimal Mass Transprot for Computer Vision David Gu

Our main result: there exist variational proofs of Alexandrov’s and Pogorelov’s theorems.

We are motivated by computational problems from computer graphics, discrete optimal transportation and discrete Monge-Ampere equation.

Basically the same as Minkowski’s original proof.

Page 25: Tutorial on Optimal Mass Transprot for Computer Visionhelper.ipam.ucla.edu/publications/gss2013/gss2013_11366.pdf · Tutorial on Optimal Mass Transprot for Computer Vision David Gu

Voronoi decomposition and power diagrams

Given p1, …, pk in RN, the Voronoi cell Vi at pi is:

Vi={x | |x-pi|2 ≤ |x-pj|

2, all j}

A generalization: power diagram, given p1, …, pk in RN and weights a1,…,ak in R, the power diagram at pi is Wi={x||x-pi|

2+ai ≤ |x-pj|2+aj, all j}

Page 26: Tutorial on Optimal Mass Transprot for Computer Visionhelper.ipam.ucla.edu/publications/gss2013/gss2013_11366.pdf · Tutorial on Optimal Mass Transprot for Computer Vision David Gu

PL convex function 𝑓(𝑥)=max{𝑥 . 𝑝𝑖+ℎ𝑖} and power diagram

x .pi+hi ≥ x.pj+hj is the same as x.x -2x.pi+pi

.pi-2hi-pi.pi ≤ x.x -2x.pj+pj

.pj - 2hj-pj.pj,

i.e., |xi- pi|

2 -2hi-pi.pi ≤ |x-pj|

2- 2hj-pj.pj for all j

Page 27: Tutorial on Optimal Mass Transprot for Computer Visionhelper.ipam.ucla.edu/publications/gss2013/gss2013_11366.pdf · Tutorial on Optimal Mass Transprot for Computer Vision David Gu

Proof. Take x in X, say x in Xj and also in Wi. Then LHS= bj(x) RHS ≥ bi(x) ≥ bj(x) =LHS.

Page 28: Tutorial on Optimal Mass Transprot for Computer Visionhelper.ipam.ucla.edu/publications/gss2013/gss2013_11366.pdf · Tutorial on Optimal Mass Transprot for Computer Vision David Gu

Discrete optimal transport problem (Monge) Given a compact convex domain X In RN and p1, …, pk in RN and A1, …, Ak>0, find a transport map T: X → {p1, …, pk} with vol(T-1(pi))=Ai so that T minimizes the cost ∫

X |x –T(x)|2 dx. (Y. Brenier)

Page 29: Tutorial on Optimal Mass Transprot for Computer Visionhelper.ipam.ucla.edu/publications/gss2013/gss2013_11366.pdf · Tutorial on Optimal Mass Transprot for Computer Vision David Gu
Page 30: Tutorial on Optimal Mass Transprot for Computer Visionhelper.ipam.ucla.edu/publications/gss2013/gss2013_11366.pdf · Tutorial on Optimal Mass Transprot for Computer Vision David Gu

Theorem(Aurenhammer- Hoffmann- Aronov, (1998))

Page 31: Tutorial on Optimal Mass Transprot for Computer Visionhelper.ipam.ucla.edu/publications/gss2013/gss2013_11366.pdf · Tutorial on Optimal Mass Transprot for Computer Vision David Gu
Page 32: Tutorial on Optimal Mass Transprot for Computer Visionhelper.ipam.ucla.edu/publications/gss2013/gss2013_11366.pdf · Tutorial on Optimal Mass Transprot for Computer Vision David Gu

Recall

Page 33: Tutorial on Optimal Mass Transprot for Computer Visionhelper.ipam.ucla.edu/publications/gss2013/gss2013_11366.pdf · Tutorial on Optimal Mass Transprot for Computer Vision David Gu

Mikowski’s proof of his thm

Given h=(h1, …, hk), hi>0, define cpt convex polytope

P(h)={x| x . ni ≤ hi, all i}.

Uniqueness part is proved using Brunn-Minkowski inequality which implies (Vol(h))1/N is concave in h. So far, this is the ONLY proof of uniqueness.

Fi

Let Vol: R+k → R be vol(h)=vol(P(h)).

The solution h (up to scaling) to MP is the critical point of Vol on { h | hi ≥ 0, ∑ hi Ai =1}, using Lagrangian multiplier.

Page 34: Tutorial on Optimal Mass Transprot for Computer Visionhelper.ipam.ucla.edu/publications/gss2013/gss2013_11366.pdf · Tutorial on Optimal Mass Transprot for Computer Vision David Gu

Our Proof. For h =(h1, …, hk) in Rk, define f as above and let Wi(h)={ x | x.pi+hi ≥ x.pj + hj, all j} and wi(h)=vol(Wi(h)).

Page 35: Tutorial on Optimal Mass Transprot for Computer Visionhelper.ipam.ucla.edu/publications/gss2013/gss2013_11366.pdf · Tutorial on Optimal Mass Transprot for Computer Vision David Gu

This shows the uniqueness part of Alexandrov’s thm.

Page 36: Tutorial on Optimal Mass Transprot for Computer Visionhelper.ipam.ucla.edu/publications/gss2013/gss2013_11366.pdf · Tutorial on Optimal Mass Transprot for Computer Vision David Gu

We show that the concave function

G(h) = F(h) -∑ hiAi

has a minimum point in H0. The min point h is the solution to Alexandrov’s them.

Exactly the same proof works for Pogorelov’s thm.

Alexandrov thm corresponds to s(x)=1. Y. Brenier proved a more general form.

Page 37: Tutorial on Optimal Mass Transprot for Computer Visionhelper.ipam.ucla.edu/publications/gss2013/gss2013_11366.pdf · Tutorial on Optimal Mass Transprot for Computer Vision David Gu

Discrete Monge-Ampere Eq (DMAE)

This is related to Monge’s optimal transport problem:

Page 38: Tutorial on Optimal Mass Transprot for Computer Visionhelper.ipam.ucla.edu/publications/gss2013/gss2013_11366.pdf · Tutorial on Optimal Mass Transprot for Computer Vision David Gu

Q2: Given A, g how to compute f?

Page 39: Tutorial on Optimal Mass Transprot for Computer Visionhelper.ipam.ucla.edu/publications/gss2013/gss2013_11366.pdf · Tutorial on Optimal Mass Transprot for Computer Vision David Gu

Indeed, w(y)=sup{x.y-f(x)|x} is the Fenchel-Legendre dual of the solution to Pogorelov’s thm: f(x)=max{max{x.pi +hi}, max{x.vj+gj}}. Our result shows that w can be constructed by a finite dim variational principle since dual of PK convex function is computable using linear programming.

Page 40: Tutorial on Optimal Mass Transprot for Computer Visionhelper.ipam.ucla.edu/publications/gss2013/gss2013_11366.pdf · Tutorial on Optimal Mass Transprot for Computer Vision David Gu

Algorithm

• Convex Hull

• Delaunay Triangulation

• Vornoi diagram

• Power Diagram – upper envelope

• Optimal Transportation Map

Page 41: Tutorial on Optimal Mass Transprot for Computer Visionhelper.ipam.ucla.edu/publications/gss2013/gss2013_11366.pdf · Tutorial on Optimal Mass Transprot for Computer Vision David Gu

Computational Algorithm

Page 42: Tutorial on Optimal Mass Transprot for Computer Visionhelper.ipam.ucla.edu/publications/gss2013/gss2013_11366.pdf · Tutorial on Optimal Mass Transprot for Computer Vision David Gu

Computational Algorithm

Page 43: Tutorial on Optimal Mass Transprot for Computer Visionhelper.ipam.ucla.edu/publications/gss2013/gss2013_11366.pdf · Tutorial on Optimal Mass Transprot for Computer Vision David Gu

Computational Algorithm

Page 44: Tutorial on Optimal Mass Transprot for Computer Visionhelper.ipam.ucla.edu/publications/gss2013/gss2013_11366.pdf · Tutorial on Optimal Mass Transprot for Computer Vision David Gu

Computational Algorithm

Page 45: Tutorial on Optimal Mass Transprot for Computer Visionhelper.ipam.ucla.edu/publications/gss2013/gss2013_11366.pdf · Tutorial on Optimal Mass Transprot for Computer Vision David Gu

Examples

Page 46: Tutorial on Optimal Mass Transprot for Computer Visionhelper.ipam.ucla.edu/publications/gss2013/gss2013_11366.pdf · Tutorial on Optimal Mass Transprot for Computer Vision David Gu

Examples

Page 47: Tutorial on Optimal Mass Transprot for Computer Visionhelper.ipam.ucla.edu/publications/gss2013/gss2013_11366.pdf · Tutorial on Optimal Mass Transprot for Computer Vision David Gu

Examples

Page 48: Tutorial on Optimal Mass Transprot for Computer Visionhelper.ipam.ucla.edu/publications/gss2013/gss2013_11366.pdf · Tutorial on Optimal Mass Transprot for Computer Vision David Gu
Page 49: Tutorial on Optimal Mass Transprot for Computer Visionhelper.ipam.ucla.edu/publications/gss2013/gss2013_11366.pdf · Tutorial on Optimal Mass Transprot for Computer Vision David Gu
Page 50: Tutorial on Optimal Mass Transprot for Computer Visionhelper.ipam.ucla.edu/publications/gss2013/gss2013_11366.pdf · Tutorial on Optimal Mass Transprot for Computer Vision David Gu
Page 51: Tutorial on Optimal Mass Transprot for Computer Visionhelper.ipam.ucla.edu/publications/gss2013/gss2013_11366.pdf · Tutorial on Optimal Mass Transprot for Computer Vision David Gu
Page 52: Tutorial on Optimal Mass Transprot for Computer Visionhelper.ipam.ucla.edu/publications/gss2013/gss2013_11366.pdf · Tutorial on Optimal Mass Transprot for Computer Vision David Gu
Page 53: Tutorial on Optimal Mass Transprot for Computer Visionhelper.ipam.ucla.edu/publications/gss2013/gss2013_11366.pdf · Tutorial on Optimal Mass Transprot for Computer Vision David Gu
Page 54: Tutorial on Optimal Mass Transprot for Computer Visionhelper.ipam.ucla.edu/publications/gss2013/gss2013_11366.pdf · Tutorial on Optimal Mass Transprot for Computer Vision David Gu
Page 55: Tutorial on Optimal Mass Transprot for Computer Visionhelper.ipam.ucla.edu/publications/gss2013/gss2013_11366.pdf · Tutorial on Optimal Mass Transprot for Computer Vision David Gu
Page 56: Tutorial on Optimal Mass Transprot for Computer Visionhelper.ipam.ucla.edu/publications/gss2013/gss2013_11366.pdf · Tutorial on Optimal Mass Transprot for Computer Vision David Gu

Thank you.