turbulence in mhd shear flows - pppl theoryprotoplanetary and cv disks have pm ˝1. lab. experiments...

35
Turbulence in MHD Shear Flows Farrukh Nauman Niels Bohr International Academy Niels Bohr Institute August 4th, 2016 Farrukh Nauman (Niels Bohr Institute) MHD Shear Turbulence August 4th, 2016 1 / 37

Upload: others

Post on 03-Jul-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Turbulence in MHD Shear Flows - PPPL TheoryProtoplanetary and CV disks have Pm ˝1. Lab. experiments Pm ˝1. Previous work (Lz = 1): Pm

Turbulence in MHD Shear Flows

Farrukh Nauman

Niels Bohr International AcademyNiels Bohr Institute

August 4th, 2016

Farrukh Nauman (Niels Bohr Institute) MHD Shear Turbulence August 4th, 2016 1 / 37

Page 2: Turbulence in MHD Shear Flows - PPPL TheoryProtoplanetary and CV disks have Pm ˝1. Lab. experiments Pm ˝1. Previous work (Lz = 1): Pm

“... This model will be a simplification and anidealization, and consequently a falsification. It is tobe hoped that the features retained for discussion arethose of greatest importance in the present state ofknowledge.”

— Alan Turing, 1952

Farrukh Nauman (Niels Bohr Institute) MHD Shear Turbulence August 4th, 2016 2 / 37

Page 3: Turbulence in MHD Shear Flows - PPPL TheoryProtoplanetary and CV disks have Pm ˝1. Lab. experiments Pm ˝1. Previous work (Lz = 1): Pm

Two themes:

Nonlinear non-rotating and rotating shear MHDflows.

Turbulence in accretion disks (if time permits).

Farrukh Nauman (Niels Bohr Institute) MHD Shear Turbulence August 4th, 2016 3 / 37

Page 4: Turbulence in MHD Shear Flows - PPPL TheoryProtoplanetary and CV disks have Pm ˝1. Lab. experiments Pm ˝1. Previous work (Lz = 1): Pm

Transition to turbulence: Pipe flow

Osborne Reynolds 1883

Linearly stable.

Re = VL/ν.

Requirement for transitionShear + high Re −→ turbulence.

Farrukh Nauman (Niels Bohr Institute) MHD Shear Turbulence August 4th, 2016 4 / 37

Page 5: Turbulence in MHD Shear Flows - PPPL TheoryProtoplanetary and CV disks have Pm ˝1. Lab. experiments Pm ˝1. Previous work (Lz = 1): Pm

Transition to turbulence: pipe flow

Not a plasma.

No radiation, dust.

Incompressible.

Turbulence lifetimeLifetime ∼ exp |Re − Recrit|. Hof+ 2006

Recrit ∼ 2000.

Farrukh Nauman (Niels Bohr Institute) MHD Shear Turbulence August 4th, 2016 5 / 37

Page 6: Turbulence in MHD Shear Flows - PPPL TheoryProtoplanetary and CV disks have Pm ˝1. Lab. experiments Pm ˝1. Previous work (Lz = 1): Pm

How do you study stability?

Infinitesimal (. 1%)

Ignore nonlinear termsO(v2,b2)

v ,b ∼ exp[i(kx − ωt)]

StabilityUnstable: ω2 < 0Stable: ω2 > 0

Finite amplitude(∼ 10− 100%)

Cannot ignore v · ∇v , b · ∇bv · ∇b, b · ∇v

Critical AmplitudeAcrit ∼ 1/Re

Farrukh Nauman (Niels Bohr Institute) MHD Shear Turbulence August 4th, 2016 6 / 37

Page 7: Turbulence in MHD Shear Flows - PPPL TheoryProtoplanetary and CV disks have Pm ˝1. Lab. experiments Pm ˝1. Previous work (Lz = 1): Pm

The need for large amplitude in simulations

Re = L2Ω/ν, Modes = 1000,

Ω = 1 = L, k = n/L (ignore 2π),

Perturbations v in units of 1/ΩL.

k ∂tv v · ∇v Re−1 ∇2v

Ωv v2k Re−1 k2 v

1 v v2 Re−1 v

10 v 10 v2 Re−1 102 v

100 v 100 v2 Re−1 104 v

1000 v 1000 v2 Re−1 106 v

Farrukh Nauman (Niels Bohr Institute) MHD Shear Turbulence August 4th, 2016 7 / 37

Page 8: Turbulence in MHD Shear Flows - PPPL TheoryProtoplanetary and CV disks have Pm ˝1. Lab. experiments Pm ˝1. Previous work (Lz = 1): Pm

The need for large amplitude in simulations

Re = 104 Re = 104

v = 1 v = 10−2

k ∂tv v · ∇v Re−1 ∇2v

Ωv v2k Re−1 k2 v

1 1 1 10−4

10 1 10 10−2

100 1 100 1

1000 1 1000 102

k ∂tv v · ∇v Re−1 ∇2v

Ωv v2k Re−1 k2 v

1 10−2 10−4 10−6

10 10−2 10−3 10−4

100 10−2 10−2 10−2

1000 10−2 10−1 1

Farrukh Nauman (Niels Bohr Institute) MHD Shear Turbulence August 4th, 2016 8 / 37

Page 9: Turbulence in MHD Shear Flows - PPPL TheoryProtoplanetary and CV disks have Pm ˝1. Lab. experiments Pm ˝1. Previous work (Lz = 1): Pm

Theme 1

MHD Shear Turbulence

Farrukh Nauman (Niels Bohr Institute) MHD Shear Turbulence August 4th, 2016 9 / 37

Page 10: Turbulence in MHD Shear Flows - PPPL TheoryProtoplanetary and CV disks have Pm ˝1. Lab. experiments Pm ˝1. Previous work (Lz = 1): Pm

Linear StabilityShearV = −Sxey + vS = qΩ

∂vx

∂t= ν∇2vx

∂vy

∂t= Svx + ν∇2vy

Stable up to infinite Re.(Romanov 1972)

Nonlinearly unstableRecrit ∼ 350.

x

y

vy = −qΩx

Farrukh Nauman (Niels Bohr Institute) MHD Shear Turbulence August 4th, 2016 10 / 37

Page 11: Turbulence in MHD Shear Flows - PPPL TheoryProtoplanetary and CV disks have Pm ˝1. Lab. experiments Pm ˝1. Previous work (Lz = 1): Pm

Linear Stability

Shear + Magnetic FieldsB =@@B0 + b

∂vx

∂t=HH

HHH

1µ0

B0∂bx

∂z+ ν∇2vx

∂vy

∂t=

HH

HHH

1µ0

B0∂by

∂z+ Svx + ν∇2vy

Linearly stable!

Nauman, Blackman (submitted)

0 500 1000 1500

10-10

10-8

10-6

10-4

10-2

0 500 1000 1500Time

10-10

10-8

10-6

10-4

10-2

Energy

KineticMagnetic

Rm=1000Rm=1200Rm=1500Rm=2000

Finite amplitude.Rm = SL2/η,Re = SL2/ν.

Vy = −Sx , S = L = 1

Farrukh Nauman (Niels Bohr Institute) MHD Shear Turbulence August 4th, 2016 11 / 37

Page 12: Turbulence in MHD Shear Flows - PPPL TheoryProtoplanetary and CV disks have Pm ˝1. Lab. experiments Pm ˝1. Previous work (Lz = 1): Pm

Linear Stability

Shear + Magnetic Fields

Hawley+ 1996:B fields cannot sustain growth

Finite amplitude.

Nauman, Blackman (submitted)

0 500 1000 1500

10-10

10-8

10-6

10-4

10-2

0 500 1000 1500Time

10-10

10-8

10-6

10-4

10-2

Energy

KineticMagnetic

Rm=1000Rm=1200Rm=1500Rm=2000

Finite amplitude.

Rm = SL2/η,Re = SL2/ν.Vy = −Sx , S = L = 1

Farrukh Nauman (Niels Bohr Institute) MHD Shear Turbulence August 4th, 2016 12 / 37

Page 13: Turbulence in MHD Shear Flows - PPPL TheoryProtoplanetary and CV disks have Pm ˝1. Lab. experiments Pm ˝1. Previous work (Lz = 1): Pm

Hawley+ 1996:

Ideal MHD + small resolution→ small effective Re,Rm!

Farrukh Nauman (Niels Bohr Institute) MHD Shear Turbulence August 4th, 2016 13 / 37

Page 14: Turbulence in MHD Shear Flows - PPPL TheoryProtoplanetary and CV disks have Pm ˝1. Lab. experiments Pm ˝1. Previous work (Lz = 1): Pm

Non-rotating MHD shear turbulence

0 25 50 75 100

-0.5

0.0

0.5

0 25 50 75 100

-0.5

0.0

0.5

0 25 50 75 100

-0.5

0.0

0.5

-0.16

0.011

0.18 Vx

0 25 50 75 100

-0.5

0.0

0.5

0.00.0

0 25 50 75 100

-0.5

0.0

0.5

0.00.0

-0.29

0.014

0.32 Vy

0 25 50 75 100

-0.5

0.0

0.5

0.00.00.00.0

0 25 50 75 100

-0.5

0.0

0.5

0.00.00.00.0

-0.038

-0.0021

0.034 Bx

0 25 50 75 100

-0.5

0.0

0.5

0.00.00.00.0

0 25 50 75 100

-0.5

0.0

0.5

0.00.00.00.0

-0.045

-0.0018

0.041 By

1x2x1

Time (in shear times)

zz

x − y averaged.

< V 2 >< B2 > (except one run)

Velocity fields: very smooth.

Magnetic fields: Bx dominated by small scale, By smooth.

Farrukh Nauman (Niels Bohr Institute) MHD Shear Turbulence August 4th, 2016 14 / 37

Page 15: Turbulence in MHD Shear Flows - PPPL TheoryProtoplanetary and CV disks have Pm ˝1. Lab. experiments Pm ˝1. Previous work (Lz = 1): Pm

Let’s add ROTATION!

Farrukh Nauman (Niels Bohr Institute) MHD Shear Turbulence August 4th, 2016 15 / 37

Page 16: Turbulence in MHD Shear Flows - PPPL TheoryProtoplanetary and CV disks have Pm ˝1. Lab. experiments Pm ˝1. Previous work (Lz = 1): Pm

Some background

Keplerian shear with zero net magnetic flux

(Pm = Rm/Re = ν/η)

Protoplanetary and CV disks have Pm 1.

Lab. experiments Pm 1.

Previous work (Lz = 1): Pm < 1 turbulence not observed.Fromang+ 2007, Rempel+ 2010, Rincon+ 2011-16, Walker+ 2016

Lz = 4: Pm = 1 very short lived turbulence. Shi+ 2016

Farrukh Nauman (Niels Bohr Institute) MHD Shear Turbulence August 4th, 2016 16 / 37

Page 17: Turbulence in MHD Shear Flows - PPPL TheoryProtoplanetary and CV disks have Pm ˝1. Lab. experiments Pm ˝1. Previous work (Lz = 1): Pm

Nauman, Pessah (in prep)

Re = SL2/ν

Rm = SL2/η

S = L = 1

Lx = 1,Ly = 2,Lz = 4

64× 64× (64 ∗ Lz)

Farrukh Nauman (Niels Bohr Institute) MHD Shear Turbulence August 4th, 2016 17 / 37

Page 18: Turbulence in MHD Shear Flows - PPPL TheoryProtoplanetary and CV disks have Pm ˝1. Lab. experiments Pm ˝1. Previous work (Lz = 1): Pm

Influence of Rotation?

Rotating: Nauman, Blackman (submitted)

Non-rotating: Nauman, Pessah (in prep)

V : Spatially smooth for both, but rotation introduces oscillations.

B: Bx rough in both cases, By smooth.

Rotating: Vrms < Brms.

Non-rotating: Vrms > Brms (except one simulation).

Farrukh Nauman (Niels Bohr Institute) MHD Shear Turbulence August 4th, 2016 18 / 37

Page 19: Turbulence in MHD Shear Flows - PPPL TheoryProtoplanetary and CV disks have Pm ˝1. Lab. experiments Pm ˝1. Previous work (Lz = 1): Pm

Theme 2

Accretion disk turbulence

Farrukh Nauman (Niels Bohr Institute) MHD Shear Turbulence August 4th, 2016 19 / 37

Page 20: Turbulence in MHD Shear Flows - PPPL TheoryProtoplanetary and CV disks have Pm ˝1. Lab. experiments Pm ˝1. Previous work (Lz = 1): Pm

Linear Stability

Shear + Rotation + Magnetic FieldsPerturb: exp(i(kzz − ωt)):

∂vx

∂t= 2Ωvy +

1µ0

B0∂bx

∂z+ ν∇2vx

∂vy

∂t= qΩvx − 2Ωvx +

1µ0

B0∂by

∂z+ ν∇2vy

Aside: MRI linearly stable for B0 = 0 for q < 2 but found to be unstable in simulations!

Magnetorotational Instability (MRI)Unstable: 0 < q < 2

ω2 = −(

q2−q

)k2

z v2A for k2

z v2A 1

where v2A = B2

0/µ0.

Farrukh Nauman (Niels Bohr Institute) MHD Shear Turbulence August 4th, 2016 20 / 37

Page 21: Turbulence in MHD Shear Flows - PPPL TheoryProtoplanetary and CV disks have Pm ˝1. Lab. experiments Pm ˝1. Previous work (Lz = 1): Pm

Shear + Rotation + Magnetic Fields: Sims

Nauman, Blackman arXiv2015

Hydrodynamics

0 500 1000 1500 2000

10-20

10-15

10-10

10-5

100

0 500 1000 1500 2000Time

10-20

10-15

10-10

10-5

100

En

erg

y a

nd

str

ess

Kinetic energyReynolds stress

q=1.5q=2.1q=4.2

Magnetohydrodynamics

0 20 40 60 80 100

0.01

0.10

1.00

10.00

0 20 40 60 80 100Time

0.01

0.10

1.00

10.00

En

erg

y

Kinetic energyMagnetic energy

Both 0 < q < 2 and q > 2 unstable with magnetic fields!

Farrukh Nauman (Niels Bohr Institute) MHD Shear Turbulence August 4th, 2016 21 / 37

Page 22: Turbulence in MHD Shear Flows - PPPL TheoryProtoplanetary and CV disks have Pm ˝1. Lab. experiments Pm ˝1. Previous work (Lz = 1): Pm

Rotating shear stability

Nauman, Blackman arXiv2015 Consistent with linear stabilityanalysis. No surprises!

Hydro: Keplerian flow immediately decays exponentially.

MHD:

I q = 1.5: Magnetically dominated.I q > 2: Kinetically dominated.

Farrukh Nauman (Niels Bohr Institute) MHD Shear Turbulence August 4th, 2016 22 / 37

Page 23: Turbulence in MHD Shear Flows - PPPL TheoryProtoplanetary and CV disks have Pm ˝1. Lab. experiments Pm ˝1. Previous work (Lz = 1): Pm

Keplerian flow: q = 1.5 is unstable to MRI!

Velikhov 1959, Chandrasekhar 1960, Balbus Hawley 1991.

Farrukh Nauman (Niels Bohr Institute) MHD Shear Turbulence August 4th, 2016 23 / 37

Page 24: Turbulence in MHD Shear Flows - PPPL TheoryProtoplanetary and CV disks have Pm ˝1. Lab. experiments Pm ˝1. Previous work (Lz = 1): Pm

Shakura Sunyaev MRI simulations

Winds and jets

Radiation

Dust

Temperature variations

G. Relativity?

Magnetic fields

Vortices

(Partially) ionized

Density variations

BH spin

Global, thin

Hydrodynamics

∂t = 0, ∂φ = 0

No outflow

νT = αcsH

Local, thin

MagnetoHD

3D + time

Corona?

〈ρvxvy − bxby〉

α =〈ρvxvy−bxby〉

ρ0c2s

Figure : Comparison between Shakura Sunyaev and MRI.Farrukh Nauman (Niels Bohr Institute) MHD Shear Turbulence August 4th, 2016 24 / 37

Page 25: Turbulence in MHD Shear Flows - PPPL TheoryProtoplanetary and CV disks have Pm ˝1. Lab. experiments Pm ˝1. Previous work (Lz = 1): Pm

Numerical Simulations: LimitationsAGN disks:

Re ∼ 1015

Experiments: 104 − 106PROMISE, Maryland, Princeton

Simulations: 4.5× 104Meheut+ 2015, Walker+ 2016

Physical ResolutionAssume H = 1AU ∼ 1.5× 1013cm, and H/R ∼ 0.1.

Shearing Box: H/1000 ∼ 1010cmGlobal Disk: R/1000 ∼ H/100 ∼ 1011cm

Farrukh Nauman (Niels Bohr Institute) MHD Shear Turbulence August 4th, 2016 25 / 37

Page 26: Turbulence in MHD Shear Flows - PPPL TheoryProtoplanetary and CV disks have Pm ˝1. Lab. experiments Pm ˝1. Previous work (Lz = 1): Pm

Accretion disks: Problems

Angular momentum transport:

Viscous time scale R2/ν ∼ 1011 years

PPD disk lifetime: ∼ 1 million years

AGN disk lifetime: ∼ 108 years

Brightness: Source of AGN radiation?

Jets: Origin of large scale fields?

Farrukh Nauman (Niels Bohr Institute) MHD Shear Turbulence August 4th, 2016 26 / 37

Page 27: Turbulence in MHD Shear Flows - PPPL TheoryProtoplanetary and CV disks have Pm ˝1. Lab. experiments Pm ˝1. Previous work (Lz = 1): Pm

Disk Theory: Shakura Sunyaev (SS) Model

(citations: ∼ 7500)

For Lz = ρvφr ,

∂〈Lz〉∂t

+∇ · 〈Lzv〉 = ∇ ·⟨ρr2ν∇vφ

r

⟩Replace ν with turbulent viscosity:

SS α prescriptionνT = αcsH.

cs = sound speed, H = scale height (density ρ = exp(−z2/H2)).

Farrukh Nauman (Niels Bohr Institute) MHD Shear Turbulence August 4th, 2016 27 / 37

Page 28: Turbulence in MHD Shear Flows - PPPL TheoryProtoplanetary and CV disks have Pm ˝1. Lab. experiments Pm ˝1. Previous work (Lz = 1): Pm

Other models

Linear/Quasi-linear: (Pessah+ 2006, Ebrahimi+ 2016)

Including jets: α + large B. (Kuncic+ 2004, Salmeron+ 2007)

Nonlinear closure: (Kato+ 1990s, Ogilvie+ 2003, Lingam+ 2016)

Farrukh Nauman (Niels Bohr Institute) MHD Shear Turbulence August 4th, 2016 28 / 37

Page 29: Turbulence in MHD Shear Flows - PPPL TheoryProtoplanetary and CV disks have Pm ˝1. Lab. experiments Pm ˝1. Previous work (Lz = 1): Pm

SS vs MRI

Question 1:

Are MRI generated stresses local?

Farrukh Nauman (Niels Bohr Institute) MHD Shear Turbulence August 4th, 2016 29 / 37

Page 30: Turbulence in MHD Shear Flows - PPPL TheoryProtoplanetary and CV disks have Pm ˝1. Lab. experiments Pm ˝1. Previous work (Lz = 1): Pm

MRI stresses are non-local

Nauman, Blackman MNRAS 2014

Mag. Energy: |B|2Kin. Energy: |√ρv |2xy Maxwell: |BxBy |2yz Maxwell: |ByBz |2

x-axis:k = 1.0→ L = Hy-axis:1.0 means 100% power!

Farrukh Nauman (Niels Bohr Institute) MHD Shear Turbulence August 4th, 2016 30 / 37

Page 31: Turbulence in MHD Shear Flows - PPPL TheoryProtoplanetary and CV disks have Pm ˝1. Lab. experiments Pm ˝1. Previous work (Lz = 1): Pm

Figure : Stratified: 〈B〉 = By0.

Farrukh Nauman (Niels Bohr Institute) MHD Shear Turbulence August 4th, 2016 31 / 37

Page 32: Turbulence in MHD Shear Flows - PPPL TheoryProtoplanetary and CV disks have Pm ˝1. Lab. experiments Pm ˝1. Previous work (Lz = 1): Pm

SS vs MRI

Question 2:

Is Trφ ∼ Txy = qαc2s ?

Farrukh Nauman (Niels Bohr Institute) MHD Shear Turbulence August 4th, 2016 32 / 37

Page 33: Turbulence in MHD Shear Flows - PPPL TheoryProtoplanetary and CV disks have Pm ˝1. Lab. experiments Pm ˝1. Previous work (Lz = 1): Pm

Shear dependence of stressesNauman, Blackman MNRAS 2015

Figure : Total stress vs shear.

Txy ∝ q/(2− q) unlike SS prediction!

Farrukh Nauman (Niels Bohr Institute) MHD Shear Turbulence August 4th, 2016 33 / 37

Page 34: Turbulence in MHD Shear Flows - PPPL TheoryProtoplanetary and CV disks have Pm ˝1. Lab. experiments Pm ˝1. Previous work (Lz = 1): Pm

Conclusions

MRI: No analytical model yet that captures large scale features.

Large (coherent) magnetic fields: a generic property ofmagnetized shear turbulence.

Farrukh Nauman (Niels Bohr Institute) MHD Shear Turbulence August 4th, 2016 34 / 37

Page 35: Turbulence in MHD Shear Flows - PPPL TheoryProtoplanetary and CV disks have Pm ˝1. Lab. experiments Pm ˝1. Previous work (Lz = 1): Pm

Thank you!

Farrukh Nauman (Niels Bohr Institute) MHD Shear Turbulence August 4th, 2016 35 / 37