tutorial on harmonics theory and computation techniques c.j. hatziadoniu: [email protected]

96
TUTORIAL ON HARMONICS Theory and Computation Techniques C.J. Hatziadoniu: [email protected]

Upload: lydia-reynolds

Post on 29-Dec-2015

217 views

Category:

Documents


1 download

TRANSCRIPT

TUTORIAL ON HARMONICS

Theory and Computation Techniques

C.J. Hatziadoniu: [email protected]

AC Drive Harmonics

Harmonic Sources: Power converter switching action Motor own generated harmonics (spatial distribution of windings, stator

saturation) Transformer/inductor iron core saturation Harmonics flowing between generator and motor sides

PWM

PrimeMover

SynchronousGenerator

Induction Motor Load

N

S

Rectifier InverterDC Link

MotorControllerPWMGenerator

Controller

Coordination

Potential Problems due to Harmonics

Power losses and heating: reduced efficiency, equipment de-rating

Over-voltage and voltage spiking, due to resonance: insulation stressing, limiting the forward and reverse blocking voltage of power semiconductor devices, heating, de-rating

EMI: noise, control inaccuracy or instability

Torque pulsation: mechanical fatigue, start-up limitation

Power Loss and Heating

V1+Vh

I1+Ih

RI12+RIh

2

B

H

~V12

+~Vh

2

Losses into the resistive and magnetic components•Resistive losses: skin effect •Magnetic losses: Eddy currents and hysterisis losses increase with frequency

Over-Voltage, Over-Current (due to resonance)

h

hhhH VCP 2)tan( Capacitor loss due to harmonics (insulation loss)

CL

nn

1

LC

nn

1

LCn

1

+

-+

-

+

-

Series resonance tank Parallel resonance tank

Interference with Control, EMI

Grid Control

Measurements

Rad Common (ground) modes

Common or diff. modes

Common modes

Rad., EMI with other processes

What Are Harmonics?

Technical DescriptionA high frequency sinusoidal current or voltage produced by certain non-linear and switching processes in the system during normal periodic operation (steady state);

The harmonic frequency is an integer multiple of the system operating frequency (fundamental).

The non-sinusoidal part in a periodic voltage or current is the harmonic ripple or harmonic distortion—comprised of harmonic frequencies.

Mathematical Definition Sine and cosine functions of time with frequencies that are integer

multiples of a fundamental frequency Harmonic sine and cosine functions sum up to a periodic (non-

sinusoidal) function Terms of the Fourier series expansion of a periodic function;

0 0.5 1 1.5

-100

-50

0

50

100

Time

% V

olts

Distortion of an AC Voltage

Specified

ActualDistortion

0 0.5 1 1.5

-20

0

20

40

60

80

100

DC Current Ripple

Time

% C

urre

nt

Specified Actual Ripple

0 0.5 1 1.5

-1

-0.5

0

0.5

1

AC Input from an Inverter

Actual

Desired

0 0.5 1 1.50

0.5

1

DC Input from a Diode Rectifier

Time

Actual

Desired

0 0.5 1 1.5-1

-0.5

0

0.5

1

Non-Harmonic Disturbance/Distortion

0 0.5 1 1.5

-1

0

1

Transient Response

Time

0 0.5 1 1.5

-1

-0.5

0

0.5

1

Non-periodic Steady State: Subharmonic Component

0 0.5 1 1.5

-1

-0.5

0

0.5

1

Non-periodic Steady State: Interharmonic Component

Time

Harmonic Analysis

What is it? Principles, properties and methods for expressing periodic

functions as sum of (harmonic) sine and cosine terms: Fourier Series Fourier Transform Discrete Fourier Transform

Where is it used? Obtain the response of a system to arbitrary periodic inputs;

quantify/assess harmonic effects at each frequency

Framework for describing the quality of the system input and output signals (spectrum)

Superposition

A LTI system responds linearly to its inputs i1o1, i2o2

ai1+bi2ao1+bo2

For sinusoidal inputs:

)cos()cos(

)cos()cos(

)cos()cos(

22211121

222222

111111

tVtV

tVtV

tVtV

oooii

ooi

ooi

Application preview: DC Drive

is

Vts ),602sin(2402

E=150 VRa=1 WLa=5 mH

io

+

vo

-

Find the armature current io(t) below

DC Voltage Approximation

0 0.005 0.01 0.015 0.02 0.025

-200

0

200

Input Voltage

v s, V

0 0.005 0.01 0.015 0.02 0.0250

100

200

300

Output Voltage

v o, V

Time, s

Vttto )]3602cos(3.12)2402cos(8.28)1202cos(1.144[1.216

is

io

+

vo

-

Source Superposition

+

-

+

-

+

-

VV dco 1.216,

Vto )1202cos(1.1442,

Vto )2402cos(8.284,

Vto )3602cos(3.126,

Ra=1 W

E=150 V

La= 0.005 H

io

VV dco 1.216, Ra=1 W

E=150 V

AR

EVI

a

dcodco 1.66,

,

Vttto )]3602cos(3.12)2402cos(8.28)1202cos(1.144[1.216

Output Response

0 0.005 0.01 0.015 0.02 0.0250

100

200

300

Output Voltagev o,

V

0 0.005 0.01 0.015 0.02 0.0250

50

100

Output Current

i o, A

Time, s

Atttio )853602cos(08.1)4.822402cos(78.3)751202cos(9.361.66

Procedure to obtain response

Step 1: Obtain the harmonic composition of the input (Fourier Analysis)

Step 2: Obtain the system output at each input frequency (equivalent circuit, T.F. frequency response)

Step 3: Sum the outputs from Step 2.

Fundamental Theory Outline

Harmonic Fundamental Theory—Part a:Periodic Signals—sinusoidal function

approximationFourier Series—definition, computationForms of the Fourier SeriesSignal SpectrumApplications of the FS in LTIWave Form Quality of Periodic Signals

Measures Describing the Magnitude of a Signal

Amplitude and Peak Value

Average Value or dc Offset

Root Mean Square Value (RMS) or Power

Amplitude and Peak Value

Peak of a Symmetric Oscillation

y

t

A

y

t

A

-A-A

Non-Symmetric Signals

Peak-to-peak variation

y

t

A

y

t

A

-B

A+B

Average Value

Signal=(constant part) + (oscillating terms)

y

t

Yav

T

T

av dttyT

Y0

)(1

Examples

y

t

A

Yav=0

y

tT

Yav

kAYav

kT

A

y

t

Yav

-B

A

2

BAYav

y

t

A

A2

AC Signals

Zero Average Value

y

t

A

y

t

A

y

t

DC and Unidirectional Signals

y

t

Dc offset

y

t

Dc offset

y

t

y

t

A

A2

Root Mean Square Value (RMS)

T

rms dtyT

Y0

21For periodic signals, time window equals one period

y

tT

y2

tT

Yrms

T

rms dtyT

Y0

21

Remarks on RMS

RMS is a measure of the overall magnitude of the signal (also referred to as norm or power of the signal).

The rms of current and voltage is directly related to power.

Electric equipment rating and size is given in voltage and current rms values. IVS

R

VIRP

dtT

VdtiT

I

R

TT

22

0

2

0

2 1,

1

Examples of Signal RMS

y

t

A

y

tT

Yav AkYav

kT

A

Yrms kA

y

t

A

2

A

t

y120º

3

2A

A

Effect of DC Offset

New RMS=

SQRT [ (RMS of Unshifted)2+(DC offset)2]

y

t

y

t

d

2

2

2d

A

d

22 dA

Examples of Signals with equal RMS

y

t

A

2

A

y

t

y

t

A

2

A

2

A

t

y

3

2A

A

RMS and Amplitude

Amplitude: Local effects in time; Device insulation, voltage withstand break down, hot spots

RMS: Sustained effects in time; Heat dissipation, power output

y

t

A

y

t

y

t

2

A

Harmonic Analysis: Problem Statement

Approximate the square pulse function by a sinusoidal function in the interval [–T/2 , T/2]

f(t)

T/2 T-T -T/2 3T/2

11

-1

f(t)

T/2 T-T -T/2 3T/2

11

-1

)2

sin( tT

B

f(t)

T/2 T-T -T/2 3T/2

11

-1

)2

cos( tT

A

General Problem

Find a cosine function of period T that best fits a given function f(t) in the interval [0,T]

Assumptions:f(t) is periodic of period T

)()(

2

)cos()(

tFtfT

tAtF

Approximation Error

Error:

)cos()()()()( tAtftFtfte

f(t)

T/2-T/2

1

-1

A

e(t)

T/2-T/2

1

-1

Method:Find value of A that gives the Least Mean Square Error

Objective:Minimize the error e(t)

Define the average square error as

:

E is a quadratic function of A. The optimum choice of A is the one minimizing E.

T

dtteT

E

0

2)(1

TT

TT

dttfT

dtttfT

AA

E

dtttAftAtfT

dttAtfT

E

0

2

0

2

0

222

0

2

)(1

)cos()(2

2

)cos()(2)cos()(1

)cos()(1

Procedure

Optimum Value of A

dtttfT

AdA

dET

opt 0

)cos()(2

0

.)cos()(2

0

T

dtttfT

AdA

dE

Set dE/dA equal to zero

Find dE/dA:

TT

dttfT

dtttfT

AA

E

0

2

0

2

)(1

)cos()(2

2

EXAMPLE: SQUARE PULSE

-1.5 -1 -0.5 0 0.5 1 1.5

-1

0

1

-1.5 -1 -0.5 0 0.5 1 1.5

-1

0

1

-1.5 -1 -0.5 0 0.5 1 1.5

-1

0

1

Error-1.5 -1 -0.5 0 0.5 1 1.5

-1

0

1

-1.5 -1 -0.5 0 0.5 1 1.5

-1

0

1

Error

-1.5 -1 -0.5 0 0.5 1 1.5

-1

0

1

-1.5 -1 -0.5 0 0.5 1 1.5

-1

0

1

Error

A geometrical interpretationY-

Axis

X-Axisx

22 xzxzE

T

dttfT

f 22)(

1

Norm of a function, error, etc is defined as:

Shifted Pulse

f(t-T/4)

T/2

1

-1

B

T

f(t-b)

T/2

1

-1

B

T

A

dttT

tfT

B

tBT

tf

T

0

)sin()4

(2

)sin()4

(

dttbtfT

B

dttbtfT

A

tBtAbtf

T

T

0

0

)sin()(2

)cos()(2

)sin()cos()(

A 2cos

(2t)

A3c

os(3

t)A1cos(t)f(t)

Average Square Error :

dttNBtNAtBtAtfT

E

T

NN

2

0

11 )sin()cos(sincos)(1

Approximation with many harmonic terms

Harmonic Basis

The terms ,1,0),sin(),cos( ntnBtnA nn From an orthogonal basis

Orthogonality property:

0)sin()cos(1

,2

1

,0

)sin()sin(1

)cos()cos(1

0

0 0

T

T T

dttktmT

mk

mk

dttktmT

dttktmT

Optimum coefficients

The property of orthogonality eliminates the cross harmonic product terms from the Sq. error

For each n, set

TTT

T

T

NN

dtfT

dttfT

BdttfT

ABA

dttBtAtBftAffT

dttNBtNAtBtAtfT

E

211

21

21

221

22111

2

2

0

11

1sin

2cos

2

2

1

2

1

sincossin2cos21

)sin()cos(sincos)(1

0

iA

E

Optimum coefficients

Obtain the optimum expansion coefficients:

T

n

T

n

dttntfT

B

dttntfT

A

0

0

)sin()(2

)cos()(2

Example—Square Wave Pulse

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

4)2()2cos(

4(.)

2

)2()2cos()(1

)2cos()(2

2/

00

2/

2/

1

tdt

tdttfdtttfT

A

T

T

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0)2()2sin()(2

)2()2sin()(1

0

1

tdttftdttfB

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

022 BA

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

3

4sin

3

4)2()2(3cos

42

3

2/

0

3 tdtA

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

n

n

ntdtnAn

4)

2sin(

4)2()2(cos

42/

0

n A B

1 4/ 0

2 0 0

3 -4/3 0

4 0 0

5 4/5 0

6 0 0

n ±4/n 0

Waveform Recovery

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-1

-0.5

0

0.5

1

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-1

-0.5

0

0.5

1

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-1

-0.5

0

0.5

1

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-1

-0.5

0

0.5

1

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-1

-0.5

0

0.5

1

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-1

-0.5

0

0.5

1

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-1

-0.5

0

0.5

1

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-1

-0.5

0

0.5

1

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-1

-0.5

0

0.5

1

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-1

-0.5

0

0.5

1

n=1n=1-3n=1-5n=1-7n=1-9

NE as 0

Example: Sawtooth

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5-1

-0.5

0

0.5

1

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5-1

-0.5

0

0.5

1

ndndt

Tdtntt

TB n

TT

T

n

2)1()()sin(

2)(

4)2sin(2

2 1

0

2/

0

2/

2/

Odd Symmetry

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5-1

-0.5

0

0.5

1

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5-1

-0.5

0

0.5

1

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5-1

-0.5

0

0.5

1

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5-1

-0.5

0

0.5

1

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5-1

-0.5

0

0.5

1

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5-1

-0.5

0

0.5

1

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5-1

-0.5

0

0.5

1

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5-1

-0.5

0

0.5

1

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5-1

-0.5

0

0.5

1

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5-1

-0.5

0

0.5

1

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5-1

-0.5

0

0.5

1

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5-1

-0.5

0

0.5

1

n An Bn

0 0 0

1 0 2/

2 0 -1/

3 0 2/3

4 0 -1/2

5 0 2/5

6 0 -1/3

7 0 2/7

n 0 nn 2)1( 1

Periodic Approximation

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Approximation of the Rectified sine

vo(t)

t

v(t)

t

Vm

TT/2

Vm

T

tVtv m

2

)sin()(

d=T/2

A periodic signal= (constant part)+(oscillating part)

Average Value

vo(t)

tTT/2

Vm

d=T/2

m

t

tmm

T

m

d

m

VtV

tdtV

dttVT

dttVd

A

2)cos()sin(

)sin(2

)sin(1

00

2/

00

0

Harmonic Terms

vo(t)

tTT/2

Vm

d=T/2

)12)(12(

4)12sin()12sin(

)2cos()sin(4

)2

cos()sin(2

0

2/

0

0

kk

Vtdtktk

V

dttktT

V

dttd

ktVd

A

mm

Tm

d

mk

Summary

vo(t)

t

v(t)

t

Vm

TT/2

Vm

T

tVtv m

2

)sin()(

,4,2

,2,1

)cos()1)(1(

142)(

)2(

)2cos()12)(12(

142)(

n

mmo

k

mmo

tnnn

VVtv

kn

tkkk

VVtv

Numerical Problem: DC Drive

is

Vts ),602sin(2402

E=150 VRa=1 WLa=5 mH

io

+

vo

-

0 0.005 0.01 0.015 0.02 0.025

-200

0

200

Input Voltage

v s, V

0 0.005 0.01 0.015 0.02 0.0250

100

200

300

Output Voltage

v o, V

Time, s

Input Harmonic Approximation

VVV mdco 1.2162

,

VVV mdco 1.2162

, 0 0.005 0.01 0.015 0.02 0.025

-200

0

200

Input Voltage

v s, V

0 0.005 0.01 0.015 0.02 0.0250

100

200

300

Output Voltage

v o, V

Time, s

Average or dc component)377sin(4.339)602sin(2402 tts

Harmonic Expansion

)602cos()1()1(

14

,4,2, tn

nn

VV

n

mdcoo

))3602cos(3.12)2402cos(8.28)1202cos(1.144(1.216 ttto

Truncated Approximation (n=2, 4, and 6)

Equivalent Circuit

is

Vts ),602sin(2402

E=150 VRa=1 WLa=5 mH

io

+

vo

-

))3602cos(3.12)2402cos(8.28)1202cos(1.144(1.216 ttto

+

-

+

-

+

-

VV dco 1.216,

Vto )1202cos(1.1442,

Vto )2402cos(8.284,

Vto )3602cos(3.126,

Ra=1 W

E=150 V

La= 0.005 H

io

Superimpose Sources: DC Source

+

-

+

-

+

-

VV dco 1.216,

Vto )1202cos(1.1442,

Vto )2402cos(8.284,

Vto )3602cos(3.126,

Ra=1 W

E=150 V

La= 0.005 H

io

VV dco 1.216, Ra=1 W

E=150 V

AR

EVI

a

dcodco 1.66,

,

Superposition: n=2, f=120 Hz

+

-

+

-

+

-

VV dco 1.216,

Vto )1202cos(1.1442,

Vto )2402cos(8.284,

Vto )3602cos(3.126,

Ra=1 W

E=150 V

La= 0.005 H

io

VVo 1.1442,Ra=1 W

AZ

VI

a

oo )75(9.3675

9.3

1.1442,2,

+

-

W77.3

)1202(

i

LiiX aa

W

759.377.31

)2(

i

iXRZ aaa

)751202cos(9.36)751202cos(9.362 ttio

Superposition: n=4, f=240 Hz

+

-

+

-

+

-

VV dco 1.216,

Vto )1202cos(1.1442,

Vto )2402cos(8.284,

Vto )3602cos(3.126,

Ra=1 W

E=150 V

La= 0.005 H

io

VVo 8.284,

Ra=1 W

AZ

VI

a

oo )4.82(78.34.82

61.7

8.284,4,

+

-

W54.7

)2402(

i

LiiX aa

W

4.8261.754.71

)4(

i

iXRZ aaa

Superposition: n=6, f=360 Hz

+

-

+

-

+

-

VV dco 1.216,

Vto )1202cos(1.1442,

Vto )2402cos(8.284,

Vto )3602cos(3.126,

Ra=1 W

E=150 V

La= 0.005 H

io

VVo 3.126,Ra=1 W

AZ

VI

a

oo )85(08.185

35.11

3.126,6,

+

-

W

31.11

)3602(

i

LiiX aa

W

8535.1131.111

)4(

i

iXRZ aaa

Summary

Freq., Hz

Vo ampl, V Io ampl, A Za magn, W Power loss, W

0 (dc) 216.1 66.1 1 4,369.2

120 144.1 36.9 3.9 680.8

240 28.8 3.78 7.61 7.14

360 12.3 1.08 11.35 .583

RMS 240 71.1Total Power Loss

5,057.7

Output Power(66.1A)(150V)

9,915

2

9.361

22

222,

2

2,2,

AIR

IRP o

ao

ah W

22,, 1.661 AIRP dcoadco W

Output Time and Frequency Response

0 2 4 60

50

100

150

200

250Output Spectra

Voh

, V

and

I oh,

A

Harmonic Number

Voltage

Current

0 0.005 0.01 0.015 0.02 0.0250

100

200

300

Output Voltage

v o, V

0 0.005 0.01 0.015 0.02 0.0250

50

100

Output Current

i o, A

Time, s0 0.005 0.01 0.015 0.02 0.025

-300

-200

-100

0

100

200

300

Input Voltage and Current

v s, V

and

i s, A

Time, s

Atttio )853602cos(08.1)4.822402cos(78.3)751202cos(9.361.66 is

io

+

vo

-

Generalization: Fourier Series

The Fourier theorem states that a bounded periodic function f(t) with limited finite number of discontinuities can be described by an infinite series of sine and cosine terms of frequency that is the integer multiple of the fundamental frequency of f(t):

1

0 )sin()cos()( tnBtnAAtf nn

Where

T

dttfT

A

0

0 )(1

is the zero frequency or average value of f(t).

Waveform Symmetry

Half Wave SymmetryQuarter Wave Symmetry

OddEven

Half Wave Symmetry

2)(

Ttftf

0244220 BBABAA

•Half-wave symmetry is independent of the function shift w.r.t the time axis

•Even harmonics have zero coefficient

Square Wave

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Triangular

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Saw Tooth—Counter Example

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Quarter Wave Symmetry

Half wave and odd symmetry

Half wave and even symmetry

)()( and2

)( tftfT

tftf

)()( and 2

)( tftfT

tftf

Half-wave: odd and even

-1.5 -1 -0.5 0 0.5 1 1.5-1

-0.5

0

0.5

1

-1.5 -1 -0.5 0 0.5 1 1.5-1

-0.5

0

0.5

1

,3,1

)cos()(n

n tnAtf

,3,1

)sin()(n

n tnBtf

Quarter Wave Symmetry Simplification

,3,1

)sin()(4

)cos()(4

2/

0

2/

0

n

tdtntfB

tdtntfA

n

n

Forms of the Fourier Transform

Trigonometric

Combined Trigonometric

Exponential

n

nn

n

nnn

A

B

tnBAAtf

arctan

)cos()(,2,1

220

n

nnnnn A

BtnBAtnBtnA arctancos)sin()cos( 22

1

0 )sin()cos()(n

nn tnBtnAAtf

•Trigonometric form

•Combined Trigonometric

•Exponential

*

)sin()cos()(1

)(1

)(

nn

TT

tjnn

n

tjnn

CC

dttnjtntfT

dtetfT

C

eCtf

tjnn

tjnn

tjnjnntjnjnn

tnjtnjnnnnn

jj

eCeCeeBA

eeBA

eeBA

tnBAee

nn

nn

22

2)cos(

2cos

2222

)()(22

22

Relations between the different forms of the FS

1,2,n ,)arg()arg(

,2

, 22

,C

22

00

nnn

nnn

jnnnn

CC

BAC

eCjBAC

A

n

Re

Im

2|Cn|

n

An

-jBn

Series Type f(t)=

Trigonometric

,2,1

0 )sin()cos(n

nn tnBtnAA

,,ndttntfT

B

dttntfT

A

dttfT

A

n

T

n

T

21 ,)sin()(2

)cos()(2

)(1

0

Combined Trigonometric (Phasor form, Harmonic amplitude and phase)

n

nn

n

nnn A

BtnBAA arctan ,)cos(

,2,1

220

Exponential

T

tjnn

n

tjnn etf

TCeC )(

1 , ,

*

2221

21

21

00

,2,1 ,

nn

jnnnnn

CC

neBABjAC

AC

n

Summary of FS Formulas

Re

Im

2|Cn|

n

na

An

-jBn

Time Shift )()( atftf shifts

unchangedremain , 22nnn

ajnn

changesn

nchanges

n

BAC

eCC

an

Example: SQP -90° Shift

-1.5 -1 -0.5 0 0.5 1 1.5

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-1.5 -1 -0.5 0 0.5 1 1.5

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

original shifted

n 2|Cn| n n

1 4/ 0

2 0 0 -

3 4/3

4 0 0 -

5 4/5 0

6 0 0 -

7 5/7

n 4/n (n-1)/2 -/2

Example: SQP -60° Shift

-1.5 -1 -0.5 0 0.5 1 1.5

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-1.5 -1 -0.5 0 0.5 1 1.5

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

original shifted

n 2|Cn| n n

1 4/ 0

2 0 0 -

3 4/3

4 0 0 -

5 4/5 0

6 0 0 -

7 5/7

n 4/n (n-1)/2 (n-3)/6

SPECTRUM: SQ. Pulse (amplitude=1)

n4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 150

0.5

1

1.5

Mag

nitu

de,

2|C

n|

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15-4

-3

-2

-1

0

Harmonic Order

Har

mon

ic p

hase

ang

le,

rad

-20 -15 -10 -5 0 5 10 15 200

0.2

0.4

0.6

0.8

|Cn|

-20 -15 -10 -5 0 5 10 15 20-4

-2

0

2

4

arg(

Cn)

Freq.

n2

SPECTRUM: Sawtooth (amplitude=1)

n2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 150

0.2

0.4

0.6

0.8

Mag

nitu

de,

2|C

n|

1 2 3 4 5 6 7 8 9 10 11 12 13 14 150

1

2

3

4

5

Harmonic Order

Har

mon

ic p

hase

ang

le,

rad

SPECTRUM: Triangular wave (amplitude=1)

28

n

1 2 3 4 5 6 7 8 9 10 11 12 13 14 150

0.2

0.4

0.6

0.8

1

Mag

nitu

de,

2|C

n|

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15-1

-0.5

0

0.5

1

Harmonic Order

Har

mon

ic p

hase

ang

le,

rad

SPECTRUM: Rectified SINE (peak=1)

)1(

42 n

0 2 4 6 8 10 12 140

0.1

0.2

0.3

0.4

0.5

0.6

Harmonic Order

Mag

nitu

de: C

0 and

2|C

n|, n=

1,2.

.

Using FS to Find the Steady State Response of an LTI System

11 1

1

1

1

][

][][

1

1

1

1)(

jnRCjnnU

nUnH

ies:c frequencAt harmoni

jRCjU

UH

in

out

in

out

)1

arctan(][arg][arg][arg][arg

,)(1

][][][][

][1

1][][][

21

1

nnin

UnHnUnU

n

nUnUnHnU

nUjn

nUnHnU

inout

ininout

ininout

5kW

1mF

+

-

+

-

inout

=0.005 s

5kW

106/jn(2f1)

+

-

+

-

Uin[n] Uout[n]= ][)2(005.01

1

1

nUnfj in

Input periodic, fundamental freq.=f1=60 HzVoltage Division

Square Pulse ExcitationHarm.

OrderCirc. TF

|H(n)|, <H(n)Inp.

|Uin(n)|, <Uin(n)

Out.|Uout(n)|, <Uout(n)

0 1 0 0 0 0 0

1 0.4686 -1.083 1.2732 0 0.5967 -1.083

2 0.2564 -1.3115 0 0 0 0

3 0.1741 -1.3958 0.4244 -3.1416 0.0739 1.7458

4 0.1315 -1.4389 0 0 0 0

5 0.1055 -1.4651 0.2546 0 0.0269 -1.4651

6 0.0881 -1.4826 0 0 0 0

7 0.0756 -1.4952 0.1819 -3.1416 0.0137 1.6464

8 0.0662 -1.5046 0 0 0 0

9 0.0588 -1.5119 0.1415 0 0.0083 -1.5119

10 0.053 -1.5178 0 0 0 0

11 0.0482 -1.5226 0.1157 -3.1416 0.0056 1.619

12 0.0442 -1.5266 0 0 0 0

13 0.0408 -1.53 0.0979 0 0.004 -1.53

14 0.0379 -1.5329 0 0 0 0

15 0.0353 -1.5354 0.0849 -3.1416 0.003 1.6061

)083.112cos(5967.0 1 tf

15

,3,11 ])[arg(2cos|][|)(

nUtfnnUt outoutout

SQUARE PULSE Excitation

0 5 10 150

0.5

1

input

output

-0.025 -0.02 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 0.02 0.025-1

-0.5

0

0.5

1

time, s

Rectified SINE Wave

Harm. OrderCirc. TF

|H(n)|, <H(n)Inp.

|Uin(n)|, <Uin(n)

Out.|Uout(n)|, <Uout(n)

0 1 0 0.6366 0 0.6366 0

1 0.4686 -1.083 0 0 0 0

2 0.2564 -1.3115 0.0849 3.1416 0.0218 1.8301

3 0.1741 -1.3958 0 0 0 0

4 0.1315 -1.4389 0.0202 3.1416 0.0027 1.7027

5 0.1055 -1.4651 0 0 0 0

6 0.0881 -1.4826 0.0089 3.1416 0.0008 1.659

7 0.0756 -1.4952 0 0 0 0

8 0.0662 -1.5046 0.005 3.1416 0.0003 1.637

9 0.0588 -1.5119 0 0 0 0

10 0.053 -1.5178 0.0032 3.1416 0.0002 1.6238

11 0.0482 -1.5226 0 0 0 0

12 0.0442 -1.5266 0.0022 3.1416 0.0001 1.615

13 0.0408 -1.53 0 0 0 0

14 0.0379 -1.5329 0.0016 3.1416 0.0001 1.6087

15 0.0353 -1.5354 0 0 0 0

Rect. SINE wave

0 5 10 150

0.2

0.4

0.6

input

output

-0.025 -0.02 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 0.02 0.0250

0.2

0.4

0.6

0.8

1

time, s

Total RMS of A Signal

2,1

0 )cos(2)(n

nn tnFAtf

nnnn CBAF 2222

T

rms dttfT

F 2)(1

Rewrite the FS as:

Nth harmonic rms (except for n=0)

Total rms of the wave form:

Total RMS and the FS Terms

T n

nn

T

rms dttnFAT

dttfT

F

2

2,1

022 )cos(2

1)(

1

2,1

220

2

n

nrms FAF

221

,3,2

221

2H

n

nrms FFFFF

For ac wave forms (A0=0) it is convenient to write:

Using the orthogonalitybetween the terms:

Waveform Quality-AC Signals

221

,3,2

221

2H

n

nrms FFFFF

1

21

2

11

23

22

F

FF

F

F

F

FFTHD rmsH

Total Harmonic Distortion Index

A

B

F1-Axis

FH-A

xis

THDà increases

F1

FH=√(F22+F3

2+…)Frms

Waveform Quality-DC SIgnals (A0≠0)

,4,2

2

0

2224

22

20

2

n

nac

dc

acdcrms

FF

AF

FFFFAF

dc

dcrms

dc

ac

F

FF

F

FRF

22

Ripple FactorFdc

Fac=√(F22+F4

2+…)Frms

Example: W.F.Q. of the circuit driven by a Sq.P.

Harm. OrderInp. Rms:|Uin(n)|/√2

Out. Rms:|Uout(n)|/√2

0 0 0

1 0.900288 0.421931

2 0 0

3 0.300096 0.052255

4 0 0

5 0.180029 0.019021

6 0 0

7 0.128623 0.009687

8 0 0

9 0.100056 0.005869

10 0 0

11 0.081812 0.00396

12 0 0

13 0.069226 0.002828

14 0 0

15 0.060033 0.002121

RMS1.00

(excact)0.4258

%THD48.43(exact)

13.6

4359.09.01 22

%43.48%1009.0

4359.0

√(0.42582 – 0.42192)=0.0575{

%6.13%1004219.0

0575.0

Example: WFQ of the circuit driven by a rect. sine

Harm. OrderInp. Rms:|Uin(n)|/√2

Out. Rms:|Uout(n)|/√2

0 0.6366=Uin(0) 0.6366=Uout(0)

1 0 0

2 0.060033 0.015415

3 0 0

4 0.014284 0.001909

5 0 0

6 0.006293 0.000566

7 0 0

8 0.003536 0.000212

9 0 0

10 0.002263 0.000141

11 0 0

12 0.001556 7.07E-05

13 0 0

14 0.001131 7.07E-05

15 0 0

RMS0.707(exact)

0.6368

%RF48.35(exact)

2.5%35.48%100

6366.0

3078.0

3078.06366.0707.0 22 01596.06366.06368.0 22

%5.2%1006366.0

01596.0