turning trash into gas

23
1768 East 25 th Street Suite 301 Cleveland, OH 44114 216.367.0602 egeneration.org Turning Trash into Gas Making Economically Competitive Fuels from Trash and an Open Fuels Standard Authored By: Jon Paul Morrow eGeneration Fellow

Upload: the-e-generation

Post on 23-Jul-2016

220 views

Category:

Documents


0 download

DESCRIPTION

 

TRANSCRIPT

Page 1: Turning Trash into Gas

   

1768  East  25th  Street  Suite  301  Cleveland,  OH  44114  216.367.0602  

egeneration.org  

Turning Trash into Gas  

Making  Economically  Competitive  Fuels  from  Trash  and  an  Open  Fuels  Standard  

Authored  By:  Jon  Paul  Morrow    eGeneration  Fellow  

Page 2: Turning Trash into Gas

 

TABLE OF CONTENTS

Energy  Independence  ........................................................................................................................................................  1  

An  Open  Fuel  Standard  .....................................................................................................................................................  2  

The  Problems  with  Methanol  as  a  transportation  fuel  .......................................................................................  3  

Dimethyl  Ether  (DME)  ......................................................................................................................................................  5  

Ford  Festiva  86.5  MPG  on  DME?  ...................................................................................................................................  7  

Diesel  power  ..........................................................................................................................................................................  7  

Technology  features  ...........................................................................................................................................................  8  

Bring  it  to  the  U.S.?  ..............................................................................................................................................................  8  

DME  to  Gasoline,  Cheaper  than  Methanol  to  Gasoline  ........................................................................................  8  

Butanol  .....................................................................................................................................................................................  9  

Ethanol  from  Corn,  is  this  Policy  just  plain  Dumb?  ............................................................................................  11  

An  Open  Fuel  Standard  once  Removed  and  Re-­‐envisioned  ............................................................................  14  

Plasma  Gasification  of  Municipal  Solid  Waste  (MSW)  and  the  MSR  ...........................................................  15  

Plasma  Gasification,  MSR,  and  Manufacturing  .....................................................................................................  19  

Conclusions  ..........................................................................................................................................................................  20  

 

Page 3: Turning Trash into Gas

 

    Manufacturing  Energy  Independence      |    1    

ENERGY INDEPENDENCE

Saudi  Arabia’s  oil  minister,  Ali  al-­‐Naimi,  said  recently  it  was  “not  in  the  interest  of  OPEC  producers  to  cut  their  production,  whatever  the  price  is...”    

Naimi  also  said  the  Saudis  might  even  raise  their  output  to  improve  their  market  share  (which  would  also  lower  prices  further).  "The  best  thing  for  everybody,"  he  says,  "is  to  let  the  most  efficient  producers  produce..."  

What  exactly  does  he  mean?  Many  industry  insiders  are  not  shy  in  concluding  that  Saudi  Arabia,  one  of  America’s  largest  trading  partners,  “basically  wants  oil  prices  to  move  lower  to  reduce  production  in  the  U.S.  and  force  many  American  producers  out  of  business.”  As  trading  partners  and  friends  of  the  United  States,  to  even  the  most  unbiased  observer,  it  seems  as  though  Saudi  Arabia  is  willing  to  go  to  great  lengths  to  ensure  America  is  dependent  upon  the  Middle  East  for  oil.  

That  is  what  monopolies  do.  If  a  monopoly  can  produce  a  commodity  or  product  cheaper  than  anyone  else  (and  Saudi  Arabia  currently  has  the  cheapest  oil  in  the  world  to  produce),  their  best  bet  in  the  long  run,  if  they  can  get  away  with  it,  is  to  drop  the  price  so  low  it  puts  all  the  competition  out  of  business.  

Oil  prices  are  low  and  getting  lower  (from  the  time  of  this  article  being  written,  November  2014  through  January  2015,  and  possibly  beyond,  gasoline  has  dipped  into  the  $2  per  gallon  range),  and  in  the  short  term  that  is  great.  It  could  give  the  American  economy  a  bit  of  a  short-­‐term  recovery,  but  it  is  happening  at  the  cost  of  long  term  domestic  energy  security  and  energy  independence.  Long-­‐term  if  the  Saudis  get  their  way,  eventually  most  of  its  competition  will  be  out  of  business  and  they  can  go  back  to  gouging  the  world.  The  only  way  to  get  our  economy  off  their  roller  coaster  is  robust  fuel  competition.  It  can  be  done  now,  and  when  they  raise  their  prices  again,  our  economy  will  keep  humming.  The  hope  is  that  enough  of  us  see  the  wisdom  to  keep  pursuing  it  while  oil  prices  are  low.  

In  late  November,  in  Vienna,  OPEC  decided  not  to  do  what  it  normally  does  when  oil  prices  get  too  low:  They  chose  not  to  cut  their  production  levels.  Some  OPEC  members  can  afford  this  because  their  oil  is  cheap  to  produce.  Some  countries  like  Venezuela  will  be  hurt  badly  by  this  decision,  but  they  do  not  have  the  same  clout  within  OPEC.  This  is  a  quote  from  an  article  in  USA  Today:  

 

Page 4: Turning Trash into Gas

 

    Manufacturing  Energy  Independence      |    2    

In  Vienna,  Venezuelan  Oil  Minister  Rafael  Ramirez  effectively  conceded  defeat  when  he  appeared  to  angrily  storm  out  of  the  OPEC  meeting  once  a  no-­‐cut  decision  was  signaled.  

Over  half  of  officials  from  OPEC  countries  —  the  poorer  half  —  were  consistently  on-­‐message  that  the  market  is  over-­‐supplied  and  that  something  needed  to  be  done  but,  nothing  was  done  to  increase  the  price  of  oil  (and  thereby  gasoline  at  the  pump.)  

Any  long-­‐term  reduction  of  the  price  of  crude  under  $50/barrel  will  hurt  shale-­‐oil  producers  in  the  United  States  and  Canada.  Low  crude  prices  make  it  harder  for  them  to  launch  new  drilling  projects  or  expand  operations  because  they  count  on  high  returns  to  finance  the  more  costly  penetration  and  oil  harvesting  than  Saudi  Arabia.  

Lower  fuel  prices  will  immediately  ease  the  financial  burden  of  hundreds  of  millions  of  people  around  the  world  because  the  artificially-­‐induced  high  oil  prices  we  have  experienced  around  the  world  have  functioned  much  like  a  regressive  tax  on  the  whole  world.  Prevent  billions  of  people  from  realizing  their  dreams  of  prosperity.  

 

AN OPEN FUEL STANDARD

An  open  fuel  standard  would  mean  the  end  of  the  fossil  fuel  petroleum  standard,  which  the  world  has  been  stuck  with  since  the  early  twentieth  century.  It  means  the  end  of  a  one-­‐fuel  economy  and  the  beginning  of  a  free  market  for  transportation  fuel.    

Many  fuels  are  available  that  our  vehicles  can  be  converted  to  burn  and  all  have  some  advantages  over  gasoline  and  that  cost  less  and  burn  cleaner  than  gasoline,  but,  currently  our  cars  were  made  in  such  a  way  that  we  cannot  put  these  fuels  in  our  cars.  An  open  fuel  standard  could  change  this  situation.  With  only  a  few  small  tweaks  to  the  manufacture  of  a  car,  it  would  be  capable  of  burning  methanol,  ethanol,  butanol,  and  gasoline.  Each  car  would  become  a  platform  upon  which  fuels  could  compete,  or  at  least  that  is  the  theory.    

The  repercussions  of  real  fuel  competition  would  be  enormous.  When  cars  start  rolling  off  assembly  lines  capable  of  burning  multiple  fuels,  gasoline  prices  would  have  to  come  down  to  compete,  new  jobs  would  be  created  by  companies  scrambling  to  get  a  piece  of  the  hundreds  of  billions  of  dollars  Americans  spend  on  fuel  per  year,  pollutants  would  spill  into  the  air,  landfills  would  have  significantly  less  bulk,  rural  people  in  developing  countries  would  raise  their  standards  of  living,  women  in  oppressive  OPEC  nations  would  see  the  regimes  holding  them  down  begin  to  weaken,  America's  national  security  would  improve  without  costing  taxpayers  

Page 5: Turning Trash into Gas

 

    Manufacturing  Energy  Independence      |    3    

any  more  money,  and  you,  the  consumer,  would  finally  be  able  to  have  as  much  choice  with  your  fuel  as  you  do  with  your  coffee.  

Sounds  great!  So  why  is  there  not  an  open  fuel  standard  in  place  for  America,  like  yesterday?  

 

Unfortunately,  all  fuels  are  not  created  equal  and  many  of  the  disadvantages  of  alternative  fuels  are  not  trivial.  

While  there  are  problems  with  an  open  fuel  standard  and  fuel  freedom  as  currently  conceived  and  envisioned,  it  is  a  noble  effort  and  if  industry  support  can  be  had  it  could  provide  America  with  a  great  benefit  in  the  areas  of  the  economy  and  national  security.  It  remains  to  be  seen  if  there  would  be  any  environmental  benefit  from  alternative  fuels,  even  if  they  were  renewable.  

Methanol,  Ethanol,  DiMethyl  Ether  (DME),  and  Butanol  are  the  most  highly  touted  transportation  fuels  that  would  compete  with  gasoline  in  an  open  fuel  standard.  The  leadership  of  the  eGeneration  foundation  believes  that,  while  the  currently  envisioned  open  fuels  standard  is  a  great  idea,  and  we  do  not  want  to  diminish  this  in  anyway,  there  is  potentially  a  better,  long  term  vision  for  the  open  fuels  standards.  We  reach  this  conclusion  because  of  the  drawbacks  of  the  most  touted  fuels.    

 

THE PROBLEMS WITH METHANOL AS A TRANSPORTATION FUEL

Methanol  is  probably  the  most  hyped  of  the  alternative  transportation  fuels  that  will  compete  with  gasoline  in  an  open  fuel  standard.  A  few  of  its  drawbacks  are:  

v Fuel  storage  tanks  and  dispensing  equipment  must  be  corrosion  and  damage  resistant.  This  is  because  of  the  potentially  harmful  nature  of  M85  (in  the  case  of  spills/leaks),  and  the  fact  that  it  is  a  corrosive  solvent.  Fuel  delivery  requires  use  of  non-­‐corroding  hoses  and  stainless  steel  fuel  tanks.  This  is  not  a  trivial  cost  for  distributors  or  fuel  stations  for  these  upgrades  

v Although  the  refueling  process  is  the  same  as  that  for  gasoline,  because  of  the  much  greater  corrosion  of  Methanol,  most  automobile  manufacturers  will  void  their  warranties  as  the  engine  and  fuel  tank  will  not  last  as  near  as  long  as  an  auto  that  uses  only  gasoline.  

v Methanol  has  about  half  the  energy  content  of  gasoline.  Because  mileage-­‐using  M85  is  lower  than  mileage  using  gasoline  (10-­‐20%),  refueling  is  needed  more  frequently.    

Page 6: Turning Trash into Gas

 

    Manufacturing  Energy  Independence      |    4    

 

Methanol  makes  a  fine  racing  fuel  but,  in  all  fairness,  it  is  not  entirely  for  mass-­‐market  application.  

The  corrosion  factor  of  methanol  has  automakers  pushing  back  against  the  open  fuel  standards  saying  it  would  reduce  the  life  of  many  of  the  major  components  of  their  vehicles  (gasoline  tank,  gasoline  pump,  engine  block  and  cylinders,  exhaust  manifold,  and  parts  of  the  exhaust  system.)  If  the  open  fuel  standard  is  put  into  place  it  is  warned  that  Americans  will  quickly  see  the  vehicle  warranties  shrivel  up  or  disappear.  

 

There  are  other  drawbacks  as  well.  

 

Start  with  the  energy  side  of  these  drawbacks.  Turning  natural  gas  into  methanol  consumes  around  1/3  of  the  energy  content  of  the  gas,  similar  to  producing  hydrogen  from  natural  gas.  As  with  hydrogen,  there  is  no  way  to  recover  those  losses  when  burning  methanol  in  an  internal  combustion  engine,  so  while  direct  emissions  might  be  lower,  indirect  emissions  negate  most  of  that  benefit.    

The  argument  could  be  made  we  would  much  better  off  just  putting  the  natural  gas  directly  into  cars  in  the  form  of  CNG  (Compressed  Natural  Gas)  or  LNG  (Liquefied  Natural  Gas.)    

Then  there  is  fuel  economy.  Even  after  you  modify  a  car  to  run  on  a  50%  (M50)  or  85%  blend  (M85)  of  methanol  and  gasoline,  you  cannot  compensate  for  its  lower  energy  content  without  precluding  operation  on  ordinary  gasoline.  While  a  car  running  on  E85  typically  uses  40%  more  fuel  per  mile  than  on  gasoline,  you  would  need  75%  more  M85  to  go  the  same  distance,  because  methanol's  energy  content  is  25%  less  than  ethanol's  and  less  than  half  that  of  petroleum  gasoline.    

In  reality,  a  Ford  Fusion  FFV  that  gets  a  combined  21  city/highway  mpg  on  gasoline  and  15  mpg  on  E85  would  deliver  a  paltry  12  mpg  on  M85.  Even  with  the  car's  generous  17.5  gallon  fuel  tank,  its  range  on  M85  would  be  barely  200  miles.  

Then  there  are  the  risks  in  the  public  handling  methanol.  While  the  risks  are  minimal,  they  are  greater  than  gasoline  and  so  the  risks  for  lawsuits  and  insurance  claims  are  greater.  The  basic  problem  is  that,  unlike  gasoline  or  ethanol,  methanol  is  a  neurotoxin.  Ingesting  even  a  small  quantity  can  lead  to  blindness  or  death,  as  described  in  the  Material  Safety  Data  Sheet  from  

Page 7: Turning Trash into Gas

 

    Manufacturing  Energy  Independence      |    5    

Methanex,  one  the  world's  largest  methanol  producers.  Its  vapors  are  not  much  safer,  and  it  can  even  be  absorbed  though  the  skin.  These  properties  create  serious  concerns  for  both  bulk  handling  and  at  the  point  of  sale.  Gasoline  is  hardly  as  safe  as  water,  but  at  least  if  you  spill  some  on  your  hand,  you  do  not  need  to  be  hospitalized.  While  methanol  can  be  handled  safely  by  trained  personnel  in  industrial  facilities  and  storage  terminals,  that  does  not  extend  to  the  gas  station  forecourt,  where  it  could  potentially  pose  a  hazard  to  both  customers  and  employees.  

 

DIMETHYL ETHER (DME)

DME,  in  our  estimation,  is  a  much  better  alternative  fuel  than  methanol  

DiMethyl  Ether  (DME)  has  a  number  of  uses  in  products  and  is  most  commonly  used  as  a  replacement  for  propane  in  liquid  petroleum  gas  (LPG),  but  can  also  be  used  as  a  replacement  for  diesel  fuel  in  transportation.    Diesel  fuel  contains  more  energy  per  gallon  that  the  gasoline  that  we  use  in  most  passenger  cars,  and  where  pure  methanol  would  not  be  able  to  power  a  diesel  engine  as  effectively,  DME  can.  

Today,  DME  is  primarily  produced  by  converting  hydrocarbons  via  gasification  to  synthesis  gas  (syngas).  Synthesis  gas  is  then  converted  into  methanol  in  the  presence  of  catalyst  (usually  copper-­‐based),  with  subsequent  methanol  dehydration  in  the  presence  of  a  different  catalyst  (for  example,  silica-­‐alumina)  resulting  in  the  production  of  DME.  

Besides  being  able  to  be  produced  from  a  number  of  renewable  and  sustainable  resources,  DME  also  holds  advantage  over  traditional  diesel  fuel  because  of  its  high  cetane  number  -­‐  which  measures  the  combustion  quality  of  diesel  fuel  during  compression  ignition.  By  combusting  more  thoroughly,  an  engine  tailored  to  run  on  DME  can  achieve  much  higher  efficiencies,  better  mileage,  and  emissions  reductions.  

DME  (dimethyl  ether)  is  a  clean-­‐burning,  non-­‐toxic,  potentially  renewable  fuel.  Its  high  cetane  value  and  quiet  combustion,  as  well  as  its  inexpensive  propane-­‐like  fueling  system,  make  it  an  excellent,  inexpensive  diesel  alternative  that  will  meet  strict  emissions  standards.  

DME  has  been  used  for  decades  as  an  energy  source  in  China,  Japan,  Korea,  Egypt,  and  Brazil,  and  it  can  be  produced  domestically  from  a  variety  of  feedstocks,  including  biogas,  syngas,  and  natural  gas.  Ideal  uses  in  North  America  are  in  the  transportation,  agriculture,  and  construction  industries.  Because  production  is  not  dependent  upon  the  price  of  crude  oil,  DME  can  offer  stable  pricing  that  is  competitive  with  that  of  diesel.  

 

Page 8: Turning Trash into Gas

 

    Manufacturing  Energy  Independence      |    6    

DME  is  a  gas  under  ambient  conditions  with  properties  similar  to  those  of  propane.  However,  because  it  can  be  stored  as  a  liquid  under  moderate  pressure,  it  eliminates  the  need  for  the  high-­‐pressure  containers  used  for  CNG  or  cryogenic  storage  of  LNG.  DME  can  be  used  as  a  direct  replacement  for  diesel  fuel  powered  engines.  

DME  can  be  produced  from  a  variety  of  abundant  sources,  including  natural  gas,  coal,  waste  from  pulp  and  paper  mills,  forest  products,  agricultural  by-­‐products,  municipal  waste  and  dedicated  fuel  crops  such  as  switch  grass.  World  production  of  DME  today  stands  at  approximately  5  million  tons  per  annually,  and  is  primarily  by  means  of  methanol  dehydration.    DME  can  also  be  manufactured  directly  from  synthesis  gas  (syngas)  produced  by  the  gasification  of  coal  or  biomass,  or  through  natural  gas  reforming.    Among  the  various  processes  for  chemical  conversion  of  natural  gas,  direct  synthesis  of  DME  is  the  most  efficient.  

DME  is  a  clean,  colorless  gas  that  is  easy  to  liquefy  and  transport.  Chemically  speaking,  DME  is  the  simplest  ether  compound,  with  a  chemical  formula  of  C2H6O.  Again,  DME  can  be  derived  from  many  sources,  including  renewable  materials  (biomass,  including  municipal  waste  and  waste  from  paper  and  pulp  mills,  wood,  or  agricultural  products)  and  fossil  fuels  (natural  gas  and  coal).  

DME  has  been  used  for  decades  in  the  personal  care  industry  (as  an  environmentally  benign  propellant  in  aerosols),  as  DME  is  non-­‐toxic  and  is  easily  degraded  in  the  troposphere.  

Important  concerns  with  any  fuel  used  for  transportation  or  cooking  and  heating  are  the  potential  environmental  and  human  health  impacts  of  the  use  of  the  fuel.  In  the  case  of  DME,  there  are  no  concerns  with  regard  to  human  or  animal  exposure.  

DME  was  first  used  as  an  aerosol  propellant  because  of  its  environmentally  benign  characteristics.  It  is  not  harmful  to  the  ozone  layer,  unlike  the  _________(CFCs)  that  it  replaced.  DME  producer  DuPont  Fluorochemicals  (which  markets  DME  under  the  product  name  “Dymel  A”),  provides  a  technical  bulletin  that  gives  a  good  overview  of  the  physical  and  chemical  properties  of  DME,  and  the  results  of  their  own  health  and  safety  studies.  

"A  two-­‐year  inhalation  study  and  carcinogenicity  bioassay  at  exposure  levels  of  up  to  20,000  ppm  showed  no  compound-­‐related  effects...,  no  signs  of  carcinogenicity...,  and  no  evidence  of  mutagenicity  or  teratogenicity  in  separate  reproductive  studies.  Based  on  all  these  studies,  the  product  have  been  approved  by  the  Dupont  Company  for  general  aerosol  use,  including  in  personal  products.”  

DME  is  one  of  the  most  promising  alternative  automotive  fuel  solutions  among  the  various  ultra  clean,  renewable,  and  low-­‐carbon  fuels  under  consideration  worldwide.  DME  can  

Page 9: Turning Trash into Gas

 

    Manufacturing  Energy  Independence      |    7    

be  used  as  fuel  in  gasoline  engines  (30%  DME  /  70%  LPG),  and  gas  turbines.  Only  minor  modifications  are  required  to  convert  a  diesel  engine  to  run  on  DME,  and  engine  and  vehicle  manufacturers,  including  Volvo,  Mack,  Isuzu,  Nissan,  and  Shanghai  Diesel  have  developed  heavy  vehicles  running  on  diesel  engines  fueled  with  DME.    It  is  as  a  replacement  for  diesel  fuel  that  DME  particularly  demonstrates  its  most  distinct  advantages.    

For  DME  produced  from  methanol,  the  price  of  DME  is  a  function  of  the  price  of  methanol  and  LPG.    The  energy  value  of  DME  is  approximately  62%  that  of  LPG,  however,  the  listed  sale  price  is  typically  75  -­‐  90%  that  of  LPG,  representing  a  premium  to  energy  value.  

 

FORD FESTIVA 86.5 MPG ON DME?

Ford  of  Europe  has  begun  building  the  new  Fiesta  ECOnetic  Technolgy  at  Ford’s  Cologne  Assembly  plant  in  Germany.  

According  to  Ford,  the  ECOnetic  Technology  is  Ford’s  most  fuel-­‐efficient  car.  Ford  says  the  ECOnetic  Technology  gets  86.5  miles  per  gallon,  or  as  they  say  in  Europe,  3.3L/100km.  But,  unfortunately  this  diesel  powered  Festiva  is  available  only  in  Europe.  

 

DIESEL POWER

The  ECOnetic  Technology  is  powered  by  a  1.6-­‐liter  Duratorq  TDCi  diesel  engine.  The  ECOnetic  is  available  in  a  three-­‐door  and  five-­‐door  form  and  in  a  variety  of  trim  levels.  

“Fiesta  is  already  hugely  successful  across  Europe  and  the  ECOnetic  Technology  model  takes  its  fuel  efficiency  and  low-­‐CO2  offering  to  another  level,”  said  Stephen  Odell,  CEO  and  chairman,  Ford  of  Europe.  

According  to  Ford,  half  of  all  Ford  cars  sold  in  Europe  will  carry  the  ECOnetic  Technology  badge  by  the  end  of  2016.  

 

 

Page 10: Turning Trash into Gas

 

    Manufacturing  Energy  Independence      |    8    

TECHNOLOGY FEATURES

The  Ford  ECOnetic  Technology  offers  fuel  saving  features  like  Auto-­‐Start-­‐Stop,  Smart  Regenerative  Charging,  Eco  Mode  and  shift  indicator  light.  Lower  suspension,  under  shield,  wheel  airstream  deflectors  and  extra  low-­‐rolling  resistance  tires  further  boost  fuel  economy.  

 

BRING IT TO THE U.S.?

The  big  question  is,  if  86.5  mpg  is  good  for  the  European  market,  when  will  Ford  make  diesel  technology  in  a  small  car  available  here  in  the  U.S.  market?  Why  is  there  a  tax  incentive  to  buy  electric  cars  but  no  tax  incentive  to  buy  an  ultra  high  mileage  diesel  car?  

Look  at  the  potential  of  the  DME  market  if  the  federal  government  allowed  the  same  tax  incentive  for  an  electric  car  as  for  a  DME  powered  Ford  Fiesta.  

With  the  very  real  potential  of  gasoline  prices  to  rise  back  to  the  $4.00/gallon  range,  demand  for  fuel-­‐efficient  cars  is  still  as  strong  as  ever.  Inside  Ford's  Dearborn,  Michigan  headquarters,  rank  and  file  employees  and  some  key  marketing  executives  who  do  not  want  to  be  quoted  by  name  have  been  lobbying  senior  management  to  make  the  DME  powered  Ford  Fiesta  come  about  (particularly  for  the  California  market).  No  word  on  when,  if  ever  the  lobbying  will  succeed.  

 

DME TO GASOLINE, CHEAPER THAN METHANOL TO GASOLINE [Excepts  from  this  section  taken  from  Makarand  Gogate,  Conrad  J.  Kulik,  and  Sunggyu  Lee  Process  Research  Center  Department  of  Chemical  Engineering  The  University  of  Akron]    

Coal-­‐derived  syngas  can  be  converted  to  methanol  using  Liquid  Phase  Methanol  Synthesis  Process.  Methanol  can  be  further  converted  to  gasoline  using  the  Mobil  Methanol-­‐To-­‐Gasoline  (MTG)  process.  The  combination  of  commercial  syngas-­‐to-­‐methanol  technology  with  the  MTG  Process  provides  a  ready  synthetic  route  for  liquid  hydrocarbon  fuels.  The  University  of  Akron  has  developed  a  novel  process  for  one-­‐step  synthesis  of  Dimethyl  Ether  (DME)  from  syngas.  This  DME  Synthesis  improves  the  reactor  productivity  and  syngas  conversion,  by  as  much  as  100%,  over  the  MTG  Process.  One-­‐step  DME  synthesis  is  thus  an  ideal  front-­‐end  for  further  conversion  to  gasoline.  This  substitution  is  justified  not  only  because  DME  yields  an  identical  product  distribution  as  methanol,  DME  is  also  a  true  intermediate  in  the  Mobil  MTG  process.  The  novel  

Page 11: Turning Trash into Gas

 

    Manufacturing  Energy  Independence      |    9    

integration  scheme  has  been  termed  as  the  Dimethyl  Ether-­‐to-­‐  Gasoline  (DTG)  process.  The  advantages  of  the  University  of  Akron’s  DTG  Process  over  the  conventional  Methanol-­‐to-­‐Gasoline  Process  are  in  (a)  enhanced  syngas  conversion,  (b)  superior  hydrocarbon  yield,  (c)  superior  product  selectivity,  (d)  alleviated  heat  duties,  and  (e)  integrated  energy  efficiency.    

These  process  merits  are  in  the  areas  of  higher  gasoline  yield,  higher  syngas  conversion,  good  adaptability  to  coal-­‐based  syngas  and  integrated  energy  efficiency.  Further  experimental  investigation  to  establish  these  merits  is  currently  underway  at  the  University  of  Akron.    

 

BUTANOL

Nearly  a  decade  after  the  adoption  of  federal  renewable  fuel  standards  led  to  a  sharp  increase  in  production  of  ethanol,  some  producers  in  the  Corn  Belt  are  considering  making  a  different  fuel  other  than  ethanol.  The  fuel,  butyl  alcohol,  or  butanol,  is  worth  more  to  refiners  because  it  has  more  energy  than  ethanol,  is  easier  to  handle  and  more  of  it  can  be  blended  into  each  gallon  of  gasoline.  But  producing  it  will  require  costly  retrofitting  of  ethanol  plants,  and  plant  capacity  will  be  reduced.  

Several  companies  are  leading  the  push  for  butanol,  including  Gevo  of  Englewood,  Colo.,  and  Butamax  Advanced  Biofuels,  a  joint  venture  of  BP  and  DuPont  based  in  Wilmington,  Del.  They  have  developed  ways  to  make  butanol  the  same  way  ethanol  is  made,  through  yeast-­‐based  fermentation  and  then  distillation.  

Butanol  has  better  fuel  properties  than  ethanol.  It  has  higher  energy  content,  gasoline-­‐butanol  blends  do  not  separate  in  the  presence  of  water,  and  no  need  to  modify  gasoline  engines.  Gasoline  engines  can  utilize  any  gasoline-­‐butanol  blends  up  to  a  100%  butanol.  Moreover,  butanol  production  does  not  require  expensive  upgrades  to  the  capital.  The  infrastructure  for  ethanol  production  could  be  switched  to  butanol  production  with  minimal  capital  costs.  Thus,  society  could  very  easily  transition  to  butanol.    

Butanol  unfortunately  has  some  perceived  disadvantages,  which  we  would  argue  could  be  an  advantage.  The  first  and  most  important  disadvantage,  traditional  ABE  (Acetone  Butanol  Ethanol)  fermentation  has  low  butanol  yields,  because  Butanol  is  toxic  to  the  microorganisms  involved  in  fermentation  at  low  concentration  levels.  However,  genetic  engineering  has  allowed  scientists  to  create  new  microorganism  that  can  handle  higher  concentrations  of  butanol  and  increase  butanol  yields.  Further,  researchers  like  Ramey  and  Yang  of  BUTYLFUELS  of  Columbus,  Ohio  and  Ohio  State  University  have  improved  the  butanol  reaction  by  using  a  continuous,  two-­‐stage  process.  The  process  increase  butanol  

Page 12: Turning Trash into Gas

 

    Manufacturing  Energy  Independence      |    10    

yields  with  no  ethanol  and  acetone  being  produced  as  byproducts.  In  the  first  stage,  the  sugar  is  converted  to  butyric  acid  and  in  the  second,  the  butyric  acid  is  converted  to  directly  to  butanol.  The  technology  exists  to  produce  butanol  very  cost  effectively,  but  because  there  is  no  market,  no  butanol  standard,  and  no  government  or  market  incentive  at  this  time,  the  technology  is  not  being  used  in  commercial  applications.  

The  second  disadvantage  is  butanol  has  a  legal  impediment  from  the  U.S.  federal  government.  Butanol  is  not  recognized  as  a  biofuel  and  thus,  it  is  not  able  to  receive  the  same  subsidies  as  ethanol.  Currently  ethanol  receives  a  $0.51  per  gallon  tax  break  .  This  subsidy  helps  offset  the  production  costs  for  ethanol  production,  and  stimulates  the  expansion  of  the  ethanol  industry.    

The  last  disadvantage,  and  probably  the  most  important  disadvantage,  is  butanol  production  competes  for  the  same  feedstocks  that  are  used  by  the  food  industry.    

A  large  butanol  industry  can  fuel  a  large  demand  for  the  feedstocks,  which  would  increase  food  prices.  Agricultural  producers  benefit  from  the  higher  prices,  but  it  puts  consumers  at  a  disadvantage  when  shopping  for  groceries.    

Another  alternative  is  to  produce  butanol  from  lignocellulosic  fermentation  from  crop  and  wood  residues,  and  the  energy  crops.  Although  the  feedstocks  for  lignocellulosic  fermentation  would  have  low  market  prices,  they  still  entail  some  costs.  First,  agricultural  producers  are  limited  in  the  amount  of  feedstocks  that  can  be  removed  from  the  land.  Second,  they  also  tend  to  be  light  weight  and  bulky  which  increases  the  hauling  and  processing  costs.  Finally,  if  the  United  States  incorporated  a  carbon  permit  system,  then  the  bio-­‐electric  plants  would  also  compete  for  the  same  feedstocks,  because  they  are  also  much  more  Green  House  Gas  (GHG)  efficient.    

Butanol  offers  several  advantages  to  gasoline  refiners  and  those  involved  in  Enhanced  Oil  Recovery  (EOR).  It  contains  about  30  percent  more  energy  than  ethanol,  and  it  can  be  blended  with  gasoline  at  a  much  higher  percentage  —  Butamax  recommends  16  percent  butanol,  compared  with  the  current  10  percent  standard  for  ethanol.  That  would  allow  refiners  to  more  quickly  meet  the  Environmental  Protection  Agency’s  renewable  fuel  standards,  which  were  adopted  in  2005  and  mandate  that  transportation  fuels  contain  increasing  amounts  of  alternative  fuels  over  time.  

Because  ethanol  evaporates  relatively  easily,  refiners  have  to  remove  some  of  the  lighter  components  from  their  gasoline  so  the  blended  product  meets  air-­‐quality  standards.  Butanol  evaporates  less  readily,  so  refiners  can  leave  many  of  these  more  volatile  components  in,  saving  money.  

Page 13: Turning Trash into Gas

 

    Manufacturing  Energy  Independence      |    11    

 

Michael  McAdams,  president  of  the  Advanced  Biofuels  Association,  an  industry  group,  said  butanol  was  a  “drop-­‐in”  fuel,  able  to  be  used  with  existing  gasoline  pipelines  and  other  equipment  because  it  does  not  have  a  tendency  to  take  up  water,  as  ethanol  does.  

“It’s  more  fungible  in  the  existing  infrastructure,”  he  said.  “You  could  blend  it  with  gasoline  and  put  it  in  a  pipeline  —  no  problem.”  

Butanol  would  also  help  producers  get  around  the  so-­‐called  blend  wall,  Mr.  McAdams  said.  Given  the  amount  of  gasoline  used  annually  in  the  United  States,  and  the  blending  limit  of  15  percent  ethanol,  producers  are  close  to  their  capacity  limits,  now  about  13  billion  gallons  of  ethanol  a  year.  

With  the  10  percent  limitation,  “you  don’t  have  enough  gasoline  to  put  the  ethanol  in,”  he  said.  “You  don’t  have  that  problem  with  butanol.”  

The  production  of  butanol  produces  the  chemical  solvent  acetone  and  it  produces  high  purity  carbon  dioxide  that  is  easily  captured  during  the  process.  Both  acetone  and  high  purity  carbon  dioxide  are  highly  valued  in  enhanced  oil  recovery  application.  It  is  quite  feasible  that  acetone  and  carbon  dioxide  would  be  additional  income  streams  for  a  butanol  industry  that  could  help  greatly  expand  America’s  economically  recoverable  heavy  oil  reserves.  

A  good  policy  for  America  would  be  to  let  butanol  compete  head  to  head  with  ethanol.  

 

ETHANOL FROM CORN, IS THIS POLICY JUST PLAIN DUMB? [Excerpted  from  Forbes  Article  Author  Christopher  Helman]  

 

American  motorists  will  burn  through  14  billion  gallons  of  ethanol  on  average  every  year,  the  end  product  of  5  billion  bushels  of  corn—a  third  of  the  U.S.  crop—grown  on  33  million  acres  of  farmland.  Since  2005,  when  Congress  required  that  ethanol  be  added  to  your  gas  tank,  U.S.  corn  prices  have  tripled  and  ground,  lake,  and  river  water  have  been  more  polluted  than  ever  thanks  to  fertilizer,  herbicide,  and  pesticide  runoff  due  to  crop  mismanagement  of  corn  fields.  

 

Page 14: Turning Trash into Gas

 

    Manufacturing  Energy  Independence      |    12    

Steven  Sterin  thinks  he  has  a  better  way.  As  president  of  the  advanced  fuels  division  at  Dallas-­‐based  chemicals  company  Celanese,  he’s  supervising  construction  of  two  new  plants—one  in  Texas,  the  other  in  China—to  make  ethanol.  But  you  will  not  see  any  vats  fermenting  corn  here.  Celanese  makes  its  ethanol  by  tearing  apart  and  recombining  the  hydrocarbons  found  in  plentiful  natural  gas  or  coal.  “We  have  the  best  gas-­‐to-­‐liquids  and  coal-­‐to-­‐liquids  technology  in  the  world,”  he  says.    

 

If  it  works,  what  Sterin  is  building  will  revolutionize  the  fuel  industry.    

 

The  problem  is  not  science.  It  is  Washington.  Thanks  to  the  2007  Renewable  Fuel  Standard  (RFS)  law,  gasoline  refiners  are  mandated  to  blend  so  much  plant-­‐based  or  renewable  ethanol  into  the  gas  supply  that  it  prevents  Celanese  or  any  other  fossil-­‐fuel-­‐based  ethanols  from  even  competing  for  the  market.  Though  the  RFS  caps  the  blending  of  corn  ethanol  at  15  billion  gallons  a  year,  it  calls  for  total  biofuels  blending  to  grow  to  36  billion  gallons  a  year  by  2022.  

Cellulosic  ethanol  is  supposed  to  make  up  most  of  the  difference.  Maybe  you  recall  President  George  W.  Bush’s  2006  State  of  the  Union  address,  in  which  he  declared  his  goal  that  cellulosic  ethanol  made  from  “wood  chips  and  stalks  or  switchgrass”  would  be  “practical  and  competitive  within  six  years.”  RFS  mandated  100  million  gallons  of  cellulosic  for  2010,  250  million  for  2011  and  500  million  this  year.  

But  that  has  not  happened,  even  though  the  feds  under  both  Bush  and  Barack  Obama  pumped  $1.5  billion  in  grants  and  loan  guarantees  into  upstart  cellulosic  producers.    

Most,  like  Range  Fuels,  Cello  Energy  and  E3  BioFuels,  have  ended  up  bankrupt.  Survivors  like  Abengoa  Bioenergy  produced  fewer  than  6  million  gallons  last  year,  and  those  were  not  at  all  market  competitive.  

Amazingly,  gasoline  refiners  are  still  on  the  hook.  For  failing  to  blend  into  their  mix  the  mandated  quantities  of  a  fuel  that  does  not  exist,  the  refiners  have  gotten  a  $10  million  bill  from  the  Environmental  Protection  Agency  to  pay  for  their  so-­‐called  waiver  credits.  They  are  appealing.  

The  corn-­‐dominated  ethanol  lobby  is  conflicted  about  making  ethanol  out  of  fossil  fuels.  On  one  hand,  corn  growers  do  not  want  competition  from  cheap  gas.  On  the  other,  it  is  in  the  national  interest  to  cut  oil  imports.  “We’re  supportive  of  expanding  all  renewables  and  all  

Page 15: Turning Trash into Gas

 

    Manufacturing  Energy  Independence      |    13    

alternative  fuels,”  says  Matt  Hartwig,  spokesman  for  the  Renewable  Fuels  Association.  Says  Joe  Cannon,  president  of  the  Fuel  Freedom  Foundation:  “We  need  every  option.  There  are  2  billion  people  moving  from  bicycles  to  mopeds  to  cars,  and  that’s  just  in  India  and  China.”  

Thirteen  congressmen  led  by  Pete  Olson,  whose  district  around  Houston,  Tex.  encompasses  dozens  of  chemical  plants,  including  Celanese,  have  introduced  a  bill  to  add  natural  gas-­‐derived  fuels  to  the  RFS  (Renewable  Fuel  Standard.)  Any  change  would  face  attack  from  environmentalist  but  the  legislation  is  supported  by  animal  farmers  who  want  cheaper  feed  corn.  “We  would  prefer  not  to  have  the  RFS  at  all,”  says  a  spokeswoman  for  Olson,  “but  this  is  a  step  in  the  right  direction.”  

How  did  Celanese  get  into  this  business?  For  30  years  it  has  been  perfecting  the  process  of  making  acetic  acid—more  commonly  known  as  vinegar—a  chemical  feedstock  for  plastics  like  vinyl  acetate.  The  company  makes  a  quarter  of  the  world’s  supply  at  giant  complexes  like  those  in  Nanjing,  China  and  Clear  Lake,  Texas.  The  building  blocks  for  these  chemicals  are  cheap  natural  gas  (Texas)  and  plentiful  coal  (China).  Using  steam  and  catalysts  like  nickel,  Celanese  breaks  apart  the  hydrocarbons  in  these  feedstocks  and  -­‐reforms  them  into  acetic  acid.  When  coal  is  used,  the  gasification  process  captures  bad  stuff  like  mercury  and  cadmium.  

Vinegar  and  ethanol  are  closely  related.  Ethanol  is  the  stuff  in  a  bottle  of  wine  that  gets  you  drunk;  vinegar  is  what  the  ethanol  turns  into  when  you  leave  the  bottle  undrunk  for  too  long.  Air  oxidizes  ethanol  into  vinegar  by  pulling  off  its  hydrogen  atoms.  In  simplest  terms,  what  Celanese  does  is  reverse  the  process,  taking  the  acetic  acid  components  it  already  makes  and  using  metal-­‐based  catalysts  to  add  hydrogen  to  it  to  form  high-­‐purity  ethanol.  Finding  the  right  catalysts  was  the  real  breakthrough.  

And  while  using  fossil  fuels  can  mean  emitting  carbon  dioxide,  it  is  not  clear  that  corn  ethanol  is  more  carbon-­‐friendly.  A  2010  study  by  researchers  at  Rice  University  found  no  reason  to  believe  that  the  process  of  planting,  tending,  harvesting,  and  processing  corn  into  ethanol  emits  less  carbon  dioxide  than  does  gasoline.  

Sterin  figures  Celanese  can  make  ethanol  for  a  cash  cost  of  only  $1.50  a  gallon.    

Capital  costs,  starting  with  $200  million  for  the  two  new  plants,  will  add  some  25  cents  a  gallon.  While  the  diluted  ethanol  that  is  blended  into  gasoline  sells  for  at  least  $2.30  a  gallon  today,  the  concentrated  industrial  ethanol  that  Celanese  will  make  goes  for  closer  to  $3.  That  paves  the  way  for  big  profits  selling  to  makers  of  paints,  pharmaceuticals  and  textiles,  says  Hassan  Ahmed,  analyst  with  Alembic  Global  Advisors.  He  expects  Celanese  to  be  making  300  million  gallons  a  year  by  2016,  building  a  $1  billion  business  with  net  income  of  $250  million.  Last  year  (2013)  it  earned  $600  million  on  $6.8  billion  in  revenues.  

Page 16: Turning Trash into Gas

 

    Manufacturing  Energy  Independence      |    14    

 

What  if  Washington  does  not  get  on  board?  No  matter,  says  Sterin.  China  sees  ethanol  as  a  vital  fuel,  but  with  so  many  mouths  to  feed  it  cannot  waste  farmland  growing  it.  Celanese  initially  planned  to  build  a  60-­‐million-­‐gallon-­‐per-­‐year  ethanol  addition  at  its  Nanjing  complex,  but  when  Beijing  issued  final  permits  in  March  it  was  for  an  80-­‐million-­‐gallon  plant.  (The  Texas  plant,  in  contrast,  will  do  fewer  than  6  million  gallons.)  Even  so,  he  is  hoping  politicians  will  at  least  give  Celanese  a  shot  at  competing  in  America.  “We  don’t  need  subsidies,”  says  Sterin.  “We’re  ready  to  go.”  

Many  policymakers  now  believe,  as  food  prices  have  soared,  that  a  plant  based  only  ethanol  policy  has  had  a  detrimental  economic  and  environmental  effect  on  the  U.S.  economy  and  environment.  Any  open  fuel  standards  based  legislation  should  seek  to  erase  any  distinction  between  plant  based  and  fossil  fuel  based  ethanol,  or  ethanol  derived  from  other  sources.  

 

AN OPEN FUEL STANDARD ONCE REMOVED AND RE-ENVISIONED

What  does  an  open  fuel  standard  seek  to  accomplish?  In  a  couple  of  words,  “fuel  diversity.”  If  we  are  able  to  get  our  transportation  fuels  from  more  than  one  source  and  the  creation  of  those  fuels  do  not  all  lead  back  to  a  common  source,  then  we  start  to  erase  the  power  of  any  one  industry  or  group  and  make  our  fuel  production  much  more  robust  and  stable.  So  it  really  does  not  matter  what  form  we  deliver  transportation  fuel  in,  just  as  long  as  it  does  not  all  have  the  same  origination.  The  differing  origination  points  of  transportation  fuel  ultimately  provide  fuel  diversity.  

Methanol  has  serious  enough  problems  that  automobile  manufacturers  will  fight  its  use,  no  different  than  their  fight  of  the  greater  use  of  ethanol  mixed  with  gasoline.  They  view  ethanol  and  methanol  as  being  sub  par  and  sub-­‐grade  fuel  that  will  shorten  the  life  of  their  vehicle  components.  

Not  surprisingly,  it  looks  like  legislators,  when  they  were  picking  winners  and  losers  made  the  wrong  choice  in  renewable  fuels.  Butonal  seems  to  have  much  more  on  the  ball  than  ethanol,  but  it  is  still  made  by  corn,  and  hurts  the  price  of  food.  

DME,  a  fuel  that  is  largely  ignored  by  open  fuel  standard  activist,  seems  very  much  like  it  could  have  a  very  beneficial  effect  on  our  economy,  security,  and  environment,  with  a  little  temporary  help  of  the  federal  government.  

 

Page 17: Turning Trash into Gas

 

    Manufacturing  Energy  Independence      |    15    

It  seems  like  it  we  want  to  power  ourselves  with  food  more  cheaply  that  we  should  embrace  ethanol  being  made  from  coal.  

CNG  (Compressed  Natural  Gas)  and  LNG  (Liquified  Natural  Gas)  are  already  displacing  gasoline  in  fleet  applications  and  in  some  larger  cities  with  the  general  public.  

What  is  largely  ignored,  and  is  the  most  obvious  killer  application  for  an  open  fuel  standard,  is  producing  a  gasoline  and  diesel  fuel  drop  in  replacement  that  requires  no  modification  of  vehicles  and  does  not  sacrifice  anything  in  the  way  of  performance,  from  sources  OTFFs  (Other  Than  Fossil  Fuels.)  

 

PLASMA GASIFICATION OF MUNICIPAL SOLID WASTE (MSW) AND THE MSR

 

The  Plasma  Gasification  of  solid  waste  is  not  profitable  in  a  free  market  in  the  vast  majority  of  cases.  This  is  largely  due  to  the  plasma  gasification  process  that  requires  an  extreme  amount  of  electricity  to  create  a  lightning  bolt  that  essentially  vaporizes  trash  converting  it  into  syngas  that  can  be  further  converted  into  DME  (replacement  for  diesel  fuel)  and  still  get  further  converted  into  synthetic  gasoline.  

Pairing  a  plasma  gasifier  with  a  MSR  (Molten  Salt  Reactor)  than  can  produce  electricity  very  cheaply  to  power  the  plasma  gasifier  would  suddenly  make  the  gasification  of  waste  very  attractive  and  profitable.  

Plasma  gasification  of  trash  is  an  emerging  technology,  which  can  process  landfill  waste  to  extract  commodity  recyclables  and  convert  carbon-­‐based  materials  into  fuels.  It  can  form  an  integral  component  in  a  system  to  achieve  zero-­‐waste  and  produce  renewable  fuels,  while  caring  for  the  environment.  Plasma  arc  processing  has  been  used  for  years  to  treat  hazardous  waste,  such  as  incinerator  ash  and  chemical  weapons,  and  convert  them  into  non-­‐hazardous  slag.  

Utilizing  this  technology  to  convert  municipal  solid  waste  (MSW)  to  energy  is  still  young,  but  it  has  great  potential  to  operate  more  efficiently  than  other  pyrolysis  and  combustion  systems  due  to  its  high  temperature,  heat  density,  and  nearly  complete  conversion  of  carbon-­‐based  materials  to  syngas,  and  non-­‐organics  to  slag.  

Syngas  is  a  simple  fuel  gas  comprised  of  carbon  monoxide  and  hydrogen  that  can  be  combusted  directly  or  refined  into  higher-­‐grade  fuels  and  chemicals.  Slag  is  a  glass-­‐like  

Page 18: Turning Trash into Gas

 

    Manufacturing  Energy  Independence      |    16    

substance,  which  is  the  cooled  remains  of  the  melted  waste;  it  is  tightly  bound,  safe  and  suitable  for  use  as  a  construction  material.  

Plasma  torch  technology  has  proven  reliable  at  destroying  hazardous  waste  and  can  help  transform  environmental  liabilities  into  renewable  energy  assets.  

Plasma  gasification  is  a  multi-­‐stage  process,  which  starts  with  feed  inputs  ranging  from  waste  to  coal  to  plant  matter,  and  can  include  hazardous  wastes.  The  first  step  is  to  process  the  feedstock  to  make  it  uniform  and  dry,  and  have  the  valuable  recyclables  sorted  out.  The  second  step  is  gasification,  where  extreme  heat  from  the  plasma  torches  is  applied  inside  a  sealed,  air-­‐controlled  reactor.  During  gasification,  carbon-­‐based  materials  break  down  into  gases  and  the  inorganic  materials  melt  into  liquid  slag,  which  is  poured  off  and  cooled.  The  heat  causes  hazards  and  poisons  to  be  completely  destroyed.  The  third  stage  is  gas  cleanup  and  heat  recovery,  where  the  gases  are  scrubbed  of  impurities  to  form  clean  fuel,  and  heat  exchangers  recycle  the  heat  back  into  the  system  as  steam.  The  final  stage  is  fuel  production.  The  output  can  range  from  electricity  to  a  variety  of  fuels  as  well  as  chemicals,  hydrogen  and  polymers.  

Gasification  has  a  long  history  in  industry  where  it  has  been  used  to  refine  coal  and  biomass  into  a  variety  of  liquid  fuels,  gases  and  chemicals.  Modern  clean  coal  plants  are  all  gasifiers,  and  so  were  the  earliest  19th  century  municipal  light  and  power  systems.  

Plasma  gasification  refers  to  the  use  of  plasma  torches  as  the  heat  source,  as  opposed  to  conventional  fires  and  furnaces.  Plasma  torches  have  the  advantage  of  being  one  of  the  most  intense  heat  sources  available  while  being  relatively  simple  to  operate.  

Plasma  is  a  superheated  column  of  electrically  conductive  gas.  In  nature,  plasma  is  found  in  lightning  and  on  the  surface  of  the  sun.  Plasma  torches  burn  at  temperatures  approaching  5500ºC  (10,000˚F)  and  can  reliably  destroy  any  materials  found  on  earth  with  the  exception  of  nuclear  waste.  

Plasma  torches  are  used  in  foundries  to  melt  and  cut  metals.  When  utilized  for  waste  treatment,  plasma  torches  are  very  efficient  at  causing  organic  and  carbonaceous  materials  to  vaporize  into  gas.  Non-­‐organic  materials  are  melted  and  cool  into  a  vitrified  glass.  

Waste  gasification  typically  operates  at  temperatures  of  1500˚C  (2700˚F),  and  at  those  temperatures  materials  are  subject  to  a  process  called  molecular  disassociation,  meaning  their  molecular  bonds  are  broken  down  and  in  the  process  all  toxins  and  organic  poisons  are  destroyed.  Plasma  torches  have  been  used  for  many  years  to  destroy  chemical  weapons  and  toxic  wastes,  like  printed  circuit  boards  (PCBs)  and  asbestos,  but  it  is  only  recently  that  these  processes  have  been  optimized  for  energy  capture  and  fuel  production.  

Page 19: Turning Trash into Gas

 

    Manufacturing  Energy  Independence      |    17    

 

America’s  Westinghouse  Corporation  began  building  plasma  torches  with  NASA  for  the  Apollo  Space  Program  in  the  1960s  to  test  the  heat  shields  for  spacecraft  at  5500˚C.  In  the  late  1990s,  the  first  pilot-­‐scale  plasma  gasification  projects  were  built  in  Japan  to  convert  MSW,  sewage  sludge,  and  auto-­‐shredder  residue  to  energy.  The  Japanese  pilot  plants  have  been  successful,  and  commercial-­‐scale  projects  are  under  development  now  in  Canada  and  other  countries,  by  companies  such  as  Alter  NRG,  from  Alberta,  Canada.  

The  economics  of  MSW  plasma  gasification  are  favorable,  although  complex.  Waste  gasification  facilities  get  paid  for  their  intake  of  waste,  via  tipping  fees.  The  system  then  earns  revenues  from  the  sale  of  power  produced.  Electricity  is  the  primary  product  today,  but  liquid  fuels,  hydrogen,  and  synthetic  natural  gas  are  all  possibilities  for  the  future  if  electricity  costs  can  be  reduced.  

Sorting  the  MSW  to  capture  commodity  recyclables,  such  as  metals  and  high-­‐value  plastics,  presents  a  third  revenue  stream.  Minor  revenue  streams  include  the  sales  of  slag  and  sulfur.  Slag  has  the  potential  to  be  used  for  a  number  of  construction  products,  such  as  rock  wool,  bricks  and  architectural  tiles,  and  sulfur  has  some  commodity  value  as  fertilizer.  

There  are  additional  waste  streams  available  in  certain  locations,  which  earn  higher  tipping  fees  than  MSW  because  they  are  toxic  and  yet  have  excellent  fuel  value.    

Refinery  wastes  from  petroleum  and  chemical  plants,  medical  waste,  auto-­‐shredder  residue,  construction  debris,  tires  and  telephone  poles,  are  all  examples  of  potential  fuels  that  can  earn  high  tipping  fees  and  provide  good  heat  value.  Additionally,  there  are  millions  of  tons  of  low-­‐grade  waste  coal  that  exist  in  massive  piles  throughout  the  Appalachian  region  of  Pennsylvania  and  West  Virginia,  US,  that  can  be  utilized  for  gasification.  

Multiple  outputs  can  be  produced  from  a  single  facility.  Heat  and  steam  can  be  sold,  and  Ethanol,  DME,  and/or  Synthetic  Gasoline  production  can  be  made  to  maximize  resources.  Additionally,  upgrading  the  methane  content  of  syngas  can  produce  synthetic  natural  gas  that  can  be  used  as  a  drop  in  replacement  of  natural  gas.  

Liquid  fuels  are  typically  produced  from  syngas  through  catalytic  conversion  processes  such  as  Fischer-­‐Tropsch,  which  has  been  widely  used  since  World  War  II  to  produce  motor  fuels  from  coal.  

 

Page 20: Turning Trash into Gas

 

    Manufacturing  Energy  Independence      |    18    

  Gasification  is  superior  to  landfilling  MSW  for  a  number  of  reasons.  First  of  all,  landfills  are  toxic  to  the  environment  due  to  the  production  of  toxic  liquid  leachate  and  methane  gases.  The  EPA  (US  Environmental  Protection  Agency)  has  a  lengthy  protocol  for  airborne  and  liquid  chemicals,  which  must  be  contained  and  monitored  for  every  landfill.  Landfills  must  be  constructed  with  extensive  liners,  drains  and  monitoring  equipment  to  comply  with  regulations.  Plasma  gasification  can  divert  waste  from  landfills  and  create  beneficial  uses  for  the  material,  by  maximizing  recycling  and  cleanly  using  the  rest  for  fuel.  

Gasification  is  superior  to  incineration  and  offers  a  dramatic  improvement  in  environmental  impact  and  energy  performance.  Incinerators  are  high-­‐temperature  burners  that  use  the  heat  generated  from  the  fire  to  run  a  boiler  and  steam  turbine  in  order  to  produce  electricity.  During  combustion,  complex  chemical  reactions  take  place  that  bind  oxygen  to  molecules  and  form  pollutants,  such  as  nitrous  oxides  and  dioxins.  These  pollutants  pass  through  the  smokestack  unless  exhaust  scrubbers  are  put  in  place  to  clean  the  gases.  

Gasification  by  contrast  is  a  low-­‐oxygen  process,  and  fewer  oxides  are  formed.  The  scrubbers  for  gasification  are  placed  in  line  and  are  critical  to  the  formation  of  clean  gas,  regardless  of  the  regulatory  environment.  For  combustion  systems,  the  smokestack  scrubbers  offer  no  operational  benefit  and  are  put  in  place  primarily  to  meet  legal  requirements.  Plasma  gasification  systems  employing  proper  scrubbers  have  extremely  low  emissions  and  no  trouble  meeting  and  beating  the  most  stringent  emissions  targets.  

The  objective  of  gasification  systems  is  to  produce  a  clean  gas  used  for  downstream  processes  which  requires  specific  chemistry,  free  of  acids  and  particulates  so  the  scrubbing  is  an  integral  component  to  the  system  engineering,  as  opposed  to  a  legal  requirement  that  must  be  met.  

Incinerator  ash  is  also  highly  toxic  and  is  generally  disposed  of  in  landfills,  while  the  slag  from  plasma  gasification  is  safe  because  it  is  melted  and  reforms  in  a  tightly  bound  molecular  structure.  

In  fact,  one  of  the  main  uses  for  plasma  torches  in  the  hazardous  waste  destruction  industry  has  been  to  melt  toxic  incinerator  ash  into  safe  slag.  The  glassy  slag  is  subject  to  EPA  Toxicity  Characteristic  Leaching  Procedure  (TCLP)  regulations  that  measure  eight  harmful  elements.  Data  from  existing  facilities,  even  those  processing  highly  hazardous  waste,  has  shown  them  to  be  well  below  regulatory  limits.  

 

Page 21: Turning Trash into Gas

 

    Manufacturing  Energy  Independence      |    19    

  The  carbon  impact  of  plasma  gasification  is  significantly  lower  than  other  waste  treatment  methods.  It  is  rated  to  have  a  negative  carbon  impact,  especially  when  compared  to  allowing  methane  to  form  in  landfills.  Gasification  is  also  an  important  enabling  technology  for  carbon  separation.  It  is  primarily  a  carbon  processing  technology;  it  transforms  solid  carbon  into  gas  form.  

Syngas  is  comprised  of  carbon  monoxide  and  hydrogen.  The  hydrogen  readily  separates  from  the  carbon  monoxide  allowing  the  hydrogen  to  be  used  while  the  carbon  is  sequestered.  The  US  Department  of  Energy  has  identified  gasification  through  its  clean  coal  projects  as  a  critical  tool  to  enable  carbon  capture.  

Environmentalists  have  expressed  opposition  to  waste  gasification  for  two  main  reasons.  The  first  argument  is  that  any  waste-­‐to-­‐energy  facility  will  discourage  recycling  and  divert  resources  from  efforts  to  reduce,  reuse  and  recycle.  Economic  studies  of  the  waste  markets  show  the  opposite  to  be  true;  waste-­‐to-­‐energy  heavily  favors  the  processing  of  waste  to  separate  valuable  commodities  and  to  maximize  its  value  for  fuel.  

The  second  argument  made  against  waste  gasification  is  that  has  the  same  emissions  as  incineration.  These  arguments  are  based  on  gasification  systems,  which  do  not  clean  the  gases,  and  instead  combust  dirty  syngas.  Such  systems  are  essentially  two-­‐stage  burners  and  are  not  recommended  for  environmental  reasons.  There  are  many  variations  of  combustion,  pyrolysis  and  gasification  all  used  in  different  combinations.  Proper  engineering  is  required  to  achieve  positive  environmental  performance.  

 

PLASMA GASIFICATION, MSR, AND MANUFACTURING

As  America  has  lost  its  manufacturing  base  in  the  Midwest  of  America,  in  states  such  as  Michigan,  Ohio,  Pennsylvania,  Indiana,  Illinois,  Wisconsin,  Minnesota,  New  York,  West  Virginia,  and  Kentucky,  it  has  left  many  of  these  states  with  large  formerly  industrial  brownfield  sites,  which,  are  perfect  sites  for  plasma  gasifying  facilities,  and  could  be  capable  of  siting  a  Molten  Salt  Reactor.  

The  theory  would  be  that  the  MSR  would  power  the  plasma  gasifier  at  night  and  any  excess  electricity  would  be  sold  to  the  grid,  while  during  the  day,  the  MSR  would  make  electricity  exclusively  for  the  grid  while  municipal  solid  waste  is  collected.  This  scenario  would  have  the  potential  to  re-­‐invigorate  these  formerly  industrial  areas.  This  has  the  potential  to  reduce  not  only  electricity  costs  for  manufacturers  but,  reduce  transportation  fuel  costs,  and  landfilling  costs.  

Page 22: Turning Trash into Gas

 

    Manufacturing  Energy  Independence      |    20    

 

America’s  original  manufacturing  states  formed  around  sources  of  power  in  the  form  of  coal.  Many  manufacturing  states  have  millions  to  billions  of  tons  of  coal  that  is  so  sub-­‐grade  that  it  cannot  be  burned  and  is  left  as  huge  unsightly  mountains  of  sub-­‐grade  coal  in  the  environment.  Plasma  Gasification  can  convert  these  eyesores  into  ultra  clean  transportation  fuel  with  the  help  of  the  MSR.  

America  also  has  a  tremendous  amount  of  energy  and  resources  left  in  the  coal  ash  that  was  used  to  make  the  electricity  for  manufacturers.  Plasma  gasification  of  coal  ash  provide  the  opportunity  and  economic  means  to  recycle  coal  ash  for  energy  and  materials  such  as  iron,  uranium,  thorium,  high  purity  aluminum,  vanadium,  and  other  valuable  metals.  

 

CONCLUSIONS

v We  support  an  open  fuel  standard  that  gives  auto  manufacturers  an  incentive  to  produce  flex  fuel  cars.  

v We  believe  that  auto  manufacturers  should  retain  the  right  to  void  their  warranties  for  sub-­‐standard  fuel  use  such  as  methanol  and  ethanol  in  their  cars  and  trucks.  We  do  not  see  this  as  impacting  the  open  fuel  standard  as  many  Americans  will  simply  choose  to  wait  for  their  warranties  to  run  out  before  fueling  up  with  such  fuels.  

v We  believe  a  policy  that  does  not  discriminate  against  the  sources  of  energy  such  as  plant-­‐based  ethanol  and  fossil  fuel  derived  ethanol  is  in  the  nations  best  interest  for  the  economy  and  the  environment.  

v We  feel  that  legislators  should  allow  butanol  all  the  same  benefits  as  ethanol  and  allow  them  to  compete  on  a  level  playing  field.  

v We  support  legislation  that  gives  incentives  to  the  production  and  use  of  DME  as  a  transportation  fuel  

v Everyone  that  supports  an  open  fuel  standard  should  also  support  the  development  and  commercialization  of  molten  salt  reactor  technology  and  pairing  it  with  plasma  gasification  technology  in  the  United  States  for  the  production  of  many  types  of  synthetic  fuel  and  the  reduction  of  landfill  waste.  

v Molten  salt  reactors  have  many  benefits,  such  as  the  reduction  of  contaminated  unspent  nuclear  fuel  (high  level  nuclear  waste)  by  99%,  desalination  applications,  the  production  of  highly  valuable  medical  isotopes  that  are  used  in  the  treatment  of  cancer  and  used  in  medical  diagnostics,  and  the  production  of  material  that  can  be  used  in  the  enhanced  oil  recovery  process.  

Page 23: Turning Trash into Gas

 

 

1768  East  25th  Street  Suite  301  Cleveland,  OH  44114  216.367.0602  

eGeneration.org  

The  eGeneration  Foundation  is  a  501(c)3  non-­‐profit  educational  charity.  

Your  contribution  to  the  eGeneration  Foundation  is  tax-­‐deductible  as  a  charitable  contribution  to  the  extent  allowed  by  law.  

Your support is greatly appreciated! Please contact us today!