repository.arizona.edu€¦ · ttnt b thr th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th...

188
Hydrogeology of the San Xavier Mining Laboratory and Geophysics Test Site and surrounding area Item Type Thesis-Reproduction (electronic); text Authors Bohannon, Stacy Jo,1965- Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 26/03/2021 00:40:04 Link to Item http://hdl.handle.net/10150/192053

Upload: others

Post on 18-Oct-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

Hydrogeology of the San Xavier Mining Laboratoryand Geophysics Test Site and surrounding area

Item Type Thesis-Reproduction (electronic); text

Authors Bohannon, Stacy Jo,1965-

Publisher The University of Arizona.

Rights Copyright © is held by the author. Digital access to this materialis made possible by the University Libraries, University of Arizona.Further transmission, reproduction or presentation (such aspublic display or performance) of protected items is prohibitedexcept with permission of the author.

Download date 26/03/2021 00:40:04

Link to Item http://hdl.handle.net/10150/192053

Page 2: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

HYDROGEOLOGY OF THE SAN XAVIER MINING

LABORATORY AND GEOPHYSICS TEST SITE

AND SURROUNDING AREA

by

Stacy Jo Bohannon

A Thesis Submitted to the Faculty of the

DEPARTMENT OF HYDROLOGY AND WATER RESOURCES

In Partial Fulfillment of the RequirementsFor the Degree of

MAS IER OF SCIENCEWITH A MAJOR IN HYDROLOGY

In the Graduate College

THE UNIVERSITY OF ARIZONA

1991

Page 3: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

STATEMENT BY AUTHOR

This thesis has been submitted in partial fulfillment of requirements for anadvanced degree at the University of Arizona and is deposited in the UniversityLibrary to be made available to borrowers under rules of the library.

Brief quotations from this thesis are allowable without special permission,provided that accurate acknowledgment of source is made. Requests for permissionfor extended quotation from or reproduction of this manuscript in whole or in partmay be granted by the head of the major department or the Dean of the GraduateCollege when in his or her judgement the proposed use of the material is in theinterests of scholarship. In all other instances, however, permission must be obtainedfrom the author.

2

SIGNED:

APPROVAL BY THESIS DIRECTOR

This thesis has been approved on the date shown below.

/z Date Michael Sully, Assistant Profe sor of

Hydrology and Water Resources

Page 4: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

3

ACKNOWLEDGEMENTS

I would like to thank Dr. B.K. Sternberg for the exposure to a multi-

disciplinary study of a complex subsurface system. I am grateful to Drs. Sternberg,

S.N. Davis, and M.J. Sully for support and guidance in each stage of the work. This

project has been funded by the U. S. Geological Survey Grant Number 14-08-001-

G1726.

Invaluable field assistance in locating private wells was provided by many land

owners. I would like to specially thank Mr. Jerry Kvaall and Mr. Albert Walker for

their help.

Finally, to my parents, thank you for your loving support and the example set

by each of you.

Page 5: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

DEDICATION

4

This thesis is dedicated to Irene Bohannon.

Page 6: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

5

TABLE OF CONTENTS

Page

LIST OF ILLUSTRATIONS 8

LIST OF TABLES 10

ABSTRACT 12

1. INTRODUCTION 13

Description of the Problem 13Location and History 14Method of Study 17

2. DESCRIPTION OF STUDY AREA 19

Topography and Climate 19Geology 20

Overview 20Scherrer Formation 25Concha Limestone 25Angelica Arkose 26Ruby Star Granodiorite 26Tertiary to Recent 26San Xavier Mine Fault 27San Xavier Thrust Fault 27

Geologic History 27Hydrogeology 28

Regional Overview 28Commercial Mine Effect 30Scherrer Formation 30Concha Limestone 30Angelica Arkose 31Ruby Star Granodiorite 31Tertiary to Recent 32San Xavier Mine Fault 32San Xavier Thrust Fault 32

3. WATER LEVELS 33

Observation Wells 33

Page 7: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

6

TABLE OF CONTENTS--Continued

Page

Study Area 33San Xavier Mining Laboratory 33

Present Water Level Surface 41Historic Water Level Surface 46

4. PERMEABILITY TESTS 50

Study Area Aquifer Tests 50Summary of Field Data 50Data Analysis 51

San Xavier Mining Laboratory 55Gravity Tests 55

Summary of field data 55Borehole connectivity 59Data analysis 60

Specific Capacity Test 64Summary of field data 65Data analysis 65

5. WATER QUALITY 69

Sample Collection and Analysis 69Study Area 69San Xavier Mining Laboratory 76

Discussion 79

6. WATERER BUDGET 83

Recharge Estimate 83Future Water-Level Response to Pumping 87

7. INJECTION TEST AND ENVIRONMENTAL PERMITTINGPROCESS 90

Regulatory Oversight 90Injection Test 91Water-Quality Monitoring 95

Field Sampling 95

Page 8: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

7

TABLE OF CONTENTS--Continued

Page

Computer Simulation of Geochemical System 96Input to model 97Results 103Model selection 108

8. CONCLUSIONS AND RECOMMENDATIONS 111

APPENDIX I. WATER-LEVEL RECORD FOR BORE-HOLES H14 AND H16 114

APPENDIX II. DATA, LOGARITHMIC DRAWDOWNCURVES, AND TYPE CURVES FOR AQUIFERTESTS ON WELLS 27 AND 17 115

APPENDIX III. ANALYTICAL SOLUTIONS FORGRAVITY PERMEABILITY TESTS ABOVETHE WATER TABLE 126

APPENDIX IV. AQUIFER PROTECTION PERMITNO. P-102223 FOR SAN XAVIER MININGLABORATORY 129

APPENDIX V. PRINTOUT OF GEOCHEMICAL MODELINGOF INJECTION TEST 159

LIST OF REFERENCES 184

Page 9: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

8

LIST OF ILLUSTRATIONS

Figure Page

1. Location of San Xavier Mining Laboratory andGeophysics Test Site (after Sternberg et al., 1988) 15

2. Topographic Map of Study Area showing Wells Located andSXML Area (after USGS, 1981) 16

3. Geologic Map of Study Area; Sampled Wells indicated byasterisk (explanation included in 4) (after Cooper, 1973) 21

4. Cross Section A - A through Study Area (after Cooper, 1973) 22

5. Surface Geology Map of the San Xavier Mining Laboratory(after Sternberg et al., 1988) 23

6. Cross Section A - A' through the San Xavier Mining Laboratory(after Sternberg et al., 1988) 24

7. Regional Water Level Surface in the Upper Santa Cruz Basin,Spring 1982 (after PAG, 1983) 29

8. San Xavier Mining Laboratory with Locations of Open andAbandoned Boreholes 42

9. Present Water Level Surface in Study Area 45

10. Historic Water Level Surface in Northeast Portion ofStudy Area, Constructed using Pre-1959 Data 47

11. Classical Free Surface Concept of Flow from a Bore-hole above a Deep Water Table (after Stephens, 1979) 61

12. Change in Water Level from the Historic to the PresentSurface in Northeast Portion of Study Area 86

13. Homogeneous Isotropic Flow Net for Historic WaterLevel Surface 88

14. Design Plan for Injection Test conducted in July, 1990,San Xavier Mining Laboratory 92

Page 10: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

9

LIST OF ILLUSTRATIONS—Continued

Figure Page

15. Activity Coefficient versus Ionic Strength Relationsfor Common Ionic Constituents in Ground Water, showingdifferences in ionic strength of the injection solutionand SXML ground water before and after injection(after Freeze et al., 1979, reprinted by permissionPrentice Hall, Englewood Cliffs, New Jersey) 107

Page 11: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

10

LIST OF TABLES

Table Page

1. Summary of Wells Located in Study Area and Data Usedin Construction of Water Level Maps 34

2. Summary of Water Levels for Boreholes on the SanXavier Mining Laboratory 43

3. Summary of Transmissivity Estimates from AquiferPumping Tests of Wells 27 and 17 54

4. Summary of Gravity Permeability Test Data from theSan Xavier Mining Laboratory 57

5. Field Estimates of Saturated Hydraulic ConductivityMeasured Above the Water Table at the San XavierMining Laboratory 63

6. Field Estimates of Saturated Hydraulic ConductivityMeasured Below the Water Table at the San XavierMining Laboratory 67

7. Partial Chemical Analysis of Water Samples fromSelected Wells in Study Area 70

8. Summary of Field Activity and Equipment Used DuringSampling of H14, San Xavier Mining Laboratory, 5-11-90 77

9. Analytical Results from San Xavier Mining LaboratoryGround Water (Sample Collected 5-11-90) 78

10. Summary of Water Balance Calculations 84

11. Analytical Results for Supply Well A (SampleCollected on 3-9-87) 98

12. Analytical Results for Supply Well B (SampleCollected on 3-9-87) 99

13. Summary of Minerals Identified in SXML Area(After Mayuga, 1942) 101

Page 12: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

11

LIST OF TABLES--Continued

Table Page

14. Estimated Chemical Analysis of Injection Solution 102

15. Summary of Predicted Changes in Ground-Water Systemas Computed by PHREEQE 105

Page 13: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

12

ABSTRACT

Water level, permeability, and water quality data indicate that the aquifer

beneath the San Xavier Mining Laboratory is unconfined, high permeability, and

isolated from the adjacent, upgradient aquifer.

The aquifer at San Xavier has been dewatered considerably due to past

pumping at the mine and at nearby open-pit mines. Water levels have not recovered

due to the low permeability of the upgradient aquifer, and the restriction of the flow

of ground water across the thrust fault separating the upgradient and San Xavier

aquifers.

The Mining Laboratory is in full compliance with the Aquifer Protection

Permit issued to the facility by the Arizona Department of Environmental Quality.

The ground water at the mine meets all state and federal primary drinking water

standards. The future use of the aquifer does not appear to be threatened by

research being conducted at the mine.

Page 14: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

13

CHAP 1 ER 1

INTRODUCTION

Description of Problem

The San Xavier Mining Laboratory and Geophysics Test Site (SXML) is

currently being used to study the application of geophysical survey techniques to

water resources and mining investigations. The geophysical methods are being

developed and refined by the Laboratory for Advanced Subsurface Imaging (LASI)

at The University of Arizona (UA), Tucson, Arizona. Current research at the UA

has focused on advanced techniques for the detection and monitoring of subsurface

plumes, including spills of contaminant wastes and leach solutions injected during in-

situ mining. To provide a field test for selected geophysical methods, the SXML was

chosen as the site for the injection of a concentrated saline solution to simulate

conditions of an actual spill or of a mining operation.

This study of the SXML and a surrounding radial area of over 3 kilometers

was undertaken to provide a hydrogeologic site characterization in support of the

water resources and mining investigations and to fulfill related environmental

permitting requirements. A site characterization including the direction of ground-

water flow, the heterogeneity, water chemistry before, during, and after the injection

test, historic and present water levels, and recharge was conducted. Because no

previous hydrogeologic studies had been conducted at the SXML, this report provides

an initial data base upon which future work can build.

Page 15: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

14

Location and History

The SXML, known also as the University mine, is approximately 37 kilometers

southwest of Tucson, Arizona (Figure 1). The site is at latitude 31°58'16" north and

longitude 111°5'58" west, and lies in Sections 3 and 10 of T17S, R12E in the Twin

Buttes quadrangle (Figure 2). The initial study area was designated as a 0.8-km

radius from the mine, within which detailed land use and well information was

required for the environmental permit. This area is indicated by the dashed circle

shown in Figure 2 and will be referred to as the SXML area. The study was later

expanded to include all or part of Sections 33 through 36 of T16S, R12E, and

Sections 1 through 5 and 8 through 16 of T17S, R12E. The 3.2-km radial area

indicated by the solid circle in Figure 2 will be known as the study area.

The SXML is within the Pima Mining District, "one of the premier porphyry

copper districts in the world" (Titley, 1982). Operations at the San Xavier Mine

began about 1875 to develop a pyrometasomatic ore body deposited in altered

limestone. Principal ores at the mine were lead, zinc, silver, and copper (Sternberg

et al., 1988). The main production and dewatering shaft was the Number 7. A 12-

hectare area of the mine including the Number 6 Shaft was donated to The Universi-

ty of Arizona in 1975 by the Anamax Mining Company and has been developed into

a testing facility for geophysical and mining studies by LAST and the Department of

Mining and Geological Engineering. Seventeen test holes have been drilled on the

site, and two of these reach the water table, which is presently over 150 m deep.

Mineral rights to a depth of 76 meters were included in the donation.

Page 16: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

OCOTILLORANCHROAD TWIN BUTTES

MINE

sr

ASARCO

0 MISSION MINE

PIMA MINE

SAN XAVIERMININGLABORATORY

HELMET PEAK ROAD

SIERRITA MINE

ESPERANZA MINE

1-1-11U °- -

110°- 37°

TUCSON

36 °

UTAH

1 14° 1 13 ° 112°

15

I 35°UNIVERSITY OF ARIZONA -L

oe

VALENCIA

(not to scale)

0 OPEN PIT MINE

p SHAFT MINE

Figure 1. Location of San Xavier Mining Laboratory and Geophysics Test Site(after Sternberg et al., 1988)

Page 17: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

1 6

Page 18: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

17

Most mine shafts indicated in Figure 2, including Shaft Number 7, are

abandoned. The Pima and Mission Mines are presently a single open pit, known as

the Mission Mine. Mission Mine is owned by the American Smelting and Refining

Company (ASARCO). Operations at the ASARCO mine area began about 1959,

and the pit is presently over 300 meters deep (J.B. Lichtenhan, Mine Superintendent,

Mission Mine, personal communication, 1991). The study area is within the Tucson

Active Management Area, a hydrologic basin managed by the Arizona Department

of Water Resources (ADWR).

Method of Study

All wells located in this study are shown in Figure 2. Thirty-four domestic and

abandoned wells were located within the study area. Static water levels were

measured at 25 of these wells, and water-quality samples were taken at 20 of the

wells from November 1989 through June 1990. Single-well pumping tests were

conducted at two of the wells in the fall of 1990.

Field data within the SXML area were collected from September 1989

through December 1990. Measurements conducted included static water levels,

gravity permeability tests above the water table, and one specific capacity test.

Water-quality samples from the University mine were collected and analyzed before,

during, and after the injection of saline solution in July 1990.

Page 19: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

18

Data collected in this study, as well as information contained in published

reports, were used in the hydrogeologic characterization of the study area and in the

planning and environment permitting associated with the injection test.

Page 20: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

19

CHAPTER 2

DESCRIPTION OF STUDY AREA

Topography and Climate

The SXML study area is within the Basin and Range physiographic province.

The area lies on the pediment of the northeast flank of the Sierrita Mountains. The

pediment surface slopes gently eastward toward the Santa Cruz River. Elevations of

the land surface vary from about 1,341 m above mean sea level (imp at the base of

the Sierritas to about 823 m above msl in the river bed. The mountain base and

river bed are separated approximately 20 km. The SXML is approximately 1,094 m

above msl and 13 km west of the Santa Cruz River.

The semi-arid climate is characterized by mild winters and hot summers.

Mean annual temperature is approximately 16.8°C. Temperatures for the months of

January and July average 7.2°C and 27.2°C, respectively. Average precipitation in the

study area is about 25 cm to 30 cm per year. Rainfall occurs primarily as high-

intensity thunderstorms from July through September and long-duration frontal

storms from December through March. Most streamflow peaks occur during the

summer months, but maximum runoff volumes are produced by the winter storms.

Streams in the area flow ephemerally only. The annual pan evaporation is as high

as 203 cm (Pima Association of Governments, PAG, 1983).

Page 21: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

20

Geology

The SXML was previously a commercial mine surrounded by numerous other

ore bodies, and extensive work on the geology of the area has been completed by

several investigators. Descriptions of the study area are given by Mayuga (1942),

Cooper (1973), and Titley (1982). The San Xavier Mine itself was studied in detail

by the Eagle-Picher Mining and Smelting Company (1946), Irvin (1959), Wilson

(1960), and Sternberg et al. (1988). A brief description of the geology and lithology

as it pertains to this study and based primarily on these reports is given below.

Overview

The Pima Mining District is within faulted sedimentary, volcanic, and plutonic

rocks varying in age from Precambrian to Recent (Figure 3). A section of Paleozoic

and Mesozoic rocks rests on the late Cretaceous to early Cenozoic Ruby Star

-6ranodiorite intrusive, separated by the surface of the San Xavier Thrust Fault

(Figure 4). The SXML is approximately 1/2 km east of the fault and developed

within a group of Paleozoic and Mesozoic sedimentary rocks (Figure 5). The

thickness of the sequence in this area ranges from 275 m to 335 m. The majority of

the mineralization in the mine occurs along the faulted zone between the Angelica

Arkose and the Concha Limestone (Figure 6). The Scherrer Formation is in the

deeper workings of the mine. The Angelica extends along the southern portion of

the study area. Younger conglomeratic and volcanic units are present throughout the

pediment area.

Page 22: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

21

...cn

• Z.:CI)

-,-.cnal>-,

.0

7:10 .•••-

L

n-.. enct r,C.) oNa' immla ......, S.

G)V) 0.,•••.' 04.) 0

0

a) -C1.. alE '—'et ---

a);TT "a) =,_, tu)

>-, C-0 • --O -0

.1, • , A .

(.1nI =o u-0... 0

il C0

c.) Tti. -tu) CO as

ô 0-a) x0 ••?w

Page 23: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

o

NO11335

NI 01439

I '

.. . ii .L il

i 4 1.: FiEl.

is

I t. i i1; 34 ta il:

..- -4 1- ; -0 44 1, 4 113 1.' ig -q. 4 ,,

Ila I 1,1 0' ia"" 'PO*

ill I

1 1 1.1 --1-s1

t 11,

?..4..0Es;

;a4

I' "2.2•

t z t -.--i

ii..: Ez

1 qi.,..4 I4 ,t-i;

1

E

E,.1I

e

2nnnn n••n•

22

r7 t

a

El •nnnn•

Page 24: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

23

000i7N 006EN 008EN

' 1 1111111UL'1

258

111111•1111-

Page 25: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

tee.r. !!!.1214,.!; nnn v t .

24

Page 26: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

25

Scherrer Formation

The Middle Permian Scherrer Formation is composed of a basal orthoquartz-

ite, a sandy limestone, and an upper sandstone-quartzite. The thickness of this and

other units in the mine area is difficult to determine due to the complex structural

history of the rocks. The formation is 80 m thick in the nearby Mission deposit

(Jansen, 1982). Little mineralization occurs in the siltstone and silty limestone units

of this formation encountered in the workings of the mine. The Scherrer Formation

is overlain conformably by the Concha Limestone.

Concha Limestone

The Upper Permian Concha Limestone forms resistant cliffs throughout

southern Arizona and caps Helmet Peak directly east of the mine. The limestone

is thick-bedded to massive, very cherty, and fossiliferous. The contact with the

underlying Scherrer Formation is gradational. The formation thickness exceeds 86

m within the San Xavier Mine. Much of the mineralization in the mine occurs within

the highly-altered garnetite zones of the rock. The beds strike N75 °W to N85°W,

generally paralleling the orientation of the normal fault. Dip is 40° to 60° to the

south. The beds are cut in places by prominent joint sets striking N10°W to N10°E

and dipping 40° to 50° to the west.

Page 27: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

26

Angelica Arkose

In the mine area, the Lower Cretaceous Angelica Arkose is in fault contact

with the underlying Concha Limestone and is non-mineralized. The arkose is thinly-

bedded and consists of subangular to rounded medium-sized grains of quartz and

feldspar near the SXML. Quartzite units of this formation are found south of the

mine. The strike of the beds is generally N30°W to N10°E, and dip is to the

northeast and southeast.

Ruby Star Granodiorite

The Lower Tertiary Ruby Star Granodiorite is a massive intrusive body

consisting mostly of equigranular, holocrystalline, biotite granodiorite. The pluton

is in fault contact with the overlying sedimentary and volcanic formations.

Tertiary to Recent

The Middle Tertiary Helmet Peak Fanglomerate includes andesite flows,

landslide blocks, arkose units, and calcareous sandstones. The unit is found in the

southern and eastern portions of the study area. The total thickness of this unit and

younger sedimentary formations increases to over 3,000 m near the Santa Cruz River

(PAG, 1983). Surficial sands derived from the weathering of older formations occur

in the valleys and streambeds of the area. The alluvium varies in thickness from 0

to 15.0 m at the SXML. Sand grains are typically unconsolidated but may be

cemented locally into caliche.

Page 28: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

27

San Xavier Mine Fault

The normal fault separating the Concha Limestone and the Angelica Arkose

at the SXML strikes N80°E to N90°E and dips to the south 55° to 800. Offset along

this fault and other normal faults in the mine ranges from tens to hundreds of

meters. Rock alteration and mineralization occur along the brecciated zone about

three to five meters in width.

San Xavier Thrust Fault

The San Xavier Thrust Fault is a "major, low-angle, undulating feature on the

northeastern pediment of the Sierrita Mountains" (Jansen, 1982). Movement along

the fault is interpreted to have displaced the section of Paleozoic to Mesozoic rocks

found within the study area. The original position of the section was just north of

the Twin Buttes approximately 10 km south of its present location. The fault strikes

N to N14°E through the study area, dips 21° to the east at the surface, and becomes

nearly flat-lying east of the SXML.

Geologic History

Following the deposition of the Paleozoic and Mesozoic rocks found within'

the study area, folding along a west-northwest trending axis occurred. Associated

faults developed along bedding planes and distorted the thicknesses of the individual

units. In response to the release of compressional forces, east-west trending normal

faults developed, and the Angelica Arkose was placed in contact with the Concha

Page 29: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

28

Limestone. A period of low-angle, east-west trending faulting then occurred. The

fault zones dipped to the south and offset the contact of the Angelica and the

Concha. Tear faults trending northwest, north, and northeast developed also and

offset normal faults in the area. Alteration of the rocks along the brecciated zones

of the numerous and varied faults then occurred. The late Cretaceous to early

Cenozoic mineralization of the San Xavier and other ore bodies followed.

Emplacement of the Ruby Star Granodiorite occurred in this period of time also.

The exact temporal relationship of the mineralization and this intrusion is not clear.

The allochthonous wedge of Paleozoic and Mesozoic rocks was then displaced along

the San Xavier Thrust Fault, and renewed movement along older structures followed.

Hydrogeology

Regional Overview

The basin of the Santa Cruz River slopes gently to the northwest. The upper

portion of the basin including the study area is about 24 km to 32 km wide.

Regional flow of ground water in the upper basin is generally to the north in align-

ment with the river channel and to the east and northwest from the margins of the

surrounding mountains (Figure 7). The depth of water ranges from less than 30 m

to over 180 m. The water table is generally closest to the surface near the Santa

Cruz River.

Page 30: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

tP1

EXPL431A11011

.24•• and acalen ••1111 ogler Waalaavelia41/44a above WO

0." areall

was, 52-.14412.414311clasrod *nan• ninnod (Iaymaboa• Mal)

toscroot

23 24

• -1-1 • -75

I •3, 76 30 1 71(,'

31

.- -

- • , ,....yr ;

. ... % .:, k ,‘ 111 . XII ;

2

1

) .i 0

(

se • 32

' •-••41.-.

z Hçz::..-.,7%.....-, ,. 1 II 0„,.....„„,.4. ; i i-•,,,,,,,„ ...e b

cfa \)* ,.....-,4. 1..s.,,I,!,,,,•,77,..,.i:111::1;4..C\FT,,„ X

.,,,. i . .„,,,,• •u.I airl

E,, J'h‘-..j 1 -,-,‘;' - * li /1' / 1 is. 7 /1-• ._ ,-,.. _ _ _ \I., • ,,., , ,, ,, m3 awe

" I 4, 3 . 3. ' ry4,„; i " 5 ‘44;

\ 934•? .. . ,,1n311 1

14 , Il r. 23

/-- • -•-•-, J2'J2' 19i. -.2- ?!...„, ..-A. ., .... / its / 29 2 ,..« ,„....r.. "-.1iro ''''. 1

•,...41.3a141,,n; 30 3, 1 r/e/ 22 ill ..1

O

•• „7" 1 7,1171N/\

-135.1 " •- \ : ,p/ji '.' 4..„1,..

•/- 1,44 • . Ian •,,/s•-'3.

1 " I14-.- • •1 344-1 J• .4V/ u l o.-4. bra

4. ..1....11 J ,03, il".31 II;

/ 3$‘‘3:3‘.!. -.1.1• . .- . 1 I.. - -7.7 a . L yl. 40. /

0 .....j. . . Q . • \ , 17 ,t.1 .(.,,; ' - Mi l- ill 'iIl . . 6 os !':- . 4

',NV s 1 a ' i'' , . , o .1 k ..,,r. mob ,,,..,,r___n .; Iv I i r• . 75 •ass, . cm". _ _ .., 1 . ;

••• ‘ • 'Ps. V C!1 .13 se )571 is ./r a r-- .1 a u -

,»J1 1

, . ..,r.°/

. \ •.,,,,...... _ .4 ,

-t

M

\ 1 /4") • •-•E • 24.1. . 24'‘ ..... ., , ...0 V...'.•:,...

..... , s....s.,...co ASAACO . ..... awe

" ' • .

'3 iek ;_r " I ,434 ",410 ,e. ••...1

20 21

t .. ç -' .ir;i'll.,„1:‘./' 1.1 ,..,1-141.."1..;,-.:---4),, sm:".

:::::".: -.)-//;-:j.

Study larea .

1, 'I v Iv t.....,, ...,..1 try, 1 1 ? ,, ti,,, . t.;.1 . ,s, s, .

. .,.

u

'7

•sA•co• -•

.1

• i""1 4:1 r'"Vil 1-tri ,-t . V.,T11 r-1 1..

ir‘,1 1.1 11 --1: i .,--',4.-,, t I _. f jf e__. "" , 1 1

1 / , ...- I nu: •\""'

'1;4:j --

"1 1 F. 11 1.:27 ,..i..., im‘)

.2. /

3..,...4...

_

i n Lu

yd ""vi • ' Ira 21

2. s•rr. '' 1 ya• 4,

- 1101-ji laTr .al."3

......... I.

0." ‘""

!..°572•31 .OW

2401

51‘ 1 " !.. y 3 / / '°...:;:t' !/. .1404"1 I 33 / 33 34 ! i

nç , ,......,. _ T ,.••c...s. vow, •r -, - I--

,' N...6 i. 1..... .,r1 •4.8 1 'Or 2430 "

.. .0-177"-341 1 • -.2154‘ ' .,;',

/) ‘,),3 n 12" 1 $‘'X \ .....I'r ;" "W‘ 's 434 ! 4 -!...e - 1.1.,. i ,

. ,.A ,V' , .

- 7 -fol‘

• P;";/).'1 " , :7n ..gr

r::

I 1 .0 I4-.

Q 11 C I,

3.-,O.-.

3S

San /Sonar •nci•riRallorwilbon Ocurciary

Caeca Land Or•ni boundary

it

34 A,

'1""I 'I*• al :I.` • 14•4

- i -(.17211".,

erl .171 \

1-111 (.44r„; i, I 7 •4. / orv i

_ 411_•

440146,

s

' \• .., I 1

.%•••• 11 , 34 ;33 ...•-- - < so 1., -%7 I

....• I4 H y

• ; 10 % n 13 ,i -

f "%, (7.Il es IN ala -'t

•••., s10 2i • . 13 . .*.Y,

i

; 22 OS3• • '

{ L. I

la liP . ..$ S' .,,i 21,°- - i

_ _ __ _

J ! 1

1-' 1

10 ,../ 11 1

a 21-t al a I,.a.

9 I'13 24

„Ma .

12

22 ,

29

Figure 7. Regional Water Level Surface in the Upper Santa Cruz Basin, Spring1982 (after PAG, 1983)

Page 31: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

30

Commercial Mine Effect

Localized cones of depression have developed near the Anamax Mine and

east of the ASARCO ponds, pr•obably due to pit dewatering and pumping of wells

to the east. The water table has declined substantially near the SXML and the

ASARCO mine area as shown by evidence from water levels and water budget

analysis presented in later chapters. Recharge from tailings ponds has degraded the

water quality locally and produced elevated levels of hardness, sulfate, and total

dissolved solids (TDS) (PAG, 1983). The wells sampled in this study were

upgradient of the ponds and, thus, were not affected by the contamination.

Scherrer Formation

Whether the Scherrer was directly tested on the SXML is uncertain due to the

dip of the beds and gradational contact with the overlying limestone. Logged drill

cuttings from the mine indicated that the formation was encountered below a depth

of about 60 m in some test holes (Sternberg et al., 1988). Hence, information given

below for the Concha may be representative of the hydraulic properties of this

formation.

Concha Limestone

No ground water is currently being pumped from wells in the Concha

Limestone within the SXML area. The water levels ranged from 120 m to 159 m

below land surface. The estimated transmissivity from a specific capacity test

Page 32: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

31

conducted using a bailer was about 88 m2/day. A well yield of at least 0.03 L/sec

was indicated from the test. Water quality measured on the SXML will be discussed

in Chapters 5 and 7. The loss of fluid circulation during drilling of some boreholes

and large fracture apertures mapped in underground drifts on the SXML suggests the

development of solution openings in the limestone.

Angelica Arkose

The depth of water in the study area in this formation varied from 7 m to 28

m. No direct estimate of the permeability is available. The reported yield from one

well was on the order of 10-2 L/sec. Water sampled from this well was of poor

quality with elevated levels of sulfate, hardness, and TDS (Chapter 5). These

conditions may be local, and data from other locations in the study area are not

available.

Ruby Star Granodiorite

Ground-water development in the Sierrita Mountain area, including the

northeastern pediment, has been limited to stock, irrigation ( <8 hectares), and

domestic wells. The depth of water in the study area ranges from about 10 m to 51

m. Estimated transmissivities from pumping tests range from 0.129 m2/day to 0.186

m2/day. Well yields are on the order of 10-2 L/sec to 1 L/sec. The water quality

within the study area is generally good with some localized contamination (Chapter

5).

Page 33: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

32

Tertiary to Recent

Within the study area, water levels in wells were 20 m to 31 m below land

surface. Direct water quality or permeability testing in these units was not conducted

in this study. Numerous municipal and other production wells east of the study area

have been placed in the semi-consolidated to unconsolidated Tertiary and basin-fill

deposits. The hydraulic conductivity of these formations ranged from 104 to 30

m/day. Well yields range from approximately 19 L/sec to 28 L/sec (Thorne, 1983).

San Xavier Mine Fault

The hydraulic properties of the fault have not been tested directly, but

alteration and mineralization along the fracture surfaces suggest fluid circulation

along the fault zone.

San Xavier Thrust Fault

Unfortunately, this zone has not been tested. Evidence from water samples,

water levels, and hydrologic budget analysis presented in this report indicates,

however, that the fault is a barrier to ground-water flow.

Page 34: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

33

CHAP 1ER 3

WATER LEVELS

Observation Wells

Study Area

In order to evaluate both the direction of ground-water flow and the change

in water levels with time, static water levels were measured in the study area from

11-22-89 to 6-30-90, and a literature search of available water-level data was

conducted. Of the 34 wells located within the study area, 25 were accessible for

depth-to-water measurements (Table 1). In general, water wells drilled in this area

were cased and cemented through any alluvial fill or weathered zones and a portion

of the underlying competent rock to prevent caving of the borehole and to reduce

the possibility of contamination of the well. Reported depths of casing ranged from

9 to 107 meters. Therefore, water levels measured are considered to represent head

values for the rock formation in which the well was drilled.

San Xavier Mining Laboratory

Virtually no characterization of the hydrology at the SXML had been

conducted prior to this study. A total of 17 boreholes have been drilled at the

SXML in support of the testing of geophysical survey techniques. (Note: All drilled

holes at the site, whether completed in or above the water table, will be referred to

as boreholes in this report to simplify terminology.) In addition, a field survey

located nine abandoned boreholes on and adjacent to the SXML property. The

Page 35: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

3 4

sr:7csic‘i r1 csi

0 0 0 0 0 0 0ON CT ON as ON Cr, ON 00.6 I c.to c:, , I I a%

NO ,C, r- r- 14 4 4

1 I_, _ so

,r ; ,4:, 1 s0 VD

v,.1. ,n cl I-- er 01 ,r1 r-

r- "I 6 6 t-,i •,:;ON 60 —. 0 VI CO ,C1 V. 10 0 —, 0 0 0 0—. ....

c-4 ,r1 "rf00 0.6

'CC 00 (‘l •ct

r- ,r1

ON •rt ON

c ,) r- r- co oo co

,t6 rr r-:m d oc; c;(NI r ‘10 cc) CO CO

0

Page 36: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

35

"s0

"Ca O a a

Sns

e,1

r- r- r-in 1^cci Ci . •

c••n c‘i

0

r Os 0 0 0 0 0 0 0 c,as 1

o0 00 a' ON ON ON Os ONI , 0I I I I 1 I

..-. ....0 0.‘ .--, ,0 r- —

cv--— cv rci — r‘i CV CV4 0`0 —

(14...., I ,4; I I 1 IC1 sO s0 sO

,:„

(-4 — `0.r') a so

C1 ,rs

st,CV

22

CV CV0 0 ON

Ci vOF r-

w)

a en ctsa (...-; aso sn sO

C7s

co v:4c:4;(el (.41

cr,

o r-Cc; Cc;

6Z

"(f4 ,—, GI =3 a a —>-,ita; » t0 % <

ln 0M 7 7 70 C I (.)Z a. cn — 3 141 N--...

0 CV 0‘.. • "1:3 (,)

6-a.> V) c C —C —; ci s I

''''' •-1 C tnr0 u.

o o , << L)u ,.., o -i n< ,..., -:t a. o . c ,,'''..-, it i tt vr

r. . . mi•cr —_, •••-•. a, .._, en 0

I 0 II 7 LL1 La '«u4 CI tll ct

., CVrsi 7 ni :::: C47 e,„ --, > 7 a: . ._

-

1cn cn . cnsi" d -r

Page 37: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

36

Ili 0 0 (21 CI 0 0

00'

0Os

00 \

0ON

00'

00 \

00 \

00 \

Im

tm

1tm

1m

1 i),,, t el N N N‘.0 s0 40

'O \ I0

,41, ,.,;

oo 7 csi06 06‘.0 "er

(-4 r-al -ci rsi

(NI

cooie rei

co co , : i .1 .c.,,11--- ,,c< cs,- <1 ...... (-)

ci,Z '..1"..= -

0 a< ,;,.... L)

a * 0— CV en.. _ >, c0 CC c. CI 8 o Na it ra *a ,oa, , -< r‘i< co v. 4t , -, "'-' t CNI i

E Z t g v.. #t , # I o 1 g en ._. v - .-

Zn 2 Va :9

,.... OI ...... (7, In 0. »--- en 7, en ,. en .-. enO 1 C , --:: , = I c 1 .0 1 7.3. I -C ,

c31.1.1 ...MIll NI L•0 ajt.4.1 c.) ILI t;', L1.1 a) t46.• • 1:3 0 0 N a N CO N 1 N.. ,?:. N > (.4 .t: N -47; N Z,1 04V V) c c —. > —, > ,.., •-• COC .--; al .1L i i I 0 7 °

_1 . 2 , cin 1 _13 -' -1 c Gel v) V, d cr, C/1 V) V1 V) V)

0. t-- . r-- „; r--. . so . soD r.2.". -, - .., -. 66 •-• •‘82 ., •-• {.14 -•••s° ••••, •-•n ...; 2

Page 38: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

o

r-- r-- .0 .0 V, %.0 COe

,re '1 •C rre en rre

—: —: r4 r‘i oi csi e

0 0 0 0 0ON 0, as as ON

0 I 0 i I 0 0 i ION ..re ON 0 —. 0. ON r-- (--•

I —., iI

Crl <V ,..;s0 i

ON NO

i — -.s.,;

‘0 st:,

kre r-o .6 6

,r1 r-

O

r-

06r•-•oo r-

r-CO CO

rn N —. N kr% —. vl N4 rsi vi06 (-..i 6,c) ‘o tel so 'Tr ,e1 CO C's

--. 0 0 —. 0 0

37

o cz

it u<(..)()

,-,-(77

#N<

C3C1<

I

,-,

Gcn

n '— .0 %CO 0 CNI '..a I

774CO

14(-4_ 00N

u.1 .-a,-

7 .6 . LLI 7 u•

dV)1.-•-.

.<

cn

r:.

.

2

Page 39: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

—CA

* * * < Czast) ,r1 c0 CD I

ci•-• , ce Lri

W 3 3 W1 o r-La0(N O r') o "C

(/) cv

c-"

•A „. 7

cn7

2 r-

—cv8 cc9 2

-u o

e-al en cci< <0 U

0 0 0

38

F-00

CO

00

CV

c",100 00

‘C)

o OC OC

r-- oc

o — — r-- r--Tr r'I --, sl, 4 4 r- 'et.4 4 rsi sr; ni

on oo ni CV el0 0, ON -

1--- 00 r- o. — eo 6.-..-—

—-..

Page 40: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

flI V" CVCr: Or- 4--

7.0r-:

4.)

.t;CI 41

2

39

• LL.) gla ;4 2 0

`CrCr, rt.)

'0 '43 ‘.0 0 sr•cr sr •cr CT v-1

O O • i i 0 000 CO ,e, Ci ,r, .1 Lri •ir v.,

I csi c‘i cv (-4 oN as —..4- .1 n I 4., I d,

.-. N t--4

6 Q 0'

r-

rs, (.1a 2 2 6

0

.

ts;

rs; •Cr Ces.0

tr, o o Srrsi Q Cr.

▪ oo oo 00 CO CO 0

..-..

crit

c.)E2

, ...

v. .. T (-) CO CO < co0 -;

# < tt CZ < < <

— L) -'< .--.. < .•-• < CI ...;<',e) 1 so n r- n ..—. CI

co 00 . oraO N ON 4t — it — 4t — v* c•-n

o n 01 ••n•••1 ••n••1 ,.../1 it 1 ci3 ill 3 Lu r, Ill , LL1 ,, 41 ...-• LLION ON '' NI '- tN ^" tN ,,,,„ NI r,sr Le) _o 7 oi i I =1 s i 21 t..-4,5 vc;) 7:,- v) a vl p v) 0 v) p cn <-..

.0 r-. rs r- r- _cU — U — L)— v)

Page 41: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

40

11

en Cf),e) ,...:..:.:i orON 1r1 CC1eV I ..0

1 r- <40

0e....E

.e.`rn ro' a\n•••

,ri 3 -

o-• II,.. 3 .q-eao --, - ,,.., •= t.L3 -0 o 7-oa to 3 .11- E ct C' :0 c CJNc o ,-,; n-•

a)

., 0 >. 0 a

coo6 a+

..r)c: ...:. o :

CO

; .:"

.t.; cmo m co g ..; -,,, T. Q ..!, - - 08,0, ."

(_,0

-c; • __ ,,, .

.,.-:

7-,„ c.), ,,...

, ). ,....

.—. on o 5—

0 o0 E E m — ,,,i e-0 = 5Q t' eq. a V.0 0ci.... --. T.) -°2 Eoo c, cnc4 . o .E ° E , • C'. x -' 70: >" ... '7, 1 .....-0. . - cn o 'o 0, 00

a E rq• - . 22 tu >. et >. ....c 0 CO 0 -0 u := .....

"6.c,,qa 7, : gc 1,1 . .-. C

cl./ • ,7 >1 c.n . 1.1 ',...Z ,..6. - Q.* ,- ":O „ 5 o -o IN -c ,_ >.I- " „, g.. cl 0 ,. E oo

c o o c ,,, -- a E CL 0

, ,.. .. , _ c c

CO .0

1,-.. L.3

co c.) co = c .-5 — ;-. Ti -7 i> . 2c '3 08 07;1 : a-c -.,3.).-.....0oi'V.. on C.,) 0 -. ..) 70* ..6.. 0

0.) cy, .-.. 00:,:, , .e . o (61 o A ; : : ,' 5 F.,

ue, c2 '9 ... ,9 CL C 1: '7,1, o0 ON ON .2 a a -- 7u • co

it U it n *0 E E 4,„,., '''_, 1;e" .., c - a\ .....*0 - u 'LI '..7. •-• 0 -C. -9, ON.4. „!, c.;.-- sc',9

, ,,,, - - , . 0 ,. -, . • ..-.• . ,-, 0 0 te, - .., _,

C n iC 0 0 = 0 .'"' `.-. O. ''' .... --. p",-„ ..". C = tl .....•0 "0 7:3 Ts 4 ° o .E `-' P4 n 'a -o 5 -

3 ill 3 u.1 .- .., ,,,, -.... 0 o.) o) 73 -c 0. <A0 CA 0 CNI

Q _ C •`.•sj ii ....r, "i 2 cT -20. ....; 1j.. -Cm . iij S —,„,g .=... .=.., e= 75,.. tz. g 2

—103= <ZOcni4c cn c cr)D r-- D s° ,.. c, , ... . . , . . o - co co ..o. Lc, co ,... 03 Of 0

Q CON a) 3o

N cri ao Evn

0

2 I! c....`"

ca 0 .77c a.)0'i 0 eO -,13>0 a . _

> E n5 F. ,CY x 74t a)

Page 42: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

41

locations of all boreholes are shown in Figure 8. Measured depths of the boreholes

ranged from 10.2 to 172.2 meters, and only H14 and H16 reach the water table

(Table 2). Both are registered as wells with the ADWR. Boreholes H7 and H9 have

been abandoned and filled with cement to the surface.

A continuous water-level recorder using a down-well float was installed in

borehole H14. Unfortunately, the record was extremely inaccurate. Deviation of the

borehole combined with the deep water level resulted in contact between the float

cable and the borehole casing. This contact diminished the response of the recorder

to the change in water level. Water levels were measured in boreholes H14 and H16

from 1-17-90 to 12-19-90 using an electrical depth sounder (Appendix I).

Present Water Level Surface

Flow of ground water in the study area occurred generally to the east and

northeast (Figure 9). The water-level surface in the western one-half of the area

sloped at approximately 25 meters per kilometer. However, the gradient and

direction of flow changed dramatically in the area of the SXML and the ASARCO

mining operations. The overall gradient in the eastern portion of the study area

increased about 300% from the gradient in the western one-half. The slope of water

levels in this area is approximately 100 meters per kilometer and reached a maximum

of approximately 154 meters per kilometer directly upgradient of the SXML. The

water-level elevation at the ASARCO mine area has been estimated for this map as

the elevation of the bottom of the open pits from USGS (1981). However, the

Page 43: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

r, c 4,50,

z'

§1,

9

a wZ cuz m 5z <'------ _Mk 1116

al0„,.2l

martiv bs.)0

411111nn

w --

c >,0 4,

0

70•11111i,

I ;,c3 .(2• o

oa)

11601111.W.

I— L0)0) a

c, o-,c Lf a_• r7

c

sv

oS'e% 1 /g) :I

• > •

cl

/

–- .uls-+, 0Q+

cu . 00,

4->(1, Lnci, 0.)

in

.

> ,

L .0

ba.1

L„4,

z4,

5 '

,,Z

c•

.

:

°o

o

3ul

cI;?0 ?uuV)ci

u)1o vi

•.br7 -

S- -00) 0

'-b 0 0CI. Ce0

n F-

\*--•-.- .053 •. ))

.-..----'•-•.---/ ,

'3(2"

%16‘

,

Il 4.

Illablitimall

y E 2700 2

42

Page 44: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

06\

1 IIII

I 1 I

ON CN ON00 0 0 0 00 00 0 0 0

--, ON On ON -.., --... ON ON CTL

0 -, LO LX) ----- ---..N r-- (NI r- ev (NI r- r- r-I \ . I ,--4 ,-. .--1 I '",... I . ...4 .-+ .--1

I — I ---- ----, I --.. I — ,, ,,1 — i — — ... 1 — 1 — •n• 1n1 w•ot

43

N Ln

re; I '.0 i Ire) I re) I ION I ON I I

0 0 00 ON 0 ON O'L7•L

.. r-- C‘--- Iin

Iif)r---..._. ---. r---.... cv

I(NI1

'I. n•••• .1. N N

0u>.:. >, >, 0.4 >, >,

G5 :2 6' n if:

r-- 71- co co c! e0 cV •cf•

c3 06 06 00 — 1 <3 ((-;ç.s O c2.;— csi 0 \ ON I C \ •O' ch oo co n0 c‘i t--

I 1n1

c•->(>0 0

Nr0 tN

,40

• —

m,f;06 00 oi 4 4 (.(i rri (:=3 (Ni O .6 06 (-n;00 00 00 00 or. o. a. a, 0' oo oo oo

o 0000 00 0 000 000

co .0 — m 0CV fr) cf) tr) r- oo

============Z Z=>>

Page 45: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

h— = =— • — ti'sô*c)

..•a)2 g .5= 71

1.) 11

>=

44

0000 000ON ON ON CT ON ON ON1111

tr LiN tes Le) 1.r) V.1 tint -N1 (N (N I

I ll I• (N (Ni (N

CI)

5

>1 >1 >1 >1 >1 >1 t'sL. L. L.

6L. L.

0

• ••.n

‘4:). r Let tN I C). C.)

C) ON VOI 0,6

c‘.1• .4

o

I-Q)

n n rnqqoq 000

'ft ir; —

oo co co 00 00 co co 00OOco co. c6

•••nn• •n1

Q)h.....a. .... 17

....,CO Q)0 Q)Q) -a..= 7:1 (I)

Q)'- CCO .-. 0C = .0

.... a) a)v)as E = 4F:'0 a.) • ••••. (1)(..)

1...U 73 o

o 0 ao a) = —

c i'' c'. ' E-0(-) at 0 0

ô

>• > q 0 a C1 CZ a)$.., 8. I! = ôo a) a 7:7 A o

u U u U U u h.

U 3 .ft 3 > U U

Page 46: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

Water Level SurfaceContour (m)Low

ExplanationWell with ID (Present Surface)

P,M Pima, Mission Mines

0 to 00iDøOiflOtO St C0• 0Z0:::;g:0iii

23 I//7 • 78 0ASARCO mine

.‘4, ,160p rea

lconMine

2

—0

WATER LEVEL ELEVATIONSSAN XAVIER STUDY AREA

45

Figure 9. Present Water Level Surface in Study Area

Page 47: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

46

present elevation of the water level in Mission Mine is 673.6 m (J.B. Lichtenhan,

Mine Superintendent, Mission Mine, personal communication, 1991).

Note that water-level data are lacking for approximately the entire distance

between the SXML and the ASARCO mine area. Current water-level information

from wells between these two areas could not be obtained from ASARCO.

Therefore, the laterally continuous surface represented in Figure 9 is the best

approximation of the true surface that can be made at this time.

The local gradient at the SXML is difficult to determine based on water-level

measurements in only two wells. Although the water level in H16 is approximately

3.3 meters higher than that in H14, this does not confirm a continuous downward

gradient from the southeast to the northwest. H16 is immediately adjacent to one

of the two ephemeral streams which cut through the site, and H14 is north of both

streambeds. Recharge on the site occurs primarily through infiltration of runoff

along the streambeds, beneath which ground water may be mounded. Recharge

estimates for the study area are presented in Chapter 6.

Historic Water Level Surface

A second representation of the water-level surface in the northeast portion

study area was made using historic data collected from 1940 through 1954 and prior

to the presence of the ASARCO mine operations (Figure 10). Data used in the

construction of this map are listed in Table 1. The mapped gradient between the

SXML and the ASARCO mine area is approximately 25 meters per kilometer,

Page 48: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

M Mission MineWater Level Surface--...... 96.

q **' Contour 0.0[I] Well with ID (Historic Surface)

-

I1

Explanation

PREVIOUS WATER LEVEL ELEVATIONSSAN XAVIER STUDY AREA

47

Figure 10. Historic Water Level Surface in Northeast Portion of Study Area,Constructed using Pre-1959 Data

Page 49: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

48

closely matching the present gradient in the western portion of the study area. A

slight depression and area of increased gradient (approximately 57 meters per

kilometer) near the SXML appears on the historic water-level surface, as it does on

the present water-level surface. This anomaly could be related to dewatering of the

SXML itself. The data from the drill holes on the SXML were collected in 1946.

Shaft 7, the main dewatering shaft for the mine, was not completed and put into

operation until June 15, 1948 (Duff et al., 1950). However, Shaft 6 is described as

"one of the older shafts on the property" (Duff et al., 1950) and is sketched in cross-

section in 1946 to a depth of 76 meters which is below the mapped depth to water

(Eagle-Picher Mining and Smelting Company, 1946). Geologic factors may have

contributed to the development of the depression in the water-level surface. Recall

that the San Xavier Thrust Fault, separating in part the granodiorite and the

formations present at the SXML, lies less than one kilometer west and hydrologically

upgradient of the SXML. The maximum gradient of the water surface in both the

present and historic water-level maps corresponds roughly to the position of this

fault. Hence, the thrust fault appears to be acting as a barrier to ground-water flow.

Further evidence from water chemistry data to support this relationship is presented

in Chapter 5.

Although Well 9 from the present data base lies on the east side of the fault,

it is drilled within a tongue of granodiorite which extends eastward beyond the fault

zone. The gradient between Well 1 on the west side of the fault and Well 9 of

approximately 63 meters per kilometer represents a transition between the overall

Page 50: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

49

gradient in the western and eastern portions of the study area. The gradient between

Well 9 and the SXML (approximately 138 meters per kilometer) is over 35%

steeper than the overall gradient developed near the ASARCO mine area.

Therefore, this well may be in connection hydrologically with both zones, but the

connection to the SXML still appears to be limited.

Page 51: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

50

CHAPTER 4

PERMEABILITY "I'ESTS

Study Area Aquifer Tests

Two aquifer tests using Well 27 and Well 17 were conducted to determine the

hydraulic properties of the granodiorite. Well 27 is approximately 3 km southwest

of the SXML. An estimate of the transmissivity upgradient of the mine would

indicate the rate at which ground water might flow through the granodiorite and into

the SXML aquifer. Well 17 is over 4 km northeast of Well 27. Conducting a second

test at this location would give an indication of the degree of heterogeneity of the

granodiorite.

Summary of Field Data

Water level and discharge data for both tests are included in Appendix II.

Test data from Well 27 were collected on 9-15-90 for a pumping and recovery period

of 300 minutes and 162 minutes, respectively. The maximum drawdown was

approximately 29 meters, and the water level in the well recovered to within

approximately 3 meters of the initial water level. The pump had not been on for at

least 25 hours prior to the start of the test (Ratzlaff, personal communication, 1990).

The data were collected using an electrical depth sounder which was calibrated

carefully on the surface to ensure the accuracy of each interval of length marked on

the cable. A pumping rate of approximately .08 liters per second (average value) was

measured twice during the test using a stop watch and a 19-liter bucket. Well 28,

Page 52: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

51

approximately 122 meters north of Well 27, was used as an observation well during

the test. However, no drawdown was measured in this well during the period of

pumping.

A second aquifer test was conducted using Well 17. Test data were collected

on 10-10-90 for a pumping and recovery period of 215 minutes and 258 minutes,

respectively. The maximum drawdown was approximately 21 meters, and the water

level in the well recovered to within .07 meters of the initial water level. A specific

inquiry concerning the last period of pumping prior to the test was not made. The

depth to water and rate of pumping data were collected as in the first pumping test.

The pumping rate was measured ten times during the test and decreased from a

maximum of 0.32 L/sec (five minutes elapsed) to a minimum of 0.14 L/sec (202

minutes elapsed).

Data Analysis

Data from both tests were analyzed using a group of analytical solutions

including Theis (1935) (drawdown data), Jacob (1946) (drawdown and recovery data),

Streltsova (1988) (step-function approximation of flow rate), and Ramey (drawdown

and recovery data combined). (Note: Type curves by H.J. Ramey provided by S.P.

Neuman, 1990) Appendix II contains logarithmic drawdown curves for each test.

Each of the methods of analysis listed above was developed for confined

conditions and a constant aquifer thickness. A preliminary correction of the data for

each test was made to account for the assumed unconfined conditions of the aquifer

Page 53: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

52

at each site, and therefore, the change in saturated thickness with drawdown,

according to the following formula (Jacob, 1963):

s2sc s - —

2b(1)

where:

sc = corrected drawdown;

s = measured drawdown; and

b = saturated aquifer thickness prior to start of the test.

Because only limited details on the formation thicknesses were known for each site,

the saturated thickness of the aquifer for each test site was assumed to be the length

of well bore below the water level prior to pumping. Therefore, the aquifer

thicknesses for Well 27 and Well 17 were estimated as 101.9 m and 59.9 m,

respectively. Although the aquifer may be semi-confined due to the presence of a

weathered zone of bedrock underlying the alluvium, each analysis assumed that the

system was unconfined.

Because only two measurements of the pumping rate were made during the

first pumping test (Well 27), a single value of Q averaged for the two measurements

was used to calculate the transmissivity of the aquifer by the Theis and Jacob

methods. In addition to using an average value of Q for the second test (Well 17),

Page 54: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

53

an estimate of transmissivity was made by approximating the varying flow rate as a

step function. The average discharge rate for each time step of the Well 17-test is

listed in Appendix IL The calculated value of transmissivity ranged from 0.065

m2/day to 0.129 m 2/day for the Well 27-test and 0.073 m2/day to 0.186 m2/day for

the Well 17-test (Table 3). The estimates of transmissivity using drawdown data only

are in excellent agreement for the Well 27-test and are in good agreement for the

Well 17-test. For each test, the value of transmissivity calculated from the recovery

data was approximately one-half the value calculated using drawdown data only. The

recovery data could not be matched to the recovery portion of the family of curves

proposed by Ramey. The Ramey type curves, shown in Appendix II, are based on the

Theis solution and allow the simultaneous analysis of drawdown and recovery data.

Hence, because the recovery data depart considerably from the ideal response, the

transmissivity estimates using the drawdown data only are considered to most

accurately reflect the aquifer conditions.

The values of transmissivity for each site were close, which is consistent with

the fact that both wells were in the granodiorite. Although both wells were drilled

within approximately 15 meters of a dry streambed, the low transmissivity suggests

that the wells were completed predominantly in the bedrock underlying the alluvial

fill of the drainages. Reported pumping rates for wells in the study area west of the

mine did not exceed 0.08 Lisec. Discharges from the wells clustered north of the

mine averaged 0.54 L/sec. The reported maximum pumping rate in this area was

1.26 L/sec. Because drawdown data from the pumped well only were available for

Page 55: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

54

O'N

•nn ••••1

6 6

-J -Jcs,

00 h—•

6 6

Page 56: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

55

each test, storativity values cannot be calculated. Estimates of transmissivity for the

Tertiary Tinaja Peak Fanglomerate (approximately 29 km southeast of the SXML)

and Tertiary and Quaternary fanglomerates and associated sedimentary units

(approximately 9 km northeast of the SXML) range from 12.5 m2/day to 1242

m2/day, respectively (Davis, 1989; PAG, 1983).

San Xavier Mining Laboratory

Gravity Tests

Field tests to measure the in-situ saturated hydraulic conductivity (Ks) of the

Concha Limestone and the subsurface connection of selected holes were conducted

during this study. Values for Ks were determined from open-hole gravity tests in the

unsaturated zone. The gravity tests were chosen primarily to simulate the planned

injection test. An approximate Ks could be determined in the actual zone of

injection, the suitability of H14 as a monitoring well could be evaluated, and the

subsurface connection of the boreholes by fractures and thus the lateral spread of the

injected solution could be estimated by observing any flow of water between the

boreholes.

Summary of field data. Because some of the geophysical methods being tested

at the site require water-filled test holes, filling tests were conducted by Sternberg

et al. (1988) in boreholes H1, H2, H4, H5, and H6. In this study, both a constant-

head test and a falling head test were conducted on 1-21-90 in H4, the primary well

used for the injection of the saline solution. A summary of the data describing these

Page 57: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

56

tests is given in Table 4. For the tests conducted previously, water levels could be

maintained in the selected holes at depths ranging from 18.3 to 53.3 meters using

flow rates of up to 9.46 liters per second. The entire lengths of the boreholes were

open to the formation. H4 was subsequently lined with solid PVC and cemented in

place to a depth of 91.4 m. This borehole was then deepened to 128 m with a

slightly smaller borehole radius. Thus, the borehole is presently open to the

formation from a depth of 91.4 m to 128 m. For the tests conducted in this study,

water from one surface holding tank flowed by gravity into H4 for approximately 2.37

hours at a rate of approximately 2.3 liters per second. The flow rate was determined

by measuring the dimensions of the tank and monitoring repeatedly the drop in water

level in the tank from the same level over a one-minute period. The water level was

maintained at a constant height in the tank throughout the constant-head portion of

the test by inflow from a 37,850-liter water storage tank. The depth to water in the

borehole, measured using an electric sounder, was approximately 30.5 m at the 2.3

L/sec flow rate. The probes on the water-level meters were shielded with plastic to

prevent false readings from moisture on the casing or cascading water. After 2.37

hours of injection, the flow rate was increased to approximately 2.5 L/sec, the water

level in the well rose to the land surface, and the falling water level was measured

at 6.1-meter intervals over 21.37 minutes. The total volume injected was approxi-

mately 21,196 liters.

Limited tests were conducted on 2-3-90 in H14 and H15 to determine if

falling-head tests could be conducted in these boreholes using small injection volumes

Page 58: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

57

vo. 00 00 00 voco oo tr; <xi( 1/41 ":.'r O c:)

1/40 1/40 1/40 1/40 1/40 e"1"1' •as•

c•n cr; csi

tri WI C1/41 el r".6 esi ••,i• cr; cr;

en en

• tr, rv 4",ni (-4 c: cn 0 t-:

•.o '1" Q1/4

en en en Lin6

6 cci en cien - Lei wn

nn-n 0 v't ,r1 0 0eV (-4 r•i

C \

• ' 'Tr TO00 00 00 00 00 I".•

C). CD. C). Ci CD.

7.1 '7o• 7r; 70 "et-=XXIX=

Page 59: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

5858

on .....

2 - °6,,.., 0 C C C`4 0 0 0

(41.4 .:I -7 0 7 7CO —0 0 0a 0 C4 C/) V) CA

58

00C.11

0

CT

o

VD 4D vD VD 4D VD VD VD VD VD VD VD VD 4, VD.6 .6 g5 .6 .6 .6 .6 ,45 .6 .6 .6 .6 .6 .6 ,46rn en en en en rn en on on on on on en el en

O Cn oo r- VD vn ..tr en el nn -n C> CT 00 r-06 vi cr; ei vi cr; fl r: 4 06 (4• -- CD CD ch ch oo r- r- VD VD V1 4

CD -- cv en 4 vn qo r- oo ch ch c) cv rn6 .6 c4 oti 4 ci .6 (4 06 4 6 en o vi

(.1 en r,"1 ,r ,r 4.) VD nC) r- r- oo

CD

o0o0 .0CT-- ,..--..., 0>1

• Mt ,.5.,CO = . ::,' .••n.aw ... en0)... VI0V) 121

a) ..... -en...

CV .0 C a) C.; .0 a) > 00 CG6-cd1 22 ..o" 7:) gi.) 0 g cg

E>' ..' ..' .''

Page 60: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

59

only. Approximately 3,850 liters in 23 minutes and 3,800 liters in 15 minutes were

injected in H14 and H15, respectively. Water levels in both boreholes dropped too

quickly to conduct an accurate test. Due to these filling tests, the well and borehole

have filled partially with loose rock and drill cuttings washed downward with the

injection.

Borehole connectivity. The responses of well H14 and borehole H15 to the

injection of the water in H4 were monitored throughout the testing. The water level

in H14 rose 0.15 meters over the duration of the three-hour observation period for

this well. The connection was first noted six (6) minutes after the start of the

injection. The depth of the water level probe in the well was adjusted throughout

the test to maintain its height approximately 2.5 cm above the water surface.

Fluctuations in the ammeter response indicated some disturbance of the water

surface, possibly small waves or splashing. These fluctuations suggested that water

flowed into the well, at least in part, through fractures above the water surface. The

fluctuations continued throughout the observation period. The well is approximately

3.1 meters from H4 horizontally on the ground surface. No response was measured

in H15, which is approximately 7.5 meters horizontally from H4. This borehole was

dry before the start of the test and throughout the observation period of one hour

and 56 minutes. However, dripping or flow along the sides of the casing, if it oc-

curred, may have not registered on the water level meter.

While H15 was being drilled and cuttings were circulated out of the hole using

air, a response of air flow out of H4 and H14 was observed, with the stronger air

Page 61: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

60

flow coming from H14. No air response was observed in H11, H12, or H13

(Sternberg, personal communication, 1990).

Data analysis. The analytical solutions for the gravity tests were developed

by Glover (1953), Zangar (1953), and USBR (1977). Each solution is listed in

Appendix III. For the Glover solution, open hole describes testing conditions in

which water flows out of the side of the casing only (flow from the bottom of the

hole is not explicitly taken into account). A gravity test indicates that the injection

of the water was non-pressurized. The solution by Glover begins with steady-state

pressure flow out of a well from a point source. A line source of quadratic source

strength distribution is then created and approximated as a cylindrical source to

represent the borehole. Because the strength of the line source is assumed to

increase linearly with depth in the water-filled borehole, the physical model for flow

is parabolic in shape (Figure 11). This solution applies to deep water-table

conditions in which the bottom of the borehole is well above the water table. The

solution by Glover was modified by Zangar (1953) to account for solid casing lining

a portion of the test hole. The line source was integrated over the length of the

open hole only, instead of over the entire length of the borehole to the water level.

This modification simply makes the solutions more general and applicable to both

partly cased and open-hole test conditions. Zangar modified his solution further to

account for the decrease in flow rate as the borehole approaches the water table.

Under these conditions, called the shallow water table conditions, water will begin

to flow laterally as flow reaches the water table; thus, hydraulic gradients will

Page 62: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

wL)<LL

SATURATED DRY

61

Figure 11. Classical Free Surface Concept of Flow from a Borehole above a DeepWater Table (after Stephens, 1979)

Page 63: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

62

decrease. The conceptual model of Glover and, hence, Zangar assumes that the flow

region is homogeneous and isotropic, and confined within a free surface envelope,

inside of which the media is fully saturated and outside of which the media is dry.

The solution to analyze data from a falling-head test above the water table is

presented in USBR (1977), but no derivation is provided.

The borehole infiltration methods conducted in the unsaturated zone test only

a small area near the borehole. In addition, capillary forces and flow under partly

saturated conditions are neglected in each of the three analytical solutions used in

this analysis. The error in the analysis introduced by this approximation is

considered negligible because the media is fractured rock. No core has been

collected during the drilling at the mine, although a high degree of fracturing is

evident in the drifts and adit surrounding Shaft Six. Due to the construction of the

boreholes with solid and/or perforated casing, discrete intervals of the formation

could not be packed off and tested individually. The depth to the water table was

assumed to be 159.1 m, the depth measured in H14 on 4-7-90. The temperature of

the injected water was not measured. The water was stored in an above-ground tank

and may have warmed up considerably prior to injection. The value of Ks will be

overestimated by 12% to 23% if the temperature of the injected water was 5°C to

10°C higher than the ground-water temperature.

Results of the borehole tests are summarized in Table 5. The type of open-

hole gravity test described and used in this study provided an estimate of the Ks of

the unsaturated zone averaged over the entire length of test section. Rough estimates

Page 64: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

63

Table 5. Field Estimates of Saturated Hydraulic Conductivity Measured Abovethe Water Table at the San Xavier Mining Laboratory

A. Constant Head Test

Borehole Water Table HydraulicZone Conductivity

(m/day)

H1 1 Deep 0.782H2 1 Shallow 0.227H4 1 Deep 0.392H5 1 Deep 6.82H6 1 Shallow 0.413H6 1 Deep 0.484

H42 Shallow 0.038

B. Falling Head Test

Borehole

Water Table HydraulicZone Conductivity

(m/day)

H42 0.023

1 Test data from Sternberg et al. (1988)2 Test data collected in this study

Page 65: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

64

of Ks using data from Sternberg et al. (1988) range from 0.23 to 6.8 m/day. The

values of Ks determined from gravity tests conducted in this study range from 0.02

to 0.04 m/day. The entire range of values are reasonable estimates of Ks for a

limestone (Freeze et al., 1979). The lower estimates of Ks from tests conducted in

this study are consistent with the fact that the test interval was over 35 m deeper

than the intervals for the previously conducted tests. As concluded by Stephens

(1979), "As the height of water in the borehole increases, the size of the saturated

zone increases and becomes more elongate in the vertical direction." Thus, if gravity

tests are conducted in the future, maximizing the length of the water column in the

borehole will improve the estimate of Ks using Glover's solution.

Specific Capacity Test

A specific capacity test was conducted H16 in an effort to estimate the

transmissivity in the vicinity of this borehole. The transmissivity estimate from the

SXML and the granodiorite could then be compared to indicate the degree of

heterogeneity in the study area. Also, the suitability of H16 as a water well could be

evaluated directly by conducting this test.

Aquifer tests using pumps could not be performed in either well H14 or H16.

The drilled holes at the SXML are used primarily to support geophysical surveys

using borehole techniques. Installation of a pump in H14 would render the borehole

useless for this purpose and would possibly interfere with nearby surveys. Well H16

was drilled to serve as both a water production and a water-quality monitoring well.

Page 66: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

65

However, the well was upgradient of the testing area, and the driller estimated a low

yield from the well (under 0.31 liters per second) based on his observations during

the drilling.

Summary of field data. Specific capacity is determined by measuring the

cumulative drawdown in a well occurring in response to a constant rate of pumping;

the calculation is simply the ratio of the pumping rate to the drawdown. A total of

416.35 liters of water were bailed from H16 over approximately four (4) hours on 5-

13-90. The 20.8-liter bailer was filled to capacity each purging trip. Approximately

ten (10) minutes was required to complete one trip into and out of the borehole and

empty the bailer. The depth to water was measured in the well before and after the

test, and no change had occurred.

Data analysis. By using the Jacob approximation to the Theis equation, the

transmissivity of an aquifer can be approximated roughly by the specific capacity data

(Walton, 1962):

.183 log(2.25 Tt I rS)

where:

Q/s = specific capacity (m3/day/m);

Q = discharge of well (m3/day);

= drawdown in well (m);

= transmissivity (m2/day);

= time of pumping (days);

(2)

Page 67: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

66

rw = nominal radius of well (m); and

S = storativity.

The storativity of the aquifer commonly must be estimated to perform the calculation

for transmissivity.

To estimate the minimum specific capacity, and hence the minimum

transmissivity, of H16, a drawdown of .03 meters was assumed, the smallest change

which could be measured accurately using a depth sounder. A storativity of 0.01,

corresponding to an effective porosity of 1%, was assumed for the calculations. To

estimate the Ks from the transmissivity, the aquifer thickness was estimated as 61.9

meters based on the depth to the basement beneath the test site (Sternberg et al.,

1988).

The saturated hydraulic conductivity estimated from specific capacity data, 1.4

m/day, was nearly two orders of magnitude higher than the Ks measured above the

water table in this study (Table 6). The estimate is a reasonable value for a

limestone. Walton's solution is constrained by the assumptions which apply to the

Theis solution, such as confined aquifer conditions, full penetration of the well, and

a homogeneous and isotropic system. The departure of the system from the latter

assumption listed is difficult to evaluate based on the available hydrologic data for

the test site. However, the test conditions depart from the first two assumptions

listed and from others included in the Theis solution. Thus, the transmissivity

reported from this test is an estimate only.

Page 68: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

r

C•1

C.n

o

cNi

67

4-*

CO

0C1)

Page 69: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

68

The true production capacity of the well was not determined in this test

because the discharge rate did not produce any measurable drawdown in the well.

The test was constrained by the limited capacity of the bailer and the time required

to complete each purging trip. The maximum yield of the well was estimated by the

driller as 0.31 L/s.

A slug test was attempted in this borehole using a weighted section of PVC

pipe equivalent to a volume of approximately six liters. Early-time data could not

be recorded, and the test did not yield meaningful results. Further slug testing of the

boreholes at the SXML should include larger known volumes of water added to or

removed from the borehole and equipment capable of better resolution of depth-to-

water data.

Page 70: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

69

CHAFFER 5

WATER QUALITY

Sample Collection and Analysis

Study Area

In order to evaluate the changes in water chemistry with distance from the

SXML, 20 of the 34 wells located in the study area were sampled from 6-16-90

through 6-30-90. Each well, with its respective chemical analysis, is listed in Table

7, and the wells are shown with an asterisk on a geologic map of the area in Figure

3. (Note: The sample identification number listed in Table 7 corresponds to the well

number listed in Table 1). All samples were obtained from private wells for

domestic or irrigation use. The samples were collected according to procedures

outlined in Wood (1976) and Barcelona et al. (1985). Measurements conducted in

the field for each sample were pH, temperature, and specific electrical conductance

(SEC). Laboratory measurements performed by the author for each sample included

alkalinity and hardness, according to standard procedures (American Public Health

Association, 1985), and detection of selected anions (chloride, bromide, nitrate, and

sulfate) using ion chromatography. (Note: due to inadequate sample size, sample

2 was not included in the anion analysis). In addition, five (5) samples were analyzed

for selected cations (calcium, magnesium, sodium, and potassium), and eight (8)

samples were analyzed for selected anions (fluoride, chloride, bromide, nitrate, and

sulfate) by the Soil, Water, and Plant Analysis Laboratory of The University of

Arizona. The cation and anion analyses were performed using inductively coupled

Page 71: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

NIn

vt:ON Q00 'O `Zr

—000 C' 00 n:::),(:) 00

0 ("1 C) n.

rn lr; (.4 V: rfi •-• kr; ; t-- -4 nIS tr; r- r-: 4 7:cv - (.1 r. cr. m c-- (-4 ,.0- -1- - cv (41 .-. cz>•nI

••zrV.•cr-...... h..-.

N ',I& N .-. 00. •zr Le) •cr 0 0 0 N 0 kr-1

c•••; tr; kr; r,-; --. crn -: : -0 ci. rq `,6 ,4:3 r-: •i. 4 7:ira Tr vo (N — Tr c co 'zr (n Cl 'etCr C4 l'l 00 0

70

0Tr

vico Le)en ........ co

N co til cr, 0 a% 0 •cr 0,,,, ci

•'Q r- ..tr el,o- o N cn co

coco'III II

QrI —

,c;r- oo

v.)

= ...—.

0

r.--...'."2-n so"-C•3

•.-......c.)cua I" C.) ''''' °'Z' o ,.... 61

CNI =60• nI te)..--, .-.

-...., 74 LL, (NI T) )-...4....co' co< ...,

00 U›, "7" . 0 4.4 jr cp

i-.. .4 •-• ::: Z.' 8 at .--, u— = - - 0 --- . a ,..,- 15 = e — g.......— , — — •,-.... rn ,_.--. s..., V (1)(9 p 03 ''''' 1) (-70 rl.. 0 co "1 6 " U X — 'ci ° "' " —---=......E 2 c,j -- as a = ,6, -0 ,-,,,, co

. c.)._, wic ._.= ,,,,,n 03. al 8- 8 cz,, g:' —((s 00

•,.,0"." .6 (5 ...-- Ea 'I°E . 7) = o'-'..ô) l'''' 4) 2U<L) 01:3 -o 7) -C (L) E .;; 4 4) - 72 22 :72 c .a' .<.: = E LE: 0 0

7,, -0 - . - = z .... ...• c,„ ....., z:,- ..._., - 0 x „, .. • •- . 0 ••-•. z - - ,-. C.o (4 a. cti cn U Li. Z I:la = H cn a H U 0

Page 72: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

Tr

Le, Lf9 n1

C) vD CDI vi c4 I oti eis Cr csi n45 •16

rel a, re,-- 00 en r.4Lt1 ON n1 •.7 Tr

ce) CN

•1:

0 VI —, --- -...

Irl 0 r••• c) 1.-- r.. o rst-

o rel o

: re; rsi 06 -. re: -.: e5 esi -I: t--: rsi ; —•NO cetr.- a, E.. 'zr ‘0 NO cetLn re, Trï- .4 —•

Trv., 4co .., vat

r- r- -, at, cv o tel to to o

! ! r4 c4 Ti o 6 1::: v." '6c.i oci 0.6

" --. o rn rri c ON In oo nien cn 'I' n1 -.

-.

• '71- •zr co0

• vi C14 -^ 000 r-- Lf n1 00 ••••r .ar es1

.ar r•••

0

t) . u-3 U4) ----' o 1-,r......

- O - o,-.. • -, Ln 1:1 ,; i_ô -" -'

" • . .. . . 73 II, n1 -7,1 ....1gli U < :3 >,,-:-.1.c.-.) 0...._ x [.... ,...-, -- 4,- 0 - ..._ o

..........,,„.... .....,,............. •-;,,,:-. 12 e.-;" . 5 An u C E , ,al ett ,_, cv 'T Fl '''''' 0 a W rj —. ' ' 4) RS r , . ,.., --,

U EZ '''os-111.. n-• clUZilit."::-."= trin-•-• z `-' ,,, OI ,... CI a = Cp. , " 0 t : 0:1

e •v, z 0 .1:3 .t7 .c) Lcg (..) .77t. 0 0 •/:, :a' :7L3 LI7 2 E ',7) --0 2 t,.-. - -9 •-. = pp on .a. -L..: ,..9 E ti". P., .;),,

•— .... c GA L. crj — 1. cl, C .,., - •n - • ... • ... %., ••n•• •nn• i., I..

C..) OD • '. CII CI t,,,,, 0 0 I... ‘••• —,__. E ccs E o (..) 0'-' Eœc °,0 — 0 ^. — 7 4-* 0 - ....• ''-' .....• 1:1-. L1) al ,.., 0 0 .-. = -C — •-•n L.. al 0 ca. = 4.1 -0 •L-':

O 4 v) c6 co v) u tl., Z co X [—. vl o. (--. 0 C..)

71

Page 73: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

o.,rn4

,.o co ..... o0wl r-- al CA VI oo 0. co cr. q

: : ; : vi, -- -- -- 6 00 6 --r--- en r- 4 a, C•1 CI cki▪ —

ot,

72

---. oo 0.,Tr 0rsi oo r-: n0 • —Cron

r-----

(-Vr-

4 rg0 "zr tr$ 71' '-fs 00 oo r.1 rn000 t-: oi cy: : r.: cich rq CN -- r- CA (NI

,r on

_v.) r- cr, ‘0 o

' ' ' ' cn vi 4 ' -c ci '461 1 i a ..1. ,.,., ,c, 1 = oocn —.

,c)-- cv vn wn CI

" " v-1 cln ,,e) ' c c>rn r-s

----r- c) so::: CI i

v.7;oo4s.c,

r- cv ,rn •

—,:6

(Ni oo 0•nn•,

-4-„ oo,76.c.

0

oova

rg q

rn • 66CNI CN

-.0

.....

ô 01.- --...--.., ,o— „,o U

at.i •--- ,---- o s-_ .Q '—ocv C

76 ?d, ..•-n t:

3'...-.01 "rn

Z (..) < n—•1 ›I b- .9, 4". .." CI)

-3'' g'!.

C-, ---. ...-. CI c, =

,•1 t =-e7;

...—

.) -

.--

U 4-,i--1:-..,' 12:1 .... U 74 U X —r„ -e , -?.. u?-, 5 74'-' = ...- = 5- v) '-' --- '-- 4„ as .. cc 0. — 5 v) -o ... oa5 '7, , z 0 '-' .8 0 '-' cu u, U 7,E U 0 -0 2 .76..., cz,_ cu= a) c •,77. .m a) ..., 7:3 a) :C (1)..., c c Q., ,.., 73 1-. ,T. 'a' ,-.. = 00 oo .*°' •.-.... c= G LI. a 0.0o op . - cicc ,....2 0 c2E 7sES 5 U'. -- Ect48:1-c; cz 13 0 .0 -=...= = .t. o cz ..._.. .8 ,..., ct_ 0Uv)ct-dicAULT.ZaLo- = i- a = a) -=

ul._.-. •

C. E-, U (...)

Page 74: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

in tel ....... Tr en.0 et oo ch CA CD v7N. .. CD 0 CD VD CD CVC\i .16 (-: 06 .0 c‘i : v-; 77 od C5 Cr; CZ cNi .6 :r- CT ON 'I' ON vi

`•0= 0

tr,entr>

C.-en—,

(N

4en4

c0 _ ........ —r•- (N .0 — e0 ‘...: 'cl o (N c).

1 1 : od c4 r4 .... 4 N. c.i : 7I ,

• C\ .0 (NI on oo .1. en mrn N te) CNI u'l-.

-...cr.

.1.

--, 00 ...... -....., 0nO VD '40 c-. •0 `-'. VD O. WI C3

I ' CP: WI 04 -.: ln --; 'Tr c5 --

I i en r- 4 c co VD co en4 ..er — m (N— oo

r-en

en 4cs 4 _ CD N CDCT rn -- c.- CD ,-.: cl

I I .6, v6 ,46 6 -a --; VD er C5 CZ le; : 77

' ' cq oo cv c o- — 0 —.NVD --. ..zr te-, -er

-- cv

C

0 r, b•--.9

,--.."3-.. oC1-3 *--Z...,0

4) -c) u .-.• 0....,1.71; 0 ..-.. ,cv C ..... trl 1:1 p4c.,

00r—,_< ,-] >, ...J . 2 a. ) 'Es' i .1 : 8=

?...... >,..,. ,—on u t_. ....,„..... ..., 1 u —'.,..

— , ..—........_,,.., i ,--, .. ... .. ,...., y. , . ,

'''' ''''' '..... a o .5 ,, .

g ,-.-). 2 41-0 E 2 '----- 2 6 u li,.. 2, zr.2, ti. ci.),3 1,,, y, ii m '',-A• ,-, --3 .c,, rg--- z—E8v, u,D— a) (T,C)-7,U c..)-0 2 .75 s... .„E .;,' 5 = 0 -cl -a 0 7, <L> -, 'a' 47. c E a." 0 a= a) .7, .0 2 - 7: • i: -.-. • ." C *0 01:1 •-• • .-. 0 , ....... a 6. I-..... co ." 03 c t•-, -... ... 0 "c z 0 0 E -E E a.° <-80,-, E 031:0—

CO 10 4-' (..) —. ..c = .... ,_ as .--.. o Q. = eu -C ..:-:up0 2 53 e f=1 CO31 0 1-1: Z CO = i--, a I-- U U

7 3

Page 75: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

7 4

V')

01C,1

VI:-......

Nr (21 t"...1 00 ,d, ,c,..,,

r- 1/40 O.1 ,.; 6 c,

cor-:

0c;

1 'Tr en tin•cr

' Lel %0on

sx)cn

0o--.

CTcn•T

cn —4 r-.' 06 —: —:

n0o. 0 cl.' c.6 —: ON

-,ONesi

0

cm rn oo ' N go v-1 soen N N co

•er•.er

0 0 I--en N r- ez, kel .0. C?--..1/40 C!i c,,-„i r.: ...: ,,,..; e-

1 co oo rsi , F. enr -o-

Chcn

C:7N(NJ

Lel 1/40•zr N Q r--I 1/4tS

— r- H 4

.Tr O — tr

.)

N 6C.^1 •el•—1 ...I

C . . • - nO 0

h.. -......0

, • • • • - n :

. . . .U In (..)a.)

r:., 7:, 0 '—Oe, To' cp 1.....-.. 6....... = • -, In -0 ,6, — N.......,„ -,_ 74 U.

.a) (..) < a >, a (..). --- '''' it 5.?F-. -......— . — . . . • =

c' 73✓ e2-20011. 0 c0E:4-0730=- 12.— --- ,-.74

Ss ---cp '-'1) ,...,Z '-'4) ,4„, d _.,:_c.- 61 La Wu 7 07 ; i c o= iz, = ,... iz 0 0

51 .vic-11 fIL. LI) 1 728 17'3: 1 11 g --cl EC43 .8 .5 (..)° 1 ‘"-' ea 6:'13 121.i744 al 7: 1) 15 •2. 'B' .7d .1.7:, 2 at — ô ---. ‘'-' I) '....'U Vi a. aa v) U ir. Z co X E.

o. Xo. [1) U-4 Ltv)

Page 76: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

ctit...O)

• n•n1.-ta.

Q

CO

*QCO

O)

ôS••n11

7.)Q

1...a>O)

Gas r- co

c-4-to ,cr CO r4

en c.) enG

.—,..,G

a) a) a)-tc E -ico orst <•zr 2

re Yri CD rdi

5 ti>.. E >-.in 4i o•— 'ai..,:r m -0 .0ci o cei o

'CI 'a c4 a)..,

e >, "ai a>CO ..... .0 1.-,:r > o oco . — 1.., .ctlco .(.5 o. ,..,% o a>

-0 = Q.

"Z> c a E-0 mr: ri o a)O l'n C.) L:

2 (NI Cg i.:1.)

i.:I I CL) 0

0. ON ON a>2

G0c) ,.o eu

IN CA 2 a 2za. si 0.0) EQ a)c.)Q C

• E

-"' =...--Z: cl --, CO

71 —...ira ul c.) > 0

.,

cn 00 CO 7 2 3..4 ON 0.n "0 .0Y CCD NY ,Y• 0 X oa. o ae c U U1... oocu >, — el 7. . — rs' CNI

.--, .1.4 'ee .'S RI el .-• t'n—..• ....--.1 . ,.., . 00

LIA C U 0 -a-> T>O . — o o 4Q 7;-o -o

(.7 -. ft) -:Én o In o2CO 2 0",

75

00ri

. YO ..0 = ri0

V)-ccii

›. Z >-c o CO CO

eu a) Ec-00 c X X L.:a> o I.: o

Y 0n••

0.) tr

a) 0 f..> a> ti %..cu

a> .0 .0 2 ca E a—,.....—

01 c c >-. 2 0. *8.c o. o. .... ,...<0 • T

t) al =CO

• ••••> 1.40 rl

= =Cna -tc c

E "-c;•C.) . C.) t.5 'Cr) i-, ..-n

7 C 0 cl,u) E a> a>1." -0 E aL..

o X Ga )

Tt ic-E E c

< WI < <0 Q. F<T CNI cn Cr CC CD rn 00

ll

71

C) T

Page 77: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

76

plasma and ion chromatography, respectively. The five samples for cation analysis

(samples 5, 6, 8, 17, and 27) were selected to represent the major water chemistry of

the 3.2-kilometer radius study area. The results from the anion analysis of samples

8, 13, 19, 21, 22, 29, 30, and 33 provided a verification check for laboratory results

obtained by the author.

San Xavier Mining Laboratory

Ambient ground-water quality at the mine was established by sampling H14

on 5-11-90. The sample was collected according to procedures in the ADEQ Quality

Assurance Project Plan (1989). Field measurements made while collecting the

sample were pH, temperature, specific electrical conductance, and dissolved oxygen

(Table 8). In addition, titrations for alkalinity and hardness according to standard

procedures (American Public Health Association, 1985), and anion detection using

ion chromatography (Spectra-Physics SP-8700 and SP-4100 and Dionex CDM-2),

were performed in laboratory facilities at The University of Arizona. These laborato-

ry measurements were made primarily to check the methods and equipment used

when analyzing ground-water samples from wells in the study area with unknown

concentrations. The sample was submitted to a state-certified laboratory for a

standard chemical analysis (Table 9).

Page 78: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

77

Table 8. Summary of Field Activity and Equipment Used During Sampling ofH14, San Xavier Mining Laboratory, 5-11-90

Purge # 1 . pH2 Temperature Conductivity Dissolved(°C)3 mhos/cm)4 Oxygen

(mg/L)5

1 7.22 25.0 762.0 6.42 7.22 25.1 764.03 7.22 24.9 758.0 6.24 7.23 24.8 758.0 6.356 7.29 24.6 753.06 7.33 24.5 752.07 7.31 24.6 750.08 7.31 24.6 753.097 7.41 24.3 748.010 7.33 24.4 748.011 7.32 24.2 747.0128 7.31 24.3 749.013

1 Volume purged each trip = 1.4 gallons (approximate)volume in well bore = 2.94 gallons.

2 pH meter: Markson No. 95 Digital pH/MV/Temp MeterpH probe: Radiometer America.

3 Temperature meter: YSI Model 32 Conductance MeterTemperature probe: YSI Model 3220

4 Conductivity meter: YSI Model 32 Conductance MeterConductivity probe: YSI Model 3417

5 Dissolved oxygen meter: YSI Model 57 Oxygen MeterDissolved oxygen probe: YSI Model 5739

pH meter re-calibrated7 Water clouded with sediment8 Began sample collection; samples filtered using Nalgene 250-ml filter

apparatus with hand pump and 0.45 pm Millipore filters

Page 79: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

78

Table 9. Analytical Results from San Xavier Mining Laboratory Ground Water(sample collected 5-11-90)

Constituent

Analysis Results Maximum Contaminant(mg/L) 1 Level (mg/L)

Arsenic L.T. 0.001 0.05Barium L.T. 0.06 1.00Fluoride 0.56 1.4-2.0Lead L.T. 0.01 0.05Mercury L.T. 0.001 0.002Nitrate (N) 3.3 (< 5) 10.0Silver L.T. 0.001 0.05Alkalinity 216.0 (263.4)Calcium 79.0Chloride 20.0 (20.5)Copper 0.02Iron 0.63Magnesium 33.4Manganese L.T. 0.01pH 7.27Sodium 20.6Sulfate 150.0 (141.5)TDS 548.0Zinc 0.09Potassium 5.502Hardness 336.0 (344)Silica (Si02) 54.02Bromide (<5.0)

Charge balance error = 0.796 percent (excluding potassium)Analytical laboratory: Turner Laboratories

Field Measurements:

pH = 7.31 Temperature = 24.3°CD.0.= 6.2 mg/L Conductivity = 758 iimhos/cm at 25°C

Laboratory measurements conducted by author are in parentheses.2

Concentration averaged from analyses by Cyprus Sierrita Corporation,samples collected by author on 11-22-89, 12-5-89 and 3-15-90.

Page 80: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

7 9

Discussion

All samples from the study area but two were collected from wells completed

in the Ruby Star (Tertiary) Granodiorite. Wells 8 and 33 were in the Angelica

(Cretaceous) Arkose. For three of the four samples from the granodiorite and with

an analysis of major cations (5, 6, and 27), the water is sodium-bicarbonate rich. The

same broad classification was made by Davis (1989) for water sampled from the

granodiorite approximately 3.5 kilometers west of the test site. The fourth sample

(17) was calcium-bicarbonate rich. Waters from Well 8 in the arkose and from H14

in the limestone were calcium-bicarbonate rich. The quality of the water at the

SXML meets all Arizona water quality standards and all federal primary and

secondary drinking water standards, except iron. No other wells in the limestone

were sampled in this study.

Elevated concentrations of various anion constituents were found in the study

area. Sulfate levels exceeding the federal Recommended Concentration Limit (RCL)

of 250 mg/L were found at Wells 8 and 33 (arkose) and Well 14 (granodiorite). The

area surrounding the first two sites is periodically mined by the current landowner

for copper and other ores. Two additional mines, the Olivette and Hel Roc, were

operated previously less than 1/3 kilometer west and southwest of the property. The

oxidation of pyrite and other metal sulfides could be producing the elevated sulfate

levels in these waters (Hem, 1989). Water pumped from Well 14 is used for

irrigation purposes on the surrounding land (Romero, Personal Communication,

1990). The applied water will leach residual dissolved solids in the soil and root

Page 81: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

80

zones, which are virtually excluded from evapotranspiration uptake (Hem, 1989).

This process is believed to lead to the high chloride level of 232 mg/L and the

highest SEC and sulfate levels measured in the study area, 3,042 il mhos/cm and 994

mg/L, respectively. The original source of sulfur at this location is not immediately

apparent, but may be related to gypsiferous deposits within limestone formations in

the area. The chloride level of 266 mg/L measured at Well 23 is the highest in the

study area. The well is in a retired agricultural field, and past irrigation may explain

this anomalous value. The high levels of nitrate in the study area, at Wells 8, 14, 23,

31, 32, and 33, ranging from 18.1 to 53.7 mg/L may be related to the application of

nitrate salts as fertilizer or possibly organic nitrogen contamination from septic tanks

or manure. The RCL for nitrate is 45 mg/L.

The ratio by weight of the concentration of chloride to that of bromide can

be used as an indicator of the origin of ground water. The 15 samples for which

bromide concentrations were detected represent water from the granodiorite aquifer.

In 13 of these samples, the Cl:Br ratio varied from 77:1 to 133:1 and averaged

approximately 101:1. These values are typical of waters originating from unweath-

ered granitic material (Koglin, 1984). Samples 29 and 14 contained ratio values of

40:1 and 46:1, respectively. The wells from which these two samples were collected

are less than 1/2 km apart. Ratio values in this range commonly indicate the

presence of an evaporite bed, but geological evidence does not support this

explanation. Although the chemical analysis of bromide was conducted using ion

chromatography, a reliable method of analysis, the detection of this ion is difficult

Page 82: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

81

at low concentrations (<5 mg/L). Thus, the two low values of the ratio may indicate

instrument error rather than a geochemical process.

However, the most striking anomaly in the study area is the difference in the

water chemistry of the SXML and the surrounding wells which were sampled.

Chloride, a conservative constituent in ground-water systems, is lowest in concentra-

tion (20 mg/L) at the SXML. The concentration at most other sites (all but two)

was at least twice this level and averaged 72.8 mg/L directly upgradient of the mine.

The SEC and bicarbonate levels (758 p mhos/cm and 216 mg/L) measured from

water in H14 were at least 10% and 42% lower, respectively, than the levels

measured at any of the other 20 sample sites in the study area. Finally, the

concentration of sulfate at the SXML (150 mg/L) was at least 36% higher than the

level at any upgradient well. At a depth of approximately 159 meters, the water level

at the mine is over 117 meters deeper than that in any upgradient well which was

sampled. Hence, with distance along the flow path and with a dramatic increase in

the depth to water, the ground-water system becomes less concentrated chemically.

In many systems, the opposite is true, and the water chemistry becomes more

concentrated with depth and age.

This geochemical contrast suggests very little mixing between waters in the

Concha Limestone and the Ruby Star Granodiorite. The limestone may receive little

or no underflow from the granodiorite due to the continuation of flow along a deeper

aquifer system or to the San Xavier Thrust Fault acting as a barrier to flow. In fact,

both of these processes may be occurring. Evidence to support the hypothesis of the

Page 83: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

82

flow barrier, based on water-level data, was presented in Chapter 3. The role of

ground-water removal in the development of the water chemistry difference is

discussed later also. Water quality data from the granodiorite downgradient of the

thrust fault might indicate further isolation of the aquifer or mixing with the overlying

system(s). Unfortunately, these data are not currently available.

Page 84: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

83

CHAFFER 6

WATER BUDGET

Prediction of future water-level response to pumping and a check of the

estimated transmissivity values for the study area can be made using a hydrologic

budget and flow net construction. Although numerical models of flow systems are

an advanced and proven technique in the field of hydrology, flow nets and hydrologic

budgets can yield important information relatively quickly and in areas of sparse

data.

Recharge Estimate

All relevant water balance calculations are presented in Table 10. Comparing

the historic and present water-level surfaces shown in Figures 9 and 10, water levels

in the northeast portion of the study area have declined an average of 74 meters

(Figure 12). Maximum decreases of approximately 225 and 75 meters occurred at

the ASARCO mine area and the SXML, respectively. Volumetrically, the decrease

constitutes the removal of over 9 million cubic meters of ground water from storage.

The principle stress on the system has been mine dewatering; from approximately

1959 to the present, ASARCO has been operating the Pima and Mission open-pit

mines (Journeay, 1959), and extensive dewatering of the San Xavier Mine took place

reportedly from 1948 to 1952 and 1955 to 1959 (Duff et al., 1950; Sternberg et al.,

1988). By attributing the total residual volume of pumpage minus ground-water

removal to ground-water recharge, an average annual rate of recharge of 3 mm per

Page 85: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

84

Table 10. Summary of Water Balance Calculations

A. Change from Historic to Present Flow System

1. Total area (Figure 10) = 25,000,000 m2

Area outside capture of SXML (Figure 13) = 20,540,000 m2

2. Ground water removed (m3)

= total volume change * porosity * specific retention usingFigure 13.

= (1,860,000,000 m3) (.01) (.50)

= 9,300,000 m3

3. Estimated mine pumpage:

ASARCO mine area (1959-1990):

= 1,420,000 m 3 (PAG, 1983)

San Xavier Mine (1948-1952; 1955-1959):

= 11.060.000m3 (Duff et al., 1950; Sternberg et al., 1988)

Total = 12,480,000 m 3

4. Residual = total pumpage - ground water removed:

= 3,180,000 m3

5. Estimated annual ground-water recharge:

= Residual/Area/42 years of mine pumpage

= 3 mm per year

Total annual recharge outside capture of SXML = 61,620 m 3/yr

B. Steady-State Flow Through Historic System

Using flow net analysis (Figure 13):

Page 86: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

Table 10. (Continued)

Discharge = (T)(dH)(# streamtubes)

1. Pumpage from SXML

= (.142 m2/day(15m)(6)(365)

2. Discharge through system:

= (1.42 m2/day)(15m)(7)(365)(2.35 m2/day)(15m)(7)(365)(87.8 m2/day)(15m)(7)(365)

C. Current Pumping Stress on System

ASARCO Open-Pit Mine Dewatering:

= 45,761 m3/yr (PAG, 1983)

85

= 4665 m3/yr

= 54,421 m 3/yr= 90,064 m 3/yr= 3,364,935 m3/yr

Page 87: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

-

,

-

-

-

-

-

-

,.,

-15

2

9 I. kn

DECREASE IN WATER LEVEL ELEVATIONSSAN XAVIER STUDY AREA

Explanation,D Well with ID (Historic Surface) is Water Level Difference P Pima Mine`n Contour (n)

+ Weil with ID (Present Surface) L., H low, high M Mission Mine

86

Figure 12. Change in Water Level from the Historic to the Present Surface inNortheast Portion of Study Area

Page 88: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

87

year was estimated. Recharge in the piedmont of the Tucson Basin has been

estimated at 5.6 mm/yr (Thorne, 1983). The water level in borehole H14 on the test

site increased approximately three (3) meters during observations from 1-21-90 to 12-

19-90, indicating the aquifer may be recharging at a greater rate than estimated.

Construction of a flow net for the historic water-level system reveals that some

pumpage probably occurred to produce the convergence of flow lines at the SXML

(Figure 13). The flow net reveals also a contrast of transmissivity (narrowing of the

stream tubes) with distance along the flow path. This corresponds to the approxi-

mate order of magnitude difference in transmissivity reported in this study for the

granodiorite and limestone aquifers. Some additional recharge may be occurring due

to an increase in the permeability of the limestone. By excluding the volume

removed by pumping at the SXML, annual discharge through the system calculated

using the flow net (72,242 m3/day) closely approximates the estimated annual

recharge outside of the zone of capture of the SXML (61,620 m 3/year).

Future Water-Level Response to Pumping

Reasonable estimates of past pumping, historic water levels, and aquifer

discharge reveal that the principle stress for lowering of the water-level surface was

pumping at the SXML. Pumping rates at the ASARCO mines may be or were

higher than estimated as the cone of depression near the mines is only partially

represented on the mapped area. The current estimated rate of pumping from the

mines (45,761 m3/year) is lower than the estimated recharge of approximately three-

Page 89: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

M Mission Mine--- 96 Water Level SurfaceContour (m)

D Well with ID (Historic Surface)

9 I kri

Explanation

PREVIOUS WATER LEVEL ELEVATIONSSAN XAVIER STUDY AREA

88

Figure 13. Homogeneous Isotropic Flow Net for Historic Water Level Surface

Page 90: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

89

fourths of the reduced study area (61,620 m 3/year). Therefore, based on the

estimates presented, if pumping at the ASARCO mines continued at the estimated

rate, future water-level declines in the area of the test site are not expected.

The aquifer at the SXML has been dewatered considerably. Hence, recharge

may be effectively diluting the ground-water system due to the decrease in the

volume of water stored in the aquifer. This process may contribute to the

development of a less-concentrated chemical system at the SXML relative to the

upgradient aquifer, as discussed in Chapter 5. In addition, flow between the two

systems to counteract this effect appears to be restricted by the low transmissivity of

the granodiorite, the presence of the San Xavier Thrust Fault, and underflow from

the granodiorite possibly remaining within a deeper ,aquifer system.

Page 91: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

90

CHAFFER 7

INJECTION TEST AND ENVIRONMENTAL PERMITTING PROCESS

Regulatory Oversight

An Aquifer Protection Permit (APP) was applied for and received prior to

the start of the injection test in support of the ongoing testing of geophysical survey

techniques at the SXML,. The permit was issued by the Arizona Department of

Environmental Quality (ADEQ) to protect the ground water of the state. No other

government regulatory agencies, federal, state, or local, were involved in the

permitting. In addition, the drilling and registration of wells on the SXML was

regulated and approved by the Arizona Department of Water Resources (ADWR).

The entire permitting process required approximately ten months to complete.

Efforts to obtain the permit were guided by formal meetings with the ADEQ, rules

and regulations of the state, and extensive personal communication with individual

staff members of the ADEQ and The University of Arizona. The legal basis for

protection of aquifers of the state by the permitting process includes the Arizona

Revised Statutes, Title 49, Sections 201, 203, 221, 223, 224, and 241-251, and Articles

in the Arizona Administrative Code, Title 18, Chapters 9 and 11.

The purpose of the rules is to regulate "virtually all discharging facilities with

the potential to contaminate groundwater" (Miller, 1988). For the purposes of the

injection test, the SXML was categorized as "Other Discharging Facility", and was

subject to the provisions of the APP program (Skip Helleruud, ADEQ, personal

communication, 1989). Because the SXML is owned by The University of Arizona,

Page 92: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

91

a state agency, the permit application fee of $1,800.00 was waived (Ron Miller,

ADEQ, personal communication, 1990). State authority for protection of its ground

water stems from the Arizona Environmental Quality Act (EQA) enacted in August

1986, which "specifies that all water-bearing units in Arizona meeting the definition

of an aquifer are to be classified for drinking water protected use" (Millenaker,

1989). The SXML is within the Tucson Active Management Area, an aquifer system

with one of the highest levels of ground-water management in the state. Further

assistance by the ADEQ was provided by the Project Officer assigned to review the

application and a staff hydrologist in Tucson available for technical support. The

final APP was issued on 7-16-90 (Appendix IV).

The compliance activities for the permit began with the start of the injection

test. However, extensive work and planning was involved to complete the permit

application and subsequent revisions, including detailed information on the proposed

testing, wells on and surrounding the facility that are affected by the testing, water

quality, and plans for environmental monitoring. Further details concerning contin-

gency plans and closure and post-closure of the site are not discussed here but can

be found in Appendix IV.

Injection Test

Water for the injection test was stored in two tanks holding a total of 49,205

liters (Figure 14). Water from these tanks was transferred by gravity through 5-cm

PVC pipe into two (2) open-topped tanks holding 2,150 and 2,195 liters each.

Page 93: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

92

taz

Page 94: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

93

Granulated salt was added to the water in these holding tanks and mixed using a

portable motorized propeller. The mixed water was then gravity-fed by a flexible

hose into boreholes H4 and/or H15. The flow rate when injecting into H4 only

varied from 0.44 to 0.25 liters per second. A total of 0.63 L/sec were injected when

both boreholes were used, with approximately 0.31 L/sec flowing into each well

(Daryl Tweeton, USBM, personal communication, 1990). The injection of saline

solution took place over eight days, from 7-17-90 through 7-24-90. Potable water was

injected on 7-26-90 into both H4 and H15 at equivalent flow rates to flush any

residual salt from the boreholes. The total injection volumes were 110,653.7 liters

of saline solution and 1,892.5 liters of potable water. The maximum depth of

injection was 128 m and 129.8 m for H4 and H15, respectively. H15 was drilled to

152.4 m but had filled partially; this revised depth was measured on 3-26-90.

The total injection volume of saline solution allowed in the permit was

236,562.5 liters. By approximating as a cube the subsurface volume of rock saturated

by the saline solution, an initial injection volume of 189,250 liters was chosen to

target a block of rock approximately 26 meters on a side (assuming a porosity of one

percent). Because the project was research oriented, an increase of 25 percent to

236,562.5 liters was requested and approved by the ADEQ.

The maximum concentration of salt requested by us and allowed in the permit

was 24 grams per liter of sodium chloride, corresponding to a resistivity of 0.26 ohm-

meters. The apparent resistivity of the rock at the mine before any injection was

approximately 50 ohm-m (Sternberg et al., 1988). The objective of the injection was

Page 95: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

9 4

to decrease the resistivity of the formation by at least one half. The resistivity of the

rock within the unsaturated zone will decrease simply with an increase in the degree

of water saturation, as shown by the following equation (Keller et al., 1966):

where:

Sw- ni (3)

p = bulk resistivity of a partially saturated rock

P 100 = resistivity of the same rock when completely saturated with the same

electrolyte

S, = fraction of the total pore volume filled with electrolyte

-n 1 = parameter determined experimentally

A laboratory study on a fractured tuff by Thornburg (1990) showed that the resistivity

of a core sample increased by 25 to 50 percent as water saturation decreased from

1.0 to 0.5. However, accurate estimates of the decrease in resistivity of the formation

with the change in pore water resistivity and moisture content due to the injection

using Equation (3) or a relationship such as Archie's Law would require detailed

field and laboratory work. The change in SEC of the ground water measured during

and after injection is discussed in the following section.

All water wells within 0.8 km of the property boundary of the SXML were

identified as required for the permit process. Only Wells 9, 10 and 11 were within

the boundary. Well 9 is an abandoned exploration hole. Wells 10 and 11 are water

Page 96: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

95

wells, but both are not presently in use. All three wells were upgradient of the mine.

In addition, only two permanent residences are currently within the 0.8-km boundary.

Water Quality Monitoring

Field Sampling

To monitor and investigate any adverse impacts on the quality of the ground

water due to the injection, both a field sampling program and a computer model

were used in this study. As discussed in Chapter 5, ambient ground-water quality

prior to the injection was established by sampling H14 on 5-11-90. This borehole,

approximately 3 m from the injection area, was monitored during the injection test

for the arrival of the saline solution and for the mobilization of any hazardous

constituents. The selected hazardous constituents for this project as specified in the

APP were nitrate, sulfate, arsenic, lead, mercury, and silver. This selection was based

on general health considerations and the common presence of the metals in mining

areas. One sample was collected each day from 7-17-90 through 7-25-90 by bailing

the well. Selected samples were then submitted for laboratory analysis of the

hazardous constituents according to the alert levels for SEC and chloride listed in the

APP. The laboratory results from this sampling showed that no alert levels listed in

the APP for the hazardous constituents were exceeded. Levels for nitrate, lead, and

mercury were at or below ambient levels for each sampling round. Sulfate increased

approximately 17 percent above background (from approximately 150 ppm to 175

Page 97: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

96

ppm) for each sampling round, but remained almost one-half its alert level. Both

silver and arsenic levels appeared to increase slightly during the first two sample

analyses, but then returned to background (i.e., below detection limits) for the third

and final round of analyses.

The average SEC measured immediately after injection for six of the nine

days of injection was 2520 p mhos/cm, indicating a TDS of the ground water of about

1814 mg/L. The SEC had decreased over one-half to 964 A mhos/cm, equivalent to

a TDS of about 694 mg/L, one day after injection had stopped. This increase in

TDS over the background level of less than 27% indicated that the injection solution

mixed rapidly with the ground water. A complete report including all monitoring

results, details of each sampling round, and daily injection volumes was submitted to

the ADEQ on 8-7-90 (Bohannon, 1990).

Computer Simulation of Geochemical System

To verify the results of the field monitoring, the chemical equilibrium

approach was used to model by computer the chemistry of the undisturbed ground-

water system and any changes or mass transfer in the system with the injection of the

saline solution. The use of chemical reaction models to simulate ground-water

systems was developed largely by the USGS as part of a major research program

(Plummer et al., 1983). Other modeling programs have been developed by the

Environmental Protection Agency and national laboratories such as Lawrence

Livermore Laboratory. Geochemical modeling, dating back to the early 1960s, is not

Page 98: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

97

widely used in the field of hydrology but may be used in support of permitted

activities at the state and federal levels.

Input to model. The injection of the saline solution was simulated in the

USGS model PHREEQE (Parkhurst et al., 1980) as the mixing of two waters. Total

analytical concentrations of selected constituents for the injection solution (prior to

the addition of salt) were determined by American Analytical Laboratories (AAL)

(Tables 11 and 12). The water for the injection solution was purchased from Las

Quintas Serenas Water Company, a local supplier, and hauled by truck to the mine.

The company supplies water from two wells in the fill deposits of the Santa Cruz

River basin, Well A and Well B. (Note: The chemical analyses for Wells A and B

were conducted for the water company in 1987 for regulatory reporting purposes)

The charge balance for the mine ground-water analysis was extremely accurate

(error of less than one percent) (Table 9). However, the analyses for the water from

the supply wells are very poorly balanced by charge (errors of 4.6 percent and 8.2

percent for Wells A and B, respectively). Thus, the analyses conducted by AAL are

suspect; either the analytical values reported for one or more constituents are

inaccurate, or the analyses did not include all of the charged species in the solutions.

The quality of the analyses are considered adequate for the purposes of the modeling

exercise. The concentration of potassium was not reported in any of the three

analyses by the certified laboratories. By including this constituent, the charge

balance error for Wells A and B could be reduced by approximately one to two

percent. However, the error for Well H14 would increase by approximately this

Page 99: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

Table 11. Analytical Results for Supply Well A (sample collected on 3-9-87)

Constituent

Analysis Results Maximum Contaminant(mg/L) Level (mg/L)

Arsenic L.T.1 0.005 0.05

Barium 0.04 1.00

Fluoride 0.52 1.4-2.0

Lead L.T. 0.02 0.05

Mercury L.T. 0.001 0.002

Nitrate (N) 1.25 10.0

Silver L.T. 0.002 0.05

Alkalinity 137.0

Calcium 58.4

Chloride 24.8

Copper 0.025

Iron 0.07

Magnesium 6.47

Manganese 0.004

pH 7.0

Sodium 32.9

Sulfate 111.0

TDS 425.0

Zinc 0.02

Charge balance error = -4.69%

Analytical laboratory: American Analytical Laboratories

1 L.T. = less than

98

Page 100: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

Table 12. Analytical Results for Supply Well B (sample collected on 3-9-87)

Constituent

Analysis Results Maximum Contaminant(mg/L) Level (mg/L)

Arsenic L.T.1 0.005 0.05

Barium 0.024 1.00

Fluoride 0.64 1.4-2.0

Lead L.T. 0.02 0.05

Mercury L.T. 0.001 0.002

Nitrate(N) 0.70 10.0

Silver L.T. 0.002 0.05

Alkalinity 160.0

Calcium 25.9

Chloride 5.8

Copper 0.021

Iron 0.03

Magnesium 4.15

Manganese L.T. 0.004

pH 7.4

Sodium 24.0

Sulfate 13.0

TDS 249.0

Zinc 0.03

Charge balance error = -8.22%

Analytical laboratory: American Analytical Laboratories

L.T. = less than

99

Page 101: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

100

same amount. Representative values for potassium, based on previous sampling and

published data, were input to the model as part of this theoretical exercise.

Based on the Aquifer Protection Permit granted by the Arizona Department

of Environmental Quality for the injection test, the hazardous constituents which

must be monitored for possible mobilization are nitrate, sulfate, arsenic, lead,

mercury, and silver. To include the possibility of mobilization of the metals arsenic,

lead, and silver, concentration values at the detection limit were input to PHREEQE

for the composition of the ground water. Mercury was not included in the input

because no minerals containing mercury have been identified in the mine area (Table

13). Although arsenic-bearing minerals also have not been identified in the area,

arsenopyrite commonly occurs in association with chalcopyrite. Lead was the second

by tonnage of the two principal ores produced from the mine (zinc was the first), and

significant quantities of silver were recovered also (Sternberg et al., 1988). The field

pH, temperature, and dissolved oxygen concentration measured as the ground-water

sample was collected on 5-11-90 were used for input to the model.

Granulated salt with an average composition of 99.89 percent sodium chloride

was added to the water from the supply wells above ground at a calculated

concentration of 22.6 grams per liter. The final chemical composition of the injection

solution, averaged for supply wells A and B, was corrected based on this concentra-

tion, considering sodium chloride as the only salt added (Table 14). The conductivity

of the solution was approximately 49 times the conductivity of the ground water. The

parameters of pH and temperature for the injection solution were measured in the

Page 102: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

101

Table 13. Summary of Minerals Identified in SXML Area (after Mayuga, 1942)

Copper Minerals Manganese Mineral

I. Sulphides:

Pyrolusite

TennantiteCovelliteChalcopyrite Molybdenum MineralBorniteChalcocite MolybdeniteTetrahedrite

II. Non-Sulphides Gangue and Non-Metallic Minerals

Azurite AlbiteChalcanthite AndesineChrysocolla ApatiteMalachite Aragonite

BiotiteCalcite

Zinc Minerals ChloriteDolomite

Sphalerite EpidoteAurichalcite GarnetHemimorphite GypsumSmithsonite Hedenbergite

HornblendeKaolin

Lead Minerals LabradoriteMicrocline

Galena MuscoviteAnglesite OlivineCerrussite OrthoclasePlumbojarosite Quartz

TremoliteWollastonite

Iron Minerals ZirconZoisite

JarositeHematiteLimoniteMagnetiteMarcasitePyriteSiderite

Page 103: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

Table 14. Estimated Chemical Analysis of Injection Solution l

Constituent

Analysis Results Maximum Contaminant(mg/L) Level (mg/L)

Arsenic LT. 0.005 0.05Barium 0.032 1.00Fluoride 0.58 1.4-2.0Lead L.T. 0.02 0.05Mercury L.T. 0.001 0.002Nitrate (N) 0.97 10.0Silver L.T. 0.002 0.05Alkalinity 148.5Calcium 42.2Chloride 13725.3Copper 0.023Iron 0.05Magnesium 5.31Manganese 0.004pH --Sodium 8918.4Sulfate 62.0TDS 261102Zinc 0.025Potassium 3 • 03

Field Measurements:

pH = 7.60D.0.= 7.8 mg/L (estimated)Temperature = 30.9°CConductivity = 37,300 A mhos/cm at 25°C

1 Concentrations averaged for supply wells A and B

2 Estimated based on field conductivity

3 Assumed value, representative of Tucson Basin ground water

102

Page 104: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

103

field during the testing and used as input to PHREEQE. Furthermore, the injection

solution was assumed to be saturated with dissolved oxygen due to the mechanical

mixing of the salt with the water by an electrical stirrer in open-topped tanks. The

injection solution was simulated in PHREEQE by specifying the concentrations of

arsenic, lead, and silver at the detection limit.

The amount of mixing of the two solutions was based on the volume fraction

of the injection water to the water in the portion of the aquifer owned by The

University of Arizona. The total injection volume allowed by the permit was

236,562.5 liters. The volume of water in the aquifer downgradient of the injection

wells and extending to the boundary of the property of the UA is approximately 4.20

E+ 07 liters based on an assumed porosity of one percent. The direction of flow for

this calculation was approximated as N90°E, based on the water-level surface shown

in Figure 9. Hence, the model input specified that the injection solution was mixed

with the ground water in one step at a fraction of 0.0056.

Results. The distribution of aqueous species and mineral equilibria of the

ground water were determined in the initial simulation by PHREEQE. Based on this

output, it was concluded that the mineral phases calcite, jarosite, and magnesite were

near or at equilibrium with the ground water. In the second simulation, no mineral

equilibria were specified as the ground water and injection solution were mixed. The

final simulation equilibrated the mixed system with calcite, jarosite, and magnesite.

The computed results from Simulations 2 and 3 predict changes in the ground-water

system including the final composition of the ground water and mineral precipitation

Page 105: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

104

and dissolution (Table 15). The complete output files for each of the simulations are

included in Appendix V. With no equilibrium constraints placed on the system

(Simulation 2), the predicted final water chemistry included an increase in the

bicarbonate concentration of approximately nine (9) percent. In Simulation 3,

dissolution of magnesite increased the magnesium concentration in the ground water

by nearly a factor of two. The concentration of iron decreased by over an order of

magnitude due to the precipitation of jarosite, but the levels of sulfate and potassium

do not appear to be significantly affected. The calcium concentration decreased by

more than one-half with precipitation of calcite, and the magnesium concentration

increased by nearly a factor of two with the dissolution of magnesite. Although the

proportion of magnesium to calcium is rather high after the changes in the system,

dolomite rarely precipitates in ground-water systems (Hem, 1989). Therefore, the

saturation index of 0.49 given by PHREEQE for dolomite is not considered to be a

clear indication that this mineral is indeed precipitating. In addition, although the

masses of calcite lost and magnesite gained by the system are nearly equivalent, the

bicarbonate level increased slightly because the molecular mass of magnesium is less

than the molecular mass of calcium.

The aqueous concentrations of nitrate, sulfate, silver, lead, and arsenic in both

simulations were essentially unchanged from their initial concentrations in the ground

water. Recall that the concentration values for these metals were input at their

detection limit and thus represent maximum values only. In both Simulations 2 and

3, levels of sodium and chloride increased by over 200 percent and nearly 400

Page 106: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

105

Table 15. Summary of Predicted Changes in Ground-Water System as Computedby PHREEQE

Mineral Mass Transfer (grams)(Simulation 3)

Calcite -1.05 E-03 1

Jarosite -3.54 E-06Magnesite + 1.22 E-03 2

Aqueous Concentration (mg/L)

Constituent Undisturbed Simulation SimulationGround Water 2 3

Arsenic .001 .001 .001Barium .06 .06 .06Fluoride .56 .56 .56Lead .01 .01 .01Nitrate (N) 3.3 3.3 3.3Silver .001 .001 .001Bicarbonate 216.0 236.0 246.0Calcium 79.0 78.8 36.9Chloride 20.0 97.0 97.0Copper .02 .02 .02Iron .63 .63 .034Magnesium 33.4 33.3 62.9Manganese .01 .01 .01Sodium 20.6 70.6 70.5Sulfate 150.0 149.0 149.0Zinc .09 .09 .09Potassium 6.0 5.99 5.99

1 Mineral precipitation

2 Mineral dissolution

Page 107: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

106

percent, respectively, with the injection of the salt solution. In both simulations, the

concentrations of the remaining ions remained essentially unchanged from the

original ground-water system.

Changes in the ground-water system predicted by PHREEQE due to the

injection were the result of the elevated ionic strength of the injection solution. With

the addition of sodium chloride to the water from the supply wells, the ionic strength

of the solution increased almost two orders of magnitude (Figure 15). The activities,

or "effective concentrations", of the dissolved constituents are directly proportional

to the activity coefficients, as shown by the following equation (Hem, 1989):

where:

a = activity of ionic species i;

C i = concentration of i, molal;

y = activity coefficient.

Therefore, some mineral dissolution could occur theoretically with a decrease in the

ion activities and the re-establishment of chemical equilibrium.

Based on the results of the model, the future use of the aquifer does not

appear to be threatened by the injection of 236,562.5 liters of saline solution. The

predicted mass transfer includes precipitation of calcite and jarosite and dissolution

of magnesite with equilibrium constraints placed on the system. Aqueous concentra-

Page 108: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

L) 6-:. s... C.)= 0 C.) 0•0 *-C:0 • n-. c.-C: c"4 Cts.0 P)C r•

-0 ..r•O P a w-iE '..= c.J cE

cnu 00

O . 7.: L,4 '7o cnL.) 0 ' 74L• — 0 4—o a -0 ;-to L.) %-. CLC CO 0O 0 'I'd ...o>".

..,-; CCd 0

- 3

- CO6,-1:4 :-= C r-

0 • r:e-• 7:,0 0.-sa+.0 I:4 1-. p

C . C0...) .; 1t... Immi 0,-ez.

o 2 No-,o 7v)o _ v.., 74

cn= C 71_cn

0a.)

c C,-, N> = ...-.; o

2 P-E' S' r 7. —C) 0 7) L .L)

-

• .= up 'C)c—ou 4 5•- ..._••c) c..) 75.._ z c.) c...... •._, c,.- ••.= c --> • - -r,

.472. a oL) o 0 ..-

- >

..I-.

107

0

t re)

1._C.)+

- +_ cv

+NI

„o

I 1-

( \ 1 ro0 0

+O0 0 •cn-x-- ‘--1 U (/) -Z I

\

1-

!-c c

0 0'47- -47..0a.) = -

ou)...,... ---C

143 0—.2 co5 c

--,

10 00= C.)

re) X 0 C) —0c.)cs., 4 .--.,-.-_—2(9i .

, •0

/.1

—i c 5.- —

,

2 = 4°2x 2 0ux.9

_

1 1 I 1 I I I

Lno

0

o o o

S l.1 8 101100D Al lA pV

Page 109: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

108

tions of nitrate, sulfate, arsenic, lead, or silver should not be affected by the injection,

with final concentrations well below maximum contaminant levels. No mercury-

bearing minerals have been identified in the area, and concentration levels were

below the detection limit in both the injection and ground water. The computed

results by PHREEQE are estimations only. The system has been modeled based on

very limited analytical data, and validation of the model with downgradient water

chemistry cannot performed at this time.

Model selection. PHREEQE was selected for this project based on its ability

to simulate forward modeling and the validity of its equations for the system being

modeled. Forward modeling allows the prediction of water chemistry based on an

initial condition and an assumed reaction. The initial condition for this exercise was

the ambient quality of the ground water at the mine. The assumed reaction was the

mixing of the injection solution with the ground water. Inverse geochemical

modeling requires chemical and other hydrologic data at initial and final points in

the ground-water system. These models are used to define reactions that are

consistent with the data.

Only one monitoring well approximately 3 m from the injection area was

available for sampling. Thus, analytical data from a downgradient location within the

limestone aquifer are not available, and flow path calculations using an inverse

model could not be performed. The ionic strength of the injection solution or the

ground water do not exceed 0.40 molal. The Debye-Huckel formula including the

deviation function B is applicable to waters with ionic strengths below one molal and

Page 110: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

109

is available in the model PHREEQE. In addition, the model is capable of mixing

two waters while maintaining the solution at equilibrium with multiple phase

boundaries, which ideally suited the objectives of this project. Although PHREEQE

and SOLMINEQ (Kharaka et al., 1988) are similar models, the strength of the latter

model lies in its applicability to high ionic strength and high temperature systems.

The database used in PHREEQE is considered to be very high quality, due to

internal consistency and ease in modification by the user.

Because the ground-water system has been modeled as a forward problem

only, the predictions of mass transfer and aqueous concentrations are estimations

only. As stated by Plummer (1984), "Results of reaction path calculations of these

models (PHREEQE included) are unconstrained to the extent that they cannot be

tested against direct chemical observations in the system." In addition to not being

able to test the model, uncertainties in analytical and thermodynamic data affect the

accuracy of the results. An uncertainty of plus or minus 0.60 was assumed in the

saturation indices calculated by the model when choosing minerals to maintain at

equilibrium. In addition, as discussed earlier, the chemical analyses of the purchased

water were highly inaccurate and even bordering on unacceptable. Some error may

be introduced by the treatment of the master equations by PHREEQE. The

precipitation of magnesite can include water (the hydration effect can be great for

magnesium), and the model includes a constant mass of water as an approximation.

Stronger support for the modeling results could be obtained by more accurate

chemical analyses, careful evaluation of thermodynamic data, and modeling the

Page 111: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

110

system by inverse methods. The water chemistry from a downgradient well could

help constrain the system by defining which minerals are dissolving and precipitating

along the flow path. Finally, although some clay filling of fractures can be observed

in the mine drifts, no identification of their chemical character has been conducted.

Cation exchange has not been quantified in this study, but could result potentially in

increases of calcium and magnesium ion concentrations and a decrease in the

permeability of the aquifer with the addition of sodium to the system.

Page 112: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

111

CHAPTER 8

CONCLUSIONS AND RECOMMENDATIONS

This study provides an initial data base for the hydrologic description of the

San Xavier test site and surrounding area. The flow of ground water within the study

area is to the northeast and east. The transmissivity decreases approximately one

order of magnitude in the granodiorite aquifer upgradient and adjacent to the SXML.

The San Xavier Thrust Fault, separating the upgradient and SXML aquifers, appears

to be acting as a barrier to ground-water flow. The quality of water decreases

upgradient, with the system becoming more concentrated and total dissolved solids

and chloride levels increasing over 10% and 250%, respectively. In addition, the

maximum hydrologic gradient in the study area corresponds to the line of bearing of

the fault.

Based on geologic and borehole injection data, the SXML aquifer is under

water table conditions. The saturated hydraulic conductivity measured above and

below the water table ranged from 0.023 m/day to 1.42 m/day. The saturated

thickness of the aquifer is estimated as 61.9 meters. Water levels at the mine have

declined over 84 meters from 1946 to the present. The water level at the mine

increased approximately three (3) meters during observations from 1-21-90 to 12-19-

90. The ground water at the site is calcium-bicarbonate rich, low in total dissolved

solids, and meets all state and federal primary drinking water standards.

Water-level declines from 1946 to the present occurred principally at

the SXML and the ASARCO mine complex in the northeast portion of the study

Page 113: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

112

area. Water budget calculations indicate that ground-water withdrawal occurred

primarily from pumping at the test site during previous mining operations. The rate

of recharge in the study area is estimated as 3 mm per year. Future water-level

declines at the test site or throughout the study area are not expected.

The test site is in full compliance with the Aquifer Protection Permit issued

to the facility by the Arizona Department of Environmental Quality. Water quality

monitoring during the injection of approximately 111,000 liters of saline solution

showed that no alert levels specified in the permit were exceeded. Computer

simulation of the total injection volume allowed by the permit, 236,562.5 liters,

predicted no increase in the concentration of five of the six hazardous constituents

listed in the permit. Based on these results and the field monitoring, the future use

of the aquifer does not appear to be threatened by the saline solution injection.

Further hydrologic characterization of the San Xavier test site could enhance

future monitoring of simulated minerals' leaching and contaminant plume migration.

Predictions of solution migration arrived at independently using hydrologic data could

confirm and perhaps assist in the interpretation of geophysical survey results. In

addition, better understanding of the subsurface system would allow an ongoing

evaluation of any environmental impacts associated with the research at the site.

Additional boreholes drilled to the water table at the site could better define the

local hydraulic gradient. The heterogeneity and/or anisotropy of the system should

be investigated to evaluate any changes in the transmissive properties of the rock in

space and any departure from colinearity of the ground-water flux and hydraulic

Page 114: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

113

gradient. Suggested field work includes multi-well pumping tests and single-well slug

tests. Slug volumes should exceed 20 liters. Borehole drilling to the limestone/gran-

odiorite contact would allow a precise measurement of the saturated thickness of the

aquifer. Continuous monitoring of water levels at the site would indicate any

preferential zones of recharge, fluctuations of hydraulic gradient and, thus, discharge,

recharge rates, or long-term trends of water-level recovery or decline.

Water-level and drawdown data from field testing may need to be corrected

for the effect of secondary stresses such as tidal strains or atmospheric loading.

Equipment capable of high resolution measurements, such as a pressure transducer,

is necessary because of the deep depth to water at the site and possibly subtle water-

level changes. Further testing of saturated aquifer properties above the water table

should maximize the height of the water column in the borehole. Water quality

changes produced by fluctuations in water levels or field testing could be established

by frequent sampling (monthly or quarterly) of boreholes at the site. Recharge of

the system may dilute the concentration of dissolved solids. Multiple monitoring

wells downgradient of any injection area could yield data including time of ground-

water travel, direction of flow, plume dispersion, and long-term changes in the water

quality of the system.

Page 115: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

114

APPENDIX I

WATER LEVEL RECORD FOR BOREHOLES H14 AND H16

Well Ground Depth to Water DateElevation Water Level Measured(m nisi) (m) Elevation

(m)

H14 1092.3

162.7 929.6 1-17-90

158.7 933.6 1-21-90

159.0 933.3 2-3-90

158.8 933.5 2-25-90

158.8 933.5 3-10-90

158.7 933.8 3-22-90

158.7 933.8 3-26-90

159.1 933.3 4-7-90

158.7 933.6 4-29-90

158.7 933.6 5-11-90

158.7 933.6 5-19-90

157.6 934.7 7-17-90

156.6 935.7 9-26-90

156.4 935.9 10-3-90

156.3 936.0 10-10-90

156.1 936.2 10-18-90

155.8 936.5 12-12-90

155.7 936.6 12-19-90

H16 1086.5

150.0 936.5 4-7-90

150.0 936.5 4-15-90

149.9 936.6 4-28-90

149.9 936.6 5-13-90

Page 116: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

115

APPENDIX II

DATA, LOGARITHMIC DRAWDOWN CURVES, AND TYPE CURVES FOR AQUIFERTESTS ON WELLS 27 AND 17

A. Pumping Test Data, Well 27 (D. Ratzlaff), 9/15/90

ElapsedTime (min)

Depth toWater (m) Drawdown (m)

PumpingCorrected Rate

Drawdown (m) (m3/day)

0.00 7.79 0.00 0.001.00 9.13 1.34 1.332.00 10.95 3.16 3.113.00 12.74 4.95 4.834.00 13.55 5.76 5.605.00 14.21 6.42 6.226.00 14.94 7.16 6.917.00 15.50 7.71 7.428.00 15.86 8.07 7.759.00 16.24 8.45 8.10

10.00 16.55 8.76 8.3811.00 16.83 9.04 8.6412.00 17.36 9.57 9.1213.00 17.75 9.97 9.4814.00 18.08 10.29 9.7715.00 18.53 10.74 10.1716.00 18.82 11.03 10.4317.00 19.05 11.26 10.6418.00 19.42 11.63 10.9719.00 19.69 11.90 11.2120.00 19.98 12.19 11.4721.00 20.23 12.44 11.6822.00 20.49 12.70 11.9123.00 20.73 12.94 12.1224.00 20.93 13.15 12.3025.00 21.14 13.35 12.4826.00 21.31 13.52 12.6327.00 21.58 13.80 12.8628.00 21.69 13.90 12.9629.00 21.87 14.08 13.1130.00 22.04 14.25 13.2641.00 23.64 15.85 14.6243.00 23.87 16.09 14.8244.00 24.01 16.22 14.9345.00 24.12 16.33 15.0246.00 24.25 16.47 15.1448.00 24.38 16.60 15.2450.00 24.56 16.78 15.4051.00 24.68 16.89 15.4955.00 25.01 17.22 15.77

Page 117: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

116

57.00 25.20 17.42 15.9359.00 25.35 17.56 16.0561.00 25.49 17.70 16.1663.00 25.63 17.85 16.2865.00 25.75 17.96 16.3867.00 25.90 18.11 16.5069.00 26.00 18.22 16.5971.00 26.08 18.30 16.6573.00 26.21 18.42 16.7675.00 26.30 18.51 16.8377.00 26.42 18.63 16.9379.00 26.51 18.72 17.0081.00 26.60 18.81 17.0883.00 26.70 18.91 17.1685.00 26.82 19.03 17.2687.00 26.91 19.12 17.3391.00 27.03 19.24 17.4393.00 27.15 19.36 17.5295.00 27.22 19.43 17.5897.00 27.31 19.53 17.6699.00 27.41 19.63 17.74104.00 27.61 19.83 17.90109.00 27.79 20.00 18.04114.00 27.92 20.13 18.14119.00 28.02 20.24 18.23124.00 28.13 20.34 18.31131.00 28.24 20.45 18.40134.00 28.29 20.51 18.44139.00 28.37 20.58 18.50144.00 28.44 20.65 18.56149.00 28.49 20.70 18.60154.00 28.55 20.76 18.65159.00 28.59 20.81 18.68164.00 28.68 20.69 18.75169.00 28.73 20.94 18.79174.00 28.81 21.02 18.86179.00 28.88 21.09 18.91 5.61184.00 28.93 21.14 18.95189.00 28.96 21.18 18.98194.00 28.99 21.20 19.00199.00 29.07 21.28 19.06204.00 29.12 21.33 19.10214.00 29.18 21.39 19.15224.00 29.25 21.46 19.20234.00 29.30 21.51 19.24244.00 29.34 21.55 19.27254.00 29.37 21.58 19.30274.00 29.45 21.66 19.36284.00 29.49 21.70 19.39299.00 29.56 21.77 19.45 8.45300.00 ---- Pump off

Page 118: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

302.00 29.27 21.48 19.22303.00 28.50 20.72 18.61304.00 28.03 20.25 18.24305.00 27.52 19.73 17.82306.00 27.10 19.31 17.48307.00 26.55 18.76 17.04308.00 26.22 18.44 16.77309.00 25.81 18.02 16.43310.00 25.49 17.70 16.16311.00 25.15 17.36 15.88312.00 24.90 17.11 15.67313.00 24.62 16.83 15.44314.00 24.33 16.54 15.20315.00 24.11 16.32 15.02321.00 23.16 15.37 14.21323.00 22.69 14.90 13.81325.00 22.33 14.54 13.50326.00 22.17 14.38 13.37327.00 21.97 14.18 13.20328.00 21.81 14.03 13.06329.00 21.64 13.85 12.91330.00 21.45 13.66 12.75331.00 21.27 13.49 12.59332.00 21.05 13.26 12.40333.00 20.92 13.13 12.29334.00 20.78 12.99 12.16335.00 20.62 12.83 12.02336.00 20.48 12.69 11.90337.00 20.31 12.52 11.75338.00 20.19 12.40 11.64339.00 20.05 12.26 11.52340.00 19.90 12.11 11.39341.00 19.74 11.95 11.25342.00 19.56 11.77 11.09343.00 19.40 11.62 10.95344.00 19.25 11.46 10.82345.00 19.09 11.30 10.67346.00 18.90 11.11 10.51348.00 18.58 10.79 10.22349.00 18.45 10.67 10.11351.00 18.17 10.38 9.86353.00 17.90 10.12 9.61355.00 17.63 9.84 9.36357.00 17.37 9.58 9.13359.00 ‘ 17.14 9.35 8.92361.00 16.89 9.10 8.69363.00 16.67 8.88 8.50365.00 16.43 8.64 8.27367.00 16.20 8.41 8.06368.00 15.97 8.19 7.86373.00 15.46 7.67 7.39

117

Page 119: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

378.00 14.98 7.20 6.94383.00 14.52 6.73 6.51388.00 14.11 6.32 6.13393.00 13.71 5.92 5.75400.00 13.27 5.48 5.33403.00 13.09 5.30 5.17408.00 12.77 4.99 4.86413.00 12.41 4.63 4.52419.00 12.12 4.33 4.24423.00 11.89 4.10 4.02430.00 11.58 3.79 3.72433.00 11.45 3.66 3.59443.00 11.05 3.27 3.21453.00 10.71 2.92 2.88463.00 10.38 2.60 2.56

118

Page 120: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

119

APPENDIX II CONTINUED

B. Pumping Test Data, Well 17 (A.

Elapsed Depth toTime (min) Water (m) Drawdown (m)

Drow), 10-10-90

PumpingCorrected RateDrawdown (m) (m3/day)

0.00 7.13 0.00 0.001.00 7.13 0.00 0.002.00 7.20 0.07 0.073.00 7.57 0.44 0.444.00 7.79 0.66 0.655.00 7.96 0.83 0.83 27.486.00 8.25 1.12 1.117.00 8.51 1.37 1.368.00 8.96 1.83 1.809.00 9.35 2.22 2.18 23.2410.00 9.65 2.51 2.4611.00 9.90 2.77 2.7012.00 10.15 3.01 2.9413.00 10.45 3.32 3.2314.00 10.69 3.56 3.4515.00 11.05 3.92 3.7916.00 11.41 4.27 4.1217.50 11.77 4.64 4.4618.50 12.02 4.89 4.6919.33 12.31 5.18 4.96 21.9520.42 12.71 5.57 5.3221.33 13.15 6.02 5.7222.22 13.41 6.28 5.9523.17 13.70 6. $7 6.2124.25 14.05 6.92 6.5225.00 14.24 7.11 6.6926.00 14.38 7.24 6.8127.00 14.50 7.37 6.9228.00 14.73 7.60 7.1229.63 15.11 7.98 7.4530.67 15.34 8.21 7.6531.60 15.57 8.43 7.8433.00 15.92 8.79 8.1534.00 16.15 9.02 8.3435.00 16.32 9.19 8.4936.50 16.60 9.47 8.72 19.0137.83 16.83 9.70 8.9240.00 17.30 10.16 9.3043.00 17.84 10.71 9.7548.00 18.67 11.54 10.4350.00 18.99 11.86 10.6955.00 19.75 12.62 11.2960.00 20.46 13.33 11.84

Page 121: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

120

63.00 20.85 13.72 12.1568.00 21.51 14.38 12.66 15.7273.00 22.03 14.90 13.0578.00 22.65 15.52 13.5184.00 23.14 16.01 13.8788.00 23.55 16.42 14.1793.00 23.97 16.84 14.4798.00 24.39 17.25 14.77

100.00 24.63 17.50 14.95 13.39105.00 24.96 17.82 15.17110.00 25.29 18.16 15.41115.00 25.62 18.49 15.63120.00 25.86 18.73 15.80125.00 26.10 18.97 15.97 12.44131.00 26.27 19.14 16.08135.00 26.42 19.29 16.18140.00 26.61 19.48 16.31145.00 26.79 19.66 16.44 12.44150.00 26.96 19.83 16.55156.00 27.13 20.00 16.66160.00 27.24 20.11 16.73165.00 27.40 20.27 16.84170.00 27.56 20.43 16.95175.00 27.67 20.53 17.02 12.44180.00 27.81 20.68 17.11185.00 27.93 20.80 17.19191.00 28.04 20.91 17.26195.00 28.08 20.95 17.29202.00 28.17 21.04 17.35 11.75208.00 28.37 21.24 17.47212.00 28.40 21.27 17.49215.00 28.49 21.36 17.55 Pump off216.00 28.37 21.24 17.48217.00 27.90 20.77 17.17218.00 27.50 20.37 16.90219.00 27.13 20.00 16.66220.00 26.78 19.65 16.43221.00 26.46 19.33 16.21222.00 26.11 18.98 15.98223.00 25.85 18.72 15.79224.00 25.55 18.42 15.59225.00 25.17 18.04 15.32226.00 24.83 17.70 15.08227.00 24.44 17.31 14.81228.00 24.08 16.95 14.55230.00 23.44 16.31 14.09232.00 22.86 15.73 13.67234.00 22.27 15.14 13.23236.00 21.69 14.56 12.79238.00 21.08 13.95 12.33240.00 20.57 13.44 11.93

Page 122: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

242.00 20.00 12.86 11.48244.00 19.44 12.31 11.04246.00 18.94 11.80 10.64248.00 18.40 11.26 10.21250.00 17.89 10.76 9.80252.00 17.33 10.20 9.33254.00 16.69 9.56 8.80256.00 16.19 9.06 8.38258.00 15.84 8.71 8.08260.00 15.19 8.06 7.51262.00 14.64 7.50 7.03264.00 14.02 6.89 6.49266.00 13.42 6.29 5.96268.00 12.92 5.79 5.51270.00 12.30 5.16 4.94272.50 11.74 4.61 4.43274.00 11.39 4.26 4.11276.00 10.93 3.80 3.68278.00 10.42 3.29 3.20280.00 10.18 3.05 2.97282.00 9.88 2.75 2.68284.00 9.59 2.46 2.41286.00 9.29 2.15 2.12288.00 8.96 1.83 1.80290.00 8.71 1.58 1.56292.00 8.48 1.35 1.33294.00 8.29 1.16 1.15296.00 8.12 0.99 0.98298.00 8.01 0.88 0.87300.00 7.91 0.78 0.77302.00 7.82 0.69 0.68304.00 7.74 0.61 0.61306.00 7.69 0.55 0.55308.00 7.64 0.51 0.51310.00 7.60 0.47 0.47312.00 7.55 0.42 0.42314.00 7.51 0.38 0.38315.00 7.49 0.35 0.35320.00 7.40 0.27 0.27325.00 7.35 0.22 0.22330.00 7.30 0.17 0.17335.00 7.24 0.11 0.11340.00 7.23 0.10 0.10345.00 7.22 0.09 0.09350.00 7.21 0.08 0.08360.00 7.20 0.07 0.07370.00 7.20 0.07 0.07380.00 7.20 0.06 0.06390.00 7.20 0.06 0.06473.00 7.20 0.07 0.07

121

Page 123: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

1000

C...4

1 0

1

122

,

.or

t,....

\4e.

//

1

10 100 1000Tu-ne, ln mAnutes, after start of test

C. Logar tthmto Drawdown Curve ue tng Corrected Da tafor We I I 27—Test

Page 124: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

100

a

123

0.011 10 100 • 000

Ttme, tn mtnutes, after start of test

D. Logor tthmtc Drowdown Curve us tng Corrected Do tofor Wei I 17-Test

Page 125: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

E. Flow Rate History for Well 17 Aquifer Test

Time Interval(minutes)

Average Rateof Discharge

(m3/day)

0.0-7.0 27.5

7.0-14.2 23.2

14.2-27.9 21.9

27.9-52.3 19.0

52.3-84.0 15.7

84.0-112.5 13.4

112.5-188.5 12.4

188.5-215.0 11.7

124

Page 126: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

Tr0

1111 1 1 1To cNJ

'0-

125

Page 127: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

126

APPENDIX III

ANALYTICAL SOLUTIONS FOR GRAVITY PERMEABILITY

TESTS ABOVE THE WATER TABLE

A. Glover (1953) Solution: Constant-Head Test Above a Deep Water Table,

with Open borehole (H = A)

Ks Qs rHCu

where:

Ks = saturated hydraulic conductivity (m/day);

Qs = flow rate into borehole at steady state (m3/day);

r = borehole radius (m);

H = length of water column in borehole (m);

A = length of test interval in borehole (m);

Cu = conductivity coefficient dimensionless;

21-c (1-1 )r

sinh -1 (±1-) -1

Page 128: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

127

B. Zangar (1953) Solution: Constant-Head Test Above a Shallow Water Table,

with Partly Cased Borehole (H A) (if applicable)

Ks 2 Qs

Cu r (Tu + H - A)

where:

= radius of test interval in borehole (m); and

Tu = distance from water level in borehole to water table (m).

All other variables defined as in above solution.

C. USBR (1977) Solution: Falling-Head Test Above the Water Table

Ks r2 sinh A

r (2H1 -A\ ( 21/1 1/2 -AH2 )

2 2H2-A 2H1H2 -AH1 ) 2A At

where:

Ks = average saturated hydraulic conductivity of test interval in borehole

(mid);

A = length of test interval in borehole (m);

r = radius of test interval in borehole (m);

t = time interals (t 1 - to, t2 - t 1) (day);

sine = inverse hyperbolic sine; and

Page 129: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

128

H = length of water column in borehole (Ho, H1 , H2 lengths at time of

measurements to, t 1 , t2, etc.) (m).

Page 130: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

APPENDIX IV

AQUIFER PROTECTION PERMIT

NO. P-102223

FOR

SAN XAVIER MINING LABORATORY

129

Page 131: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

AQUIFER PR( CTION PERMITPermit No. e-102223

STATE OF ARIZONA

AQUIFER PROTECTION PERMIT

PART I. AUTHORIZATION TO DISCHARGE POLLUTANTS IN A MANNER SUCH THAT CURRENTAND REASONABLY FORESEEABLE FUTURE USES OF THE AQUIFER ARE PROTECTED

In compliance with the provisions of Arizona Revised Statutes (A.R.S.)Title 49, Chapter 2, Articles 1, 2, and 3; Arizona Administrative Code(A.A.C.) Title 18, Chapter 9, Article 1; Arizona Administrative Code(A.A.C.) Title 18, Chapter 11, Article 4; and conditions set forth inthis permit:

Facility Name: San Xavier Mining Laboratory

Facility Owner: Facility Operator:

University of Arizona Laboratory for AdvancedTucson, AZ 85721 Subsurface Imaging (LASI)

Dept. of Mining, Bldg. 12Tucson, AZ 85721

Landowner:

University of ArizonaBoard of RegentsTucson, AZ 85746

is authorized to operate the University of Arizona Mining Laboratoryinjection wells located less than one half mile west of the OcotilloRanch Road and Mission Road intersection in Pima County, Arizona overgroundwater of the Tucson Active Management Area in Township 17 South;Range 12 East; Section 10 and Section 3, Gila and Salt River BaseLineand Meridian:

Latitude 31° 58' 16" NorthLongitude 111° 05' 58" West.

This permit shall become effective on the date of the AssistantDirector's signature and shall be valid for the life of the facilityprovided that the facility is constructed, operated and maintainedpursuant to all the conditions of this permit according to the design andoperational information documented or referenced in PARTS I, II, III, IV,V, VI, and VII of this Permit, and such that Aquifer Water QualityStandards are not violated.

Ronald L. Miller, Ph.D.Assistant DirectorOffice of Water QualityArizona Department of Environmental Quality

Signed this / 4 day of19 1(2

130

Page 132: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

Page 2 of 28AQUIFER PROTECTION PERMITPermit No. P-102223

PART II. SPECIFIC CONDITIONS

A. Discharge Limitations

1. The permittee is authorized to inject potable water, sodiumbromide tracer, and sodium chloride solutions into any of theten boreholes listed below and indicated on Attachment I.

Boreholes Permitted for Injection:

Identification Latitude ,Longitude

Hl 31° 58' 16.6" 111° 5' 55.7"H2 31° 58' 16.6" 111° 5' 56.2"H3a 31° 58' 16.9" 111° 5' 56.3"H3b 31° 58' 16.9" 111° 5' 56.3"H4 31° 58' 18.6" 111° 5' 55.9"H6 31° 58' 18.9" 111 0 5' 56.9"H11 31° 58' 17.0" 111° 5' 55.8"H12 31° 58' 17.6" 111° 5' 56.0"H13 310 58' 17.3" 111° 5' 56.0"H15 31° 58' 18.0" 111° 5' 55.8"

2. The volume of potable water permitted for injection shall notexceed 100,000 gallons per year. The total volume of sodiumbromide injected shall not exceed 16,250 gallons. The totalvolume of saline solution injected shall not exceed 62,500gallons.

3. Sources for potable water used shall be Las Quintas WaterCompany Supply Wells 5 or 6; Green Valley Water CompanyPlacita de la Catoria well No. 1 or Las Lomas well No. 2; orfrom a nearby well that pumps from the aquifer into whichinjection will be made, with prior Department approval andapproval from the Arizona Department of Water Resources. Theconcentration of the soduium bromide tracer solution shall notexceed 0.07 grams per liter. The concentration of NaC1 in thesaline solution shall not exceed 24 grams per liter.

4. Specific discharge limitations are specified in TABLE I,presented in Part IV.

B. Monitoring Requirements

All monitoring required in this permit shall continue for theduration of the permit, regardless of the discharge or operationalstatus of the facility, unless otherwise designated in this permitor an approved contingency plan.

131

Page 133: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

Page 3 of 28AQUIFER PROTECTION PERMITPermit No. P-102223

1. Discharge Monitoring

Discharge monitoring shall be conducted at the locationsindicated on TABLE I presented in PART IV, and on Attachment

a. Injection Solution Monitoring

(I) The volume and rate of solution injected shall bemonitored at the mixing tanks at the samplingpoint designated A00508 on TABLE I in PART IV, atthe location shown on Attachment I. The volumeof fluids injected shall be monitored using awater balance method. The water level in themixing tanks, the refilling rates, and thecalculated volume injected shall be recorded. Themonthly total of solution or water injected shallbe reported in the Self-Monitoring Report to besubmitted quarterly.

(2) The weight of NaC1 or NaBr added to the recordedvolume of make up water, and the calculatedconcentration of NaCl or NaBr shall berecorded. The concentrations and total weight ofNaC1 or NaBr added to date shall be recorded atthe end of each month and reported in the Self-Monitoring Report to be submitted quarterly.

2. Groundwater Monitoring

a. Point of Compliance

The point of compliance for this facility shall be wellH14, designated as Sampling Point A00509, in theuppermost aquifer and indicated on Attachment I. Thepoint of compliance shall be at the following location:

Latitude 31° 58' 18.8" NorthLongitude 111 ° 5' 56.1" West.

The Director may designate additional points ofcompliance if information on groundwater gradientsindicates the need.

b. Ambient Groundwater Monitoring

The permittee shall sample, analyze and report ambientconcentrations of bromide in groundwater at monitoringpoint A00509, at well H14 prior to injection of NaBrsolution.

132

Page 134: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

133

Page of 28AQUIFER PROTECTION PERMITPermit No. P-102223

c. Detection Monitoring

Groundwater quality monitoring shall be conductedaccording to TABLE II, presented in Part IV, at well H14,designated as sampling point A00509, and shown onAttachment I. Groundwater monitoring shall only beassociated with injection experiments. An injectionexperiment shall be defined as any injection of tracer orsaline solutions, or potable water injections of greaterthan 10,000 gallons per month.

3. Operational Monitoring

Mixing tanks shall be inspected for leakage once per weekwhenever tracer or saline solution is stored therein. A logof these inspections shall be kept at the facility and shallbe available for review for ten years from the date of eachinspection.

4. Sampling Protocol

a. Groundwater

(1) Sampling procedures, preservation techniques andholding times shall be consistent with the mostrecent ADEQ Quality Assurance Project Plan.

(2) Static water levels shall be measured andrecorded prior to sampling. Wells shall bepurged until indicator parameters (pH,temperature, conductivity) are stable over twoborehole volumes (as calculated using the staticwater level). If evacuation results in the well

going dry, the well should be pumped or baileddry and allowed to recover to 80% of the originalborehole volume, or for 24 hours, whichever isshorter, prior to sampling. An explanation forreduced pumping volumes, a record of the volumepumped, and modified sampling procedures shall bereported in the Self-Monitoring Report.

b. Installation/Maintenance of Monitoring Equipment

(1) The permittee shall provide sampling access,ports, or devices at the facility for samplecollection.

(2) Existing groundwater monitoring wells shall bemaintained so that proper groundwater samples canbe collected. Should additional groundwatermonitoring wells be required, they will beinstalled and maintained according to plansapproved by the Department.

Page 135: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

Page 5 of 28AQUIFER PROTECTION PERMITPermit No. P-102223

5. Monitoring Records

The following information associated with each sample,

inspection, or measurement shall be recorded and retained or

obtai nabi e for at least ten years after the date of the sampl e

or measurement:

a. The date, time and place of sampling, inspection, or

measurement, and the name of each individual who

performed the sampling or measuring;

b. procedures and equipment used to collect the sample or

make the measurement;

c. date on which sample analysis was completed;

d. name of each individual or laboratory who performed the

anal ysi s;

e. analytical techniques or methods used to perform the

sampling and analysis, and laboratory detection limits

for each test method performed.

f. chain of custody records; and

any field notes relating to the information described in

subparagraph a. through f. above.

C. Contingency Requirements

The permittee shall maintain at least one copy of any approved

contingency plan at the location where day-to-day decisions

regarding the operation of the facility are made. The permittee

shall advise anyone responsible for operation of the facility of the

location of copies of any contingency plan. The permittee shall

revise promptly all copies of any contingency plan to reflect

approved changes.

1. Discharge Monitoring Contingencies

a. Discharge Limit Violation

(1) The permittee shall notify the Department within

five days of becoming aware of a violation of a

Discharge Limit. No discharge greater than any

Discharge Limit set in TABLE I is allowed withoutprior written request and Department approval.

(2) Within 30 days of the date of receiving results

that verify that a Discharge Limit has been

exceeded, the permittee shall submit a

contingency plan to the Department for review.

The report shall incl ude the documentation

required in PART II.H.8.

134

g.

Page 136: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

Page 6 of 28AQUIFER PROTECTION PERMITPermit No. P-102223

(3)

Upon review of the above required report, theDepartment may require additional monitoringand/or action.

2. Groundwater Monitoring Contingencies

a. Groundwater Quality Alert Level Exceeded

(1) If the results of groundwater sampling at wellH14 show that Alert Levels for specificelectrical conductance (SEC), chloride (Cl) orbromide (Br) have been exceeded, the permitteeshall notify the ADEQ, Water Pollution ComplianceUnit within five days and immediately collect asample to be analyzed for nitrate, sulfate,arsenic, iron, lead, mercury and silver, asindicated on TABLE II, PART IV.

(2) If concentrations for specific electricalconductance, chloride or bromide reach 1518micromhos per centimeter, 40 mg/1 or a bromideconcentration to be determined prior to anybromide tracer test, the permi ttee shall samplefor nitrate, sulfate, arsenic, iron, lead,mercury and silver as indicated in TABLE II, PARTIV, and notify the ADEQ, Water PollutionCompliance Unit within five days of becomingaware of the occurrence.

(3) Samples shall be collected and analyzed fornitrate, sulfate, arsenic, iron, lead, mercuryand silver as indicated in TABLE II, PART IV,after the maximum concentration of either SEC, Clor Br arrives at well H14 subsequent to aninjection experiment.

(4) Within 30 days of the date of receiving resultsthat verify that an Alert Level has beenexceeded, the permittee shall submit a writtenreport to the ADEQ, Water Pollution ComplianceUni t. The report shall include the documentationrequired in PART N.H.&

(5) Upon review of the above required report, theDepartment may require additional monitoringand/or action.

(6) The permittee shall notify the ADEQ, WaterPollution Compliance Unit within five days ofbecoming aware that an Alert Level for nitrate,sulfate, arsenic, iron, lead, mercury or silverhas exceeded Alert Levels set in TABLE II, andtake the following actions:

135

Page 137: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

Page , of 28AQUIFER PROTECTION PERMITPermit No. P-102223

(a) Immediately take a verification sample foranalysis of the constituent that hasexceeded the Alert Level.

(b) If the Alert Level exceedence is verified,the permittee shall purge the well toremove the contaminated water. Purge watershall be pumped to a properly containedlocation. The permittee shall contact theADEQ, Water Pollution Compliance Unit todetermine an appropriate disposal methodfor contaminated water. Purging may ceasewhen sampling indicates that concentrationsof nitrate, sulfate, arsenic, iron, lead,mercury or sil ver are below Alert Level s.

(c) The permittee shall submit a written reportto the ADEQ, Water Pollution ComplianceUni t within 30 days of completing the aboverequi red actions. The report shall incl udethe documentation required in PART II .H.8.

b. Aquifer Quality Limit (AQL) Violation

(1) If the results of groundwater sampling show thatany AQL set in TABLE II, PART IV has beenexceeded, the permittee shall notify the ADEQ,Water Pollution Compliance Unit within five days.

(2) Verification sampling shall be conducted withinfive days of becoming aware that an AQL has beenexceeded.

(3) If follow-up sampling verifies that an AQL isexceeded, the permittee shall notify theDepartment within five days to determineappropriate action to mitigate effects of theviol ati on.

(4) Within 30 days of the date of receiving resultsthat verify that an AQL has been exceeded, thepermittee shall submit a report and contingencyplan to the ADEQ, Water Pollution Compliance Unitfor approval. The report shall include thedocumentation required in PART II.H.8.

(5) Upon approval by the Department, the contingencyplan shall be implemented according to aspecified schedule. The approved contingencyplan shall be incorporated into the permit.

(6) Upon review of the above required actions andresults thereof, the Department may requireadditional monitoring and/or action.

136

Page 138: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

137

Page of 28AQUIFER PROTECTION PERMITPermit No. P-102223

3. Discharge Control System Failure or Accidental DischargeContingencies

a. The permittee shall correct any failure that results inthe violation of permit conditons. The permittee shalltake immediate steps to mitigate any pollution that mayhave resulted from a spill. Failure in any mechanical,electrical or plumbing systems used on the project shallbe repaired immediately.

b. Within 30 days of a spill, the permittee shall submit tothe ADEQ, Water Pollution Compliance Unit a report thatincludes documentation referenced in PART II.H.8.

c. Upon review of the above required report, the Departmentmay require additional monitoring and/or actions.

d. Emergency Response

(1) Should a condition arise which results in animminent and substantial endangerment to publichealth or the environment, the designatedenvironmental response coordinator shall beresponsible for implementation of the emergencyresponse plan referenced in PART V.

(2) The permittee shall notify the Pima County HealthDepartment within five days and the ADEQ,Emergency Response Unit within 24 hours of anyoccurrence that results in an imminent andsubstantial endangerment to public health or theenvironment to determine any additional actionnecessary to mitigate effects of the incident.

D. Temporary Cessation

1. The permittee shall notify the ADEQ, Water PollutionCompliance Unit before temporary cessation of any operation atthe facility. Notification of temporary cessation does notrelieve the permittee of any permit requirements unlessotherwise specified in this permit.

2. Quarterly Self-Monitoring Reports shall not be submittedduring temporary cessation if the Department determines thatcontinued monitoring is unnecessary. The permittee shalladhere to the Temporary Closure Plan referenced in PART V.

E. Closure

1. The permittee shall notify the ADEQ, Water PollutionCompliance Unit of the intent to cease, without intent toresume an activity for which the facility was designed oroperated, prior to ceasing.

Page 139: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

Page 9 of 28AQUIFER PROTECTION PERMITPermit No. P-102223

2. Within 90 days following notification, the permittee shallsubmit to the ADEQ, Water Pollution Compliance Unit, a closureplan for approval. This plan shall be in addition to theapproved closure plan referenced in PART V. The final planshall include the following:

a. The approximate quantities and the chemical, biological,and physical characteristics of the materials to beremoved from the facility;

b. the destination of materials to be removed from thefacility and an indication that placement of thematerials at that destination is approved;

c. approximate quantities and the chemical, biological, andphysical characteristics of the materials that willremain at the facility;

d. methods to be used to treat any materials remaining atthe facility;

e. methods to be used to control the discharge of pollutantsfrom the facility;

f. any limitations on future land or water uses created as aresult of the facility's operations or closureactivities;

g. methods to be used to secure the facility;

h. an estimate of the cost of closure; and

i. a schedule for implementation of the closure plan.

3. Cl osure of the facility shall el iminate, to the greatestextent practicable, any reasonable probability of furtherdischarge from the facility and of exceeding Aquifer WaterQuality Standards at the applicable poi nt of compliance.

4. Closure for the facility shall include cessation of injectionand securing locking caps on all well heads utilized in theproject.

5. Upon completion of cl osure activities, the permi ttee shallgive written notice to the ADEQ, Water Pollution ComplianceUnit to certify that the closure plan has been fullyimplemented.

F. Post Closure

1. Post-closure requirements will be based on the Department'sreview of facility closure activities and shall be implementedto assess and mitigate any adverse impacts of any discharge

138

Page 140: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

Page 10 of 28AQUIFER PROTECTION PERMITPermit No. P-102223

which occurred as a result of the operation of the facility.

2. Should a post-closure activity be determined necesary, thepermittee shall submit to ADEQ, Water Permits Unit a post-cl osure monitoring and mai ntenance pl an that descri bes thefollowing items:

a. The duration of post-closure care;

b. the monitoring procedures to be implemented by thepermittee, including monitoring frequency, type, andlocation;

c. a description of the operating and maintenance proceduresto be implemented for maintaining aquifer qualityprotection devices, such as liners, treatment systems,pump-back systems, and monitoring wells;

d. a schedule and description of physical inspections to beconducted at the facility following closure;

e. an estimate of the cost of post-closure maintenance andmonitoring; and

f. a description of limitations on future land or wateruses, or both, at the facility site as a result offacility operations.

3. Post-cl osure activities shall ensure that any reasonabl eprobability of further discharge from the facility, and ofexceeding Aquifer Water Quality Standards at the applicablepoint (s ) of compliance, are el iminated to the greatest extentpracticabl e.

4. The permittee shall notify the ADEQ, Water PollutionCompliance Unit in writing when post-cl osure activities havebeen completed.

G. - Compliance Schedule

No requirements.

H. Reporting Requirements

1. Signed copies of all reports required in this permit shall besubmitted to the Department at the following address:

Arizona Department of Environmental QualityWater Pollution Compliance Unit2005 North Central AvenuePhoenix, Arizona 85004

139

Page 141: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

Page 11 of 28AQUIFER PROTECTION PERMITPermit No. P-102223

2. Self-Monitoring Reports

The Sel f- Monitoring Report shall incl ude: Copi es oflaboratory analysis forms, documentation on sampling date andtime, name of sampler, static water level prior to sampling,sampling method, purging volume, indicator parameters,analytical method, method detection limit, date of analysis,preservation and transportation procedures, and analyticalfacility. Data shall be compiled on standardized forms whichallow comparison with past reports.

The Sel f-Monitoring Report shall al so summarize injectionvol urnes and concentration of addi ti ves as cal cul ated usingwater level measurements at the mixing tanks, injection ratesand mass balance equations. All analytical data for theprevious quarter and shall be submitted in both table andnarrative form. The report shall evaluate the impact of thefacility on groundwater quality and assess the potential forfuture effects on any aquifer. Reports shall be submittedaccording to the following schedule:

Self-Monitoring Reporting Schedule

ReportDue by

1st Quarter Apr 282nd Quarter Jul 283rd Quarter Oct 284th Quarter Jan 28

3. TABLES I and II, PART IV contain the frequency for reportingresults from discharge and groundwater monitoringrequirements. Results shall be submitted in the Self-Monitoring Report. Monitoring methods shall be recorded andany deviations from the methods and frequencies prescribed inthis permit shall be reported.

4. The permittee shall report operational conditions listed inTABLE III, presented in PART IV, in the Self-Monitoring Reportquarterly. If none of the conditions occur, the report shallsay "No event" for a particular reporting period. If thefacility is not in operation, the permittee shall indicatethat fact in the Self-Monitoring Report.

5. The results of all monitoring required by this permit shall besubmitted in such a format as to allow direct comparison withthe limitations and requirements of the permit.

6. The permittee shall submit data required in TABLES I throughIII, PART IV, regardless of the operating status of thefacility unless otherwise approved by the Department orallowed in this permit.

140

Page 142: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

Page 12 of 28AQUIFER PROTECTION PERMITPermit No. P-102223

7. The permittee shall notify the ADEQ, Water PollutionCompliance Unit within five days of becoming aware of theviolation of any permit condition.

8. The permittee shall sutxnit a written report within 30 daysafter becoming aware of the viol ation of a permit condition.The report shall document all of the following:

a. A description of the violation and its cause;

b. the period of violation, including exact date(s) andtime (s ), if known, and the anti ci pated time period duringwhich the violation is expected to continue;

c. any action taken or planned to mitigate the effects ofthe violation, or to el iminate or prevent recurrence ofthe violation;

d. any monitoring activity or other information whichindicates that any poll utants would be reasonablyexpected to cause a violation of an Aquifer Water QualityStandard; and

e. any mal function or fail ure of pollution control devicesor other equi pment or process.

PART III. OTHER CONDITIONS

A. Analytical Methodol oqy

1. All samples shall be analyzed using methods listed in TABLES Iand II, unless otherwise approved by the Department. Allanalyses other than field analyses for specific electricalconductance, chloride and bromide shall be performed by alaboratory licensed by the Arizona State Laboratory. Allanalytical work shall meet quality control standards specifiedin the approved methods. A list of certified laboratories canbe obtained at the address listed below:

Arizona Department of Health ServicesOffice of Laboratory License Certification1520 West AdamsPhoenix, Arizona 85007

Phone Number: (602) 542-1188

2. Field analytical methods shall be conducted according tomanufacturer' s instructions.

141

PART IV. TABLES

Page 143: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

et

0)

Q 0.1LO

to

Page 13 of 28AQUIFER PROTECTION PERMITPermit No. P-102223

>• >t

L.

▪ 4-, 4-1 4-,

= 7 =Q. C • C• Cr

0 0

.1-• -0 "0 •n••• 13CL1 G./ C.1 G)- 01 C 'V '0

CC '0 CC 0.F‘ M3 CO rcr co

=u, VI 7 141CZ MI CC CI 1,3 CC

142

I. Q)>

rCCSs,

§.)

et

01

L.n-• LC)E

u.A

G•J

1.0

E0

W L WE co c e= 0 = s..

E — cc0 = 4-3 0 to›. —= z-0 ,—• 00 . .

so Les Len GS .0

Page 144: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

C.0 a)

cd

Tu

CV

C

• U

c4.)C-5o 0'0. CUE L.

Cd Li.

e

Page ' f28

AQUI1E1,-..R0TECTI0N PERMITPervit No. P-102223 6

aala,

), >, .0 se al

a)0) 44 .cL. Z -L. .cs ..c 4-sa, o ..- co .4 re4.4 4.4 or ,_ e U7L y .Cu) In• L. +- 00ill=

RI3

Ul 4.)

C'l'- in

L•C' wt..' 3e1 '03 ....O 0 • 5) .0 0.1

C3 4., in . -

L' • .5 sn 1...

L.5.7 C VW C-3

• L. .0Cl/

•-• •JI•-• 3

...)+- c114..1 3

0 +4... . .4. ..0: . c2C .1- 1E2 . - .,. am .0

C.Ca)

CO +a • I- '0 nilLU ,L, .... i S. Cd AS L. CI ..- C L.d).1-) I .- 4.7 • CI

.4.• X C>) N's Y L) In I. 4- Cs C CZ 0C .ai .-

E in XW 0 O.03 0) CI 01 o... 0 L.. +a C .0C ,CI 0.1 .0

MI •o- S.. 0.1 4.1 w 5) -0 col L. = C ..- = ..-

00e 0 CO./..cia, 0= 3

>1 0 0 .0 ...... .10 . 0 a . ; f•. .0 40.(1, 0 .. 4-, 0.1 L. .0- L. a) 1,11 e.n

Ul C RI • 4.) ,0 >'0 0 C..) 3 0 C .0 L. 4., .0 01 .--51- ••• Lu 0. E ••n 4=1 0 0 • 44 •••

is- X*y 0 0 004VIU

0 0 0 3.0 4., .F. (I) .) 0) ••-• WI 1.) .... ••-• •-• es., -0 4.,

,, 0.

C.3 = 0 C L. 4-. .... ,•• ••n• '0 1.- ,- n1:1 e c,..• SIC C ••- e - 01co a, ..- 0.1 0 ..- ... =CV ," +.IU3 ZOE

0.1 0) o e >, s- .. saP. 0) 51- a, ea L)

00

0 I.0) CI

4-'t.) CV 44'1..) ,-..=

OL .,- ._.C1 "0 ,,C1 ..0 viS .3,3 ••-,... _j X In ... 0) •-• VIW (-3 03 tO 4-, >1 E W

0.1 CU 111 L. ID 01 0.1

•-• 5.-

E. '3

-0 ..oe..- z

E -0.-5 •,-, >

W .... CU )0

C C C

C VA 0.1 +a .0

51- >5 U7 CU CI) ... C • +a = ...• .0

C RI ..- .0 4.. 41.1 0 In L. W s-sai .C., 4-0 .s-

a) asL. di ..- 03 a. co

cc L. .c .0us 00 as u ./5 MI u Cli 10) L. 03 ..= ,- 2

m

- vs C 0 ..I #1.0 4.I>1 ,44. L. = ,11 VI 44• 1 0 > ,,,,-1 \cri.... >,• . MC) 4-0 Go

ul E •011 4.1 • 0 +a

'0 0IS 4.,••n• CO OS. 'CC .....n CY1 4..0 ..._No WC

L. V- CI) e,- L. g ..- 4-, 4-)-0 C 0) '0 L. 3 Qs

••••• S. SU .- .

L. 4- O"- 54 o 4-co ,- L. .... m e,-..),4.) e. 0iz ..., LS 3 ....4.J 17Cms ...

C LCU 03 nS su e In s,01 0 L. C 0 44

3 L. 4-1 Cr. L. C L. xrC' .41 .- : ML. = O. LS S. Si 4.,4-, 0 C +.- C 01 0 •-• 0.1ZD CU

4., 51.1 L) ..- .0 01 CV MI iaaj 0 "-i0 Cl2 .4jro uCU LiCij "-I- 4jC L. CI •,-3 .0

4) 0) 4) a! 4J 4-7 y.0 0 RI

>.•

v n E .- 4.- SU 3 0 C .-. 01 S. E.= CU C L CIJ ..- .3L. .... . C.. 0.- .4 ..0 0 C.3 0,30U+., COMIC.) 0.1

0 .0 .001 4-) C ..- C 0.1

>.0 CU LW 113 ',- 01 4-I 3 0 "--• ."--• ...... CI +a CUCU E0004..,

0.1 .- E '0 0 .- 4.)C.) 0 .0

OJ 01 5.. La Z •-- E 0 0 +a 0- .=

Li.) c.) 0. cil in 3 Cal VI 4, e -. c., el L. L. c a. L. ,s, 4,, y ›.•ce 4.)

O ICI s...jai. 4.• 0 IC .,"0 .10

C 15W In .0 C..1 C 'CI

'CD C 51- >5 4a LLI .- 0)0

... orWC Cv ++ ..•+a 0)

S. 4a.01. 0.1:1C4.01 4.0

CI

8. ‘19 .•-• c c "`" g s- 4- C.

00 0.c • • • • • •- o CV LcI VD Ch co cv 5 0 C) 0 '0

WCL. .. Cc, CD CV (5.1 CV CV0.) VI

L. ..... O. ..n CV L 4- it) ICI4- L. Ln r. CD CI +0. 0....

5 cU I.

0 Ls as

ul Ls f- 0 CI CU 00) = cC c.0 cC eC eC EC >5 0. 5- 01 CU 4- C .00.0 0. 0.0.0.0.0.C. CL CL CL C.3 •- 0.1 .0-5 +a ..- 0.1

C.

0J 4a(-1 .= C .4.• 4.) L. .0 4.)

1134.1 0- 000 4.1u, •.n LU LU LU LU LU LU C 40

=I 01 2 ...- 15 4.) ill

C "Ci CLI 0 '0 4I) "- E =

....4.)

4.... 4-5,- 3 LW .n CC LO .....4-..-

.0E LA

...1 '0 W

.4.)

'CI • 1....01". :10) .4_44s. : .0'; 4:4,1=s_ -ocu

o ..c O.= O'0 to U

.L.

01 C ••••O 0

Q o o o oM

.e. e >UL.

E u I.

=cs,

CD CD ay. ar cm at-0 CD CD CD 0 CD

1.4 "0 VI

"-. 4-IO ..-,413 4a0) 1-0j ,,D51.-0.1- Ca •,-.4.,u1

r. C in•-, CV 5/ON cc

G)co

• • • • • •CV

'0

VI

5) CV- as e 4J- c se- 4a •-, C S.44 I., ep

E

' 2:xuai :vs :,,,,, . , _:jo fi : . . . .. . . .. . ..,:in =Os _,.., a v ,-3:0 ., -.. 0:03 ....c. vtoiL.

. .

'O

z.:0.1 10

CL1 .0 0 .0 S.

RI 3 0

• E ••••

3 .4- Cs

0 L-0000 .-J - •-• '0 = 41-. 13 ..."0 3 C C

4.../ 0 .- ... 400 D. L',I.= 0 ..= •.- L.1 VI

< < < • W • • • • ...I Sil di C = 4.. C-3 C 0 .13

2 2 = ..I 01>.>=> 4-. 0 E

.- t...) 0vi tS4.4..... .......... 0 vi 0 0 0 0

2 ••- -A 0 4... In L.

44 < W S- ... 0 ocnua, in

r - S. 10. RS .0 C 4) >ten I= fn•

42 0 0 4AL. LIU 4.% COS. 5.. Al ..= U.0.- .0 .- ici 05

œr : .-t 03 a) z 4- 0) i.- co L.c ria 0 V1 .-• C in ..-

L. CLI ssC .0U In ..- La)

4.. CI •+•. 0= ..t ...V1 W OM C LU §0.1 2.

- ... ....1 • • •-• 1.) 0.1 5- 0 ..n RS CZ 7 4.) >5... "0 • > 1.) L. 44 3

CC .1.1 LI L. 3 C1) 411 '0 SU C 0.1 0 0In .I1C L. CY RI 'CI L. 4I) _i •.- as a 0)

.......4.. 4n 4-, 4.4 0 e.,-.c.-x ,_.0) 4.n In tecto .,-,s. 0 Cau10 131 L. 1:7

sCOSCU=0.-.SUL.C.134-40=

.._..,S. .......: s...e,CLI '07j :1....,...>

1 . _ .' . . . ,C i . - '> .4 CI . .C., . . 3 .3C 3L. ,Ci) Sc ...,‘• c...43 ug - -8. ..„,a) as L4 z.,44 rs . "C IS at

•-• C..1• •

VI +11.• •

141 5.0• • •

2 54 at ....1 2 WI N.

143

0)

CU •-•

L.

..1

Page 145: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

Page lb of 28AQUIFER PROTECTION PERMITPermit No. P-102223

TABLE III

OPERATIONAL REPORTING

SpecificReference for

Operational Status Necessary Action

Discharge Alert Level Exceeded N/A

Discharge Limit Violation See PART II.C.I.a.

Groundwater Quality Alert Level See PART II.C.2.a.Exceeded

Aquifer Quality Limit Violation See PART II.C.2.b.

Discharge Control System See PART II.C.3.Failure or Accidental Discharge

Temporary Cessation See PART II.D.

Closure See PART II.E.

Post-Closure See PART II.F

Minor Modification See PART VI.H.3.a.(1)

Major Modification See PART VI.H.3.a.(2)

Change in Owner or Operator See PART VI.H.4.

Bankruptcy or Environmental See PART VI.C.Enforcement against the Permittee

144

Page 146: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

Page 16 of 28AQUIFER PROTECTION PERMITPermit No. P-102223

PART V. REFERENCES: PERTINENT INFORMATION

A. References

The terms and conditions set forth in this permit have been developed basedupon the information contained in the following:

1. Field Inspection Report(s) dated

2. Aquifer Protection Permit Application dated 12-11-89

3. Amendments to above No. 2 dated 2-20-90; 3-12-90; 4-23-90; 5-24-90;

5-25-90; 6-6-90; 7-3-90

4. Aquifer Impact Review dated 3-27-90

5. Contingency Plan in Permit Application Amendment dated 3-12-90

6. Closure Plan in Permit Application Amendment dated 3-12-90

7. Emergency Response Plan dated 6-25-90

8. Public Notice dated 4-25-90

9. Public Hearing comments, correspondence and any additionalsupplenental information contained in the facility permit file.

10. Executive Summary dated 6-29-90

11. Other letter dated 3-12-90

B. Facility Information

1. Facility Contact Person Dr. Ben Sternberg

2. Address LAST, Department of Mining, Bldg. 12

University of Arizona

Tucson, Arizona 85721

3. Emergency Telephone Number: Business (602) 621-2439

Home ( )

The Department shall be notified within 30 days of a change in thefacility contact person.

4. Landowner of Facility Site University of Arizona

Address Board of Regents

Tucson, Arizona 85746

145

Page 147: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

Page 1/ of 28AQUIFER PROTECTION PERMITPermit No. P-102223

C. Definitions

1. "Alert Level (AL)" means a numeric value, expressing either aconcentration of a pollutant or a physical or chemicalproperty of a pollutant, which is established in an individualAquifer Protection Permit and which serves as an early warningindicating a potential violation of either an Aquifer WaterQuality Standard at the applicable point of compliance, or anypermit condition.

2. "Applicant" means the owner or operator of the facility.

3. "Aquifer Protection Permit (APP)" means an individual, orgeneral permit issued pursuant to A.R.S. 5 49-203 and 49-241through 251, and A.A.C. R18-9-101 through 130.

4. "Aquifer Quality Limit (AQL)" means the maximum amount of agiven constituent which the permit conditions allow in theaquifer at the point of compliance.

5. "Aquifer Water Quality Standard" means a standard establishedpursuant to A.R.S. 8 49-221 and 49-223, and ADEQ, AquiferWater Quality Standards rules.

6. "Areal composite sample" means a set of samples collected froman area and combined into a single sample. The number andspacing shall be representative of the quality of theaccumulated material.

7. "BADCT" means the best available demonstrated controltechnology, processes, operating methods, or otheralternatives to achieve the greatest degree of dischargereduction determined for a facility by the Director pursuantto A.R.S. S 49-2433 and D.

8. "Chain of Custody Form" is a document used to maintain anddocument sample possession for enforcement purposes (User'sGuide to the EPA Contract Laboratory Program).

9. "Department" means the Department of Environmental Quality.

10. "Director" means the Director of Environmental Quality or theDirector's designee.

11. "Discharge" means, for purposes of the aquifer protectionpermit program prescribed by A.R.S. Title 49, Chapter 2,Article 3, the addition of a pollutant from a facility eitherdirectly to an aquifer or to the land surface or the vadosezone in such a manner that there is a reasonable probabilitythat the pollutant will reach an aquifer.

146

Page 148: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

Page 1r) of 28AQUIFER PROTECTION PERMITPermit No. P-102223

12. "Discharge Impact Area means the potential areal extent ofpollutant migration, as projected on the land surface, as theresult of a discharge from a facility.

13. "Discharge Limitation (DL)" means any restriction,prohibition, limitation or criteria established by theDirector, through a rule, permit or order, on quantities,rates, concentrations, combinations, toxicity andcharacteristics of pollutants.

14. "Drywell" has the meaning ascribed to it in A.R.S. 3 49-331.3.

15. "Environment" means navigable waters, any other surfacewaters, groundwater, drinking water supply, land surface,subsurface strata or ambient air, within or bordering on thisstate.

16. "Existing facility" means a facility on which constructionbegan before September 26, 1989 and which is neither a newfacility nor a closed facility. For purposes of thisdefinition construction on a facility has begun if thefacility owner or operator has either:

a. Begun, or caused to begin, as part of a continuous on-site construction program any placement, assembly orinstallation of a building, structure or equipment; or

b. entered a binding contractual obligation to purchase abuilding, structure or equipment which is intended to beused in its operation within a reasonable time. Optionsto purchase or contracts which can be terminated ormodified without substantial loss, and contracts forfeasibility engineering and design studies, do notconstitute a contractual obligation for purposes of thisdefinition.

17. "Facility' means any land, building, installation, structure,equipment, device, conveyance, area, source, activity orpractice from which there is, or with reasonable probabilitymay be, a discharge.

18. "Groundwater Quality Protection Permit" means a permit issuedby the Arizona Department of Health Services or the Departmentpursuant to A.A.C. R9-20-208 prior to September 26, 1989.

147

Page 149: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

Page 1Y of 28AQUIFER PROTECTION PERMITPermit No. P-102223

19. "Hazardous substance" means:

a. Any substance designated pursuant to 3 311(b)(2)(a) and

307(a) of the Clean Water Act;

b. any element, compound, mixture, solution or substance

designated pursuant to S 102 of CERCLA;

c. any hazardous waste having the characteristics identified

under or listed pursuant to A.R.S. S 49-922;

d. any hazardous air pollutant listed under S 112 of theFederal Clean Air Act (42 United States Code 3 7412);

e. any imminently hazardous chemical substance or mixture

with respect to which the administrator has taken action

pursuant to 3 7 of the Federal Toxic Substances ControlAct (15 United States Code 3 2606); and

f. any substance which the Director, by rule, either

designates as a hazardous substance following the

designation of the substance by the Administrator under

the authority described in subdivisions (a) through (e)

of this paragraph or designates as a hazardous substance

on the basis of a determination that such a substance

represents an imminent and substantial endangerment to

public health.

20. "Inert material" means that which is insoluble in-water and

will not decompose or leach substances to water, such as

broken concrete, brick, rock, gravel, sand, uncontaminated

soils.

21. "Injection well' means a well which receives a discharge

through pressure injection or gravity flow.

22. "mg/l" means milligrams per liter.

23. 'Major Modifications" means any of the following:

a. A physical change in an existing facility or change in

its method of operation that results in a significant

alteration in the characteristics or volume of the

pollutants discharged.

b. The addition of a process or major piece of production

equipment, building or structure that is physically

separated from the existing operation and that causes a

discharge.

24. "NPDES Permit" means a permit issued by the United StatesEnvironmental Protection Agency for discharge to the waters of

the United States as required by the Clean Water Act, as

amended (33 U.S.C. 1251 et seq., the "Act").

148

Page 150: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

Page 2u of 28AQUIFER PROTECTION PERMITPermit No. P-102223

25. "New Facility' means a previously closed facility that resumesoperation or a facility on which construction was begun afterAugust 13, 1986 on a site at which no other facility islocated or to totally replace the process or productionequipment that causes the discharge from an existingfacility. A major modification to an existing facility isdeemed a new facility to the extent that the criteria inA.R.S. 3 49-243, subsection B, paragraph 1 can be practicablyapplied to such modification.

26. "Operator" means any person who makes management decisionsregarding facility operations.

27. "Owner" means any person holding legal or equitable title inany real property subject to these regulations.

28. "Point of Compliance means the designated point or points asdefined by the Director based on A.R.S. Title 49, Section 244.

29. "Pollutant' means fluids, contaminants, toxic wastes, toxicpollutant dredged spoil, solid waste, substances andchemicals, pesticides, herbicides, fertilizers and otheragricultural chemicals, incinerator residue, sewage, garbage,sewage sludge, munitions, pertroleum products, chemicalwastes, biological materials, radioactive materials, heat,wrecked or discarded equipment, rock, sand, cellar dirt andmining, industrial, municipal and agricultural wastes or anyother liquid, solid, gaseous or hazardous substances.

30. 'Recharge project' has the meaning ascribed to it inA.R.S. 3 45-651.5.

31. 'Rules" means A.A.C. Title 18, Chapter 9, Articlerequirements for facilities affecting aquifer water quality.

32. "Sewage" means wastes from toilets, baths, sinks, lavatories,laundries, and other plumbing fixtures in residences,institutions, public and business buildings, mobile homes,watercraft, and other places of human habitation, employment,or recreation.

33. "Sewage disposal system' means a system for sewage collection,treatment, and discharge by surface or underground methods.

34. 'Site' means the area where any facility is physically locatedor an activity is conducted, including adjacent land used inconnection with the facility.

35. "Surface impoundment' means a pit, pond or lagoon, having asurface dimension that is equal to or greater than its depth,which is used for the storage, holding, settling, treament ordischarge of liquid pollutants or pollutants containing freeliquids.

149

Page 151: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

Page 21 of 28AQUIFER PROTECTION PERMITPermit No. P-102223

36. "Temporary cessation" means any cessation of operation of a

facility for a period of greater than 60 days but which is notintended to be permanent.

37. "Toxic pollutant" means a substance that will causesignificant adverse reactions if ingested in drinking water.Significant adverse reactions are reactions that may indicatea tendency of a substance or mixture to cause long-lasting orirreversible damage to human health.

38. "ug/1" means micrograms per liter.

39. "Underground storage and recovery project" has the meaningascribed to it in A.R.S. S 45-802.6.

40. "Vadose zone" means the zone between the ground surface andany aquifer.

41. "Well" means a bored, drilled or driven shaft, pit or holewhose depth is greater than its largest surface dimension.

150

Page 152: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

Page e2 of 28AQUIFER PROTECTION PERMITPermit No. P-102223

PART VI. GENERAL CONDITIONS: RESPONSIBILITIES

A. Preservation of Rights

This permit shall not be construed to abridge or alter causes ofaction or remedies under the common law or statutory law, criminalor civil, nor shall any provision of this permit, or any act done byvirtue of this permit, be construed so as to estop any person, thisstate or any political subdivision of this state, or owners of landhaving groundwater or surface water rights or otherwise, fromexercising their rights or, under the common law or statutory law,from suppressing nuisances or preventing injury due to discharges.

B. Monitoring Requirements

The permittee shall conduct any monitoring activity necessary toassure compliance with any permit condition, with Aquifer WaterQuality Standards, and with ARS 49-241 through 49-251:

1. The permittee shall install, use and maintain all monitoringequipment in acceptable condition or provide alternate methodsapproved by the Department; and

2. the permittee is required to conduct monitoring of a type andfrequency sufficient to yield data which are representative ofthe monitored activity and approved by the Department.

C. Reporting of Bankruptcy or Environmental Enforcement

The permittee shall notify ADEQ, Water Pollution Compliance Unitwithin five days after the occurrence of either:

1. The filing of bankruptcy by the permittee; or

2. the entry of any order or judgement against the permittee forthe enforcement of any environmental protection statute and inwhich monetary damages or civil penalties are imposed.

D. Site Examination

1. The Department may routinely inspect the facility or anactivity used for the generation, storage, treatment,collection or disposal of any waste or pollutant, and whererecords are kept for the purpose of ensuring compliance withthese regulations or water quality standards, or to verifyinformation submitted in a permit application, or documentedin a permit including any permit conditions.

2. The Department may:

a. Obtain samples;

b. analyze or cause to be analyzed any samples either onsite or at another location;

151

Page 153: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

Page e3 of 28AQUIFER PROTECTION PERMITPermit No. P-IO2223

c. take photographs;

d. inspect .equi ornent, activities, facilities and monitoringequipment or methods of monitoring; or

e. inspect and copy any records required to be maintained.

3. Any pertinent information required by the permit to bemaintained by the permittee shall be available for on-siteinspection during normal business hours. The owner oroperator of the property shall be afforded the opportunity toaccompany an ADEQ inspector. Split samples and receipts willbe provided to the facility owner or operator at the time thesample(s) is(are) obtained or the photograph(s) is (are) takenas the case may be. A copy of the results of any analysesmade of samples, monitoring, or testing shall be furnishedpromptly to the owner or operator.

4. Inspections shall be conducted pursuant to the appropriateprovisions of the Arizona Revised Statutes and pol ici esestablished by the Department.

E. Proper Operation

1. The permittee shall at all times operate the facility so as toensure the greatest degree of discharge reduction achievablethrough application of the best available demonstrated controltechnology, processes, operation methods or otheralternatives, including, where practicable, no discharge ofpollutants as determined in the application process.

2. The permittee shall operate the facility to ensure thatpollutants discharged will in no event cause or contribute toa violation of aquifer water quality standards at theapplicable point of compliance for the facility, or that nopollutants discharged will further degrade, at the applicablepoint of compliance, the quality of any aquifer that alreadyviolates the aquifer quality standard for that pollutant.

F. Technical and Financial Capability

1. The permittee shall maintain the technical and financialcapability necessary to fully carry out the terms of thispermit.

2. Any bond, insurance policy or trust fund provided as ademonstration of financial capability in the permitapplication shall remain in effect for the duration of thepermit.

152

Page 154: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

Page L4 of 28AQUIFER PROTECTION PERMITPermit No. P-102223

G. Other Rules and Laws

The issuance of this permit does not waive any federal, state,

county or local government rules, regulations or permits for which

this facility may have to comply.

H. Permit Actions

1. This permit may be modified, transferred, renewed or revoked

for cause. The filing of a request by the permittee for a

permit action does not stay any existing permit condition.

2. The Director shall issue a public notice of all proposed

permit actions.

3. Permit Modification

a. Request for modification of a permit shall be made in

writing by the permittee, the Department, or any affected

person, and shall identify the specific item(s) to beconsidered for modification and the facts and reasons

which justify the request. Requests for facilitymodification shall be submitted according to thefollowing schedule:

Request Due

Minor Modification Within 30 cal endar days ofeffecting the modification

Major Modification At least 180 cal endar days

(as defined in PART V.C.23.) before making the majormodification

b. The permittee may be required to submit additionalinformation pursuant to R18-9-108, including an updated

permit application.

c. The following circumstances and occurrences may require a

major modification of a permit:

(1) Material and substantial al terations or additions

to a permitted facility or method of operation

result in a si gnificant alteration in thecharacteristics or volune of pollutant discharged

and justify a change in permit conditions;

(2) discharge from the facility violates or couldreasonably be expected to violate any Aquifer WaterQuality Standard;

153

Page 155: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

Page 25 of 28AQUIFER PROTECTION PERMITPermit No. P-102223

(3) rule or statutory changes have occurred, such as torequire a change in the permit;

(4) there has been a change of an applicable point ofcompliance; or

(5) the addition of a process or major piece ofproduction equipment, building or structure that isphysically separated from the existing operationand causes a discharge.

d. With written concurrence of the permittee, the Departmentmay make minor modifications to a permit for any of thefollowing reasons without giving public notice orconducting a public hearing:

(1) To correct typographical errors;

(2) increase the frequency of monitoring or reporting;

(3) change an interim compliance date in a complianceschedule if the permittee can show just cause andthat the new date does not interfere with theattainment of a final compliance date requirement;

(4) change construction requirements, if the alterationcomplies with the requirements of these rules andprovides equal or better performance; or

(5) replace monitoring equipment, including wells, ifsuch replacement results in equal or greatermonitoring effectiveness.

4. Permit Transfer

a. The Director may transfer an individual AquiferProtection Permit if the Director determines that theproposed transferee will comply with ARS 49-241 through49-251 and AAC Chapter, regardless of whether thepermittee has sold or otherwise disposed of the facility,until the Director transfers the permit.

b. The proposed transferor and the transferee shall notifythe Department within ten days after any change in theowner or operator of the facility. The notice shallinclude the name and signature of the transferor owner oroperator, the name and signature of the transferee owneror operator; and the name and location of the facility.

c. Information required in R18-9-108.A.1,2,3 and 6; B.7,8,and 9; and D. shall be submitted about the Transfereeprior to transfer of the permit.

154

Page 156: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

Page z6 of 28AQUIFER PROTECTION PERMITPermit No. P-102223

5. Permit Revocation and Suspension

The Director may suspend or revoke this permit for any of the

following reasons:

a. Noncompliance by the permittee with any applicable

provision of Title 49, Chapter 2, Article 3 or theArizona Revised Statutes, AAC Title 18, Chapter 9 orpermit conditions;

b. the permittee's misrepresentation or omission of any

fact, information or data related to the permitapplication or permit;

c. the Director determines that the permitted activity is

causing or may cause a violation of any Aquifer WaterQuality Standard; or

d. a permitted discharge has the potential to cause or will

cause imminent and substantial endangerment to publicheal th or the envi ronment.

I. Confidentiality of Information

1. Any information sutmitted to or obtained by the Department inconformance with A.R.S. Title 49, Section 243 may be available

to the public unless it is designated confidential.Information or a particular part of the information shall beconsidered confidential on either:

a. A showing, satisfactory to the Director, by any person

that the information, or a particular part of theinformation, if made public, would divulge the tradesecrets of the person; or

b. a determination by the attorney general that disclosureof the information or a particular part of theinformation would be detrimental to an ongoing criminalinvestigation or to an ongoing or contemplated ci vilenforcement action under ARS Title 49, Chapter 2 inSuperior Court.

2.Criteria for Determining Confidentiality

a. A confidentiality claim has been made at the time the

information was sulxnitted or obtained;

b. facility owner or operator has shown that reasonablemeasures have been taken to protect the confidential ity

of the information and intends to continue to take suchmeasures;

155

Page 157: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

Page _/ of 28AQUIFER PROTECTION PERMITPermit No. P-102223

C.information is not, and has not been, reasonablyobtainable without the facility owner or operator' sconsent by other persons other than governmental bodiesby use of legitimate means, other than discovery based ona showing of special need in a judicial or quasi-judicialproceeding;

d. no statute or rule specifically requires disclosure ofthe i nformati on; and

e. the facility owner or operator has shown that disclosureof the information is likely to cause harm to itscompetitive position.

3. Financial information required in the permit or permitapplication will be held confidential. Notwithstanding, theDirector may disclose any records, reports or informationobtained from any person in regard to this permit, includingrecords, reports or information obtained by the Director orDepartment employees, to:

a. Other state employees concerned with administering ARSTitle 49, Chapter 2, or if the records, reports orinformation are relevant to any administrative orjudicial proceeding under that chapter; and/or

b. employees of the United States Environmental ProtectionAgency, if such information is necessary or required toadminister and implement or comply with the Clean WaterAct, the Safe Drinking Water Act, CERCLA or provisionsand regulations relating to those acts.

4. Claims of confidentiality for the following information shallbe denied:

a. The name and address of any permit applicant orpermittee;

b. chemical constituents, concentrations and amounts of anypollutant discharge; or

c. existence or level of a concentration of a pollutant indrinking water or in the environment.

J. Viol ations; Enforcement

Any person who owns or operates a facility contrary to theprovisions of ARS Title 49, Chapter 2, who violates the conditionsspecified in the AAC Title 18, Chapter 9, Article 1, or this permit,is subject to the enforcement actions prescribed in Title 49,Chapter 2, Article 4 or the Arizona Revised Statutes.

156

Page 158: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

Page ..-d of 28AQUIFER PROTECTION PERMITPermit No. P-102223

PART VII. AQUIFER WATER QUALITY STANDARDS

General Standards Applicable to al 1 Aquifers

1. A discharge shall not cause the concentration of a pollutant in anaquifer to exceed at an applicable point of compliance any one ofthe maximum concentrations prescribed in A.A.C. R18-11-406, unless agreater AQL has been established.

2. A discharge shall not cause a pollutant to be present in an aquiferin a concentration which endangers human health.

3. A discharge shall not cause a violation of a surface water qualitystandard established for a navigable water of the State.

4. A discharge shall not cause a pollutant to be present in an aquiferwhich impairs existing or reasonably foreseeable uses of water in anaquifer.

157

Page 159: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

158

Page 160: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

APPENDIX V

PRINTOUT OF GEOCHEMICAL MODELING

OF INJECTION TEST

159

Page 161: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

DATA READ FROM DISK

ELEMENTSSPECIESLOOK MINSimulation 1. Water Data from San Xavier Mine0000000000 0 0 0.00000ELEMENTSArsenic 6 75.Carbonat 10 61.C 10 61.

0 O.SOLUTION 1Mine Hater17 10 2 . 7.31 13.2 24.3 1.00

6 1.0000-03 8 6.0000-02 16 5.60010-01 27 1.0000-02 23 1.4600+014 1.0000-03 10 2.1600+02 11 7.9000+01 13 2.0000+01 15 2.0000-02

17 6.3000-01 21 3.3400+01 22 1.0000-02 24 2.0600+01 29 1.5000+0234 9.00010-02 19 6.0000+00

TOTAL POOLALITIES OF ELEMENTS

ELEMENT MOLALITY LOG MOLALITY

AG 9.2756080-09 -8.0327Arsenic 1.3340550-08 -7.8748OA 4.3710850-07 -6.3594TOT ALI( 3.5419070-03 -2.4508CA 1.9721250-03 -2.7051CL 5.6443250-04 -3.2484CU 3.1490300-07 -6.5018F 2.9492120-05 -4.5303FE 1.1286930-05 -4.9474K 1.5352790-04 -3.8138MG 1.3745510-03 -2.8618MN 1.8212190-07 -6.7396N 2.3559270-04 -3.6278NA 8.9653460-04 -3.0474PB 4.8291030-08 -7.3161S 1.5623430-03 -2.8062ZN 1.3775260-06 -5.8609

----DESCRIPTION OF SOLUTION ----

PH 7.3100PE 13.2000

ACTIVITY 1120 0.9998IONIC STRENGTH 0.0111

TEMPERATURE 24.3000ELECTRICAL BALANCE 2.62310-04

THOR 2.62700-02TOTAL ALKALINITY 3.5419D-03

IIIRAtIONS 9TOTAL CARBON 3.86790-03

DISTRIBUTION OF SPECIES

I SPECIES Z MOLALITY LOG MOLALITY ACTIVITY LOG ACTIVITY GAMMA LOG GAMMA

111+ 1.0 5.544220-08 -7.2562 4.897790-08 -7.3100 8.834040-01 -0.05382 E- -1.0 6.309570-14 -13.2000 6.309570-14 -13.2000 1.000000+00 0.0000 311204 AG+6 H3ASO48 BA 2+

0.0

01:21

2.0

9.998240-014.845560-091.718080-144.371080-07

-0.0001-8.3147

-13.7650-6.3594

9.998240-014.348570-091.722490-14

335300-07

-0.0001-8.3617

-13.7638-6.5474

1.000000+008.974340-011.002570+006.486500-01

0.0000-0.0470

0.001 1-0.1880

10 CO3 2- -2.0 4.486210-06 -5.3481 .909980-06 6.486500-01 -0.188011 CA 2+13 CL- -f:S 1.737600-03

5.644270-04-2.7601-3.2484

1.157460-035.046680-04

-5.9361

-3.297-2.9365

8.941250-01-0.1764-0.0486

15 CU 2+ 2.0 1.741060-08 -7.7592 1.129340-0 -7.9472 6.486500-01 -0.188016 F- -1.0 2.773810-05 -4.5569 2.48931 -4.6039 8.974340-0 -0.047017 FE 2+ 2.0 1.034290-14 -13.9854 6.860510-1 -14.1436 6.633140-0 -0.178319 K+ 1.0 1.526740-04 -3.8162 1.365090-04 -3.8648 -0.048621 MG 2+ 2.0 1.221300-03 -2.9132 8.190120-04 -3.086722 MN 2+ 2.0 1.601220-07 -4.7954 1.038630-07 -6.9835

Iltlial6.486500-01

-0.11-0.18

23 NO3 -24 64+

-1.01.1 2.355930-048.91513

-3.6278-3.0499

2.114290-048.010850-04

-3.6748-3.0963

8.974340-01 -0.04-0.0464

27 PB 2+ 1.3294 -8.8763 8.623690-10 -9.06438.98568D-0i6.486500-0 -0.1880

29 SO4 2- -2.0 1.251740-03 -2.9025 8.089720-04 -3.0921 6.462770-01 -0.189634 ZN 2+

CI»2.0 8.862880-07

4.139760-19-6.0524

-18.38305.748900-073.715170-19

-6.2404 6.486500-01 -0.1880

FE 3+101 3+

ii E00

1.82.272200-141.224630-19

-13.6436-18.9120

9.707600-154.6240910-20

-18.4300-14.0129-19.3350

8.974340-014.272340-013.775920-01

-0.0470-0.3693-0.4230

6 NO2 - - 9.947660-17 -16.0023 8.927370-17 -16.0493 8.974340-01 -0.047065 00- -1.0 2.167220-07 1.944930-07 8.974340-01 -0.04707677 re:78 MGCO3 AO79 MGHCO3 +

1.01.00.01.0

2.88061 0-08.473340-06.244530-06

i .263710-05

-4.664i-7.540:114,-4.4863

2.585160-081.322230-062.250290-062.928960-05

-6.711-7.587

11118-4.5333

8.974340-018.974340-011.002570+008.974340-01

-0.0470-0.04700.0011

-0.047080 MGSO4 AO84 CAOH +

0.0 1.168680-046.271260-09

-3.9323-8.2026

1.17168D-04.62805D-09

-3.9312-8.2496

1.002570+00 0.0011-0.0470

85 CAHCO3 +86 CACO3 AO

1.1I.0.0

4.040450-05 -4.393611119 .626030-054.711460-06

-4.44068.97434:18.974340-01.00257

-0.04700.0011

87 CASO4 AO 0.091 CAF + .

1.891430-042.75442D-07 -6.5600

1.896280-042.471910-07

1.3168

-6.60%1.002570+008.974340-01

0.0011-0.0470

92 NACO3 - -1.093 NAHCO3 A 0.0

4.647240-081.369160-06

-7.3328 4.170590-4181.372680-06

-7.3798 21.974340-01 -0.0470

94 NASO4 - -1.096NAP AC 0.0

3.603110-063

-5 .8645-5.4433-8.4914

3.233550-063.234130-09

1.8624.4903

570+008.974340-011.002

.4902 1.002570+00-S:S2 410.0011

97 KSO4 - -1.0 8 :011RM

-6.0684 7.666370-07 -6.1154 8.974340-01 -0.0470109 FEOH + 1.0 4.68293547 -16.3295 4.202590-17 -16.3765 8.974340-01 -0.0470110 FEOH3 -1 -1.0 5.765860-24 -23.2391 5.174480-24 -23.2861 8.974340-01 -0.04701 FESO4 AO 0.0 9.718720-16 -15.0124 9.743670-16 -15.0113 0.00111 FEOH2 AC10 FEW 2+

0.0 6.852080-21 -20.1642 6.869670-21 -20.16311.002e+.0001.002 D+00 0.0011

1' 9R42:

2.0

211.892720-097.166340-14

-8.7229-13.1447

1.227710-096.431320-14

-83109-13.1917

6.486500-018.974340-01

-0.1880-0.0470

101 2.230730-16 -15.6516 1.446960-16 -iiiini -0.1880 121 F + 1.0 3.716380-19 -18.4299 3.335200-19 - 6.48650D-01

8.9743 1 -0.0470

113 F CU ACF +

0.01.0

1.678860-239.011680-06

-22.7750-5.0452

1.683170-238.087390.-06

-22.7739-5.0922

il9i37 0.0011 -0.0470

160

SOLUTION NUMBER 1 Mine Water

Page 162: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

161

124 FE0443 AO 0.0 1.858650-06 -5.7308-6.3823

1.863420-06 VA 1.002570.00 0.0011

125 FE 0444 - -1.0 4.147080-07 3.721730-07 8.974340-01127 FEF 2+ 2.0 5.828060-13 -12.2345 3.780370-13 -12.4225 6.486500-01 -0.1880128 FEF2 . 1.0 4.149410-13 -12.3820 3.723830-13 -12.4290129 FEF3 AG 0.0 1.461910-14 -13.8351 1.465670-14 -13.8340

8.974340-01

-0.0470

18g?130 FE(S012 -1.0 1.828270-15 -14.7380 1.640750-15 -14.7850 MEN?131 FE2(OH 2 4.0 2.359080-16 -15.6273 4.1762210-17 -16.3792

-0.0470-0.7520

132 FE3(OH 0-4 5.0 1.1253818 -17.9487 7.52247D-20 -19.12361.770270-016.684410-02

135 8A 044 . 1.0 2.663680-13 -Ii:EN -9.67352.390480-13 -12.6215 8.974340-01 -0.0470

136 MNCL + 1.0 2.363000-10 2.120630-10 8.974340-01

-1.1749

137 MNCL2 AG 0.0 2.899730-14 -13.5376 2.907180-14 -13.5365-0.04700.0011

138 MNCL3 - -1.0 7.370120-18 -17.1325 6.614200-18 -17.17951.002570+008.974340-01

139 P49044 + 1.0 5.7351310-11 -10.2415 5.146910-11 -10.2885 8.974340-01 :8:8M140 MN(0P4)3 -1.0 1.560380-20 -19.8068 1.400340-20 -19.8538 8.974340-01

141 MNF • 1.0 2.039560-11 -19,113; 1.830370-11 -10.7375 8.974340-01-0.0470-0.0470

142 811104 AQ 0.0 1.511950-08 1.515830-08 -7.8193 1.002570-00 0.0011

143 844(903)2(NO312 0.0 1.846540-14 -13.7336 1.851280-14 -13.7325 1.002570+00 0.0011

144 MNHCO3 + 1.0 6.566710-09-8.1827 5.893190-09 -8.2296 8.974340-01 -0.0470

145 CUCL2 - -1.0 3.339730-20 -19.4763 2.997190-20 -19.5233 8.974340-01 tilig146 CUCL3 2- -2.0 3.685840-23 -22.4335 2.390820-23 -22.6215 6.486500-01 I147 CUCO3 AG 0.0 1.760360-07 -6.7544

-9.00141.764880-076.46553D-10

-6.7533 1.002570.00 0.0011-9.1894 6.486500-01 -0.1880

148 CU(CO3)2 -2.0 9.967680-10 149 CUCL + 1.0 1.65161 0+ 11 -10.7821 1.482210-11 -10.8291 8.974340-01 -8:8t1?150 CUCL2 AQ 0.0 3.976550-15 -14.4005 3.986760-15 -14.3994 1.002570+00

151 CUCL3 - -1.0 7.856420-21 -20.1048 7.050610-21 -20.1518 8.974340-01

152 CUCL4 2- -2.0 2.705000-26 -25.5678 1.754600-26 -25.7558 6.486500-01 =8:TA8153 CUF + 1.0 5.663780-12 -11.2469 5.082870-12 -11.2939 8.974340-01 -0.0470

2.305410-09 8.974340-01 -0.0470154 CUOH + 1.0 2.568890-09 -8.59039.832670-08

-8.63731.002570+00 0.0011

155 CLII0Hi2 0.0 9.807490-08 -7.0084 -7.0073

156 Cu OH 3 -1.0 1.350810-13 -12.8694 1.212260-13 -12.9164 8.974340-01 -0.0470

157 CU OH 4 -2.0 7.594700-19 -18.1195 4.926300-19 -18.3075 6.486500-01 -0.1880

158 CU2(01.1)2 2.0 3.347490-12 -11.4753 2.171350-12 -11.6633-8.7313

6.486500-01 -0.1880

159 CUSO4 AO 0.0 1.851570-09 -8.7325 1.856320-09 -7.79331.002570+00 0.0011

161 CUHCO3 ..1.0 1.793540-08I.Z111 7.571000-10 -9.1208 8.974340-01 -

1.609590-08 8.974340-01 -0.0470

81ted162 ZNCL • 1.0 8.4362801-10

163 ZNCL2 AG 0.0 3.979430-13 -12.4002 3.989650-13 -12.3991 1.002570+00

164 ZNCL3 - -1.0 2.506740-16 -15.6009 2.249630-16 -15.6479 8.974340-01 -0.0470

165 ZNCL4 2- -2.0 8.703460-20 -19.0603 5.645500-20 -19.2483 6.486500-01 -0.1880-9.6512166 ZNF . 1.0 2.232710-10 2.003710-10 -9.6982

-7.13368.974340-01 -0.0470

167 244041 + 1.0 1.298360-08 -7.8866 1.16519D-08 -8.55542.783260-098.974340-01 -0.0470

w168 zoH12 0.0 2.7761310-09 -8.5566

169 244 ( 044 3 -1.0 1.935590-13 -12.7132 1.737060-13 -12.76021.002570+00 0.00118.974340-01 -0.0470

170 ZNION 4 -2.0 8.182570-19 -18.0871 5.307620-19 -18.275 6.486500-01 -0.1880

171 ZNOHCL A 0.0 1.956140-10 -9.7086 1.961170-10 =1:79274 1.002570+00 0.0011

174 28504 AQ 0.0 1.081580-07 -6.9659 1.084360-077.168890-10 6.486500-01 -0.1880

1.002570+00 0.0011

8:83,1?-7.4946 2.076660-08 -7.6826 6.486500-01 -0.1880

175 Z44(SO4)2 -2.0 1.105200-09 -8.9566 -9.144

180 ZNHCO3 . 1.0 1.149400-17 -16.9395 0-1.0315117 -.14.11253.337910-07

8.974340-01 -181 ZNCO3 AG 0.0 3.329370-07 -6.4776

182 ZN(CO3)2 -2.0 3.201510-081.002570+00

208 PBCL • 1.0 1.89/320-11 -10.7219 1.702720-11 -10.7689 -0.0470

209 P8CL2 AO 0.0 1.3763510-14 -13.8613 1.379880-14 -13.86028.974340-01

210 PBCL3 - -1.0 6.123000-18 -17.2130 5.494990-18 -17.2600 IMIBISI0.0011

-0.0470

211 P8CL4 2- -2.0 2.039940-21 -NIX;-9.4965 6.486500-01

1.323200-21 -20.8784 -0.1880

212 P8(CO3)2 -2.0 4.914320-10 3.18767 0-106.486500-01

-0.1880213 PSF • 1.0 4.253730-13 -12.37 12 3.817440-13 -12.4182 8.974340-01 -8:8t7d50

214 PBF2 AO 0.0 1.9352-16 -15.7133 1.940220-16 -15.7121

215 P8F3 - -1.0 3.898770-20 -19.4091 3.4988910-20 -19.45611.002570+008.974340-01 -0.0470

216 P8F4 2- -2.0 6.426860-25 -24.1920 4.168780-25 -24.3800217 MOM + 1.0 3.8248510-10 -9.4174 3.432550-10 -9.4644

6.4865010-01 -0.1880-0.0470

218 P8)044)2 0.0 2.719110-12 -11.5656 2.726090-12 -11.56458.974340-011.002570+00 0.0011

219 P8 ( 044)3 -1.0 7.119710-16 -15.1475 6.389470-16 -15-.1945 11.974340=01 -0.0470

220 P82044 .3 3.0 1.755040-17 -16,7557 6.626890-18 -17.1787 3.775920-01 -0.423022 P8 803 + 1.0 3.005070-12 -11.522 2.696850-12 -11.5691 8.974340-01 -0.0470

22 P11504 AQ 0.0 3.913030-10 -9.40 -9.4064 1.00257E1+00 0.0011

122 P83(044 )4 2.0 2.037290-22 -21.69 1.32149E1-22 -21.8789 6.486500-01 -0.1880

23 PBCO3 AG 0.0 4.349800-08 -7.3615 4.360970+08 -7.3604 1.002570+00 0.0011231 P8 ( 041)4 -2.0 4.617180-20 -19.3356 2.994930-20 -19.5236 6.486500-01 -0.1880

232 P8(504)2 -2.0 2.567730+12 -11.5904 1.665560-12 -11.7784 6.486500-01 -0.1880

233 P8HCO3 + 1.0 2.170600-09 -8.6634 1.947970-09 -8.7104 8.974340-01 -0.0470

248 AGCL AO 0.0 4.119670-09 -8.3851 4.130240-09 -8.3840 1.002570+00 0.0011

249 AGCL2 - -1.0 2.334160-10 -9.6319 2.094780-10 -9.6769 8.97434D-01 -0.0470

250 AGCL3 2- -2.0 1.680170-13 -12.7746 1.069640-13 -12.9626 6.46650D-01 -0.18802182 AGCL4-3 -3.0 2.417390-16 -15.6167 9.12788D-17 -16.0396 3.775920-01 -0.4230AGF AO 0.0 2.501460-13 -12.6018 2.507860-13 -12.6007 1.002570+00 0.0011

2AGOH AO 0.0 ;.854360-14 -13.0528 8.877090-14 -13.0517 1.002570+00 0.0012 40(041 )2 -1.0

1

259 AG504 - -1.0.019260-18 -17.6948 1.81215D-1$ -17.7416 $.97434::001 -0.0470

.59815D-11 -10.1193 6.616640-11 -10.1663 8.974340-0 -0.0470

260 46803 AG 0.0 4.703250-13 -12.3276 4.715320-13 -12.3265 1.00257 0.0011

269 442ASO4 - -1.0 2.254600-09 -4.6469 2.023360-09 -8.6939 8.974340-01 -0.0470270 HASO4 2- -2.0 1.108500-08 -7.9553 7.190250-09 -8.1433 6.486500-01 -0.1880

271 ASO4 -3 -3.0 9.687650-13 -12.0136 3.657980-13 -12.436$ 3.775920-01 -0.4230272 HCO3 - -1.0 3.441170-03 -2.4633 3.068220-03 -2.5103 t.974340-01 -0.0470

274 44SO4 - -1.0 4.202930-09 -6.3764 3.771850-09 -8.41g4 819111818° -8:824i275 MF AG 0.0 1.

F2770100-09 -6.7520 1.774640-09 -8.7 1.00257 0.001

273 H2CO3 AO 0.0 3.402340-04 -3.4662 3.411070-04 -3.4671

276 M - -1.0 1.86340D-13 -12.7297 1.672260-13 -17 67 6.9743 04.01 -0.0470

277 H2F2 AO 0.0 6.690500-18 -17.0610 .71281D-16-2.17.059$ 1.002D+00

362 02 AG 0.0 5.323860-05 -4.2736 .337520-05 -4.2727 1.002570+00 0.0011

---- LOOK NIN IAP ----

PHASE LOG IAP LOG KT LOG IAP/KT

ANHYDRIT -6.0266 -4.6335 -1.3951ARAGON T -8.4726 -6.3297 -0.1429ARTINI E _2.9101 9.6496 -6.7395BAF2 -5.7617 -9.9935BARIT -4.1 -9.990$ 1.3514

!rill - .4726 -84711.5338

16.8345,.0

.3014

.0021DOLOM -17.0954 -16.96 -0.1097EPSOMA -6.1793 -2.1449 -4.0344FERRI 20.9661 17.937 3.0289FE3(OH)6 42.3885 46.3241 -3.9360

Firaf7-1 17

63.7641 10.007 7.7768

81.3354 -37.6/ -143.6517F 2(SO41 -11.2035 29.7765 -40.9600LUOFRII -12.1443 -10.9681 -1.1762

GOETHIT 20.9662 13.5722 7.3940GREIGIT -684.7780 -153.9904 -130.71;GYPSUM-6.028 -94504 -1.17HAUT -6.3933 1.5784 -7.97MEM

2AITE 41.9325 22.147/ 19.7841

HMI E -34.3411 -29.9256 1NYORMAGN -HIM -8.6799

--11:4

JAROSITE 27.1469 0.12/MACKINAW -181.3354-181.33 -36.4137 21

=MT 41-$. 111 s -6.019432.4845 9.4460-0.6035

Page 163: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

MAGNET/T 42.3888 29.9215 12.4672MELANTERMIRABILI

-17.2562-4.2855

-2.4749 -14.7813-8.1427

NATRON -11.7295-1. 1428

-10.3924NESINEWO -8.6230 -5.6100 -3.0130PYRITE -322.1072 -86.0270 -236.0802SIDERITe -19.6997 -10.5408 -9.1589THENARD1 -9.2847 -0.1790 -9.1057THERMONA -11.7288 0.1348 -11.8637MITHERIT -12.0835 -8.5906 -3.4929PYROLUSI 48.6563 41.4648 7.1915BIRNESSI 48.6563 43.6444 5.0119NSUTITE 48.6563 43.0544 5.6019BIXBYITE 56.2927 50.5152 5.7775HAUSMANN 63.9291 61.6782 2.2508PYROCROI 7.6363 15.1290 -7.4927MANGANIT 28.1463 25.3144 2.8319RHODOCHR -12.5196 -10.4064 -2.1132MNCL2„. 4 -13.5778 2.6800 -16.2579MNS GREE -174.1553 -29.9538 -144.2016MNSO4 -10.0756 2.6967 -12.7723MN2(SO4) 3.1567 45.4562 -42.2995Cu METAL -34.3472 -11.5067 -22.8405NANTOKIT -24.4442 -9.4944 -14.9498CUF 4.3842 -30.1353CUPRITE 1/. 76/ti -20.6794CHALCOCI -209.4661 -135.5629DJURLEIT -207.1992 -72.8410 -134.3582ANILITE -200.8793 -69.7946 -131.0848BLAUBLEI -178.5537 -58.4732 -120.0805COVELLIF -175.1189 -56.8452 -118.2738CU2SO4CUPROUSF -1:111t -7.3764

1.4167-38.0100

5.7124MELANOTH -14.5412 3.7513 -18.2924CUCO3 -13.4833 -9.6300 -3.8533CUF2 -17.1510 -0.5970 -16.5580CUF2_,. 2H -17.1552 -4.5437 -12.6115CU(014)2 6.6727 8.6663 -1.9936ATACAMIT 2.7384 7.3722 -4.6338CU2(OH)3 2.3606 9.2699 -6.9093ANTLERIT 2.3061 8.2900 -5.9839BROCHANT 8.9788 15.3400 -6.3612LANGITE 8.9787 16.8583 -7.8796TENORITE 6.6727 7.6463 -0.9735CUOCUSO4 -4.3665 11.5914 -15.9579CUSO4 -11.0392 3.0413 -14.0805CHALCANT -11.0396 -8.3971CUPRICFE 48.6052 3-3:8tfl 16.5640CHALCOPY -356.4543 -102.8587 -253.5957ZN METAL -32.6404 25.8234 -58.4639ZNCL2 -12.8344 7.0602 -19.8946SMITHSON -11.7765 -9.9925 -1.7840ZNCO3, 1 -11.7766 -10.2600 -1.5166ZNF2 -15.4483 -1.4974 -13.9508ZN(OH ) 2 8.3794 11.5000 -3.1206

6.1519 15.2000 -9.0481ZN5 OH 8 20.6833 38.5000 -17.8167ZN210M13

ZN2 DM 2 -0.9530 7.5000 -8.4530ZN4 OH 6 15.8058 28.4000 -12.5942ZNNO3)2. -13.5905 3.4305 -17.0210

ZNOIACTI 11.3100 -2.93058.379 11.1777 -2.7982ZINCITE

ZN30 SO4

8.3/91

-10.285 19.1269 -29.4124ZNS Al -173.412 -42.8201 -130.5921

-173.4122 -45.3980 -128.0142SPHALER'WURTZIT -43.4525 -129.9597ZINCOSI -174.11ii 3.0431 -12.3756

illgtki -9.3326-9.3329 :NW -8.7809

-7.5732GOSLARIT -9.3330 -1.9657 -7.3673PB METAL -35.4643 4.2693 -39.7336COTUNNIT -15.6563 -4.7797 -10.8786MATLOCK'PHOSGEN

:18:61134

-9.4437-19.8100 - i1148/

CERRUSI -14. -13.1384 -1.4620PBF2 -18.2721 -7.4388 -10.8334MASSICOT 5.5556 12.9389 -7.3833LITHARGE 5.5556 12.7483 -7.1926P80 .3H 5.5556 12.9800 -7.4244PE1200O3 -9.0448 -0.4802LARNAKIT -6.6008 -0.2689 =HittP8302504 10.4358 -11.4809P8403SO4 'UM 22.1605 -17.650011302CO3ANGLESIT

-3.4892-12.1564

11.0656-7.7937 -11.2S

GALENA -48.9272 -127.3089PLATINER -174::iili 49.4220 -2.8465P8203 61.0400 -8.9088MINI UM 13:111i 73.8673 -16.1805P8(OH)2 8.1741 -2.6186LAURIONI -1:8112 0.6200 -5.6714P82(011) 3 0.5042 8.7900 -8.2858HYDCeRRyP820)011)

-23.645311.1112

-17.460026.2000 AAR

P84(OH)6 21.1000 -16.5898AG METAL -2t.gaiCERARGYR -11.6586 -ling 1.819AG2CO3 -22.2594 -11.0864 -11.1730AGF.4H20AG20

-12.9659-2.1034

0.542612.5980

-13.5085 S

ACANTHIT -183.8951 -113.9894AG2SO4 -n:Uli -14.8880MALACHIT -1:182 -1.6575AZURITE -20.2939 -i1:1741 -3.4149ARSENOL2 -219.1346 -80.8118 -138.3228CLAUDEri -219.1346 -81.0700 -138.0646ORIPMENT -201.3977 -453.5446REALGAR

-611.9424-257.0853 -73.0582 -184.0271

AS205-14472./ill

6.7093 -34.2368SULFUR

74225-35.860

22.3000-104.9051-14.7775CATSO4

CU3 ASO4 -7.5094 6.1000 -13.6094FEA 04.2 7.2024 13.4472 -6.2449MN3ASO42 -4.6189 12.5000 -17.1189P83(ASO4 -10.8606 5.8000 -16.66062N3ASO4286 ( 6504)

-2.3891-3.3099

13.6500-8.9146 -11.0UK 11.6834 32.8798 -21.1964

PORTLAND 11.6834 22.7229 -11.0396MUSTITE 2.6062 11.7329 -9.1267

162

Page 164: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

PERICLAS 11.5332 21.5723 -10.0391MAG-FERR 53.4657 42.9795 10.4863LEPIDOCR 20.9662 14.4172 6.5490FE(OH)3S 20.9661 15.7172 5.2489NA2S03 -50.3046 4.9551 -55.2597K2S03 -51.8417 8.2138 -60.0554CAS03.2N -47.0486 -3.4853 -43.5634CAS03.5H -47.0485 -3.1393 -43.9092H0S03 -47.1987 6.5318 -53.7305BAS03 -50.6594 -5.3776 -45.2818A02503 -60.8353 -10.2124 -50.6229CH4(GAS) -184.2359 -41.1852 -143.0507CO2(GAS) -20.1560 -18.1609 -1.995102(GAS) 82.0398 83.3557 -1.3158

163

Page 165: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

DATA READ FROM DISK

ELEMENTSSPECIESLOOK MINSimulation 2. Mixing of Injection Sein, with SEMI. Ground Water (No Min. Eq.)0000001000 0 0 0.00000ELEMENTSArsenic 6 75.Nitrogen 23 14.C 10 61.

0 O.SOLUTION 1Injection solution17 102 7.60 13.6 30.9 1.02

6 5.00010-03 8 3.2000-02 16 5.8000-01 27 2.0000-02 23 9.7000-014 2.0000-03 10 1.4850+02 11 4.2200+01 13 1.3730+04 15 2.3000-0217 5.0000-02 21 5.3100+00 22 4.0000-03 24 8.9180+03 29 6.2000+0134 2.5000-02 19 3.0000+00

SOLUTION NUMBER 1 Injection solution

TOTAL MOLALITIES OF ELEMENTS

ELEMENT MOLALITY LOG MOLALITY

AG 1.8595220-08 -7.7306Arsenic 6.6950250-08 -7.1742BA 2.3367750-07 -6.6314TOT ALK 2.4408380-03 -2.6125CA 1.0559630-03 -2.9764CL 3.8826060-01 -0.4109CU 3.6299750-07 -6.4401F 3.0617870-05 -4.5140FE 8.9791280-07 -6.0468K 7.6946040-05 -4.1138MG 2.1904730-04 -3.6595MN 7.3021570-08 -7.1365Nitrogen 6.9487660-05 -4.1581NA 3.8905930-01 -0.4100PB 9.6811160-08 -7.0141S 6.4730040-04 -3.1889ZN 3.8355370-07 -6.4162

----DESCRIPTION OF SOLUTION ----

PHPE

ACTIVITY H20IONIC STRENGTH

TEMPERATUREELECTRICAL BALANCE

THORTOTAL ALKALINITY

7.600013.60000.92860.3932

30.9000-4.07370-041.36770+012.44080-03

IlLRATIONSTOTAL CARBON

82.46970-03

DISTRIBUTION OF SPECIES

I SPECIES Z MOLALITY LOG MOLALITY ACTIVITY LOG ACTIVITY GAMMA LOG GAMMA

1 H+ 1.0 5.291160-08 -7.2764 2.511890-08 -7.6000 4.747330-01 -0.32362 E- -1.0 2.511890-14 -13.6000 2.511890- 14 -13.6000 1.000000+00 0.00003 H20 0.0 9.286430-01 -0.0322 9.286430-01 -0.0322 1.000000+00 0.00004 AG. 1.0 5.497520-13 -12.2598 4.000990-13 -12.3978 7.277811)-01 -0.13806 H3ASO4 0.0 1.060270-14 -13.9746 1.160730-14 -13.9353 1.094750+00 0.03938 BA 2+ 2.0 2.336770-07 -6.6314 6.555690-08 -7.1834 2.805440-01 -0.5520

10 CO3 2- -2.0 1.135300-05 -4.9449 3.185030-06 -5.4969 2.805440-01 -0.552011 CA 2+ 2.0 1.040520-03 -2.9828 3.193910-04 -3.4957 3.069540-01 -0.512913 CL- -1.0 3.882600-01 -0.4109 2.484800-01 -0.6047 6.399820-01 -0.193815 0 2+ 2.0 2.668740-08 -7.5737 7.487010-09 -8.1257 2.805440-01 -0.552016 F- -1.0 2.948040-05 -4.5305 2.145530-05 -4.6685 7.277810-01 -0.138017 FE 2+ 2.0 5.676440-17 -16.2459 1.500650-17 -16.8237 2.643650-01 -0.577819 K+ 1.0 7.689970-05 -4.1141 -4.3079 6.399820-01 -0.193821 MG 2+ 2.0 2.157290-04 -3.6661

4.921450-017.248040-0 -4.1398 3.359790-01 -0.4737

22 MN 2+ 2.0 5.123710-08 -7.2904 1.437430-0 -7.8424 2.805440.01 -0.552023 NO3 - -1.0 6.948770-05 -4.1581 5.057180-05 -4.2961 7.277810.01 -0.138024 NA-.- 1.0 3.886110-01 -0.4105 2.766100-01 -0.5581 7.117920-01 -0.147627 PB 2+ 2.0 4.348110-09 -8.3617 1.219840-09 -8.9137 2.805440-01 -0.552029 SO4 2- -2.0 4.666740-04 -3.3310 8.805520-05 -4.0552 1.886870-01 -0.724334 ZN 2+ 2.0 2.194900-07 -6.6586 6.157680-08 -7.2106 2.805440-01 -0.5520

FV+3. 1:Q 1.431450-19 -18.8442 1.04178D-19 -18.9822 7.277810-01 -0.1380l2 0 8.030310-16 -15.0953 7.700330-17 -16.1135 9.589080-02 -1.0182i MN 3+ 3.0 7.227090-19 -18.1410 4.139680-20 -19.3830 5.728010-02 -1.24206 NO2 - -1.0 2.640380-19 -18.5783 1.921610-19 -18.7163 7.277810-01 -0.1380

65 0M- -1.0 7.900460-07 -6.1023 5.749800-07 -6.2403 7.2778115-01 -0.138076 MGOM + 1.0 1.004770-04 -7.9979 7.312520-09 -8.1359 7.277810-01 -0.138077 MGF + 1.0 1.645250-07 -6.7838 1.197380-07 -6.9218 7.277810-01 -0.138078 MGCO3 AO 0.0 2.203430-07 -6.6569 2.412210-07 -6.6176 1.094750+00 0.039379 MGMCO3 + 1.0 1.838030-06 1.3376910-06 -5.8736 7.277810-01 -0.13808084

MGSO4 AO 0.0+CAOH 1.0

1.085320-0617356

.9644 1.188160-06 -5.9251 0.0393

85 CAHCO3 + 1.06.590240-098.326690-06

- .1811-5.0795

4.796250-096.060000-06

-8.31:it.09475D+00.277810-01.277810-01

-0.1380-0.1380

8687

CACO3 AO 0.0CASO4 AO 0.0

1.528960-065.491240-06

.8156-5.2603

1.673830-066.01153D-06

:337

-:.22101.094750+001.094750+00

0.03930.0393

91 CAF + 1.0 9.286990-08 -7.0321 6.758890-08 -7.1701 7.277810-01 -0.13809293

NACO3 - -1.0NAMCO3 A 0.0

3.004140-052.430340-04

-4.5223-3.6143

2.186370.052.660620-04

-4.6603-3.5750

7.277810-011.094750+00

-mil

94 NASD. - -1.0 1.740010-04 -3.7594 1.266350-04 -3.8974 7.277810-01 -0.138096 NAF AO 0.0 8.792000-07 -6.0559 9.625050-07 -6.0166 1.094750+00 0.039397 KSO4 - -1.0 4.629090-08 -7.3345 3.368960.08 -7.4725 7.277810.01 -0.1380109 FEOH + 1.0 3.714120-19 -18.4301 2.703070-19 -18.5681 7.277810-01 -0.1380110111

FEOH3 -1 -1.0FES°. AO 0.0

2.810480-252.385940-19

-24.5512-18.6223

2.045410-252.612010-19

-24.6892-18.5830

7.277810.011.4750+0009

llin 113 FEOH2 AO 0.0 1.285110-22 -21.8911 1.406870-22 -21.8517 1.094750+00 0.0393117 FEOH 2+ 2.0 9.209990-11 -10.0357 2.583810-11 -10.5877 2.8054440.01 -0.5520119 FES°. + 1.0 8.807940-17 -16.0551 6.410250-17 -16.1931 7.277810401 -0.1380120 FECL 2+ 2.0 2.474260-15 -14.6066 6.941410-16 -11.1586 2.805440-01 -0.5520121 FECL2 + 1.0 8.812320-16 -15.0549 6.413430-16 -15.1929 7.2778110-01 -8 :6313122 FECL3 AO 0.0 1.455680-17 -16.8369 1.59361Q-17 -16.7976 1.094750+00123 FE0142 + 1.0 5.377400-07 -6.2694 3.913570-07 -6.4074 7.277810-01 -0.1380

164

Page 166: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

124 FE 0143 AO 0.0 2.161520-07 -6.6652 2.366320-07 -6.6259 1.094750+00 0.0393125 FE0144 - -1.0 1.439290-07 -6.8419 1.047490-07 -6.9799 7.27781 0-01 -0.1380127 FEF 2+ 2.0 1.017250-14 -13.9926 2.853840-15 -14.5446 2.805440-01 -0.5520128 FEF2 + 1.0 3.596220-15 -14.4442 2.61726D-15 -14.5822 7.27781 0-01 -0.1380129 FEF3 AO 0.0 8.290590-17 -16.0814 9.076130-17 -16.0421 1.094750+00 0.0393130 FE(SO4)2 -1.0 2.508670-19 -18.6006 1.825760-19 -18.7386 7.277810-01 -0.1380131 FE2(0M 2 4.0 2.284110-18 -17.6413 1.414900-20 -19.8493 6.194510-03 -2.2080132 FE3(OH 4 5.0 1.9244111-21 -20.7157 6.828240-25 -24.1657 3.548220-04 -3.4500135 BAOH + 1.0 2.394210-13 -12.6208 1.742460-13 -12.7588 7.277810-01 -0.1380136 MNCL + 1.0 1.985530-08 -7.7021 1.445030-08 -7.8401 7.277810-01 -0.1380137 MNCL2 AO 0.0 8.909510-10 -9.0501 9.753690-10 -9.0108 1.094750+00 0.0393138 MNCL3 - -1.0 1.501270-10 -9.8235 1.092600-10 -9.9615 7.277810-01 -0.1380139 MNOH + 1.0 3.007670-11 -10.5218 2.188930-11 -10.6598 7.277810-01 -0.1380140 M 8 ( 014 )3 -1.0 1.581730-20 -19.8009 1.151160-20 -19.9389 7.277810-01 -0.1380141 MNF + 1.0 2.999990-12 -11.5229 2.183340-12 -11.6609 7.277810-01 -0.1380142 MNSO4 AC 0.0 2.258860-10 -9.6461 2.472890-10 -9.6068 1.094750+00 0.0393143 M9 ( 903)2 0.0 1.319640-16 -15.8795 1.444680-16 -15.8402 1.094750+00 0.0393144 MNHCO3 • 1.0 6.290720-10 -9.2013 4.578260-10 -9.3393 7.277810-01 -0.1380145 CUCL2 - -1.0 -14.5596 2.006250-15 -14.6976 7.277810-01 -0.1380146 CUCL3 2- -2.0

2.75667D-112.879690-1 -14.5407 8.078810-16 -15.0927 2.805440-01 -0.5520

147 CUCO3 AC0.0 1.169790-0 -6.9319 1.280630-07 -6.8926 1.094750+00 0.0393148 CU(CO3)2 -2.0 1.830350-09 -8.7375 5.134950-10 -9.2895 2.805440-01 -0.5520149 CUCL + 1.0 9.133290-09 -8.0394 6.64703D-09 -8.1774 7.277810-01 -0.1380150 CUCL2 AO 0.0 8.625200-10 -9.0642 9.442440-10 -9.0249 1.094750+00 0.0393151 CUCL3 - -1.0 1.267340-12 -11.8971 9.223450-13 -12.0351 7.277810-01 -0.1380152 CUCL4 2- -2.0 4.681160-15 -14.3296 1.313280-15 -14.8816 2.805440-01 -0.5520153 CUF + 1.0 4.235290-12 -11.3731 3.082360-12 -11.5111 7.277810-01 -0.1380154 CUOH + 1.0 3.803270-09 -8.4198 2.767940-09 -8.5578 7.277810-01 -0.1380155 CU 1.952950-07 -6.7093 2.137990-07 -6.6700 1.0947510+00 0.0393156. Cu

01112 0.0014 )3 -1.0 6.559250-13 -12.1831 4.773700-13 -12.3211 7.277810-01 -0.1380

157 Cu 0+4 )4 -2.0 1.252290-17 -16.9023 3.513220-18 -17.4543 2.805440-01 -0.5520158 CU2(01412 2.0 2.124460-11 -10.6728 5.960040-12 -11.2248 2.805440-01 -0.5520159 CUSO4 AC 0.0 1.279680-10 -9.8929 1.40013D-10 -9.8536 1.094750+00 0.0393161 CUHCO3 + 1.0 8.230420-09 -8.0846 5.989940-09 -8.2226 7.277810-01 -0.1380162 ZNCL • 1.0 7.303050-08 -7.1365 5.315020-08 -7.2745 7.277810-01 -0.1380163 ZNCL2 AC 0.0 1.292940-08 -7.8884 1.415450-08 -7.8491 1.094750+00 0.0393164 ZNCL3 - -1.0 5.613860-09 -8.2507 4.085660-09 -8.3887 7.277810-01 -0.1380165 ZNCL4 2- -2.0 1.894360-09 -8.7225 5.314530-10 -9.2745 2.805440-01 -0.5520166 ZNF + 1.0 2.757570-11 -10.5595 2.006900-11 -10.6975 7.277810-01 -0.1380167 ZN • 1.0 5.079710-04 -8.2942 3.696920-09 -8.4322 7.277810-01 -0.1380168169

ZN 12 0.0TH

ZN OH 3 -1.01.917060-094.453430-13

-8.7174-12.3513

2.098700-093.241120-13

-8.6780-12.4893

1.094750+007.277810-01

0.0393-0.1380

170 ZN OH 4 -2.0 1.084800-17 -16.9646 3.043350-18 -17.5166 2.805440-01 -0.5520171 ZNOHCL A 0.0 1.710970-08 -7.7668 1.873080-08 -7.7274 1.094750+00 0.0393174 ZNSO4 AO 0.0 1.213950-09 -8.9158 1.328970-09 -8.8765 1.094750+00 0.0393175 ZN(SO4)2 -2.0 3.242840-12 -11.4891 9.097610-13 -12.0411 2.805440-01 -0.5520180 ZNHCO3 + 1.0 8.521790-19 -18.0695 6.201990-19 -18.2075 7.277810-01 -0.1380181 ZNCO3 AC 0.0. 3.574510-08 -7.4468 3.913200-08 -7.4075 1.0947511+00 0.0393182 ZN(CO3)2 -2.0 9.4982 -8.0224 2.664680-09 -8.5744 2.805440-01 -0.5520208 PBCL + 1.0 1.9137/1098 -7.7181 1.392800-08 -7.8561 7.277810-01 -0.1380209 PBCL2 AO 0.0 4.497070-09 -8.3471 4.923170-09 -8.3078 1.094750+00 0.0393210 PBC13 - -1.0 1.380510-09 -8.8600 1.004710-09 -8.9980 7.277810-01 -0.1380211 4.463460-10 -9.3503 1.252200-10 -9.9023 2.805440-01 -0.5520212

P1L4 2- -2.0PB CO3)2 -2.0 1.925430-09 -8.7155 5.401700-10 -9.2675 2.805440-01 -0.5520

213 PB • 1.0 6.394930-13 -12.1942 4.654110-13 -12.3322 7.277810-01 -0.1380214 P8F2 AO 0.0 1.862320-16 -15.7299 2.038780-16 -15.6906 1.094750+00 0.0393215 P8F3 - -1.0 4.354160-20 -19.3611 3.168870-20 -19.4991 7.277810-01 -0.1380216 PBF4 2- -2.0 1.159940-24 -23.9356 3.254160-25 -24.4876 2.805440-01 -0.5520217 PBOH + 1.0 1.208230-09 -8.9178 8.793280-10 -9.0558 7.277810-01 -0.1380218 PB(01l)2 0.0 1.155270-11 -10.9373 1.264730-11 -10.8980 1.094750+00 0.0393

219 PB(OH)3 -1.0 7.376470-15 -14.1322 5.368450-15 -14.2/ .2(7110-01 -0.1380220 P820H +3 3.0 4.192270-16 -15.3776 2.401340-17 -16.6195 5. 1 -1.2420221222

P8903 + 1. 0P6504 AO 0.0

1.253750-125.517490-11

-11.9018-10.2583

9.124520-136.040280-11

-12.0398-10.2189

7.27781D-011.094750+00 -8:B13

225 P133(04-4 )4 2.0 3.794970-20 -19.4208 1.064660-20 -19.9728 2.805440-01 -0.5520 230231

P8CO3 AO 0.0P 8 ( OH)4 -2.0

6.167380-081.624410-18

-7.2099-17.7893

6.751740-084.557180-19

-7.1706-18.3413

1.094750+002.805440-01

0.0393-0.5520

232 P8(504/2 -2.0 9.949710-14 -13.0022 2.791340-14 -13.5542 2.805440-01 -0.5520233 P8HCO3 + 1.0248 AGCL AC 0.0249 AGCL2 - -1.0250ACCU 2- -2.0

2.125280-091.548910-105.557160-094.266180-09

-8.6726-9.8100-8.2551-8.3700

1.546730-091.695670-104.044400-091.196850-09

-8.8106

=1:;;31-8.9220

7.277810-011.094750+007.277810-012.805440-01

-0.1380

- 8:?318-0.5520

251 AGCL4 -3 -3.0 8.616440-09 -8.0647 4.935510-10 -9.3067 5.728010-02 -1.2420252 AGF AO 0.0 1.637330-17 -16.7859 1.792460-17 -16.7465 1.094750+00 0.0393 257 AGM AO 0.0 1.351140-17 -16.8693 1.479160-17 -16.8300 1.094750+00258 80)0 41)2 -1.0259 AGSO4 - -1.0260 AGNO3 AO 0.0

7.513880-229.910910-169.478950-18

-21.1241-15.0039-17.0232

5.468460-227.21297D-161.03771D-17

-21.2621-15.1419-16.9839

7.277810-017.277810-011.094750+00

AIM-0.13800.0393

269 142ASO4 - -1.0 3.433160-09 -8.4643 2.498580-09 -8.6023 7.277810-01 -0.1380270 HASO4 2- -2.0 6.348090-08 1.780920-08 -7.7494 2.805440-01 -0.5520271272273

ASO4 -3 -3.0HCO3 - -1.0H2CO3 AO 0. 0

3.611135D-112.099670-037.343790-05

-Iirlt-2.6778-4.1341

2.072600-121.528100-038.039620-05

-11.6835-2.8158-4.0948

5.728010-02

1.094750+00

-1.2420

- 8:1313274 MSO4 - -1.0 3.481480-10 -9.4582 2.533760-10 7.277810-01 -0.1380275 HF AO 0.0 8.136360-10 8.907290-10 1121 1.094750+00 0.0393276 HF2 - -1.0 1.034620-13 -AIM 7.529790-14 -13.1232 7.277810-01277 H2F2 AO 0.0 -17.8082 1.70243D-18 -17.7689 1.0947 1:1313362 02 AC 0.0

1.5550,88383.4157 0.5335 3.739410+00 0.5728 1.0947 0.0393

---- LOOK MIN TAP --

PHASE LOG IAP LOG KT 1.0G IAP/KT

AMHYDRIT -7.5509 -4.6936 -2.8573ARAGON T -8.9926 -8.3917 -0.6009ARTINI E8AF2

1.2628-16.5203

9.19124 .741 -7.9284-10.7745

BARITE -11.2386 .890BRUCIT 10.9959 16.4225

1.3479- .4266

CALCITE -8.9926 -8.5163 .4763DOLOMIll -18.6292 -17.1179 -1.5113EPSOMIT -8.4201 -2.0999 -6.3202FERRI 19.4798 17.7778 1.7021

37.2716 46.0055 -8.7339F OH 2.7 17.0281 9.8478 7.11103F131H)8

F S PT -190.3504 -36.7246 -153.6257-18.6132 28.5147 -47.1279

FLUORIT -12.8326 -10.8930 -1.9396F 2(5041

GOETHIT 19.5120 13.1818 6.3302GRE1GIT -717.3777 -150.4730 -566.9047GYPSUM -7.6152 -4.8463 -2.7689HALITE -1.1628 1.5931 -2.7559HEMATITE 39.0561 21.3368 17.7193HUNTITE -37.9026 -30.3364 -7.5662HYDRMAGN -27.6793 -9.5126 -18.1668JAROSITE 19.9933 25.7889MACKINAW -190.3504 -37.4546 -18:1;14MAGHEMIT 39.0561 32.1655 6.8906MAGNESIT -9.6367 -8.1178 -1.5169

165

Page 167: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

MAGNETIT 37.4002 28.7979 8.6024MELANTER -21.1040 -2.4293 -18.6747MIRABILI -5.4930 -0.8399 -4.6531NATRON -6.9347 -1.0861 -5.8485NESQUEHO -9.7331 -5.7024 -4.0308PYRITE -336.6770 -83.9286 -252.7484SIDERITE -22.3206 -10.6258 -11.6948THENARDI -5.1715 -0.1881 -4.9834THERMONA -6.6453 0.0902 -6.7355WITHERIT -12.6803 -8.5849 -4.0954PYROLUSI 49.6933 40.5886 9.1047BIRNESSI 49.6933 43.2336 6.4597NSUTITE 49.6933 42.6436 7.0497BIXBYITE 57.0187 49.4505 7.5682HAUSMANN 64.3442 60.4002 3.9440PYROCROI 7.2933 14.7687 -7.4754MANGANIT 28.4933 24.9036 3.5897RHODOCHR -13.3393 -10.4396 -2.8997MNCL2, 4 -9.1804 2.9572 -12.1376MIS GEE -181.3691 -29.0870 -152.2821MNSO4 -11.8977 2.4498 -14.347500(2(504) -0.6506 44.0117 -44.6623CU METAL -35.3257 -11.2598 -24.0659NANTOKIT -22.3304 -9.3615 -12.9689CUF -26.3942 4.1606 -30.5548CUPRITE -28.2835 -6.9482 -21.3353CHALCOCI -216.9780 -72.2097 -144.7684DJURLEIT -214.6465 -71.1675 -143.4791ANILITE -208.1466 -68.1806 -139.9660BLAUBLEI -185.1849 -57.5193 -127.6656COVELLIT -181.6523 -55.5031 -126.1492CU2504 -47.5066 -7.5018 -40.0048CUPROUSF 5.3863 1.1703 4.2160MELANOTH -9.3351 3.5548 -12.8899CUCO3 -13.6226 -9.6300 -3.9926CUF2 -17.4626 -0.8094 -16.6532CUF2, 2H -17.5269 -4.6019 -12.9250CU(OH)2 7.0100 8.4231 -1.4131ATACAMIT 5.8475 7.0742 -1.2267CU2(OH)3 2.1561 8.9932 -6.8372ANTLERIT 1.8391 8.2900 -6.4509BROCHANT 8.8491 15.3400 -6.4909LANGITE 8.8169 16.2266 -7.4097TENORITE 7.0422 7.4032 -0.3611CUOCUSO4 -5.1388 11.0239 -16.1627CUSO4 -12.1809 2.7520 -14.9329CHALCANT -12.3417 -2.6195 -9.7222CUPRICFE 46.0983 31.1053 14.9930CHALCOPY -372.0027 -100.3746 -271.6281ZN METAL -34.4106 25.2369 -59.6475ZNCL2 -8.4200 6.7814 -15.2014SMITHSON -12.7075 -10.0620 -2.6455ZNCO3. 1 -12.7396 -10.2600 -2.4796ZNF2 -16.5475 -1.7060 -14.8415ZN(012 7.9251 11.5000 -3.5749

7.6777 15.2000 -7.5223ZN2101323.2805 38.5000 -15.2195215 018

212 OH 2 -3.3407 7.5000 -10.8407214 OH 6 12.5095 28.4000 -15.89052NNO312, -15.9957 3.5184 -19.5140

2N0(ACTI 7.9573 11.3100 -3.35277.9573 10.8291 -2.8718ZINC1TE

ZN30 SO4 -14.5744 18.1382 -32.7126ZNS A) -180.7372 -41.8024 -138.9348SPHALERI -180.7372 -44.3073 -136.4299WURTZITE -180.7372 -42.4127 -138.3246ZINCOSIT -11.2658 2.7369 -14.0027ZN504, 1 -11.2980 -0.7213 -10.5766BIANCHIT -11.4587 -1.7623 -9.6965GOSLARIT -11.4909 -1.9131 -9.5778PB METAL -36.1137 4.2757 -40.3894COTUNNIT -10.1231 -4.6904 -5.4328MATLOCKI -14.1869 -9.3169 -4.8699PHOSGENI -24.5337 -19.8100 -4.7237CERRUSIT -14.4106 -13.0609 -1.3497PBF2 -18.2506 -7.4500 -10.8007MASSICOT 6.2542 12.6713 -6.4172LITHARGE 6.2542 12.4870 -6.2329P80, .311 6.2435 12.9800 -6.7365P8200O3 -8.1564 -0.6630 -7.4934LARNAKIT -6.7148 -0.3716 -6.3432P8302504 -0.4606 10.1049 -10.5655P8403504 5.7935 21.6012P8302CO3 -1.9023 10.6441

-11.8077-12.5464

ANGLESIT -12.9689 -7.7594 -5.2095GALENA -182.4403 -47.6587 -134.7816PLATINER 48.6220 48.2940 0.3280P8203 54.8762 61.0400 -6.1639MINIUM 61.1303 72.2285 -11.0982P8(012 6.2220 7.9510 -1.7290LAURIONI -1.9506 0.6200 -2.5706P82(011)3 4.2714 8.7900 -4.5186HYDCERRU -22.5992 -17.4600 -5.1392P820(011) 12.4762 26.2000 -13.7238P84(011)6 .6971 21.1000 -15.4029AG METAL -21.9978 -13.1512 -12.8467CERARGYR -13.0025 -9.5274 -3.4751AG2CO3 -30.2926 -10.9345 -19.3581AGF.41120 -17.1949 0.6107 -17.8056AG20ACANTHI?

-9.6278-198.3223

12.4317-68.0966

-22.01;-130.22

AG2SO4 -28.8509 -4.8596 -23.99 4MALACHIT -1.2106AZURITE -6'6116-20.2351 illii? -2.9771ARSENOLI -225.0196 - 8.6686 -146.3510CLAUDETI -225.0196 -78.9434 -146.0762ORIPMENT -678.5933 -196.2412 -482.3521REALGAR -266.1333 -71.1333 -195.000045205 -27.7741 6.6231 -34.3971SULFUR -146.3266 -34.9744 -111.3523

7.1138 22.3000CATSO4CU3 ASO4 -6.7119 6.1000

-11.1862

FEA 04.2 5.5767 13.2878-13.8119

MN3A5042 -6.0550 12.5000 -i8.751iiP83(ASO4 -9.0116 5.8000 -14.8 16ZN3ASO42 -3.9827 13.6500 -17.6327BA(ASO4) -3.8207 -8.8725 5.0518LIME 11.6722 32.1420 -20.4699PORTLAND 11.6400 22.2335 -10.5935WUSTITE 0.6776 11.3366 -10.6592

166

Page 168: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

167

PERICLAS 11.0281 20.9961 -9.9681MAG-FERR 50.0842 41.5977 8.4864LEPIDOCR 19.5120 14.2578 5.2542FE(OH)3S 19.4798 15.5578 3.9221NA2S03 -47.5394 4.9079 -52.4473K2503 -55.0389 8.1790 -63.2179CA503.2H -49.9831 -3.4366 -46.5465CAS03.5H -49.9348 -3.1457 -46.789214G503 -50.5629 6.2382 -56.801084503 -53.6065 -5.3074 -48.2991A02S03 -71.2188 -9.9130 -61.3057CH4(GAS) -190.2004 -40.2124 -149.9880CO2 GAS) -20.6647 -18.1525 -2.512302(GAS) 84.7357 81.1767 3.5590

Mixing of the Waters0010002000 1 0 0.00000ELEMENTSArsenic 6 75.Nitrogen 23 14.C 10 61.

0 O.SOLUTION 2SXML Ground Water17 10 2 7.31 13.2 24.3 1.00

6 1.0000-03 8 6.0000-02 16 5.6000-01 27 1.0000-02 23 3.3000+004 1.0000-03 10 2.1600+02 11 7.9000+01 13 2.0000+01 15 2.0000-02

17 6.3000-01 21 3.3400+01 22 1.0000-02 24 2.0600+01 29 1.5000+0234 9.0000-02 19 6.0000+00

STEPS0.560E-02

SOLUTION NUMBER 2 SXML Ground Hater

TOTAL MOLALITIES OF ELEMENTS

ELEMENT MOLALITY LOG NOLALITY

AG 9.2755030-09Arsenic 1.3358210-08 :1411R;BATOT ALK

4.3710350-073.5418670-03 71.alt

CA 1.9721020-03 -2.7051CL 5.6442610-04 -3.2484 CU 3.1489940-07 -6.5018F 2.9491790-05 -4.5303

'FE 1.1286800-05 -4.9474K 1.5352620-04 -3.8138MG 1.3745350-03 -2.8618MN 1.8211980-07 -6.7396Nitrogen 2.3583920-04 -3.6274 NA 8.9652450-04 -3.0474PB 4.8290480-08 -7.3161S 1.5623260-03 -2.8062ZN 1.3775100-06 -5.8609

----DESCRIPTION OF SOLUTION ----

PH 7.3100PE 13.2000

ACTIVITY 1420 0.9998IONIC STRENGTH 0.0111

TEMPERATURE 24.3000ELECTRICAL BALANCE 2.62060-04

THOR 2.6271D-02TOTAL ALKALINITY 3.54190-03

ITERATIONS 9TOTAL CARBON 3.86790-03

DISTRIBUTION OF SPECIES

1 SPECIES Z NOLAL1TY LOG NOLALITY ACTIVITY LOG ACTIVITY GAMMA LOG GAMMA

1 H+ 1.0 5.544230-08 -7.2562 4.897790-08 -7.3100 8.834030-01 lggas2 E- -1.0 6.30957D-14 -13.2000 6.309570-14 -13.2000 1.000000+003 H20 0.0 9.998240-01 -0.0001 9.998240-01 -0.0001 1.000000+00 0.00004 AG+6 H3ASO4

1.00.0

4.845540-091.720360-14

-8.3147-13.7644

4.348550-091.724770-14 -i1:3113 8.974340-01

1.002570+001 80

8 BA 2+ 2.0 4.371030-07 -6.3594 2.835270-07 -6.5474 6.486490-01 -0.188010 CO3 2- -2.0 4.486160-06 -5.3481 2.909950-06 -5.5361 6.486490-01 -0.188011 CA 2+ 2.0 1.737580-03 -2.7601 -2.9365 6.661260-01 -0.176413 CL- -1.0 5.644200-04 -3.2484

i.15745D-03.046620-04 -3.2970 8.941250-01 -0.0486

15 CU 2+ 2.0 1.741050-08 -7.7592 .129330-08 -7.9472 6.486490-01 -0.188016 F- 0 2.773780-05 -4.5569 2.489280-05 -4.6039 8.974340-01 -0.047017 FE 2+ -1.0 1.034280-14 -13.9854 6.860500-15 -14.1636 6.633140-01 -0.178319 K+ 1.0 1.526720-04 -3.8162 1.365080-04 -3.8648 8.941250-01 -0.048621 MG 2+ 2.0 1.221290-03 -2.9132 8.190030-04 -3.0867 6.706070-01 -0.173522 MN 2+ 2.0 1.601200-07 -6.7956 1.038620-07 -6.9835 6.486490-01 -0.188023 NO3 -24 NA+

-1.01.0

2.358390-048.915030-04

-3.6274-3.0499

2.1168.010;28:81

-3.6744-3.0963

8.974340-018.985680-01

-0.0470-0.0464

27 PB 2+ 2.0 1.329480-09 -8.8763 8.623690-10 -9.0643 6.486490-01 -0.188029 SO4 2- -2.0 1.251730-03 -2.9025 8.089640-04 -3.0921 6.462770-01 -0.189634 ZN 2+ 2.0 -6.0524 5.748860-07 -6.2404 6.486490-01 -0.18801 CU+3

FE 3+4 MN 3+

1.03.03.0

8.86280:-14074.139180-192.2721 D1.224610-19

-18.3830-13.6436-18.9120

3.715150-199.707490-114.624040-2

-18.4300-14.0129-19.3350

8.974340-014.272340-013.775920-01

-0.0470-0.3693

56 NO2 - -1.0 9.958070-17 -16.0018 8.936710-1 -16.0488 8.974340-01 :13:N33650H- -1.0 2.167220-07 1.944930-07 -6.7111 8.974340-01 -0.047076 440014 + 1.0 2.880580-08

-6.661-7.540 2.585130-08 -7.5875 8.974340-01 -0.0470

77 140F + 1.0 1.473310-06 -5.831 1.322200-06 -5.8787 8.974340-01 -0.047078 MGCO3 AO 0.0 2.244480-06 -5.6489 2.250240-06 -5.6478 1.002570+0079 444(Q3O3 + 1.0 3.263640-05 -4.4863 2.928900-05 -4.5333 8.974340-01 -8:85180 MGSO4 AO 0.0 1.168660-04 -3.9323 -3.9312 1.00257 0+00 0.001184 CAOH + 1.0 6.271200-09 -8.2026

i.171660-04.627990-01 -8.2496 8.974340-01 -0.0470

85 CAHCO3 + 1.086 CACO3 AO 0.0

4.040360-054.699290-06

-4.3936-5.3280

.625960-054.711350-06

-4.4406-5.3269

8.974340-011.002570+00

-81087 CASO4 AO 0.0 1.891390-04 -3.7232 1.8962 -3.7221 1.002570+00 0.001191 CAF + 1.0 2.754370-07 -6.5600 2.471860-07 -6.6070 8.974340-01 -0.047092 NACO3 - -1.093 NAHCO3 A 0.0

4.647140-081.369130-06

-7.3328 4.170500-081.372650-06

-7.3798 8.974340-011.002570+00

um94 446504 - -1.096 NAF AO 0.0

3.603040-063.225780-09

-I.8636-5.4433-8.4914

3.233490-063.234060-09

18624.4903

- .49038.974340-011.002570+00 S- IT

Page 169: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

168

97 KSO4 - -1.0 8.542360-07 -6.0684 7.666210-07 -6.1154 8.974340-01 -0.0470109 FEOH . 1.0 4.682850-17 -16.3295 4.202540-17 -16.3765 8.974340-01 -0.0470110 FEOH3 -1 -1.0 5.76579D-24 -23.2391 5.174420-24 -23.2861 8.974340-01 -0.0470111 FESO4 AQ 0.0 9.718520-16 -15.0124 9.743470-16 -15.0113 1.002570+00 0.0011113 FE0M2 AO 0.0 6.852000-21 -20.1642 6.869590-21 -20.1631 1.002570+00 0.0011117 FEOH 2+ 2.0 1.892700-09 -8.7229 1.227700-09 -8.9109 6.486490-01 -0.1880119 FESO4 + 1.0 7.1661901-14 -13.1447 6.431190-14 -13.1917 8.974340-01 -0.0470120 FECL 2+ 2.0 2.230680-16 -15.6516 1.446930-16 -15.8396 6.486490-01 -0.1880121 FECL2 + 1.0 3.716250-19 -18.4299 3.335090-19 -18.4769 8.974340-01 -0.0470122 FECL3 AO 0.0 1.678780-23 -22.7750 1.683090-23 -22.7739 1.002570+00 0.0011123 FEOH2 + 1.0 9.011580-06 -5.0452 8.087300-06 -5.0922 8.974340-01 -0.0470124 FEOH3 AO 0.0 1.858620-06 -5.7308 1.863400-06 -5.7297 1.002570+00 0.0011125 FEOH4 - -1.0 4.147030-07 -6.3823 3.721690-07 -6.4293 8.974340-01 -0.0470127 FEF 2+ 2.0 5.827940-13 -12.2345 3.780290-13 -12.4225 6.486490-01 -0.1880128 .FEF2 • 1.0 4.149280-13 -12.3820 3.723700-13 -12.4290 8.974340-01 -0.0470129 FEF3 AO 0.0 1.461850-14 -13.8351 1.465600-14 -13.8340 1.002570+00 0.0011

1.828220-15 -14.7380 1.640700-15 -14.7850 8.974340-01 -0.0470130 FE(S012 -1.0131 FE2(OH 2 4.0 2.359030-16 -15.6273 4.176130-17 -16.3792 1.770270-01 -0.7520132 FE3)0H 4 5.0 1.125340-18 -17.9487 7.522220-20 -19.1237 6.684400-02 -1.1749135 BAOM • 1.0 2.663650-13 -12.5745 2.390450-13 -12.6215 8.974340-01 -0.0470136 MNCL + 1.0 2.3629510-10 -9.6265 2.120590-10 -9.6735 8.974340-01 -0.0470137 MNCL2 AO 0.0 2.8996410-14 -13.5377 2.907080-14 -13.5365 1.002570+00 0.0011138 MNCL3 - -1.0 7.369790-18 -17.1325 6.613900-18 -17.1795 8.974340-01 -0.0470139 MNOM + 1.0 5.735080-11 -10.2415 5.146850-11 -10.2885 8.974340-01 -0.0470140 4N( 011 )3 -1.0 1.560360-20 -19.8068 1.400320-20 -19.8538 8.974340-01 -0.0470141 MNF • 1.0 2.039520-11 -10.6905 1.830330-11 -10.7375 8.974340-01 -0.0470142 MNSO4 AO 0.0 1.511920-08 -7.8205 1.515800-08 -7.8194 1.002570+00 0.0011143 14N(1403)2 0.0 1.850390-14 -13.7327 1.855140-14 -13.7316 1.002570+00 0.0011144 MNHCO3 . 1.0 6.566570-09 -8.1827 5.893060-09 -8.2297 8.974340-01 -0.0470145 CUCL2 - -1.0 3.339640-20 -19.4763 2.997110-20 -19.5233 8.974340-01 -0.0470146 CUCL3 2- -2.0 3.685700-23 -22.4335 2.390730-23 -22.6215 6.486490-01 -0.1880147 CUCO3 AQ 0.0 1.760330-07 -6.7544 1.764850-07 -6.7533 1.002570+00 0.0011148 CU(CO3)2 -2.0 9.967420-10 -9.0014 6.465360-10 -9.1894 6.48649D-01 -0.1880149 CUCL + 1.0 1.651580-11 -10.7821 1.482190-11 -10.8291 8.974340-01 -0.0470150 CUCL2 AQ 0.0 3.976450-15 -14.4005 3.986650-15 -14.3994 1.002570+00 0.0011151 CUCL3 - -1.0 7.856110-21 -20.1048 7.050340-21 -20.1518 8.974340-01 -0.0470152 CUCL4 2- -2.0 2.704870-26 -25.5679 1.754510-26 -25.7558 6.486490-01 -0.1880153 CUF • 1.0 5.663700-12 -11.2469 5.082790-12 -11.2939 8.974340-01 -0.0470154 CUOM + 1.0 2.568880-09 -8.5903 2.305400-09 -8.6373 8.974340-01 -0.0470

9.807450-08 -7.0084 9.832630-08 -7.0073 1.002570+00 0.0011155 C1012 0.0156 CU OH 3 -1.0 1.350800-13 -12.8694 1.212250-13 -12.9164 8.974340-01 -0.0470157 CU OH 4 -2.0 7.594670-19 -18.1195 4.926280-19 -18.3075 6.486490-01 -0.1880158 CU2(OH12 2.0 3.347460-12 -11.4753 2.171330-12 -11.6633 6.486490-01 -0.1880159 CUSO4 AG 0.0 1.851540-09 -8.7325 1.856300-09 -8.7314 1.002570+00 0.0011161 CUHCO3 • 1.0 1.793520-08 -7.7463 1.609560-08 -7.7933 8.974341-01 -0.0470162 ZNCL + 1.0 8.436120-10 -9.0739 7.570860-10 -9.1209 8.974340-01 -0.0470163 ZNCL2 AO 0.0 3.979310-13 -12.4002 3.989520-13 -12.3991 1.002570+00 0.0011164 ZNCL3 - -1.0 2.506630-16 -15.6009 2.249540-16 -15.6479 8.974340-01 -0.0470165 ZNCL4 2- -2.0 8.703010-20 -19.0603 5.645200-20 -19.2483 6.48649D-01 -0.1880166 ZNF • 1.0 2.232670-10 -9.6512 2.003670-10 -9.6982 8.974340-01 -0.0470167 ZNOH + 1.0 1.29 8350-08 -7.8866 1.165180-08 -7.9336 8.974340-01 -0.0470

2.776110-09 -8.5566 2.783230-09 -8.5555 1.002570+00 0.0011168 ZTH)2 0.0169 ZN OH)3 -1.0 1.935570-13 -12.7132 1.7370510-13 -12.7602 8.974340-01 -0.0470170 ZN 0104 -2.0 8.182510-19 -18.0871 5.307580- 19 -18.2751 6.486490-01 -0.1880171 ZNOHCL A 0.0 1.956110-10 -9.7086 1.961130-10 -9.7075 1.002570+00 0.0011174 ZNSO4 AQ 0.0 1.081560-07 -6.9659 1.084340-07 -6.9648 1.002570+00 0.0011175 ZN(SO4)2 -2.0 1.105170-09 -8.9566 7.168700-10 -9.1446 6.486490-01 -0.1880180 ZNHCO3 + 1.0 1.149380-17 -16.9395 1.031490-17 -16.9865 8.974340-01 -0.0470181 ZNCO3 AO 0.0 3.3293001-07 -6.4776 3.337850-07 -6.4765 1.002570+00 0.0011182 ZN(CO3)2 -2.0 3.201420-08 -7.4947 2.076600-08 -7.6826 6.486490-01 -0.1880

208 PBCL • 1.0 1.897300-11 -10.7219 1.102(00-11 -10.7689 8.9/4340-01 -0.0470209 P8CL2 AO 0.0 1.376320-14 -13.8613 1.379850-14 -13.8602 1.002570+00 0.0011210 PBCL3 - -1.0 6.122790-18 -17.2131 5.494800-18 -17.2600 8.974340-01 -0.0470211 P8C14 2- -2.0 2.039840-21 -20.6904 1.323140-21 -20.8784 6.486490-01 -0.1880212 P8(CO3)2 -2.0 4.914210-10 -9.3085 3.187600-10 -9.4965 6.486490-01 -0.1880213 PBF + 1.0 4.253680-13 -12.3712 3.817400-13 -12.4182 8.974340-01 -0.0470214 P8F2 AO 0.0 1.935210-16 -15.7133 1.940180-16 -15.7122 1.002570+00 0.0011215 P8F3 - -1.0 3.898640-20 -19.4091 3.498780-20 -19.4561 8.974340-01 -0.0470216 P8F4 2- -2.0217 P80+1 + 1.0

6.426580-253.824850-10

-24.1920-9.4174

4.168600-253.432550-10

-219.344 6.486490-018.974340-01

-0.1880-0.0470

218 P8(014)2 0.0 2.719110-12 -11.5656 2.726090-12 -11.5645 1.002570+00 0.0011219 PB(OH)3 -1.0 7.119710-16 -15.1475 6.389470-16 8.974340-01 -0.0470220 MOH +3 3.0 1.755040-17 -16.75 57 6.626880-18 11.1r6/ 3.775920-01 -0.4230221 PBNO3 + 1.0 3.008210-12 -11.5217 2.699670-12 -11.5687 8.974340-01 -0.0470222 PBSO4 AO 0.0 3.912990-10 -9.4075 3.923040-10 -9.4064 1.002570+00 0.0011225 P83(OH)4 2.0 2.037290-22 -21.6909 1.321490-22 -21.8789 6.486490-01 -0.1880

4.349750-08 -7.3615 4.360920-08 -7.3604 1.002570+00 0.0011230 P703 AO 0.0231 PB OH)4 -2.0 4.617180-20 -19.3356 2.994930-20 -19.5236 6.486490-01 -0.1880232 PB SO4)2 -2.0 2.567680-12 -11.5905 1.665530-12 -11.7784 6.486490-01 -0.1880233 PB1-4CO3 • 1.0 2.170580-09 -8.6634 1.9479501-09 -8.7104 8.974340-01 -0.0470248 AGCL AO 0.0 4.119600-04 -8.3851 4.130170-09 -8.3840 1.002570+00 0.0011249 AGCL2 - -1.0 2.334120-10 -9.6319 2.094720-10 -9.6789 8.974340-01 -0.0470250 AGCL3 2- -2.0 1.680110-13 1.089800-13 -12.9627 6.486490-01 -0.1880

2.417270-161.7747-1 .6167 9.127410-17 -16.0397 3.775920-01 -0.42302117 AGCL4 -3 -3.0

252 AGF AO 0.0 2.501420-13 -1 .6018 2.507840-13 -12.6007 1.002570+00 0.00112 AGOH AO 0.0 8.854310-14 -13.0528 8.877040-14 -13.0517 1.002570+00 0.0011258 AG(OH)2 -1.0 2.019250-18 -17.6948 1.812140-18 -17.7418 8.974340-01 -0.0470259 40104 - -1.0 7.598030-11 -10.1193 6.818730-11 -10.1663 8.974340-01 -0.0470260 AGNO3 AO 0.0 4.708140-13 -12.3272 4.720230-13 -12.3260 1.002570+00 0.0011269 H2ASO4 - -1.0 2.257590-09 -8.6464 2.026040-09 -8.6934 8.974340-01 -0.0470270 MASO4 2- -2.0 1.109960-08 -7.9547 7.199770-09 6.486490-01 -0.1880271 4104 -3 -3.0 9.700470-13 -12.0132 3.662820-13 -illti; 3.775920-01 -0.4230272 HCO3 - -1.0 3.441130-43 -2.4633 3.088190-03 8.974340-01 -0.0470273 H2CO3 AO 0.0 3.402300-04 -3.46 3.411040-04 =019? 1.002570+00 0.0011274 MSO4 - -1.0 4.202890-04 -8.37ti 3.771820-09 -8.4234 8.974340-01 -0.0470275 HF AO 0.0 1.770080-04 -8.752 1.774620-09 -8.7509 1.002570+00 0.0011276 11F2 - -1.0 1.863360-13 -12.7297 1.672250-13 -12.7767 8.974340-01 -0.0470277 H2F2 AO 0.0362 0.002 AO

8.690310-185.323860-05

-17.0610-4.2738

8.712620-185.337520-05

-17.0599-4.2727

1.002570+001.002570+00

0.00110.0011

---- LOOK MIN IAP ----

PHASE LOG IAP LOG KT LOG IAP/KT

ANHYDRIT -6.0286 -4.6335 -1.3951ARAGONIT -8.4726 -8.3297 -0.1430ARTINITE 2.9101 9.6496 -6.7395BAF2 -15.7553 -5.7617 -9.9935BARITE -9.6395 -9.9908 0.3514

11.5331 16.8346 -5.3014BRUCIICALCIT -8.4726 -8.4705 -0.0021

-17.0954 -16.98 57 -0.1097DOLOMIHylEPSOMIT -6.1793 -2.1449 -4.0345FERRI 20.9661 17.9373 3.0289FE3(0108 42.3885 46.3245 -3.9360FEOH)2.7 17.7841 10.0072 7.7768FES PPT -181.3354 -37.6837 -143.6517FE2(SO4) -11.2035 29.7765 -40.9800FLUORITE -12.1444 -10.9681 -1.1762

Page 170: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

GOETHITE 20.9662 13.5722 7.3940GREIGITE -684.7780 -153.9904 -530.7875GYPSUM -6.0287 -4.8504 -1.1783HALITE -6.3933 1.5784 -7.9717HEMATITE 41.9325 22.1477 19.7848HUNTITE -34.3411 -29.9256 -4.4155HYDRMAGN -22.9585 -8.6799 -14.2785JAROSITE 27.4744 27.1469 0.3275MACKINAW -181.3354 -38.4137 -142.9217MAGHEMIT 41.9325 32.4845 9.4480MAGNESIT -8.6228 -8.0194 -0.6035MAGNETIT 42.3888 29.9215 12.4672MELANTER -17.2562 -2.4749 -14.7813MIRABILI -9.2855 -1.1428 -8.1427NATRON -11.7295 -1.3372 -10.3924NESOUEHO -8.6231 -5.6100 -3.0130PYRITE -322.1072 -86.0270 -236.0802SIDERITE -19.6998 -10.5408 -9.1590THENARDI -9.2847 -0.1790 -9.1057THERMONA -11.7288 0.1348 -11.8637WITHERIT -12.0835 -8.5906 -3.4929PYROLUSI 48.6563 41.4648 7.1915BIRNESSI 48.6563 43.6444 5.0119NSUTITE 48.6563 43.0544 5.6019BIXBYITE 56.2927 50.5152 5.7775HAUSMANN 43.9291 61.6782 2.2508PYROCROI 7.6363 15.1290 -7.4927MANGANIT 28.1463 25.3144 2.8319RHODOCHR -12.5197 -10.4064 -2.1132MNCL2, 4 -13.5778 2.6800 -16.2579MRS GREE -174.1553 -29.9538 -144.20161111504 -10.0756 2.6967 -12.7723MN2(504) 3.1567 45.4562 -42.2995CU METAL -34.3472 -11.5067 -22.8405NANTOKIT -24.4442 -9.4944 -14.9498CUP -25.7511 4.3842 -30.1353CUPRITE -27.6744 -6.9951 -20.6794CHALCOCI -209.4661 -73.9032 -135.5629DJURLE T -207.1992 -72.8410 -134.3582ANILITBLAUBLII

-200.8793 -69.7946 -131.0848-178.5537 -58.4732 -120.0805

COVELLIT -175.1189 -56.8452 -118.2738CU2504 -45.3864 -7.3764 -38.0100CUPROUSF 7.1290 1.4167 5.7124MELANOTH -14.5412 3.7513 -18.2924CUCO3 -13.4833 -9.6300 -3.8533CUF2 -17.1550 -0.5970 -16.5580CUF2, 2H -17.1552 -4.5437 -12.6115CU(OH)2 6.6727 8.6663 -1.9936ATACAMIT 2.7384 7.3722 -4.6338CU2(OH)3 2.3610 9.2699 -6.9089ANTLERIT 2.3061 8.2900 -5.9839BROCHANT 8.9788 15.3400 -6.3612LANGITE 8.9787 16.8583 -7.8796TENORITE 6.6727 7.6463 -0.9735CUOCUSO4 -4.3665 11.5914 -15.9579CUSO4 -11.0392 3.0413 -14.0805CHALCANT -11.0396 -2.6425 -8.3971CUPRICFE 48.6052 32.0412 16.5640CHALCOPY -356.4544 -102.8587 -253.5957

ZN METAL -32.6404 25.8234 -58.4639ZNCL2 -12.8344 7.0602 -19.8946SMITHSON -11.7765 -9.9925 -1.78412NCO3, 1 -11.7766 -10.2600 -1.5166ZNF2 -15.4483 -1.4974 -13.9508ZN(OH)2 8.3794 11.5000 -3.1206

6.1519 15.2000 -9.0481ZN5 OH 6 20.6633 38.5000 -17.8167ZN2106.113

ZN2 OH 2 -0.9531 7.5000 -8.4531ZN4 OH 6 15.8058 28.4000 -12.5942ZNNO3)2. -13.5896 3.4305ZNO(ACTI 8.3795 11.3100

-17.0201-2.930

ZINCITE 11.1777 -2.798ZN30(504

8.3791-10.285 19.1269 -29.4124

ZWS (A) -173.412 -42.8201 -130.5921SPHALERI -173.4122 -45.3980 -128.0142WURTZITE -173.4122 -43.4525 -129.9597ZINCOSIT -9.3325 3.0431 -12.3756ZNSO4, 1 -9.3326 -0.5516 -8.7809BIANCHIT -9.3329 -1.7597 -7.5732GOSLARIT -9.3330 -1.9657 -7.3673PB METAL -35.4643 4.2693 -39.7336COTUNNIT -15.6583 -4.7797 -10.8786

-16.9652 -9.4437 -7.5215MATLOCKIPHOSGEN -30.2587 -19.8100 -10.4487CERRUSI -14.6004 -13.1384 -1.4620P8F2 -18.2722 -7.4388 -10.8334MASSICOT 12.9389 -7.3833LITHARGE

5.55165.5556 12.7483 -7.1926

P80. .311 5.5556 12.9800 -7.4244P8200O3 -9.0448 -0.4802 -6.5646LARNAKIT -6.6008 -0.2689 -6.3319P8302504 10.4358 -11.4804P8403SO4

-1.04514.510 22.1605 -17.6500

PE1302CO3 -3.489 11.0656 -14.5548ANGLESIT -12.1564 -7.7937 -4.3627GALENA -48.9272 -127.3039PLATINER

-176.236146.575 49.4220 -2.8465

P8203 52.131 61.0400 -8.9088MINIUM 57.6868 73.8673 -16.1805P8(011)2 5.5555 8.1741 -2.6186LAURIONI -5.0514 0.6200 -5.6714P82(014)3 0.5042 8.7900 -8.2858HYDCERRU -23.6453 -17.4600 -6.1853P820(011) 11.1112 26.2000 -15.0888P84(011)6 4.5102 21.1000 -16.5898AG METAL -21.5617 -1/./P78 -8.0081CERARGYR -11.6587 -1.88176G2CO3 -22.2594 -11.0864 -11.1730AGF.4H20 -12.9659 0.5426 -13.5085AG20 -2.1034 12.5980 -14.7014ACANTHIT -69.9057 -113.9894A62504

-183.8911-19.81 -4.9273 -14.8881

MALACHIT -6.8106 -5.1531 -1.6575AZURITE -20.2939 -16.8790 -3.4149ARSENOLI -219.1323 -80.8118 -136.3205CLAUDETI -219.1323 -81.0700 -138.0623ORIPMENT -201.3977 -453.5435REALGAR

-614.9412-257.0847 -73.0582 -184.0265

AS205 -27.5263 6.7093 -34.2356

169

Page 171: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

170

SULFUR -140.7718 -35.8665 -104.9053CA3,4504 7.5237 22.3000 -14.7763CU3(4504 -7.5082 6.1000 -13.6082FEASO4.2 7.2029 13.4472 -6.2443MN3ASO42 -4.6178 12.5000 -17.1178P83(ASO4 -10.8595 5.8000 -16.6595283ASO42 -2.3880 13.6500 -16.0380BA(ASO4) -3.3088 -8.9146 5.6058LINE 11.6834 32.8798 -21.1964PORTLAND 11.6833 22.7229 -11.0396WUSTITE 2.6062 11.7329 -9.1267PERICLAS 11.5332 21.5723 -10.0391MAG-FERR 53.4657 42.9795 10.4862LEPIDOCR 20.9662 14.4172 6.5490FE(OH)3S 20.9661 15.7172 5.24896A2S03 -50.3046 4.9551 -55.2598K2S03 -51.8417 8.2138 -60.0554CAS03.2H -47.0486 -3.4853 -43.5634CAS03.5H -47.0485 -3.1393 -43.9092140503 -47.1987 6.5318 -53.73058A503 -50.6594 -5.3776 -45.2818AG2S03 -60.8353 -10.2124 -50.6229CH4(GAS) -184.2359 -41.1852 -143.0507CO2 GAS) -20.1560 -18.1609 -1.995102(GAS) 82.0398 83.3557 -1.3158

STEP NUMBER 1

0.006 n FRACTION OF SOLUTION 1. 0.994 . FRACTION OF SOLUTION 2.

TOTAL MOLALITIES OF ELEMENTS

ELEMENT MOLALITY LOG MOLALITY

AG 9.3276940-09 -8.0302Arsenic 1.3658330-08 -7.8646BA 4.3596440-07 -6.3605TOT ALK 3.8600570-03 -2.4134CA 1.9669720-03 -2.7062CL 2.7355250-03 -2.5630CU 3.1516880-07 -6.5015F 2.9498100-05 -4.5302FE 1.1228620-05 -4.9497

, K 1.5309730-04 -3.8150MG 1.3680650-03 -2.8639MN 1.8150890-07 -6.7411Nitrogen 2.3490760-04 -3.6291NA 3.0702360-03 -2.5128PB 4.8562200-08 -7.31375 1.5572010-03 -2.8077ZN 1.3719440-06 -5.8627

---- LOOK MIN IAP

PHASE LOG IAP LOG KT LOG IAP/KT

ANHYDRIT -6.0542 -4.6338 -1.4203ARAGONIT -8.4913 -8.3300 -0.1613ARTINITE 2.8727 9.6469 -6.7742B6F2 -15.7777 -5.7616 -10.0160BARITE -9.6697 -9.9903 0.3205BRUCITE 11.5153 16.8322 -5.3170CALCITE -8.4913 -8.4708 -0.0205DOLOMITE -17.1335 -16.9865 -0.1470EPSOMITE -6.2059 -2.1446 -4.0613FERRIHYD 20.9560 17.9363 3.0196FE3(OH)8 42.3593 46.3227 -3.9634FEOH12.7 17.9791 10.0063 7.9728FES PPT -181.3422 -37.6782 -143.6639FE2(504) -11.2492 29.7692 -41.0184FLUORIT -12.1621 -10.9677 -1.1944GOETHIT5 20.9561 13.5700 7.3861GREIGIT -684.7989 -153.9703 -530.8286GYPSUM -6.0544 -4.11504 -1.2039HALIT -5.1810 1.5785 -6.7595HEMATITE 41.9123 22.1431 19.7692HUNTI E -34.4179 -29.9279 -4.4899HYDRMAGN -23.0540 -8.6847 -14.3693JAROSITE 27.4270 27.1391 0.2879MACKINAW -181.3422 -38.4082 -142.9339MAGHEMIT 41.9123 32.4827 9.4296MAGNESIT -8.6422 -8.0199 -0.6223MAGNETIT 42.3597 29.9151 12.4446MELANTER -17.2738 -2.4747 -14.7991MIRABILI -8.2379 -1.1410 -7.0969MATRON -10.6750 -1.3357 -9.3393NESQUEHO -8.6425 -5.6105 -3.0320PYRITE -322.1146 -86.0150 -236.0996SIDERITE -19.7101 -10.5413 -9.1688THENARDI -8.2368 -0.1791 -8.0577THERMONA -10.6740 0.1346 -10.8086WITHERIT -12.1068 -8.5906 -3.5162PYROLUSI 48.6324 41.4597 7.1727BIRNESSI 48.6324 43.6421 4.9903NSUTITE 48.6324 43.0521 .5803BIXBYITE 56.2475 50.5091 .7384

15119HAUSMANN 63.8626 61.6701 .1917PYROCRO1 7.6150 15.1269MANGANIT 28.1237 25.3121 2.8116RHODOCHR -12.5425 -10.4066 -2.1359MNCL2 4 -12.2310 2.6816 -14.9126MNS GiEE -174.1746 -29.9488 -144.2258MNSO4 -10.1054 2.6953 -12.8007

3.0861 45.4480 -42.3619M82(501CU META -34.3447 -11.5053 -22.8394NANTOKI -23.7589 -9.4936 -14.2653CUF -25.7503 4.3829 -30.1332CUPRI -27.6721 -6.9948 -20.6773CHALC 1 -209.4618 -73.8935 -135.5683DJURLE T -207.1950 -72.8314 -134.3636

-200.8756 -69.7853 -131.0903ACLU!8LAUBL I -178.5515 -58.4677 -120.0838COVELL T -175.1171 -56.8375 -118.2796

Page 172: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

CU2SO4 -45.3926 -7.3772 -38.0154CUPROUSF 7.1201 1.4152 5.7048MELANOTH -13.1731 3.7501 -16.9232CUCO3 -13.4850 -9.6300 -3.8550CUF2 -17.1558 -0.5982 -16.5576CUF2, 2H -17.1560 -4.5440 -12.6120CU(OH)2 6.6725 8.6649 -1.9924ATACAMIT 3.4222 7.3705 -3.9483CU2(OH)3 2.3580 9.2683 -6.9103ANTLERIT 2.2971 8.2900 -5.9929BROCHANT 8.9696 15.3400 -6.3704LANGITE 8.9695 16.8547 -7.8852TENORITE 6.6726 7.6449 -0.9723CUOCUSO4 -4.3753 11.5881 -15.9634CUSO4 -11.0479 3.0396 -14.0875CHALCANT -11.0484 -2.6424 -8.4061CUPRICFE 48.5849 32.0359 16.5490CHALCOPY -356.4593 -102.8444 -253.6148ZN METAL -32.6533 25.8201 -58.4734ZNCL2 -11.4817 7.0586 -18.5403SMITHSON -11.7936 -9.9929 -1.8007ZNCO3, 1 -11.7937 -10.2600 -1.5337ZNF2 -15.4645 -1.4986 -13.9658ZN(OH)2 8.3638 11.5000 -3.1362ZN2 OH)3 6.8049 15.2000 -8.3951ZN5 OH)8 21.9737 38.5000 -16.5263ZN2 OH)2 -0.9927 7.5000 -8.4927ZN4 17)4)6 15.7350 28.4000 -12.6650ZN103)2, -13.6108 3.4310 -17.0418ZNO(ACTI 8.3640 11.3100 -2.9460ZINCITE 8.3640 11.1757 -2.8118Z130(504 -10.3491 19.1213 -29.4704ZNS (A) -173.4257 -42.8142 -130.6115SPHALERI -173.4257 -45.3917 -128.0340WURTZITE -173.4257 -43.4465 -129.9792ZINCOSIT -9.3565 3.0414 -12.3979ZNSO4, 1 -9.3566 -0.5526 -8.8040BIANCHIT -9.3572 -1.7597 -7.5974GOSLARIT -9.3573 -1.9654 -7.3919PB METAL -35.4592 4.2693 -39.7285COTUNNIT -14.2876 -4.7791 -9.5084MATLOCKI -16.2789 -9.4430 -6.8360PHOSGENI -28.8870 -19.8100 -9.0770CERRUSIT -14.5995 -13.1379 -1.4615P8F2 -18.2703 -7.4389 -10.8315MASSICOT 5.5581 12.9374 -7.3793LITHARGE 12.7468 -7.1887PBO, .3H 11111 12.9800 -7.4219P8200O3 -9.0414 -0.4813 -8.5601LARNAKIT -6.6043 -0.2695 -6.3348P8302504 -1.0462 10.4339 -11.4801P8403504 4.5119 22.1573 -17.6453P8302CO3 -3.4833 11.0632 -14.5464ANGLESIT -12.1624 -7.7935 -4.3689GALENA -176.2316 -48.9199 -127.3116PLATTNER 46.5754 49.4155 -2.8401P8203 52.1335 61.0400 -8.9065MINIUM 57.6916 73.8579 -16.1663P8(011 )2 5.5580 8.1729 -2.6149LAURIONI -4.3648 0.6200 -4.9848

P82(011 )3 1.1932 8.7900 -7.5968HYDCERRU -23.6409 -17.4600 -6.1801P820(OH1 11.1161 26.2000 -15.0839P114(0106 4.5116 21.1000 -16.5884AG METAL -22.0728 -13.5512 -8.5216CERARGYR -11.4870 -9.7756 -1.7114AG2CO3 -23.2859 -11.0856 -12.2004AGF.41420 -13.4788 0.5430 -14.02184020 -3.1283 12.5970 -15.7254ACANTHIT -184.9180 -69.8953 -115.0227AG2504 -20.8488 -4.9269 -15.9219MALACHIT -6.8125 -5.1545 -1.6580AZURITE -20.2974 -16.8812 -3.4163ARSENOLI -219.1152 -80.7995 -138.3156CLAUDE, -219.1152 -81.0578 -138.0573ORIPMEN I -654.9266 -201.3682 -453.5584REALGAR -257.0771 -73.0472 -184.029945205 -27.5230 6.7088 -34.2318SULFUR -140.7724 -35.8614 -104.9110

7.4755 22.3000 -14.8245CA314504CU3 ASO4 -7.5054 6.1000 -13.6054FEA 04.2 7.1944 13.4463 -6.251911N3ASO42 -4.6785 12.5000 -17.1785P83(4504 -10.8487 5.8000 -16.648721345042 -2.4314 13.6500 -16.081484(4504) -3.3708 -8.9143 5.5436LIME 11.6663 32.8756 -21.2092PORTLAND 11.6662 22.7201 -11.0539MUSTITE 2.5977 11.7306 -9.1329PERICLAS 11.5154 21.5690 -10.0537HAG-FERR 53.4276 42.9715 10.4561LEPIDCCR 20.9561 14.4163 6.5397FE(OH)3S 20.9560 15.7163 5.2396NA2503 4.9548 -54.2089K2503

-49.254i-51.863 8.2136 -60.0771

CA503.2H -47.071 -3.4850 -43.5867CAS03.51 -47.0715 -3.1393 -43.9322MG503 -47.2224 6.5301 -53.7525B4503 -50.6870 -5.3772 -45.3098

-61.8661 -10.2107 -51.6555AG2103CH4 GAS) -184.2270 -41.1796 -143.0473CO2 (GAS) -20.1576 -18.1609 -1.996702( 045 ) 82.0346 63.3432 -1.3086

TOTAL MOLALITIES OF ELEMENTS

ELEMENT MOLALITY LOG MOLALITY

AG 9.3276940-09 -8.0302Arsenic 1.3658330-08 -7.8646BA 4.3596440-07 -6.3605C 3.8600570-03 -2.4134CA 1.9669720-03 -2.7062CL 2.7355250-03

FU 3.1516880-072.9498100-05

-2.1130-6.-4. 0

1;

FE 1.1228620-05 -4.949K 1.530973D-04 -3.8150

171

Page 173: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

MG 1.3680650-03 -2.8639MN 1.8150890-07 -6.7411Nitrogen 2.3490760-04 -3.6291NA 3.0702360-03 -2.5128PB 4.8562200-08 -7.3137S 1.5572010-03 -2.8077ZN 1.3719440-06 -5.8627

----DESCRIPTION OF SOLUTION ----

PH 7.3072PE 13.2000

ACTIVITY H2O 0.9998IONIC STRENGTH 0.0133

TEMPERATURE 24.3370ELECTRICAL BALANCE 2.58310-04

THOR 2.62080-02TOTAL ALKALINITY 3.53570-03

ITERATIONS 10

DISTRIBUTION OF SPECIES

I SPECIES Z

I II+ 1.0

MOLALITY

5.645090-08

LOG MOLALITY

-7.2483

ACTIVITY

4.929040-08

LOG ACTIVITY

-7.3072

GAMMA

8.731620-01

LOG GAMMA

-0.05892 E- -1.0 6.288310-14 -13.2015 6.288310-14 -13.2015 1.000000+00 0.00003 H20 0.0 9.997510-01 -0.0001 9.997510-01 -0.0001 1.000000+00 0.00004 A6+ 1.0 1.511520-09 -8.8206 1.344760-09 -8.8714 8.896740-01 -0.05086 H3ASO4 0.0 1.725900-14 -13.7630 1.7312101-14 -13.7617 1.003070+00 0.00138 BA 2+ 2.0 4.359640-07 -6.3605 2.731330-07 -6.5636 6.265040-01 -0.2031

10 CO3 2- -2.0 4.569490-06 -5.3401 2.862810-06 -5.5432 6.265040-01 -0.203111 CA 2+ 2.0 1.744600-03 -2.7583 1.127080-03 -2.9480 6.460360-01 -0.189713 CL- -1.0 2.735510-03 -2.5630 2.422980-03 -2.6156 8.857520-01 -0.052715 CU 2+ 2.0 1.825220-08 -7.7387 1.143510-08 -7.9418 6.265040-01 -0.203116 F- -1.0 2.778050-05 -4.5563 2.471560-05 -4.6070 8.896740-01 -0.050817 FE 2+ 2.0 1.059400-14 -13.9749 6.809520-15 -14.1669 6.427730-01 -0.191919 K+ 1.0 1.522720-04 -3.8174 1.348760-04 -3.8701 8.857520-01 -0.052721 MG 2+ 2.0 1.222820-03 -2.9126 7.961660-04 -3.0990 6.510930-01 -0.186422 MN 2+ 2.0 1.5988710-07 -6.7962 1.001700-07 -6.9993 6.265040-01 -0.203123 NO3 - -1.0 2.349080-04 -3.6291 2.089910-04 -3.6799 8.896740-01 -0.050824 NA+ 1.0 3.053510-03 -2.5152 2.720530-03 -2.5653 8.909500-01 -0.050127 PB 2+ 2.0 1.402210-09 -8.8532 8.784930-10 -9.0563 6.265040-01 -0.203129 SO4 2- -2.0 1.256050-03 -2.9010 7.832290-04 -3.1061 6.235670-01 -0.205134 ZN 2+ 2.0 8.967310-07 -6.0473 5.618060-07 -6.2504 6.265040-01 -0.203152CU-.- 1.0 4.215480-19 -18.3752 3.750400-19 -18.4259 8.896740-01 -0.050853 FE 3+ 3.0 2.407050-14 -13.6185 9.688300-15 -14.0138 4.024980-01 -0.395254 MN 3+ 3.0 1.288380-19 -18.8900 4.499060-20 -19.3469 3.492040-01 -0.456956 NO2 - -1.0 9.887430-17 -16.0049 8.796590-17 -16.0557 8.896740-01 -0.0508650H- -1.0 2.178200-07 -6.6619 1.937890-07 -6.7127 8.896740-01 -0.050876 KOH + 1.0 2.815680-08 -7.5504 2.505040-08 -7.6012 8.896740-01 -0.050877 MGF + 1.0 1.435850-06 -5.8429 1.277440-06 -5.8937 8.896740-01 -0.050878 MGCO3 AQ 0.0 2.146680-06 -5.6682 2.153280-06 -5.6669 1.0030781+00 0.001379 MGHCO3 + 1.0 3.166820-05 -4.4994 2.817440-05 -4.5501 8.896740-01 -0.0508

80140504 AQ 0.0 1.099/00-04 -3.058( 1.103080-04 -3.9574 1.0030 10+00 0.001384 CAOH + 1.0 6.139140-09 -8.2119 5.461830-09 -8.2627 8.896740-01 -0.050885 CAHCO3 + 1.0 3.930710-05 -4.4055 3.497050-05 -4.4563 8.896740-01 -0.050886 CACO3 AC 0.0 4.503290-06 -5.3465 4.517130.06 -5.3451 1.003070+00 0.001387 CASO4 AQ 0.0 1.782820-04 -3.7489 1.788300-04 -3.7476 1.003070+00 0.001391 CAF + 1.0 2.6883701-07 -6.5705 2.391780-07 -6.6213 8.896740-01 -0.050892 NACO3 - -1.0 1.569120-07 -6.8043 1.396010-07 -6.8551 8.896740-01 -0.050893 NAHCO3 A 0.0 4.601290-06 -5.3371 4.615390-06 -5.3358 1.003070+00 0.001394 NASO4 - -1.0 1.195310-05 -4.9225 1.06344005 -4.9733 8.896740-01 -0.050896NAP AQ 0.097 KSO4 - -1.0

1.087160-088.248350-07

-7.9637-6.0836

1.090500-087.338340.07

-7.9624-6.1344

1.003070+008.896740-01

0.0013-0.0508109 FEOH • 1.0 4.671460-17 -16.3305 4.156080-17 -16.3813 8.896740-01 -0.0508

110 FEOH3 -1 -1.0 5.698690-24 -23.2442 5.069980-24 -23.2950 8.896740-01 -0.0508111 FESO4 AO 0.0 9.341060-16 -15.0296 9.369770-16 -15.0283 1.003070+00113 FEOH2 Al2 0.0 6.751170-21 -20.1706 6.7719210-21 -20.1693 1.003070+00 8:8813117 FEOH 2+ 2.0 1.947440-09 -8.7105 1.220080-01 -8.9136 6.265040-01 -0.2031119 FESO4 + 1.0120 FECL 2+ 2.0121 FECL2 + 1.0

6.990440-141.107960-158.62416D-18

-13.11-14.95-17.06

6.219390-146.941430-167.672690-18

-13.2063-15.1586-17.1151

8.896740-016.265040-018.896740-01

-0.0508-0.2031-0.0508

122 FECL3 AO 0.0123 FEOH2 + 1.0

1.853390-218.988080-06

-20.7320-5.0463

1.859080-217.996460.06

-20.7307-5.097

1.003070+008.896740-01

0.0013-0.0508

124 FEOH3 0.040 1.828920-06 -5.7378 1334540-06 -5.7361

-6.4381.003070+00 0.0013

ii/FEOH4 - -1.0FEF 2+ 2.8

4.096760-075.9825310-13

-6.3876-12.2231

3.644780-073.748080-13 -12.4262

8.896740-016.265040-01

-0.0508-0.2031

128 FEF2 + I. 4.122090-13 -12.3849 3.667320-13 -12.4357 8.896740-01 -0.0508129 FEF3 A 0.0 1.428920-14 -13.8450 1.433310-14 -13.8437 1.003070+00 0.0013130 FE(SO4 2 -1.0

11.72695D-I5 -14.7627 1.536420-15 -14.8135 8.896740-01 -0.0508

131 FE2(0ti 2 4.0132 FE3(OH 4 5.0

2.673020-16 -15.5730-17.8669

4.118110-177.309640-20

-16.3853-19.1361

1.540620-015.379920-02

-0.8123-1.2692

135 BACH • 1.01.14869D-182.(.907D13 -12.5884 2.295330-13 -12.6392 8.896740-01 -0.0508

136 MNCL + 1.0 1. 03710-09 -8.9571 9.819460-10 -9.0079 8.896740-01 -0.0508137 MNCL2 AQ 0.0 6.443260-13 -12.1909 6.463060-13 -12.1896 1.003070+00 0.0013138 MNCL3 - -1.0 7.935200-16 -15.1004 7.059740-16 -15.15 8.896740-01 -0.0508139 MNOH + 1.0 5.560490-11 -10.2549 4.947020-11 -10.30

-19.87R8.89674D-01 -0.0508

140 MN(01413 -1.0141 M + 1.0NF142 MN$04 AO 0.0143 MN(NO312 0.0144 MNHCO3 • 1.0

1.489000-201.970090-111.41172D-081.739030-146.325010-09

-19.8271-10.70

-8.1989-13./ 97

1.324720-201.752700-111.416060-081.744380-145.627200-09

-10.7563-7.8984

-13.7584-8.2497

8.89674:::18.896740-01.003071.003070+008.896740-01

181810.00130.0013

-0.0508145 CUCL2 - -1.0146 CUCL3 2- -2.0

7.838520-194.263630-21

-18.1058-20.3702

6.973730-190-2.6711921

-18.1065-20.5733

8.896740-016.265040-01

-0.0508-0.2031

147 CUCO3 AQ 0.0 1.752660-07 -6.7563 1.758050-07 -6.7550 1.003070+00 0.0013148 CU(CO3/2 -2.0 1.011340-09 -8.9951 6.336120-10 -9.1982 6.265040-01 -0.2031149 .....L+L 1.0 8.113870-11 -10.0908 7.218700-11 -10.1415 11 .89674D-01 -0.0508in mi !ci 4 : 0

09.297300-148.906270-19

-13.0316-18.0503

9.325870-147.923680-19

-13.0303-18.1011

1.003070+008.896740-01

0.0013-0.0508

152 CUCL4 2- -2.0 -22.8203 9.4753710-24 -23.0234 6.265040-01 -0.2031153 CUF + 1.0154 CUOH + 1.0

11443813.606980-09 -11114 5.111690-12

2.319360-09-11.2914-8.6346

8.896740-018.896740-01

-0.0508-0.0508

9.798610-08 -7. 88 9.828720-08 -7.0075 1.003070+00 0.0013155 CU 012 0.01 6 CU OH 3 -1.0

11 :313i28:1 3 -12.8686 1.204000-13 -12.9194 8.896740-01 -0.0508

CU :: 4 -2.018.8 CU 0H)2 2.0171 9 CUS AQ 0.0

,.759480-193.52085D-121.814690-09

-18.1102-11.4534-8.7412

4.861350-192.2058311-121.820270-09

-18.3132-11.6564-8.7399

6.265040-016.265040-011.003070+00

-0.2031-8111161 C1HCO3 + 1.0 1.813690-08 -7.7414 1.613590-08 -7.7922 8.896740-01 -0.0508162 ZNCL + 1.0 3.999270-09 -8.3980 3.558040-01 -8.4488 8.896740-01 -0.0508163 ZNCL2 AO 0.0 8.975720-12 -11.0469 9.003300-12 -11.0456 1.003070+40 0.0013164 ZNCL3 - -1.0 2.740250-14 -13.5622 2.437930-14 -13.6130 8.896740-01 -0.0508165 ZNCL4 2- -2.0166 + 1.0DO

4.689860-172.18625D-10

-16.3288-9.6603

2.938220-171.945050-10

-16.5319-9.7111

6.265040-018.896740-01

:81481.

172

Page 174: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

173

167 ZNOH + 1.0 1.275250-08-7.8944 1.134560-08 -7.9452 8.896740-01 -0.0508168 ZN(OH)2 0.0 2.688640-09

-8.5705 2.696900-01 -8.5691 1.003070+00 0.0013169 ZN(OH)3 -1.0 1.883120-13 -12.7251 1.675360-13 -12.7759 8.896740-01 -0.0508170 ZN(OH)4 -2.0 8.143080-19 -18.0892 5.101680-19 -18.2923

-9.03896.265040-01 -0.2031171 ZNOHCL A 0.0 9.114510-10 -9.0403 9.142520-10 8:8813

-8.9796174 Z11504 AQ 0.0 1.023110-07 -6.9901 1.026250-07 -6.9887

1.00307D+00175 ZN(504)2 -2.0 1.048190-09 6.566950-10 -9.1826

1.00307D+00-0.2031180 ZNHCO3 1.0 1.121790-17 -16.9501 9.980240-18 -17.0009

6.265040-01-0.0508181 ZNCO3 40 0.0 3.199230-07

+- 6.4950 -6.4936

8.896740-01

-7.70680.0013182 ZNICO3)2 -2.0 3.135060-08 -7.5038

3.209070-07 1.003070+001.964130-08 6.26500-01 -0.2031208 P8CL + 1.0 9.369200-11 -10.0283 8.335540-11 -10.0791 8.896740-01 -0.0508209 P8CL2 AO 0.0 3.231040-13 -12.4907 3.240970-13 -12.4893 1.003070+00 0.0013210 P8CL3 - -1.0 6.966480-16 -15.1570 6.197900-16 -15.2078 8.896740-01 -0.0508211 PBCL4 2- -2.0 1.144060-18 -17.9416 7.167600-19 -18.14463.14284D-10 -9.5027

6.265040-01 -0.2031212 PB(CO3)2 -2.0 5.016470-10 -9.2996 6.265040-01 -0.2031213 PBF + 1.0 4.339890-13 -12.3625 3.861090-13 -12.4133 8.896740-01 -0.0508214 P8F2 AO 0.0 1.942440-16 -15.7117 1.948410-16 -15.7103 1.003070+00 0.0013215 P6F3 - -1.0 3.921220-20 -19.4066 3.488610-20 -19.4573 8.896740-01 -0.0508216 P8F4 2- -2.0 6.587180-25 -24.1813

-9.40844.126900-25 -2t:illit 6.265040-01 -0.2031

8.896740-01 -0.0508217 P8014+ 1.0 3.905140-10 3.474300-10218 P8(OH)2 0.0 2.733150-12 -11.5633 2.741540-12 -11.5620 1.003070+00 0.0013219 P8(0103 -1.0 7.176200-16 -15.1441 6.384480-16 -15.1949 8.896740-01

3.492040-01-0.0508220 MOH +3 3.0 1.956710-17 -16.7085 6.832900-18 -17.1654

8.896740-01-0.4569221 P8603 + 1.0 3.052360-12 -11.5154

-9.41372.715600-12 -11.5661

-9.4124-0.0508222 P8504 AO 0.0 3.857400-10 3.869250-10 1.003070+00 0.0013225 P83(OH)4 2.0 2.185340-22 -21.6605 1.369120-22 -21181 6.265040-01 -0.2031AO230 P8CO3 0.0 4.357100-08 -7.3608 4.370490-08 1.003070+00 0.0013231 P8(OH)4 -2.0 4.746010-20 -19.3237 2.973400-20 -19.5267 6.265040-01 -0.2031232 P6(504)2 -2.0 2.538580-12 -11.5954 1.590430-12 -11.7985 6.265040-01 -0.2031233 P8HCO3 + 1.0 2.208320-09 -8.6559 1.964680-09:121 1.003070+007

8.89674D-01 -0.0508

6 0.0013248 AGCL AO 0.0 6.109980-09 -8.2140- 8.7755

6.128750-09249 AGCL -8.82622 - -1.0 1.677000-09 1.491990-09 8.896740-01 -0.0508250 AGCL3 2- -2.0 5.953480-12 -11.2252 3.729880-12 -11.4283 6.265040-01 -0.2031251 AGCL4 -3 -3.0 4.295030-14 -13.3670 1.499840-14 -13.8240 3.492040-01 -0.4569252 AGF AO 0.0 7.671950-14 -13.1151 7.695520-14 -13.1138 1.003070+00 0.0013257 AGOH AQ 0.0 2.719190-14 -13.5656 2.727550-14 -13.5642 1.003070+00258 40(OH)2 -1.0 6.218290-19 -18.2063 5.532250-19 -18.2571 8.896740-01 -8:8161259 AGSO4 - -1.0 2.295450-11 -10.6391 2.042200-11 -10.6899 8.896740-01260 A6603 AO 0.0 1.436940-13 -12.8426 1.441360-13 -12.8412 1.003070+00 -8:87.1269 H2A504 - -1.0 2.270470-09-8.6439 2.019980-09 -8.6947 8.8967401-01 -0.0508270 HASO4 2- -2.0 1.138680-08 -7.9436271 ASO4 -3 -3.0 1.033660-12 -11.9856

7.133880-09 -8.1467 6.26504D-01 -0.20313.609580-13 -12.4425 3.492040-01 -0.4569272 HCO3 - -1.0 3.434060-03 -2.4642 3.055200-03 -2.5150 8.896740-01 -0.0508273 H2+12033 AO 0.0 3.384090-04 -3.4706

- 8.3835-3.4692 1.003070+00 0.0013274 H104 - -1.0 4.135110-09

3.394490-04

-8.4343 8.896740-01 -0.0508275 HF AO 0.0 1.769090-09 -8.75233.67890D-091.774520-09 -8.7509 1.003070.00 0.0013276 HF2 - -1.0 1.866560-13 -12.7290 1.660630-13 -12.7797 8.896740-01 -0.0508

1.003070+00 0.0013277 H2F2 AO 0.0 8.672330-18 -17.0619 8.698980-18 -17.0605 1.003070+00 0.0013362 02 AO 0.0 5.408430-05 -4.2669 5.425050-05 -4.2656

Page 175: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

DATA READ FROM DISK

ELEMENTSSPECIESLOOK MINSimulation 3. Mixing of Injection Soin, with SXML Ground Water (with Min. Eq.)0000001000 0 0 0.00000ELEMENTSArsenic 6 75.Nitrogen 23 14.C 10 61.

0 O.

23 9.7000-0115 2.3000-0229 6.2000+01

TOTAL MOLALITIES OF ELEMENTS

174

SOLUTION 1Injection Solution17 10 2 7.60 13.6 30.9 1.02

6 5.0000-03 8 3.2000-02 16 5.8000-01 27 2.0000-024 2.0000-03 10 1.48510+02 11 4.2200+01 13 1.3730+04

17 5.0000-02 21 5.3100+00 22 4.0000-03 24 8.9180+0334 2.5000-02 19 3.0000+00

SOLUTION NUMBER I. Injection Solution

ELEMENT MOLALITY

AG 1.8595220-08Arsenic 6.6950250-08BA 2.3367750-07TOT ALK 2.4408380-03CA 1.0559630-03CL 3.8826060-01CU 3.6299750-07F 3.0617870-05FE 8.9791280-07K 7.6946040-05MG 2.1904730-04MN 7.3021570-08Nitrogen 6.9487660-05NA 3.89059310-01PB 9.6811160-08S 6.4730040-04ZN 3.8355370-07

LOG MOLALITY

-7.7306-7.1742-6.6314-2.6125-2.9764-0.4109-6.4401-4.5140-6.0468-4.1138-3.6595-7.1365-4.1581-0.4100-7.0141-3.1889-6.4162

----DESCRIPTION OF SOLUTION----

PHPE

ACTIVITY 4420IONIC STRENGTH

TEMPERATUREELECTRICAL BALANCE

THORTOTAL ALKALINITY

7.600013.60000.92860.3932

30.9000-4.07370-04

1.36770+012.44080-03

IikRATIONS 8TOTAL CARBON 2.469710-03

DISTRIBUTION OF SPECIES

I SPECIES Z MOLALITY LOG MOLALITY ACTIVITY LOG ACTIVITY GAMMA LOG GAMMA

i É! -1.0 2.511890-14 -13.6000 2.511890-14 -13.6000 1.000000+00

1.0 5.291160-08 -7.2764 2.511890-08 -7.6000 4.747330-01 los3 520 0.0 9.286430-01 -0.0322 9.286430-01 -0.0322 1.000000400 0.00004 AG+ 1.0 5.497520-13 -12.2598 4.000990-13 -12.3978 7.277810-01 -0.13806 143ASO4 0.0 1.060270-14 -13.9746 1.160730-14 -13.9353 1.094750+00 0.03938 BA 2+ 2.0 2.336770-07 -6.6314 6.555690-08 -7.1834 2.805440-01 -0.5520

10 CO3 2- -2.0 1.135300-05 -4.9449 3.185030-06 -5.4969 2.805440-01 -0.552011 CA 2+ 2.0 1.040520-03 -2.9828 3.193910-04 -3.4957 3.069540-01 -0.512913 CL- -1.0 3.882600-01 -0.4109 2.484800-01 -0.6047 6.399820-01 -0.193815 CU 2+ 2.0 2.668740-08 -7.5737 7.487010-09 -8.1257 2.805440-01 -0.552016 F- -1.0 2.948040-05 -4.5305 2.145530-05 -4.6685 7.277810-01 -0.138017 FE 2+ 2.0 5.676440-17 -16.2459 1.500650-17 -16.8237 2.643650-01 -0.577819 K+

1.0 7.689970-05 -4.1141 4.921450-01 -4.3079 6.399820-01 -0.193821 MG 2+ 2.0 2.157290-04 -3.6661 7.248040-05 3.359790-01 -0.473722 MN 2+ 2.0 5.123710-08 -7.2904 1.437430-0 -7.8424 2.805440-01 -0.552023 NO3 - -1.0 6.948770-05 -4.1581 5.057180-05 -4.2961 7.277810-01 -0.138024 NA+ 1.0 3.8861110-01 -0.4105 2.766100-01 -0.5581 7.117920-01 -0.147627 P8 2+ 2.0 4.348110-09 -8.3617 1.219840-09 -8.9137 2.805440-01 -0.5520

29 SO4 2- -2.0 4.666740-04 -3.3310 8.805520-05 -4.0552 1.886870-01 -0.724334 ZN 2+ 2.0 2.194900-07 -6.6586 6.15768D-05 -7.2106 2.805440-01 -0.552052 CU+ 1.0 1.431450-19 -18.8442 1.041780-19 -18.9822 7.277810-01 -0.138053 FE 3+ 3.0 8.030310-16 -15.0953 7.700330-17 -16.1135 9.589080-02 -1.018254 MN 3+ 3.0 7.227090-19 -18.1410 4.139680-20 -19.3830 5.728010-02 -1.242056 NO2 - -1.0 2.6403810-19 -18.5783 1.921610-19 -18.7163 7.277810-01 -0.138065 044- -1.0 7.900460-07 -6.1023 5.749800-07 -6.2403 7.277810-01 -0.138076 MGOH + 1.0 1.004770-08 -7.9979 7.312520-09 -8.1359 7.277810-01 -0.138077 MGF + 1.0 1.645250-07 -6.7838 1.197380-07 -6.9218 7.277810-01 16.113

78 MGCO3 AC 0.0 2.203430-07 -6.6569 2.412210-07 -6.6176 1.094750+00

79 44G41CO3 + 1.0 1.538030-06 -5.7356 1.337690-06 -5.8736 7.277810-01 -0.1380

80 44GSO4 AC 0.0 1.085320-06 -5.9644 1.188160-06 -5.9251 1.094750+00 0.039384 CAOH + 1.0 6.590240-04 -8.1811 4.796250-09 -8.3191

1.094750+00

85 CAHCO3 + 1.0 8.326690-06 -5.0795 6.060000-06 -5.2177.277810-01 -0.13807.2778110-01 -8:B13

86 CACO3 AQ 0.0 1.528960-06 -5.8156 1.673830-06 :1.77,

87 CASO4 AC 0.0 5.491240-06=1:g131 6.011530-06 .2210 1.094750+00 0.039391 CAF + 1.0 9.28699D-08 6.758890-08 -7.1701 7.277810-01 -0.1380

92 NACO3 - -1.0 3.004160-05 -4.5223 2.186370-05 -4.6603 7.277810-01 -s:B1393 NAMCO3 A 0.0 2.430340-04 -3.6143 2.660620-04 -3.5750 1.094750+00

94 NASO4 - -1.0 1.740010-04 -3.7594 1.2663 -3.8974 7.277810-01 -0.138096 MAP AO 0.0 8.792000-07 -6.0559 9.625050-07 -6.0166 1.094750+00 0.0393

97 4(504 - -1.0 4.629090-08 -7.3345 3.368960-08 -7.4725 7.277810-01 -0.1380104 FEOH + 1.0 3.714120-19 -18.4301 2.703070-19 -18.5681 7.277810-01 -0.1380

110 FEOH3 -1 -1.0 2.810480-25 -24.5512 2.045410-25 -24.6892 7.277810-01 -0.1380

111 FESO4 AC 0.0 2.3859410-19 -18.6223 2.612010-19 -18.5530 1.094750+00 0.0393

113 FEOH2 AC 0.0 1.285110-22 -21.8911 1.406870-22 -21.8517 1.094750+00 0.0393

117 FEOH 2+ 2.0 9.209990-11 -10.0357 2.583810-11 -10.5877 2.805440-01 -0.5520

119 FESO4 4 1.0 8.807940-17 -16.0551 6.4102513-17 -16.1931 7.277810-01 -0.1380

120 FECL 2+ 2.0 2.474260-15 -14.6066 6.941410-16 -15.1586 2.805440-01 -0.5520

121 FECL2 + 1.0 8.812320-16 -15.0549 6.413430-16 -15.1929 7.277810-01 -0.1380

122 FECL3 AO 0.0 1.455680-17 -16.8369 1.593610-17 -16.7976 1.09475E1+00 0.0393

123 FEOH2 + 1.0 5.377400-07 -6.2694 3.913570-07 -6.4074 7.277810-01 -0.1380

Page 176: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

124 FE0M3 AQ 0.0 2.161520-07 -6.6652 2.36632D-07 -6.6259 1.094750+00 0.0393FEOH4 - -1.0 1.435290-07 -6.8419 1.047490-07 -6.9799 7.277810-01 -0.1380121

12 FEF 2+ 2.0 1.01720-14 -13.9926 2.853840-15 -14.5446 2.805440-01 -0.5520128 FEF2 + 1.0 3.596220-15 -14.4442 2.617260-15 -14.5822 7.277810-01 -0.1380129 FEF3 AQ 0.0 8.290590-17 -16.0814 9.076130-17 -16.0421 1.094750+00 0.0393130 2.508670-19 -18.6006 1.825760-19 -18.7386 7.277810-01 -0.1380131

FEjS012 -1.0FE2(OH 2 4.0 2.284110-18 -17.6413 1.414900-20 -19.8493 6.194510-03 -2.2080

132 FE3(OH 4 5.0 1.924410-21 -20.7157 6.828240-25 -24.1657 3.548220-04 -3.4500135 [M0H + 1.0 2.394210-13 -12.6208 1.742460-13 -12.7588 7.277810-01 -0.1380136 MNCL • 1.0 1.985530-08 -7.7021 1.445030-08 -7.8401 7.277810-01 -0.1380137 MNCL2 AQ 0.0 8.909510-10 -9.0501 9.753690-10 -9.0108 1.094750+00 0.0393138 MNCL3 - -1.0 1.501270-10 -9.8235 1.092600-10 -9.9615 7.277810-01 -0.1380139 MNOH + 1.0 3.007670-11 -10.5218 2.188930-11 -10.6598 7.277810-01 -0.1380ot go.T3 1 :0

a1.181730-20 -19.8009 1.151160-20 -19.9389 7.277810-01 -0.13801.7402.599990-12 -11.5229 2.183340-12 -11.6609 7.277810-01 -0.1380

142 MNSO4 Ag 0.0 2.258860-10 -9.6461 2.472890-10 -9.6068 1.09470+00 0.0393143 MN(NO3)2 0.0 1.319640-16 -15.8795 1.444680-16 -15.8402 1.09470+00 0.0393144 101HCO3 + 1.0 6.290720-10 -9.2013 4.578260-10 -9.3393 7.277810-01 -0.1380145 CUCL2 - -1.0 2.756670-15 -14.5596 2.0062 50-15 -14.6976 7.277810-01 -0.1380146 CUCL3 2- -2.0 2.879690-15 -14.5407 8.078810-16 -15.0927 2.805440-01 -0.5520147 CUCO3 Ag 0.0 1.1697910-07 -6.9319 1.280630-07 -6.8926 1.094750+00 0.0393148 CU(CO3)2 -2.0 1.830350-09 -8.7375 5.13490-10 -9.2895 2.805440-01 -0.5520149 CUCL • 1.0 9.133290-01 -8.0394 6.647030-09 -8.1774 7.277810-01 -0.1380150 CUCL2 AQ 0.0 8.621200-10 -9.0642 9.442440-10 -9.0249 1.094750+00 0.0393151 CUCL3 - -1.0 1.267340-12 -11.8971 9.22340-13 -12.0351 7.277810-01 -0.1380152 CUCL4 2- -2.0 4.681160-15 -14.3296 1.313280-15 -14.8816 2.805440-01 -0.5520153 CUF + 1.0 4.235290-12 -11.3731 3.082360-12 -11.5111 7.27781D-01 -0.1380154 CUOH + 1.0 3.803270-09 -8.4198 2.767940-09 -8.5578 7.27781D-01 -0.1380155 1.9529-070 -6.7093 2.137990-07 -6.6700 1.09470+00 0.0393156 Eb18V0 1:8 6.559250-13 -12.1831 4.773700-13 -12.3211 7.277810-01 -0.1380157 CU OH 4 -2.0 1.252290-17 -16.9023 3.513220-18 -17.4543 2.805440-01 -0.5520158 CU2(OH)2 2.0 2.124460-11 -10.6728 5.960040-12 -11.2248 2.805440-01 -0.5520159 CUSO4 AO 0.0 1.279680-10 -9.8929 1.400930-10 -9.8536 1.094750+00 0.0393161 CUHCO3 • 1.0 8.230420-09 -8.0846 1.989940-09 -8.2226 7.277810-01 -0.1380162 ZNCL + 1.0 7.303050-08 -7.1365 5.315020-08 -7.2745 7.277810-01 -0.1380163 ZNCL2 AO 0.0 1.292940-08 -7.8884 1.4154 50-08 1.094750+00 0.0393164 ZNCL3 - -1.0 5.613860-09 -8.2507 4.085660-09 :LIN) 7.277810-01 -0.1380165 ZNCL4 2- -2.0 1.894360-09 -8.7225 5.314530-10 -9.2745 2.805440-01 -0.5520166 ZNF + 1.0 2.757570-11 -10.5595 2.006900-11 -10.6975 7.277810-01 -0.1380167 ZNOH + 1.0 5.079710-04 -8.2942 3.696920-09 -8.4322 7.277810-01 -0.1380168 1.917060-09 -8.7174 2.098700-09 -8.6780 1.094750+00 0.0393169

ZN{ 011)2 0.0ZN 0)03 -1.0 4.4534310-13 -12.3513 3.241120-13 -12.4893 7.277810-01 -0.1380

170171

ZN 0H)4 -2.0ZNOHCL A 0.0

1.084800-171.710970-08

-16.9646-7.7668

3.043350-181.873080-08 --1;12 eit 2.805440-01

1.094750+00-0.55200.0393

174 1.213950-09 -8.9158 1.328970-09 -8.8765 1.094750--00 0.0393175 gint411 -2:8 3.242840-12 -11.4891 9.097610-13 -12.0411 2.805440-01 -0.5520180 ZNHCO3 + 1.0 8.521790-19 -18.0695 6.201990-19 -18.2075 7.277810-01 -0.1380181 -7.4468 3.913200-08 -7.4075 1.094750+00 0.0393182 in831 -3:8 3.5745018

9.498250-09 -8.0224 2.664680-09 -8.5744 2.805440-01 -0.5520208 PBCL + 1.0 1.913770-08 -7.7181 1.392800-08 -7.8561 7.277810-01 -0.1380209 P8CL2 AC 0.0 4.497070-09 -8.3471 4.923170-01 -8.3078 1.09470+00 0.0393210 PBCL3 - -1.0 1.380510-09 -8.8600 1.004710-09 -8.9980 7.277810-01 -0.1380211 4.463460-10 -9.3503 1.252200-10 -9.9023 2.805440-01 -0.5520212

P1L4 2- -2.0PS CO3)2 -2.0 1.925430-09 -8.7155 5.401700-10 -9.2675 2.805440-01 -0.5520

213 PB . 1.0 6.39493D-13 -12.1942 4.654110-13 -12.3322 7.277810-01 -0.1380214 P8F2 AO 0.0 1.862320-16 -15.7299 2.038780-16 -15.6906 1.094750+00 0.0393215 P8F3 - -1.0 4.354160-20 -19.3611 3.168870-20 -19.4991 7.277810-01 -0.1380216 P8F4 2- -2.0 1.159940-24 -23.9356 3.254160-25 -24.4876 2.805440-01 -0.5520217 PBOH + 1.0 1.208230-04 -8.9178 8.793280-10 -9.0558 7.277810-01 -0.1380218 P8(OH)2 0.0 1.155270-11 -10.9373 1.264730-11 -10.8980 1.094750+00 0.0393

219 P8(OH)3 -1.0 7.3(64(0-15 -14.1322 5.368450-11 -14.2(02 7.277810-01 -0.1380220 P 820H +3 3.0 4.192270-16 -15.3776 2.401340-17 -16.6195 5.728010-02 -1.2420221 P8NO3 + 1.0 1.25370-12 -11.9018 9.124520-13 -12.0398 7.277810-01 -0.1380222 P8SO4 AC 0.0 5:14/tml -10.2583 6.040280-11 -10.2189 1.094750+00 0.0393225 P83(0M)4 2.0 3.794070-20 -19.4208 1.064660-20 -19.9728 2.805440-01 -0.5520230 P8CO3 AC 0.0 6.167380-03 -7.2099 6.751740-08 -7.1706 1.094750+00 0.0393231 1.624410-18 -17.7893 4.157180-19 -18.3413 2.805440-01 -0.5520232 inalt2 1:8 9.949710-14 -13.0022 2.791340-14 -13.1542 2.805440-01 -0.5520233 P8MCO3 + 1.0 2.125280-09 -8.6726 1.546730-09 7.277810-01 -0.1380248 AGCL AC 0.0 1.548910-10 -9.8100 1.695670-10 :Mt 1.094750+00 0.0393249 AGCL2 - -1.0 5.557160-09 -8.2151 4.044400-09 -8.3931 7.277810-01 -0.1380250 AGCL3 2- -2.0 4.266180-09 -8.3700 1.196850-09 -8.9220 2.805440-01 -0.5520251 AGCL4 -3 -3.0 8.616440-09 -8.0647 4.935510-10 -9.3067 5.728010-02 -1.2420212 AGF AO 0.0 1.637330-17 -16.7859 1.792460-17 -16.7465 1.094790+00 0.0393257 AGOH Ag 0.0 1.351140-17 -16.8693 t .479160-17 -16.8300 1.094750+00 0.0393258 40(OH)2 -1.0 7.513880-22 -21.1241 .468460-22 -21.2621 7.277810-01 -0.1380259 A6504 - -1.0 9.910910-16 -11.0039 .212970-16 -15.1419 7.277810-01 -0.1380260 AGNO3 AO 0.0 9.4789 50-18 -17.0232 1.037710-17 -16.9839 1.094750+00 0.0393269 H2ASO4 - -1.0 3.433160-09 -8.4643 2.498580-09 -1.6023 7.277810-01 -0.1380270 HASO4 2- -2.0 6.348090-08 -7.1974 1.780920-08 -7.7494 2.805440-01 -0.5520271 ASO4 -3 -3.0 3.6183 50-11 -10.4415 2.072600-12 -11.6835 1.728010-02 -1.2420272 HCO3 - -1.0 2.099670-03 -2.6778 1.528100-03 -2.8158 7.277810-01 -0.1380273 H2CO3 AO 0.0 7.343790-05 -4.1341 8.039620-05 1.094790+00 0.0393274 (1SO4 - -1.0 3.481480-10 -9.4582 2.533760-10 ilia 7.277810-01 -0.1380275 HF AO 0.0 8.136360-10 -9.0896 8.90729D-10 1.094750+00 0.0393276 MF2 - -1.0 1.034620-13 -12.9852 7.129790-14 -13.1232 7.277810-01 -0.1380277 H2F2 AO 0.0 1.555080-18 -17.8082 1.702430-18 -17.7689 1.094750+00 0.0393362 02 AO 0.0 3.415760+00 0.5335 3.739410+00 0.5728 1.094750+00 0.0393

---- LOOK MIN ZAP ----

PHASE LOG ZAP LOG KT LOG IAP/KT

ANHYDRIT -7.5509 -4.6936 -2.8573ARAGONITARTINITE

-8.99261.2628 -1:1313 -0.6009

-7.9284BAF2 -16.5203 -5.7418 -10.7745BARITE -11.2386 -9.8907BRUCIT 10.9959 16.4225

1.3479- .4266

CALCITEDOLOJE

-8.9926 -8.5163 .4763-17.1179 -1.5113

EPSOMITE -1..tigi -2.0999-4.320219.4798 17.7778 1.7021

F 3(0M),1 37.2716 46.0055 -8.733 9F1RRIHYD

r af717.0281

-190.35049.8478

-3 6.72467.1810

-153.62F 2(5041FLUORITE

-18.6132-12.8326

28.5147-10.8930

-47.1279

GOETM 19.5120 13.1818 -BMGREIG TE -717.3777 -150.4730 -566.9047GYPSUM -7.6112 -4.8463HALITE

TEHEMATITEHUNT' E

-1.162839.0561

-37.9026

1.593121.3368

-30.3364

.41;17.7193

HYDRMAGN -27.6793 -9.1126-71662

-18. 668JAROSITE 19.9933 25.7889 5. 914MACKINAWMAGHEMIT

-190.350439.0561

-37.454632.1615

-1;2.89576.8906

MAGNESIT -9.4367 -8.1178 -1.5189

175

Page 177: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

MAGNETIT 37.6002 28.7979 8.6024MELANTER -21.1040 -2.4293 -18.6747MIRABILI -5.4930 -0.8399 -6.6531NATRON -6.9347 -1.0861 -5.8485NESQUEHO -9.7331 -5.7024 -4.0308PYRITE -336.6770 -83.9286 -252.7484SIDERITE -22.3206 -10.6258 -11.6948THENARDI -5.1715 -0.1881 -4.9834THERMONA -6.6453 0.0402 -6.7355WITHERIT -12.6803 -8.5849 -4.0954PYROLUSI 49.6933 40.5886 9.1047BIRNESSI 49.6933 43.2336 6.4597NSUTITE 49.6933 42.6436 7.0497BIXBYITE 57.0187 49.4505 7.5682HAUSMANN 64.3442 60.4002 3.9440PYROCROI 7.2933 14.7687 -7.4754MANGANIT 28.4933 24.9036 3.5897RHODOCHR -13.3393 -10.4396 -2.8997FINCL2, 4 -9.1804 2.9572 -12.1376PINS GREE -181.3691 -29.0870 -152.2821MNSO4 -11.8977 2.4498 -14.3475MN2(SO4) -0.6506 44.0117 -46.6623Cu METAL -35.3257 -11.2598 -24.0659NANTOKIT -22.3304 -9.3615 -12.9689CUF -26.3942 4.1606 -30.5548CUPRITE -28.2835 -6.9482 -21.3353CHALCOCI -216.9780 -72.2097 -144.7684DJURLEIT -214.6465 -71.1675 -143.4791ANILITE -208.1466 -68.1806 -139.9660BLAUBLEI -185.1849 -57.5193 -127.6656COVELLIT -181.6523 -55.5031 -126.1492CU2SO4 -47.5066 -7.5018 -40.0048CUPROUSF 5.3863 1.1703 4.2160MELANOTH -9.3351 3.5548 -12.8899CUCO3 -13.6226 -9.6300 -3.9926CUF2 -17.4626 -0.8094 -16.6532CUF2. 2H -17.5269 -6.6019 -12.9250CUI04)2 7.0100 8.4231 -1.4131ATACAMIT 5.8475 7.0742 -1.2267CU2(OH)3 2.1561 8.9932 -6.8372ANTLERIT 1.8391 8.2900 -6.4509BROCHANT 8.8491 15.3400 -6.4909LANGITE 8.8169 16.2266 -7.4097TENORITE 7.0422 7.4032 -0.3611CUOCUSO4 -5.1368 11.0239 -16.1627CUSO4 -12.1809 2.7520 -14.9329CHALCANT -12.3417 -2.6195 -9.7222CUPRICFE 46.0983 31.1053 14.9930CHALCOPY -372.0027 -100.3746 -271.6281ZN METAL -34.4106 25.2369 -59.6475ZNCL2 -8.4200 6.7814 -15.2014SMITHSON -12.7075 -10.0620 -2.6455ZNCO3, 1 -12.7396 -10.2600 -2.4796ZNF2 -16.5475 -1.7060 -14.8415ZN(044)2 7.9251 11.5000 -3.5749

7.6777 15.2000 -7.5223ZN5 OH 8 23.2805 38.5000 -15.2195ZN2104113

ZN2 OH 2 -3.3407 7.5000 -10.8407ZN4 OH 6 12.5095 28.4000 -15.8905ZNNO3)2, -15.9957 3.5184 -19.5140

ZN0(AC1I 7.9573 11.3100 -3.352 1ZINCITE 7.9573 10.8291 -2.8718ZN30(504 -14.5744 18.1382 -32.7126ZNS (A) -180.7372 -41.8024 -138.9348

-180.7372 -44.3073 -136.4299SPHALER1WURTZIT -180.7372 -42.4127 -138.3246ZINCOSI -11.2658 2.7369 -14.0027ZNSO4, 1 -11.2980 -0.7213 -10.5766BIANCRIT -11.4587 -1.7623 -9.6965GOSLARIT -11.4909 -1.9131 -9.5778PB METAL -36.1137 4.2757 -40.3894COTUNNIT -10.1231 -4.6904 -5.4328

-14.1869 -9.3169 -4.8699MATLOCK'PMOSGEN -24.5337 -19.8100 -4.7237CERRUSI -14.4106 -13.0609 -1.3497PBF2 -18.2506 -7.4500 -10.8007MASSICOT 6.2542 12.6713 -6.4172LITHARGE 6.2542 12.4870 -6.2329P80. .3H 6.2435 12.9800 -6.7365P520013 -8.1564 -0.6630 -7.4934LARNAKIT -6.7146 -0.3716 -6.3432P8302504 -0.4606 10.1049 -10.5655P8403504 5.7935 21.6012 -15.8077P8302CO3 -1.9023 10.6441 -12.5464ANGLESIT -12.9689 -7.7594 -5.2095GALENA -182.4443 -47.6587 -134.7816PLATTNER 48.6220 48.2940 0.3280P8203 54.8762 61.0400 -6.1639MINIUM 61.1303 72.2285 -11.0982P8(OH)2 6.2220 7.9510 -1.7290LAURIONI -1.9506 0.6200 -2.5706P82(OH)3 4.2714 8.7900 -4.5186

-22.5992 -17.4600 -5.1392HYDC1RHRUP820(041) 12.4762 26.2000 -13.7238P84(0+4(6 5.6971 21.1000 -15.4029AG METAL -25.9978 -13.1512 -12.8467CERARGYR -13.0025 -9.5274 -3.4751662CO3 -30.2926 -10.9345 -19.3581AGF.44420 -17.1949 0.6107 -17.8056AG20 -9.6278 12.4317 -22.0595ACANTHIT -196.3223 -68.0966 -130.2257AG2SO4 -28.8509 -4.8596 -23.9914MALACHIT -6.6126 -5.4020 -1.2106AZURITE -20.2351 -17.2581 -2.9771ARSENOLI -78.6686 -146.3510CLAUDETI

-221.0196-225.0196 -78.9434 -146.0762

ORIPMENT -678.5933 -196.2412 -482.3521REALGAR -266.1333 -71.1333 -195.0000AS205 -27.7741 6.6231 -34.3971SULFUR -146.3266 -34.9744 -111.3523

7.1138 22.3000CATSO4CU3 ASO4 -6.7119 6.1000

1.1862-1 .8119

FEA 04.2 5.5767 13.2878MN3ASO42 -6.0550 12.5000 -i8.7iiiiP83(ASO4 -9.0116 5.8000 -14. 116Z413,0042 -3.9827 13.6500 -17.63278A(ASO4) -3.8207 -8.8725 5.0518LIME 11.6722 32.1420 -20.4699PORTLAND 11.6400 22.2335 -10.5935WUSTITE 0.6774 11.3366 -10.6592

176

Page 178: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

PERICLAS 11.0281 20.9961 -9.9681HAG-FERR 50.0842 41.5977 8.4864LEPIDOCR 19.5120 14.2578 5.2542FE(OH)3S 19.4798 15.5578 3.9221NA2S03 -47.5394 4.9079 -52.4473K2S03 -55.0389 8.1790 -63.2179CAS03.2H -49.9831 -3.4366 -46.5465CAS03.5H -49.9348 -3.1457 -46.7892MGS03 -50.5629 6.2382 -56.8010BAS03 -53.6065 -5.3074 -48.2991AG2503 -71.2188 -9.9130 -61.3057CH4(GAS) -190.2004 -40.2124 -149.9880CO2(GAS) -20.6647 -18.1525 -2.512302(GAS) 84.7357 81.1767 3.5590

Mixing of Solutions0010002000 1 0 0.00000ELEMENTSArsenic 6 75.Nitrogen 23 14.C 10 61.

0 0.SOLUTION 2SXML Ground Water17 10 2 7.31 13.2 24.3 1.00

6 1.0000-03 8 6.0000-02 16 5.6000-01 27 1.0000-02 23 3.3000+004 1.0000-03 10 2.1600+02 11 7.9000+01 13 2.0000+01 15 2.0000-02

17 6.3000-01 21 3.3400+01 22 1.0000-02 24 2.0600+01 29 1.5000+0234 9.0000-02 19 6.0000+00

MINERALSCalcite 2 4.00 -8.48 -2.59 0 0.000

11 1.00 10 1.00Jarosite 6 21.0 27.9 -66.2 0 0.000

1 -6.00 24 1.00 29 2.00 3 6.00 17 3.002 -3.00

Magnesit 2 4.00 -8.03 -6.17 0 0.00021 1.00 10 1.00

0 0.000E+00 0.000E+00 0.000E+00 0 0.000NUMBER OF MINERALS FOUND 0NUMBER OF MINERALS USED 3STEPS0.560E-02

SOLUTION NUMBER 2 SXML Ground Hater

TOTAL MOLALITIES OF ELEMENTS

ELEMENT MOLALITY LOG MOLALITY

AG 9.2755030-09 -8.0327Arsenic 1.3358210-08 -7.8743BA 4.3710350-07 -6.3594TOT ALK 3.5418670-03 -2.4508CA 1.972102D-03 -2.7051CL 5.6442610-04 -3.2484CU 3.1489940-07 -6.5018F 2.9491790-05 -4.5303FE 1.1286800-05 -4.9474K 1.5352620-04 -3.8138

MG 1.3/45350-03 -2.8618MN 1.8211980-07 -6.7396Nitrogen 2.3583920-04 -3.6274NA 8.96524519-04 -3.0474P8 4.8290480-08 -7.3161S 1.5623260-03 -2.8062ZN 1.3775100-06 -5.8604

----DESCRIPTION OF SOLUTION ----

PH 7.3100PE 13.2000

ACTIVITY H20 0.9998IONIC STRENGTH 0.0111

TEMPERATURE 24.3000ELECTRICAL BALANCE 2.62060-04

THOR 2.62710-02TOTAL ALKALINITY 3.54190-03

ITERATIONS 9TOTAL CARBON 3.36790-03

DISTRIBUTION OF SPECIES

I SPECIES Z MOLALITY LOG MOLALITY ACTIVITY LOG ACTIVITY GAMMA LOG GAMMA

1 H+ 1.0 5.544230-08 -7.25422 E- -1.0 6.309570-14 -13.20003 H20 0.0 9.998240-01 -0.00014 AG. 1.0 4.845540-09 -8.3147

0-6 H3ASO4 0.0 1.7203614 -13.76448 BA 2+ 2.0 4.371030-07 -6.3594

10 CO3 2- -2.0 4.486160-06 -5.348111 CA 2+ 2.0 1.737580-03 -2.760113 CL- -1.0 5.644200+04 -3.248415 CU 2+ 2.0 1.741050-08 -7.7592

-it FFE 2+

I:0 2.773780-05 -4.5549

0 1.034280-14 -13.985419 K+ 1.0 1.526720-04 -3.816221 MG 2+ 2.0 1.22129D-03 -2.913222 MN 2+ 2.0 1.601200-07 -4.795623 803 - -1.0 2.358390-04 -3.627424 NA+ i..0 8.915030-04 -3.049927 PB 2+ 0 1.329480-09 -8.8763

29 SO4 2- -2.0 1.251730-03 -2.902534 ZN 2+ 2.0 8.862810-07 -6.0524

ii 0-CU+ 1.0 4.139750-19 -18.3830FE 3+ 3.0 2.2721714 -13.6436

4 MN 3+ 3.0 1.224610-19 -18.91206 602 - -1.0 9.958070-17 -16.0018

65 0H- -1.0 2.167220-07 -6.664176 MG041 + 1.0 2.880580-08 -7.540577 RGF + 1.0 1.473310-06 -5.8317

78 MGCO3 AQ 0.0 2.244480-06 -5.6489

177

4.897790-08 -7.3100 8.834030-01 -0.05386.309570-14 -13.2000 1.000000+00 0.00000.998240-01 -0.0001 1.000000+00 0.00004.348550-091.724770-14

-8.3617-13.7633

8.974340-011.002570+00

-81.1?

2.63527D-07 -6.5474 6.486490-01 -0.18802.909950-06 -5.5361 6.486490-01 -0.18801.157450-03 -2.9365 6.661260-01 -0.17645.046620-04 -3.2970 8.941250-01 -0.04861.129330-08 -7.9472 6.486490-01 -0.18802.489280-05 -4.6039 8.974340-01 -0.04706.860500-15 -14.1636 6.633140-01 -0.17831.365080-04 -3.8648 8.941250-01 -0.04868.190030-04 -3.0867 6.706070-01 -0.17351.038420-07 -4.9835 4.486490-01 -0.13802.116500-04 -3.6744 8.974340-01 -0.04708.010760-04 -3.0963 8.985680-01 -0.04648.623690-10 -9.0643 6.486490-01 -0.18808.089640-04 -3.0921 6.462770-01 -0.18965.748860-07 -6.2404 6.486490-01 -0.18803.715150-19 -18.4300 8.974340-01 -0.04709.707490-15 -14.0129 4.272340-01 -0.36934.624040-20 -19.3350 3.775920-01 -0.42308.936710-17 -16.0488 8.974340-01 -0.04701.944930-07 8.974340-01 -0.04702.58513D-08

-6.711-7.587 8.974340-01 -0.0470

1.322200-04 -Can 8.97434D-01 -0.04702.250240-04 -5.6478 1.002570+00 0.0011

Page 179: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

79 MGHCO3 + 1.0 3.263640-05 -4.4863 2.928900-05 -4.5333 8.974340-01 -0.047080 M1SO4 AO 0.0 1.168660-04 -3.9323 1.171660-04 -3.9312 1.002570+00 0.001184 CAOH . 1.0 6.271200-09 -8.2026 5.627990-09 -8.2496 8.974340-01 -0.047085 CAHCO3 + 1.0 4.040360-05 -4.3936 3.625960-05 -4.4406 8.974340-01 -0.047086 CACO3 AQ 0.0 4.699290-06 -5.3280 4.711350-06 -5.3269 1.002570.00 0.001187 CASO4 AO 0.0 1.891390-04 -3.7232 1.896250-04 -3.7221 1.002570+00 0.001191 CAF + 1.0 2.754370-07 -6.5600 2.471860-07 -6.6070 8.974340-01 -0.047092 NACO3 - -1.0 4.647140-08 -7.3328 4.170500-08 -7.3798 8.974340-01 -0.047093 NAHCO3 A 0.0 1.369130-06 -5.8636 1.372650-06 -5.8624 1.002570+00 0.001194 NASO4 - -1.0 3.603040-06 -5.4433 3.233490-06 -5.4903 8.974340-01 -0.047096 NAF AO 0.0 3.225780-09 -8.4914 3.234060-04 -8.4903 1.002570+00 0.001197 K504 - -1.0 8.542360-07 -6.0684 7.666210-07 -6.1154 8.974340-01 -0.0470

109 FEOH + 1.0 4.682850-17 -16.3295 4.2025409-17 -16.3765 8.974340-01 -0.0470110 FEOH3 -1 -1.0 5.765790-24 -23.2391 5.174420-24 -23.2861 8.974340-01 -0.0470111 FESO4 Al9 0.0 9.718520-16 -15.0124 9.743470-16 -15.0113 1.002570+00 0.0011113 FEOH2 AO 0.0 6.852000-21 -20.1642 6.869590-21 -20.1631 1.002570+00 0.0011117 FEOH 2+ 2.0 1.892700-09 -8.7229 1.227700-09 -8.9109 6.486490-01 -0.1880119 FESO4 + 1.0 7.166190-14 -13.1447 6.431190-14 -13.1917 8.974340-01 -0.0470120 FECL 2+ 2.0 2.230680-16 -15.6516 1.446930-16 -15.8396 6.486490-01 -0.1880121 FECL2 . 1.0 3.716250-19 -18.4299 3.335090-19 -18.4769 8.974340-01 -0.0470122 FECL3 AQ 0.0 1.678780-23 -22.7750 1.683090-23 -22.7739 1.002570+00 0.0011123 FEOH2 + 1.0 9.011580-06 -5.0452 8.087300-06 -5.0922 8.974340-01 -0.0470124 FE0643 AO 0.0 1.858620-06 -5.7308 1.863400-06 -5.7297 1.002570+00 0.0011125 FEOH4 - -1.0 4.147030-07 -6.3823 3.7216910-07 -6.4293 8.974340-01 -0.0470127 FEF 2+ 2.0 5.827940-13 -12.2345 3.780290-13 -12.4225 6.486490-01 -0.1880128 FEF2 + 1.0 4.149280-13 -12.3820 3.723700-13 -12.4290 8.974340-01 -0.0470129 FEF3 AO 0.0 1.461850-14 -13.8351 1.465600-14 -13.8340 1.002570+00 0.0011130 FE(SO4)2 -1.0 1.828220-15 -14.7380 1.640700-15 -14.7850 8.974340-01 -0.0470131 FE2(0M 2 4.0 2.359030-16 -15.6273 4.17613 0-17 -16.3792 1.770270-01 -0.7520132 FE3(041 4 5.0 1.125340-18 -17.9487 7.522220-20 -19.1237 6.684400-02 -1.1749135 8.4011 + 1.0 2.663650-13 -12.5745 2.390450-13 -12.6215 8.974340-01 -0.0470136 MNCL + 1.0 2.362950-10 -9.6265 2.120590-10 -9.6735 8.974340-01 -0.0470137 1.111CL2 AO 0.0 2.899640-14 -13.5377 2.907080-14 -13.5365 1.002570+00 0.0011138 NNCL3 - -1.0 7.36979 0-18 6.613900-18 -17.1795 8.974340-01 -0.0470139 MNOH • 1.0 5.735080-11

-17.1321-10.241 5.146850-11 -10.2885 8.974340-01 -0.0470

140 MN(OH)3 -1.0 1.560360-20 -19.806 1.400320-20 -19.8538 8.974340-01 -0.0470141 MNF • 1.0 2.039520-11 1.830330-11 -10.7375 8.974340-01 -0.0470142 MN504 AO 0.0 1.511920-08

-10.690;-7.820 1.515800-08 -7.8194 1.00257 0+00 0.0011

143 MN(603)2 0.0 1.85039D-14 -13.732 1.855140-14 -13.7316 1.002570+00 0.0011144 MN44CO3 + 1.0 6.566570-09 -8.1827 5.893060-09 -8.2297 8.974340-01 -0.0470145 CUCL2 - -1.0 3.339640-20 -19.4763 2.997110-20 -19.5233 8.974340-01 -0.0470146 CUCL3 2- -2.0 3.685700-23 -22.4335 2.390730-23 -22.6215 6.486490-01 -0.1880147 1.760330-07 -6.7544 1.764850-07 -6.7533 1.002570+00 0.0011148

CU103 AO 0.0CU CO3/2 -2.0 9.967420-10 -9.0014 6.465360-10 -9.1894 6.486490-01 -0.1880

149 C L + 1.0 1.651580-11 -10.7821 1.482190-11 -10.8291 8.974340-01 -0.0470150 CUCL2 AO 0.0 3.976450-15 -14.4005 3.986650-15 -14.3994 1.002570+00 0.0011151 CUCL3 - -1.0 7.856110-21 -20.1048 7.050340-21 -20.1518 8.974340-01 -0.0470152 CUCL4 2- -2.0 2.704870-26 -25.5679 1.754510-26 -25.7558 6.4864919-01 -0.1880153 CUF + 1.0 5.663700-12 -11.2469 5.082790-12 -11.2939 8.974340-01 -0.0470154 CUOH + 1.0 2.568880-09 -8.5903 2.305400-09 -8.6373 8.974340-01 -0.0470155 9.807450-08 -7.0084 9.832630.08 -7.0073 1.002570+00 0.0011156

CU(OH12 0.0CU(OH 3 -1.0 1.3508001-13 -12.8694 1.212250-13 -12.9164 8.974340-01 -0.0470

157 CU(OH 4 -2.0 7.594670-19 -18.1195 4.926280-19 -18.3075 6.486490-01 -0.1880158 CU2(OH)2 2.0 3.347460-12 -11.4753 2.171330-12 -11.6633 6.486490-01 -0.1880159 CUSO4 AO 0.0 1.851540-09 -8.7325 1.856300-09 -8.7314 1.002570+00 0.0011161 CUHCO3 + 1.0 1.793520-08 -7.7463 1.609560-08 -7.7933 8.974340-01 -0.0470162 ZNCL + 1.0 8.436120-10 -9.0739 7.570860-10 -9.1209 8.974340-01 -0.0470163 ZNCL2 AQ 0.0 3.979310-13 -12.4002 3.989520-13 -12.3991 1.002570+00 0.0011164 ZNCL3 - -1.0 2.506630-16 -15.6009 2.249540-16 -15.6479 8.974340-01 -0.0470165 ZNCL4 2- -2.0 8.703010-20 -19.0603 5.645200-20 -19.2483 6.486490-01 -0.1880

166 ZNF + 1.0 2.232470-10 -9.6512 2.003670-10 -9.6982 8.974340-01 -0.0470167 ZNOH + 1.0 1.298350-08 -7.8866 1.165180-08 -7.9336 8.9743419-01 -0.0470168 2.776110-09 -8.5566 2.783230.04 -8.5555 1.002570+00 0.0011169

ZTIT 0.0ZN OH 3 -1.0 1.935570-13 -12.7132 1.737050-13 -12.7602 8.974340-01 -0.0470

170 ZN OH 4 -2.0 8.182510-19 -18.0871 5.307580-19 -18.2751 6.486490-01 -0.1880171 ZNOHCL A 0.0 1.956110-10 -9.7086 1.961130-10 -9.7075 1.002570+00 0.0011174 204504 AQ 0.0 1.081560-07 -6.9659 1.084340-07 -6.9648 1.002570+00 0.0011175 26(504)2 -2.0 1.105170-01 -8.9566 7.168700-10 -9.1446 6.486490-01 -0.1880180 ZNHCO3 + 1.0 1.149380-17 -16.9395 1.031490-17 -16.9665 8.974340-01 -0.0470181 ZNCO3 AQ 0.0 3.329300-07 -6.4776 3.337850-07 -6.4765 1.002570+00 0.0011182 ZN(CO312 -2.0 3.201420-08 -7.4947 2.076600-08 -7.6826 6.486490-01 -0.1810208 PBCL + 1.0 1.897300-11 -10.7219 1.702700-11 -10.7689 8.974340-01 -0.0470209 PBCL2 AO 0.0 1.376320-14 -13.8613 1.379850-14 -13.8602 1.002570+00 0.0011210 P8CL3 - -1.0 6.122790-18 -17.2131 5.494800-18 -17.2600 8.974340-01 -0.0470211 2.039840-21 -20.6904 1.323140-21 -20.8784 6.486490-01 -0.1880212

P1L4 2- -2.0PB CO312 -2.0 4.914210-10 -9.3085 3.187600-10 -9.4965 6.486490-01 -0.1880

213 PB • 1.0 4.253680-13 -12.3712 3.817400-13 -12.4182 8.974340-01 -0.0470214 PBF2 AO 0.0 1.935210-16 -15.7133 1.940180-16 -15.7122 1.00257D+00 0.0011215 PBF3 - -1.0 3.898640-20 -19.4091 3.498780-20 -19.4561 8.974340-01 -0.0470216 PBF4 2- -2.0 6.426580-25 -24.1920 4.1686010-25 -24.3800 6.486490-01 -0.1880217 POOH + 1.0 3.824850-10 -9.4174 3.432550-10 -9.4644 8.974340-01 -0.0470218 2.719110-12 -11.5656 2.726090-12 1.002570+00 0.0011219

P8i0M12 0.0PB ON)3 -1.0 7.119710-16 6.389470-16

1.564;-1 .194 8.974340-01 -0.0470

220 P82014 +3 3.0 1.755040-17 :INg; 6.626880-18 -1 .178 3.775920-01 -0.4230221 P8603 + 1.0 3.008210-12 -11.547 2.699670-12 -11.5687 8.974340-01 -0.0470222 PBSO4 AO 0.0 3.912990-10 -9.4075 3.923040-10 -9.4064 1.00257 0+00 0.0011225 P 83(011)4 2.0 2.037290-22 -21.6909 1.321490-22 -21.8789 6.486490-01 -0.1880230 4.349750-08 -7.3615 4.360920-08 -7.3604 1.002570+00 0.0011231232233

P103 AQ 0.0PB OH (4 -2.0PB 50412 -2.0P844CO3 + 1.0

4.617180-202.567680-122.170580-09

-19.3356-11.5905-8.6634

2.994930-201.665530-121.947950-09

-19.5236-11.7784-8.7104

6.486490-016.4864910-018.974340-01

-0.1880-0.1880-0.0470

248249

AGCL AO 0.0AGCL2 - -1.0

4.119600-092.334120-10

-8.3851-9.6319

4.130170-092.094720-10

-5.3840-9.6789

1.002570+008.974340-01

0.0011-0.0470

250251252257258259

AGCL3 2- -2.0AGCL4 -3 -3.0AGF AO 0.0AGOH AQ 0.066(01.02 -1.0AGSO4 - -1.0

1.680110-132.417270-162.501420-138.854310-142.019250-187.598030-11

-12.7747-15.6167-12.6018-13.0528-17.6946-10.1193

1.089800-139.12741E1-172.507840-138.877040-141.812140-186.818730-11

-12.9627-16.0397-12.6007-13.0517-17.7418-10.1663

6.486490-013.775920-011.002570+001.0025704008.974340-018.974340-01

-0.1880-0.42300.00110.0011

-0.0470-0.0470

260269

AGNO3 AO 0.04424504 - -1.0

4.708140-132.257590-09

-12.3272-8.6464

4.7202319-132.026040-04

-12.3260-8.6934

1.002570+008.974340-01

0.0011-0.0470

270 448504 2- -2.0 1.109960-08 -7.9547 7.199770-04 -8.1427 -0.1880271272

ASO4 -3 -3.0HCO3 - -1.0

9.700470-133.441130-03

-12.0132-2.4633

3.662820-133.088190-03

-12.4362-2.5103

6.486490-013.775920-08.974340-0

-0.4230-0.0470

273 M2CO3 AQ 0.0 3.402300-04 3.411040-04 -3.4671 1.002570+00 0.0011274 HSO4 - -1.0 4.202890-01

-3.4681-8.376 3.771820-09 -8.4234 8.974340.01 -0.0470

275276

MF AO 0.0MF2 - -1.0

1.770080-091.863360-13

-8.752-12.7297

1.774620-091.672250-13

-8.7509-12.7767

1.00257E1+008.974340-01

0.0011-0.0470

277 M2F2 AQ 0.0 8.690310-18 -17.0610 8.712620-18 -17.0599 1.00257. .. 0.0011362 02 AO 0.0 5.323860-05 -4.2738 5.337520-05 -4.2727 1.00257. .. 0.0011

---- LOOK MIN IAP ----

PHASE LOG IAP LOG KT LOG IAP/KT

ANHYDRIT -6.0286 -4.6335 -1.3151ARAGONIT -8.4726 -8.3297 -0.1430ARTINITE 2.9101 9.6496 -6.73958AF2 -15.7553 -5.7617 -9.9935

178

Page 180: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

179

BARITE -9.6395 -9.9908 0.3514BRUCITE 11.5331 16.8346 -5.3014CALCITE -8.4726 -8.4705 -0.0021DOLOMITE -17.0954 -16.9857 -0.1097EPSOMITE -6.1793 -2.1449 -4.0345FERRIHYD 20.9661 17.9373 3.0289FE3(OH)8 42.3885 46.3245 -3.9360F60H12.7 17.7841 10.0072 7.776$FIS PPT -181.3354 -37.6837 -143.6517FE2(5041 -11.2035 29.7765 -40.9800FLUORITE -12.1444 -10.9681 -1.1762GOETHITE 20.9662 13.5722 7.3940GREIGITE -684.7780 -153.9904 -530.7875GYPSUM -6.0287 -4.8504 -1.1783HALITE -6.3933 1.5784 -7.9717HEMATITE 41.9325 22.1477 19.7848HUNTITE -34.3411 -29.9256 -4.4155HYDRMAGN -22.9585 -8.6799 -14.2785JAROSITE 27.4744 27.1469 0.3275MACKINAW -181.3354 -38.4137 -142.9217MAGHEMIT 41.9325 32.4845 9.4480MAGNESIT -8.6228 -8.0194 -0.6035MAGNETIT 42.3888 29.9215 12.4672MELANTER -17.2562 -2.4749 -14.7813MIRABILI -9.2855 -1.1428 -8.1427NATRON -11.7295 -1.3372 -10.3924NESOUEHO -8.6231 -5.6100 -3.0130PYRITE -322.1072 -86.0270 -236.0802SIDERITE -19.6998 -10.5408 -9.1590THENARDI -9.2847 -0.1790 -9.1057THERMONA -11.7288 0.1348 -11.8637MITHERIT -12.0135 -8.5906 -3.4929PYROLUSI 48.6563 41.4648 7.1915BIRNESSI 48.6563 43.6444 5.0119NSUTITE 48.6563 43.0544 5.6019BIXBYITE 56.2927 50.5152 5.7775HAUSMANN 43.9291 61.6782 2.2508PYROCROI 7.6363 15.1290 -7.4927MANGANIT 28.1463 25.3144 2.8319RHODOCHR -12.5197 -10.4064 -2.1132MNCL2, 4 -13.5778 2.6800 -16.2579FINS GREE -174.1553 -29.9538 -144.2016M6504 -10.0756 2.6967 -12.7723M82(04) 3.1567 45.4562 -42.2995CU METAL -34.3472 -11.5067 -22.8405NANTOKIT -24.4442 -9.4944 -14.9498CUF -25.7511 4.3842 -30.1353CUPRITE -27.6744 -6.9951 -20.6794CHALCOCI -209.4661 -73.9032 -135.5629DJURLE1T -207.1992 -72.8410 -134.3582ANILITE -200.8793 -69.7946 -131.0848BLAUBLEI -178.5537 -58.4732 -120.0805COVELLIT -175.1189 -56.8452 -118.2738CU2SO4 -45.3864 -7.3764 -38.0100CUPROUSF 7.1290 1.4167 5.7124MELANOTH -14.5412 3.7513 -18.2924CUCO3 -13.4833 -9.6300 -3.8533CUF2 -17.1550 -0.5970 -16.5580CUF2, 2H -17.1552 -4.5437 -12.6115CU(OH)2 6.6727 8.6663 -1.9936

ATACAMIT 2.7384 7.3722 -4.6338CU2(OH)3 2.3610 9.2699 -6.9089ANTLERIT 2.3061 8.2900 -5.9839BROCHANT 8.9788 15.3400 -6.3612LANGITE 8.9787 16.8583 -7.8796TENORITE 6.6727 7.6463 -0.9735C1JOCUSO4 -4.3665 11.5914 -15.9579CUSO4 -11.0392 3.0413 -14.0805CHALCANT -11.0396 -2.6425 -8.3971CUPRICFE 48.6052 32.0412 16.5640CHALCOPY -356.4544 -102.8587 -253.5957ZN METAL -32.6404 25.8234 -58.4639ZNCL2 -12.8344 7.0602 -19.8946SMITHSON -11.7765 -9.9925 -1.7841ZNCO3, 1 -11.7766 -10.2600 -1.5166ZNF2 -15.4483 -1.4974 -13.9508ZN(OH) 8.3794 11.5000 -3.1206ZN210H13 6.1519 15.2000 -9.0481ZN5 OH 8 20.6833 38.5000 -17.8167ZN2 OH 2 -0.9531 7.5000 -8.4531ZN4 OH 6 15.8058 28.4000 -12.5942ZNNO3)2 -13.5896 3.4305 -17.0201ZNO(ACTI 8.3795 11.3100 -2.9305ZINCI

55TE 8.3795 11.1777 -2.7982

ZN30 SO4 -10.28 19.1269 -29.4124ZNS A) -173.4122 -18201 -130.5921SPHALER1 -173.4122 -4 .3980 -128.0142WURTZIT -173.4122-43.4525 -129.9597ZINCOSI -9.3325 3.0431 -12.3756INSO4. 1 -9.3326 -0.5516 -8.7809BIANCHIT -9.3329 -1.7597 -7.5732GOSLARIT -9.3330 -1.9657 -7.3673PB METAL -35.4643 4.2693 -39.7336COTUNNIT -15.6583 -4.7797 -10.8786MATLOCK' -16.9652 -9.4437 -7.5215PHOSGENI -30.2587 -19.8100 -10.4487CERRUSIT -14.6004 -13.1384 -1.4620P8F2 -18.2722 -7.4388 -10.8334MASSICOT 5.5556 12.9389 -7.3833LITHARGE556 12.7483 -7.1926PBO. .3H 5.5.55556 12.9800 -7.4244P8200O3 -9.0448 -0.4802 -8.5646LARNAKIT -6.6008 -0.2689 -6.3319P8302504 -1.0451 10.4358 -11.4804P8403504 4.5105 22.1605 -17.6500P8302CO3 -3.4892 11.0656 -14.5548ANGLESIT -12.1564 -7.7937 -4.3627GALENA -176.2361 -48.9272 -127.3089PLATTNER 46.5751 49.4220 -2.8465P8203 52.131 61.0400 -8.9088MINIUM 57.686 73.8673 -16.1805P8(OH)28.1741 -2.6186LAURIONI -PM 0.6200 -5.6714P82(OH)3 .5042 8.7900 -8.2858

338M -23.6453 -17.4600 -6.1853Y 11.1112 26.2000 -15.0888P84(OH)6 4.5102 21.1000 -16.5898AG METAL -21.5617 -13.5535 -8.0081CERARGYR -11.6587 -9.7770 -1.8817AG2CO3 -22.2594 -11.0864 -11.1730

Page 181: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

180

AGF.4H20 -12.9659 0.5426 -13.5085A020 -2.1034 12.5980 -14.7014ACANTHIT -183.8951 -69.9057 -113.9894632504 -19.8154 -4.9273 -14.8881MALACHIT -6.8106 -5.1531 -1.6575AZURITE -20.2939 -16.8790 -3.4149ARSENOLI -219.1323 -80.8118 -138.3205CLAUDETI -219.1323 -81.0700 -138.0623ORIPMENT -654.9412 -201.3977 -453.5435REALGAR -257.0847 -73.0582 -184.0265A 5205 -27.5263 6.7093 -34.2356SULFUR -140.7718 -35.8665 -104.9053

7.5237 22.3000 -14.7763CA314504CU3 ASO4 -7.5082 6.1000 -13.6082FEA 04.2 7.2029 13.4472 -6.2443MN3ASO42 -4.6178 12.5000 -17.1178P83(4504 -10.8595 5.8000 -16.6595Z63ASO42 -2.3880 13.6500 -16.038084(4504) -3.3088 -8.9146 5.6058LIME 11.6634 32.8798 -21.1964PORTLAND 11.6833 22.7229 -11.0396HUSTITE 2.6062 11.7329 -9.1267PERICLAS 11.5332 21.5723 -10.0391MAG-FERR 53.4657 42.9795 10.4862LEPIDOCR 20.9662 14.4172 6.5490FE(OH)3S 20.9661 15.7172 5.2489NA2S03 -50.3046 4.9551 -55.2598K2S03 -51.8417 8.2138 -60.0554CAS03.2H -47.0486 -3.4853 -43.5634CAS03.5H -47.0485 -3.1393 -43.9092MGS03 -47.1987 6.5318 -53.7305BAS03 -50.6594 -5.3776 -45.2818AG2S03 -60.8353 -10.2124 -50.6229CH4(3AS) -184.2359 -41.1852 -143.0507CO2(GAS) -20.1560 -18.1609 -1.995102(GAS) 82.0398 83.3557 -1.3158

1

0.006 FRACTION OF SOLUTION 1. 0.994 4 FRACTION OF SOLUTION 2.

STEP NUMBER

TOTAL MOLALITIES OF ELEMENTS

ELEMENT MOLALITY LOG MOLALITY

AG 9.3276940-09 -8.0302Arsenic 1.3658330-08 -7.8646BA 4.3596440-07 -6.3605TOT ALI( 3.8600570-03 -2.4134CA 1.9669720-03 -2.7062CL 2.7355250-03 -2.5630CU 3.1516880-07 -6.5015F 2.9498100-05 -4.5302FE 1.1228620-05 -4.9497K 1.5309730-04 -3.8150MG 1.3680650-03 -2.8639MN 1.8150890-07 -6.7411

Nitrogen 2.3490760-04 -3.6291NA 3.0702360-03 -2.5128P8 4.8562200-08 -7.3137

i N1.5572010-031.3719440-06

-2.8077 -5.8627

---- LOOK MIN IAP -.•-•,-

PHASE LOG IAP LOG KT LOG IAP/KT

ANHYDRITARAGON T

-6.3926-8.4758

-4.6336-8.3300

-1.7547-0.1458

ARTINI E 4.3945 9.6469 -5.2525BAF2 -15.8142 -5.7616 -10.0526BARITE -9.6773 -9.9903 0.3130BRUCIT 12.4147 16.8322 -4.4175CALCITE -8.4708 -0.0050DOLOMITE

-8.47E -16.49

19-16.9865 0.4908

EPSOMITE 5 -2.1446 -3.7929FERRIHYD 19.8858 17.9363 1.9494FE3(0108 38.8369 46.3227 -7.4858FEOH12.7 16.8147 10.0063 6.8084FES PPT -185.8496 -148.1714FE2ASO41 -15.2828

-37.678129.762

FLUORITE -12.5295 -10.967 -1.5618GOETHITE 19.8859 13.5700 6.3159GREIGITE -700.8231 -153.9703 -546.8528GYPSUM -6.3928 -4.8 -1.5424HALITE -5.1831 1.5785 -6.7616HEMATITE 22. 431 17.6288HUNTITEHYDRMAGN

39.771:-32.53-19.6654

-29.9279-8.6847

-2.6076-10.9807

JAROSITE 22.9542 27.1391 -4.1849MACKINAW -185.4496 -38.4082 -147.4414MAGHEM / 39.7719 32.4827 7.2892MAGNES I TMAGNETIT

-8.019938.6374

-8.019929.9151

0.00008.9223

MELANTER -19.2869 -2.4747 -16.8122MIRABILI -8.2451 -1.14 -7.1041NATRONNESQOO

-10.3283-8.0203

-1.33-5.61

195

-6.9926-2.4097

PYRITE -329.1239 -86.0150 -243.106951018 11E -21.3693 -10.5413 -10.8280THENARDI -8.2440 -0.1791 -8.0649THERMONA -10.3273 0.1346 -10.4618WITHERIT -11.7605 -8.5906 -3.1699PYROLUSI 49.8788 41.4597 8.4191BIRNESSI 49.8788 43.6421 6.2367NSUTITE 49.8788 43.0521 6.8267BIXBYITE 58.1167 50.5091 7.6077HAUSMANN 66.3546 61.6709 4.6837PYROCRO1 8.2378 15.1269 -6.889MANGANIT 29.0583 25.3121 3.746RHOOOCHR -12.1969 -10.4066 -1.790

1MNC L2_, 4 -12.2363 2.6816 -14.917MNS GREE -176.6772 -29.9488 -146.7284

Page 182: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

MNSO4 -10.1137 2.6953 -12.8089MN2kSO4) 3.0620 45.4480 -42.3860CU METAL -34.7761 -11.5053 -23.2708NANTOKIT -24.1925 -9.4936 -14.6989CUF -26.1999 4.3829 -30.5828CUPRITE -27.9113 -6.9948 -20.9165CHALCOCI -212.8264 -73.8935 -138.9330DJURLEIT -210.5312 -72.8314 -137.6998ANILITE -204.1324 -69.7853 -134.3471BLAUBLEI -181.5279 -58.4677 -123.0602COVELLIT -178.0503 -56.8375 -121.2129CU2SO4 -46.2629 -7.3772 -38.8857CUPROUSF 5.9303 1.4152 4.5151MELANOTM -13.6090 3.7501 -17.3591CUCO3 -13.5700 -9.6300 -3.9400CUF2 -17.6237 -0.5982 -17.0255CUF2 2M -17.6240 -4.5440 -13.0799CU(0A)2 6.8647 8.6649 -1.8002ATACAMIT 3.4925 7.3705 -3.8780CU2(0)03 2.4284 9.2683 -6.8400ANTLERIT 2.2426 8.2900 -6.0474BROCHANT 9.1073 15.3400 -6.2327LANGITE 9.1071 16.8547 -7.7476TENOR 11E 6.8648 7.6449 -0.7801CUOCUSO4 -4.6220 11.5881 -16.2101CUSO4 -11.4868 3.0396 -14.5264CHALCANT -11.4874 -2.6424 -8.8450CUPRICFE 46.6367 32.0359 14.6008CHALCOPY -363.9000 -102.8444 -261.0555ZN METAL -32.7967 25.8201 -58.6168ZNCL2 -11.6296 7.0586 -18.6882SMITHSON -11.5906 -9.9929 -1.5977ZNCO3, 1 -11.5907 -10.2600 -1.3307ZNF2 -15.6444 -1.4986 -14.1457ZN(OH)2 8.8440 11.5000 -2.6560ZN2(OH)3 7.4512 15.2000 -7.7488

23.7465 38.5000 -14.7535ZN5i0H)8ZN2 OM)2 -0.6634 7.5000 -8.1634ZN4 OM)6 17.0247 28.4000 -11.3753ZNNO3)L -13.7587 3.4310 -17.1897ZNOtACTI 8.8442 11.3100 -2.4658ZINCITE 8.8442 11.1757 -2.3316ZN30(04 -10.1707 19.1213 -29.2920ZNS (A) -176.0710 -42.8142 -133.2567SPHALERI -176.0710 -45.3917 -130.6792HURTZITE -176.0710 -43.4465 -132.6245ZINCOSIT -9.5074 3.0414 -12.5488

, ZNSO4, 1 -9.5075 -0.f526 -8.9549BIANCHIT -9.5081 -1./597 -7.7484GOSLARIT -9.5082 -1.9654 -7.5428PB METAL -35.7912 4.2693 -40.0606COTUNNIT -14.6241 -4.7791 -9.8450MATLOCKI -16.6315 -9.4430 -7.1885PHOSGENI -29.2092 -19.8100 -9.3992CERRUSIT -14.5851 -13.1379 -1.4472P8 F2 -18.6389 -7.4389 -11.2000MASSICOT 5.8497 12.9374 -7.0878LITHARGE 5.8497 12.7468 -6.8971P80 .3H 5.8496 12.9800 -7.1304PB200O3 -8.7355 -0.4813 -8.2542

LARNAKIT -6.6523 -0.2695 -6.3828PB302504 -0.8026 10.4339 -11.2365PB403504 5.0471 22.1573 -17.1102P8302CO3 -2.8858 11.0632 -13.9490ANGLESIT -12.5019 -7.7935 -4.7084GALENA -179.0655 -48.9199 -130.1455PLATTNER 47.4905 49.4155 -1.9250PB203 53.3402 61.0400 -7.6998MINIUM 59.1899 73.8579 -14.6680PII(044)2 5.8495 8.1729 -2.3233LAURIONI -4.3873 0.6200 -5.0073PB2(04I)3 1.4622 8.7900 -7.3278HYDCERRU -23.3207 -17.4600 -5.8607P820(011) 11.6992 26.2000 -14.5008P84(OH)6 5.0467 21.1000 -16.0533AG METAL -22.0708 -13.5f12 -8.5195CERARGYR -11.4872 -9.7756 -1.7116AG2CO3 -22.9354 -11.0856 -11.8498AGF.41420 -13.4950 0.5430 -14.0381AG20 -2.5006 12.5970 -15.0977ACANTHIT -187.4157 -69.8953 -117.5204AG2SO4 -20.8522 -4.9269 -15.9253MALACHIT -6.7053 -5.1545 -1.5508AZURITE -20.2753 -16.8812 -3.3941

-223.9716 -80.7995 -143.1721ARSENOLICLAUDET -223.9716 -81.0578 -142.9138ORIPMEN -201.3682 -465.3630REALGAR

-666.730141-261.728 -73.0472 -188.6813

AS205 -28.7 6.7088 -35.4129SULFUR -143.2742 -35.8614 -107.4129CA3(ASO4 7.1725 22.3000 -15.1275CU3(4504 -8.1099 6.1000 -14.2019FEASO4.2 5.5337 13.4463 -7.9126MN3ASO42 -3.9912 12.5000 -16.4912P83(ASO4 -11.1550 5.8000 -16.9550Z63A5042 -2.1719 13.6500 -15.8219BA(ASO4) -2.6811 -8.9143 6.2332LIME 11.9590 32.8756 -20.9166PORTLAND 11.9f89 22.7201 -10.7612NUSTITE 1.3220 11.7306 -10.4086PERICLAS 12.4148 21.5690 -9.1542HAG-FERN 52.1867 42.9715 9.2152LEPIDOCR 19.8859 14.4163 5.4695FElOHl35 19.8858 15.7163 4.1694NA2S03 -49.8848 4.9548 -54.8397K2S03 -52.4933 8.2136 -60.7068CAS03.2H -48.0337 -3.4850 -44.5487CAS03.51 -48.0335 -3.1393 -44.8942140503 -47.5776 6.5301 -54.1077BAS03 -51.3181 -5.3772 -45.9410

-62.4931 -10.2107 -52.2824CH4 GAS) -186.9986 -41.1796 -145.8189AG2I03

CO2 GAB) -20.4348 -18.1609 -2.273902( AS) 63.2818 83.3432 -0.0614

----PHASE BOUNDARIES-

PHASE DELTA PHASE* LOG IAP LOG KT LOG IAP/KT

Calcite -1.046909D-03 -8.4758 -8.4758 0.0000Jarosite -3.5429483-06 28.0081 28.0081 0.0000

181

Page 183: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

182

Magnesit 1.2179590-03 -8.0199 -8.0199 0.0000

• NEGATIVE DELTA PHASE INDICATES PRECIPITATION AND POSITIVE DELTA PHASE INDICATES DISSOLUTION.

TOTAL MOLALITIES OF ELEMENTS

ELEMENT MOLALITY LOG MOLALITY

AG 9.3276940-09 -8.0302Arsenic 1.3658330-08 -7.8646BA 4.3596440-07 -6.3605C 4.0311070-03 -2.3946CA 9.2006300-04 -3.0362CL 2,7355250-03 -2.5630CU 3.151688D-07 -6.5015F 2.9498100-05 -4.5302FE 5.9977710-07 -6.2220K 1.5309730-04 -3.8150MG 2.5860240-03 -2.5876MN 1.8150890-07 -6.7411Nitrogen 2.349070-04 -3.6291NA 3.0666930-03 -2.5133DB 4.8562200-08 -7.3137S 1.5501160-03 -2.8096ZN 1.3719440-06 -5.8627

----DESCRIPTION OF SOLUTION ----

PH 7.6205PE 13.2000

ACTIVITY H20 0.9997IONIC STRENGTH 0.0138

TEMPERATURE 24.3370ELECTRICAL BALANCE 2.58310-04

THOR 3.04210-02TOTAL ALKALINITY 3.87690-03

ITERATIONS 13

DISTRIBUTION OF SPECIES

I SPECIES Z MOLALITY LOG MOLALITY ACTIVITY LOG ACTIVITY GAMMA LOG GAMMA

123468

101113

H. 1.0E- -1.0H20 0.060+ 1.0H3ASO4 0.0BA 2+ 2.0CO3 2- -2.0CA 2+ 2.0CL- -1.0

2.750470-086.309570-149.997300-011.516170-094.430320-154.359640-071.028340-058.136550-042.735510-03

-7.5606-13.2000-0.0001-8.8193

-14.3536-6.3605-4.9879-3.0896-2.5630

2.396060-086.309570-149.997300-011.346610-094.444400-152.712890-076.399080-065.225340-042.418520-03

-7.6205-13.2000-0.0001-8.8708

-14.3522-6.5666-5.1939-3.2819-2.6165

8.711650-011.000000+001.000000+008.88168D-011.003180+006.222730-016.222730-016.422060-018.841190-01

-0.05990.00000.0000

-0.05150.0014

-0.2060-0.2060-0.1923-0.0535

15 CU 2+ 2.0 6.759660-09 -8.1701 4.206350-09 -8.3761 6.222730-01 -0.206016 F- -1.0 2.677230-05 -4.5723 2.377830-05 -4.6238 8.881680-01 -0.051517 FE 2+ 2.0 1.065230-16 -15.9808 6.677460-17 -16.1754 6.388510-01 -0.194619 K+ 1.0 1.522810-04 -3.8174 1.346350-04 -3.8708 8.841190-01 -0.053521 MG 2+ 2.0 2.305710-03 -2.6372 1.492660-03 -2.8260 6.473770-01 -0.188822 MN 2+ 2.0 1.596070-07 -6.7969 9.931890-08 -7.0030 6.222730-01 -0.206023 NO3 - -1.0 2.349080-04 -3.6291 2.086380-04 -3.6806 8.881680-01 -0.051524 NA. 1.0 3.049530-03 -2.5158 2.712480-03 -2.5666 8.894720-01 -0.050927 PB 2+ 2.0 6.528160-10 4.062300-10 -9.3912 6.222730-01 -0.206029 SO4 2- -2.0 1.251620-03

-9.1851-2.902 7.750250-04 -3.1107 6.192160-01 -0.2082

34 ZN 2+ 2.0 6.445930-07 -6.190 4.011130-07 -6.3967 6.222730-01 -0.206052 Cl).- 1.0 1.558530-19 -18.8073 1.384240-19 -18.8588 8.881680-01 -0.0515

11FE 3+ 3.0MN 3+ 3.0

2.379660-161.292690-19

-15.623-18.888

9.468390-174.445800-20

-16.0237-19.3520

3.978870-013.439200-01

-0.4002

6 NO2 - -1.0 2.352310-17 -16.628 2.089250-17 -16.6800 8.881680-01 -0.05165 OH- -1.0 4.488380-07 -6.347 3.986440-07 -6.3994 8.881680-01

-0.4631

-0.05176 MGOM + 1.0 1.08776D-07 -6.9635 9.66115D-08 -7.0150 8.881680-01 -0.05177 MGF + 1.0 2.594250-06 -5.5860 2.304140-06 -5.6375 8.881680-01 -0.05178 MGCO3 AQ 0.0 8.995100-06 -5.0460 9.023690-06 -5.0446 1.003180+00 0.001479 MGHCO3 + 1.0 6.462160-05 -4.1896 -4.2411 8.881680-01 -0.051580 MGSO4 AQ 0.0 2.039930-04 -3.6904 .046410-04

1.73969D-05-3.6890 1.003180+00 0.0014

84 CAOH • 1.0 5.864900-09 -8.2317 .209020-09 -8.2832 8.881680-01 -0.051585 CAHCO3 • 1.0 1.983480-05 -4.7026 .761660-05 -6.7541 8.881680-01 -0.051586 CAM AO 0.0 4.666280-06 -5.3310 4.681110-06 -5.3297 1.003180+00 0.001487 CASO4 AO 0.0 8.178070-05 -4.0873 8.204060-05 -4.0860 1.003180+00 0.001491 CAF + 1.0 1.201150-07 -6.9204 1.066820-07 -6.9719 8.881680-01 -0.051592 NACO3 - -1.0 3.502930-07 -6.4556 3.111190-07 -6.5071 8.881680-01 -0.051593 NAHCO3 A 0.0 4.984280-06 -5.3024 5.000120-06 -5.3010 1.003180+00 0.001494 N 6504 - -1.0 1.181290-05 -6.9276 1.049190-05 8.881680-01 -0.051596 NAF AQ 0.0 1.042720-08 -7.9818 1.046040-08

-4.9791-7.980 1.003180+00 0.0014

97 KSO4 - -1.0 8.161180-07 -6.0882 7.248500-07 -6.139 8.881680-01109 FEOH + 1.0 9.439290-19 -18.0251 8.383680-19 -18.0766 8.881680-01

-0.0511-0.051

110 FEOH3 -1 -1.0 4.8727 50-25 -24.3122 4.327820-25 -24.3637 8.881680-01 -0.051111 FESO4 AQ 0.0 9.063000-18 -17.0427 9.091810-18 -17.0413 1.003180+00 0.0014113 FEOH2 AO 0.0 2.801170-22 -21.5527 2.810080-22 -21.5513 1.003180+00 0.0014117 FEOH 2+ 2.0 3.941770-11 -10.4043 2.452860-11 -10.6103 6.222730-01 -0.2060119 FESO4 + 1.0 6.771860-16 -15.1693 6.014550-16 -15.2208 8.881680-01 -0.0515120 FECL 2+ 2.0 1.088170-17 -16.9633 6.771360-18 -17.1693 6.222730-01 -0.2060121122

FECL2 + 1.0FECL3 AQ 0.0

8.411590-201.801130-23

-19.071-22.744

7.470910-20501.8068-23

-19.1266-22.7431

8.881680-011.003180+00

-0.05150.0014

123 FEOH2 + 1.0 3.723430-07 -6.429 3.307030-07 -6.4806 8.881680-01 -0.0515124 FE0143 AQ 0.0 1.555770-07 -6.8081 1.560720-07 -6.8067 1.003180+00 0.0014125 FEOH4 - -1.0 7.181730-08 -7.1438 8.881680-01 -0.0515127 FEF 2+ 2.0 5.6632-1550 -14.2469

6.37859D-013.52409D-1

-713-16.4 0 6.222730-01 -0.2060

128 FEF2 + 1.0 3.735080-15 -14.4277 3.317380-1 -16.4 92 8.881680-01 -0.0515129 FEF3 A 0.0 1.243430-16 -15.9054 1.247380-16 -15.9040 1.003180+00 0.0014130 FE4 2 -1.0 1.65538D-17 -16.7811 1.47020-17 -16.8326 8.881680-01 -0.0515131 FE(OH)2 4.0 1.110050-19 -18.9547 1.664440-20 -19.7787 1.499420-01 -0.8241132 FE3 OH 4 5.0 2.369320-23 -22.6254 1.221820-24 -23.9130 5.156820-02 -1.2876135 BAOH + 1.0 -12.2773 -12.3288

-04.689840-13 8.881680-01

136 MNCL + 1.05.28031B=1.11.0941 -8.9609 9.718100-10 -9.0124 8.881688-01

-0.00115+0.1

137 MNCL2 AO 0.0 6.364320-13 -12.1962 6.384550-13 -12.1949 1.003180+00 O. 14138 IINCL3 - -1.0 7.837620-16 -15.1058 6.961130,-16 -15.1573 8.881680-01139 MNOH + 1.0 1.136060-10 -9.9446 1.001010-10 -9.9961 8.881680-01

-0.0511-0.051

140 MNIDH)3 -1.0 1.287340-19 -18.8903 1.143370-19 -18.9418 8.881680-01 -0.051141 MN F • 1.0 1.882430-11 -10.7253 1.671910-11 -10.7768 8.881618:86 -0.051142 MNSO4 Al2 0.0 1.384920-08 -7.8586 1.389320-08 -7.8572 1.0031 0.0014143 MN(NO3)2 0.0 1.718250-14 -13.7649 1.723710-14 -13.7635 1.003180+00 0.0014144 MNHCO3 + 1.0 6.825780-09 -8.1658 6.062440-09 -8.2176 8.881680-01 -0.0515145 CUCU - -1.0 2.887350-19 -18.5395 2.564450-19 -18.5910 8.881680-02 -0.0515

Page 184: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

-0.20600.0014

- 0.2060- 0.05150.0014

- 0.0515- 0.2060- 0.0515- 0.05150.0014

-0.0515- 0.2060-0.20600.0014

- 0.0515- 0.05150.0014

- 0.0515-0.2060- 0.0515- 0.05150.0014

- 0.0515-0.20600.00140.0014

- 0.2060-0.05150.0014

-0.2060- 0.05150.0014

-0.0515- 0.2060-0.2060- 0.05150.0014

- 0.0515- 0.2060- 0.05150.0014

-0.0515-0.4635- 0.05150.0014

-0.20600.0014

-0.2060- 0.2060-0.05150.0014

-0.0515- 0.2060- 0.46350.00140.0014

- 0.0515- 0.05150.0014

-0.0515

146 CUCL3 2- -2.0 1.575620-21 -20.8025 9.804670-22 -21.0086 6.222730-01147 CUCO3 AQ 0.0 1.440940-07 -6.8414 1.445520-07 -6.8400 1.003180+00148 CU(CO3(2 -2.0 1.871370-09 -8.7278 1.164500-09 -8.9339 6.222730-01149 CUCL • 1.0 2.984210-11 -10.5252 2.650480-11 -10.5767 8.881680-01150 CUCL2 AO 0.0 3.407020-14 -13.4676 3.417850-14 -13.4662 1.003180+00151 CUCL3 - -1.0 3.263580-19 -18.4863 2.898610-19 -18.5378 8.881680-01152 CUCL4 2- -2.0 5.560020-24 -23.2549 3.459850-24 -23.4609 6.22273D-01153 CUP + 1.0 2.036780-12 -11.6911 1.809010-12 -11.7426 8.881680-01154 CUOH -8.7557+ 1.0 1.976040-09 -8.7042 1.755060-09 8.881680-01155 Cu 0+1)2 0.0 1.525100-07-6.8167 1.529950-07 -6.8153156 Cu OHO -1.0 4.340760-13 -12.3624 3.855330-13 -12.4139

1.003180+008.881680-01

157 CU 0H)4 -2.0 5.145970-18 -17.2885 3.202200-18 -17.4946 6.222730-01158 CU2(OH)2 2.0 2.029720-12 -11.6926 1.263040-12 -11.8986 6.222730-01159 CUSO4 AO 0.0 6.604660-10 -9.1801 6.6256510-10 -9.1788 161 CUHCO3 + 1.0 7.261490-09 -8.1390 6.449420-09

1.003180+008.881680-01

- 8.5444162 ZNCL + 1.0 2.854930-09 2.535650-09-8.1905-8.5959

163 ZNCL2 AQ 0.0 6.384120-12 -11.1949 6.404410-12 -11.19358.881680-011.003180+00

164 ZNCL3 - -1.0 1.948950-14 -13.7102 1.731000-14 -13.7617 8.881680-01165 ZNCL4 2- -2.0 3.346400-17 -16.4754

- 9.82272.082380-17 -16.6814 6.222730-01

166 ZNF • 1.0 1.504270-10 1.336040-10 -9.8742-7.7782

8.881680-01-7.7267167 ZNOH • 1.0 1.876150-08 1.666340-08

168 ZN(012 0.0 8.122300-09 -8.0903 8.148120-09 -8.08898.881680-011.003180+00

169 ZN(OH 3 -1.0 1.172360-12 -11.9309 1.041250-12 -11.9824 8.881680-01170 ZN(OH 4 -2.0 1.048180-17 -16.9796 6.522560-18 -17.1856 6.222730-01171 ZNOHCL A 0.0 1.3360510-09 -8.8742 1.340300-09 -8.8728 1.003180+00174 ZNSO4 AQ 0.0 7.227400,08 -7.1410 7.250380-08 -7.1396 1.00318D+00175 ZN(SO4)2 -2.0 7.377630-10 -9.1321 4.5909001-10 -9.3381 6.222730-01180 ZNHCO3 + 1.0 8.717380-18 -17.0596 7.742500-18 -17.1111 8.881680-01181 ZNCO3 AO 0.0 5.105110-07 -6.2920

-6.94855.121340-07 -6.2906 1.003180+00

-7.1545182 ZN(CO3)2 -2.0 1.125950-07 7.006500-08 6.222730-01208 PE1CL • 1.0 4.331820-11 -10.3633 3.847390-11 -10.4148 8.881680-01209 PBCL2 AO 0.0 1.488430-13 -12.8273 1.493160-13 -12.8259 1.003180+00210 PBCL3 - -1.0 3.209070-16 -15.4936 2.850190-16 -15.5451 8.881680-01211 PBCL4 2- -2.0 5.287140-19 -18.2768 3.290050-19 -18.4828212 PB -9.1390(CO312 -2.0 1.166880-09 -8.9330 7.261170-10

6.222730-016.222730-01

213 PBF + 1.0 1.934000-13 -12.7135 1.717720-13 -12.7650 8.881680-01214 PBF2 AO 0.0 8.312950-17 -16.0802 8.339380-17 -16.0789215 PBF3 - -1.0 1.617410-20 -19.7911 1.436530,20 -19.8427

1.00318D+008.881680-01

216 PBF4 2- -2.0 2.627330-25 -24.580 1.634920,25 -24.7865 6.222730-01217 PBOH + 1.0 3.721020-10 -9.429 3.304890-10 -9.4808 8.881680-01218 PB(01I)2 0.0 5.347650-12 -11.2718 5.364650-12 -11.2705 1.003180+00219 P6(OH)3 -1.0 2.893560-15 -14.5386 2.569970-15 -14.5901 8.881680-01220 P820+1+3 3.0 8.739190-18 -17.0585 3.005580-18 -17.5221 3.4392010-01221 P8803 • 1.0 1.411460-12 -11.8503

-9.75331.253620-12 -11.9018

222 P8504 AO 0.0 1.764860-10 1.770470-10 -9.75198.88168D-011.003180+00

225 P83(OH)4 2.0 3.895710-22 -21.4094 2.424200-22 -21.6154 6.222730-01-7.3451230 PBCO3 AO 0.0 4.503090-08 -7.3465 4.517400-08 1.003180+00

231 P8(OH)4 -2.0 3.956680-19 -18.4027 2.462130-19 -18.6087 6.222730-01232 P8(504)2 -2.0 1.157240-12 -11.9366

-8.95417.201180-13 -12.1426 6.222730-01

233 PBHCO3 + 1.0 1.1114510-09 9.871580-10 -9.0056 8.881680-01248 AGCL AO 0.0 6.106490-09 -8.2142 6.125900-09 -8.2128 249 AGCL2 - -1.0 1.675970-09 -8.7757 1.488540-09 -8.8272 8.2116111712250 AGCL3 2- -2.0 5.969100-12 -11.2241 3.714410-12 -11.4301 6.222730-01251 AGCL4 -3 -3.0 4.334930-14 -13.3630 1.490870-14 -13.8266 3.439200-01252 AGF AO 0.0 7.390410-14 -13.1313 7.413900-14 -13.1300 1.003180+00257 AGOH AO 0.0 5.6007910-14 -13.2518 5.618600-14 -13.2504 1.003180+00258 AG(OH)2 -1.0 2.639480-18 -17.5785 2.344300-18 -17.6300 8.881680-01259 60504 - -1.0 2.278400-11 -10.6424 2.023600-11 -10.6939 8.88168D-01260 40803 AO 0.0 1.436340-13 -12.8427 1.440900-13 -12.8414 1.003180+00269 112A504 - -1.0 1.201100-09 -8.9204 1.066780-09 -8.9719 8.881680-01

183

2(0 HA504 2- -2.0 1.245490-08 -7.904( 7.750330-09 -8.1107 6.222730-01271 ASO4 -3 -3.0 2.345630-12 -11.6297 8.067080-13 -12.0933 3.439200-01272 11CO3 - -1.0 3.737700-03 -2.4274 3.319700-03 -2.4789 8.881680-01273 H2CO3 AO 0.0 1.787280-04 -3.7478 1.792960-04 -3.7464 1.003180+00274 8504 - -1.0 1.992440-09 -8.7006 1.769620,09 -8.7521 8.881680-01275 HF AQ 0.0 8.272710-10 -9.0824 8.299010-10 -9.0810 1.003180+00276 HF2 - -1.0 8.412620-14 -13.0751 7.471820-14 -13.1266 8.881680-01277 H2F2 AO 0.0 1.896610-18 -17.7220 1.902640-18 -17.7206 1.003180+00362 02 AO 0.0 9.554390-04 -3.0198 9.584760-04 -3.0184 1.003180+00

-0.2060-0.4635-0.05150.0014

- 0.05150.0014

- 0.05150.00140.0014

Page 185: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

184

LIST OF REFERENCES

American Public Health Association, 1985, Standard Methods for the Examinationof Water and Wastewater, American Public Health Association, American WaterWorks Association, Water Pollution Control Federation, Washington, D.C., 1268 p.

Arizona Department of Environmental Quality, 1989, Quality Assurance Project Plan,378 p.

Arizona Department of Water Resources, 1989, Well Registry, unpublished computerdata base.

Barcelona, M.J., J.P. Gibb, J.A. Helfrich, and E.E. Garske, 1985, Practical guide forGround-Water Sampling, U.S. Environmental Protection Agency, EPA/600/2-85/104,169 p.

Bohannon, S.J., 1990, Self-Monitoring Report, Second Quarter 1990, AquiferProtection Permit No. P-102223, 32 p.

Clark, S.D., 1983, Description of the General Hydrogeologic Characteristics in theVicinity of the ASARCO Mission Pit, In Ground-Water Monitoring in the TucsonCopper Mining District, Pima Association of Governments, Upper Santa Cruz BasinMines Task Force, Appendix C.1.

Cooper, J.R., 1973, Geologic Map of the Twin Buttes Quadrangle, Southwest ofTucson, Pima County, Arizona, USGS Miscellaneous Geologic Investigations, MapI-745.

Cornwell, F.E., 1953, Flow from a short section of test-hole below groundwater level,In Theory and Problems of Water Percolation, U.S. Bureau of ReclamationEngineering Monograph, No. 8, pp. 65-68.

Davis, J.P.T., 1989, Hydrological Considerations in Locating the Proposed Supercon-ducting Supercollider in the Sierrita Mountains, Arizona, Unpublished M.S. Thesis,The University of Arizona, Tucson, Arizona, 98 p.

Duff, G.J. and C.A. Kumke, 1950, Mining and Milling Methods at San Xavier Mine,The Eagle-Picher Mining and Smelting Co., Pima County, Arizona, InformationCircular 7581, 13 p.

Eagle-Picher Mining and Smelting Company, 1946, San Xavier Mine No.6 ShaftArea, Geologic Cross-Section 2.

Freeze, R.A. and J.A. Cherry, 1979, Groundwater, Prentice-Hall Publishing, Inc., 604P.

Page 186: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

185

Glover, R.E., 1953, Flow from a test-hole located above groundwater level, In Theoryand Problems of Water Percolation, U.S. Bureau of Reclamation EngineeringMonograph, No. 8, pp. 69-71.

Hem, J.D., 1989, Study and Interpretation of the Chemical Characteristics of NaturalWater, U.S. Geological Survey Water-Supply Paper 2254, 263 p.

Irvin, G.W., 1959, Pyrometasomatic Deposits at San Xavier Mine, In SouthernArizona Guidebook II, Arizona Geological Society, ed. L.A. Heindl, pp. 195-197.

Jacob, C.E., 1946, Drawdown test to determine effective radius of artesian well,Proceedings of the American Society of Civil Engineers, Vol. 75, No. 5, pp. 629-646.

Jacob, C.E., 1963, Determining the Permeability of Water-Table Aquifers, InMethods of Determining Permeability, Transmissibility and Drawdown, U.S.Geological Survey Water-Supply Paper 15364, pp. 245-271.

Jansen, L.J., 1982, Stratigraphy and Structure of the Mission Copper Deposit, InAdvances in Geology of the Porphyry Copper Deposits, Southwestern North America,ed. S.R. Titley, pp. 467-474.

Journeay, J.A., 1959, Pyrometasomatic Deposits at Pima Mine, In Southern ArizonaGuidebook II, Arizona Geological Society, ed. L.A. Heindl, pp. 198-200.

Keller, G.V. and F.C. Frischknecht, 1966, Electrical Methods in GeophysicalProspecting, Hergamon Press, pp. 27-30.

Kharaka, Y.K., W.D. Gunter, P.K. Aggarwal, E.H. Perkins, and J.D. DeBraal, 1988,SOLMINEQ.88: A Computer Program for Geochemical Modeling of Water-RockInteractions, U.S. Geological Survey Water-Resources Investigations Report 88-4227,120 p.

Koglin, E.N., 1984, Bromide as an Environmental Tracer in Ground Water of theTucson Basin, Arizona, Unpublished M.S. Thesis, The University of Arizona, Tucson,Arizona, 72 p.

Mayuga, M.N., 1942, The Geology and Ore Deposits of the Helmet Peak Area, PimaCounty Arizona, Unpublished Ph.D. Dissertation, The University of Arizona, Tucson,Arizona, 124 p.

Millenacker, D.J., 1989, Introduction to the Environmental Permitting Process for InSitu Copper Mining, Bureau of Mines Information Circular 1C9216, In Situ LeachMining Proceedings: Bureau of Mines Technology Transfer Seminars, Phoenix, AZ,April 4, Salt Lake City, UT, April 6, 1989, by Staff, Bureau of Mines, pp. 14-17.

Miller, R.L., 1988, Notice of Proposed Rule Making, Arizona Department ofEnvironmental Quality, ARS 49-203.A.4 and 49-241 through 49-251, 78 p.

Page 187: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

186

Mualem, Y., 1976, A Catalog of the Hydraulic Properties of Unsaturated Soils,Research Project 442, Technion-Israel Institute of Technology, Haifa, Israel, 100 p.

Parkhurst, D.L., D.C. Thorstenson, and LN. Plummer, 1980, PHREEQE--AComputer Program for Geochemical Calculations, U.S. Geological Survey Water-Resources Investigations Report 80-96, 146 p.

Pima Association of Governments, 1983, Ground-Water Monitoring in the TucsonCopper Mining District, Upper Santa Cruz Basin Mines Task Force, 118 p.

Plummer, L.N., D.L. Parkhurst, and D.C. Thorstenson, 1983, Development ofReaction Models for Ground-Water Systems, Geochemica et Cosmochimica Acta, 47,pp. 665-686.

Plummer, L.N., 1984, Geochemical Modeling: A Comparison of Forward and InverseMethods, In Proceedings, First Canadian/American Conference on Hydrogeology,pp. 149-177.

Stephens, D.B., 1979, Analysis of constant head borehole infiltration tests in thevadose zone, Unpublished Ph.D. Dissertation, The University of Arizona, Tucson,Arizona, 366 p.

Sternberg, B.K., T.M. Ryan, J.W. McGill, and M.E. Breitrick, 1988, The San XavierGeophysics and Tunnel-Detection Test Site, LASI-88-2, Laboratory for AdvancedSubsurface Imaging, The University of Arizona, Tucson, Arizona, 136 p.

Streltsova, T.D., 1988, Well Testing in Heterogeneous Formations, John Wiley andSons, Inc., pp. 133-136.

Theis, C.V., 1935, The relation between the lowering of the piezometric surface andthe rate and duration of discharge of a well using ground-water storage, Transactionsof the American Geophysical Union 16 th Annual Meeting, Part 2, pp. 519-524.

Thornburg, T.M., 1990, Electrical Resistivity of Unsaturated, Fractured Tuff:Influence of Moisture Content and Geologic Structure, Unpublished M.S. Thesis, TheUniversity of Arizona, Tucson, Arizona, 196 p.

Thorne, P.D., 1983, A Chemical and Isotopic Study of Ground Water from theTucson Mountains, Arizona, Unpublished M.S. Thesis, The University of Arizona,Tucson, Arizona, pp. 62-63.

Titley, S.R., 1982, Some Features of Tectonic History and Ore Genesis in the PimaMining District, In Advances in Geology of the Porphyry Copper Deposits,Southwestern North America, ed. S.R. Titley, pp. 387-406.

U.S. Bureau of Reclamation, 1977, Ground Water Manual, U.S. GovernmentPrinting Office, Washington, D.C., 480 p.

Page 188: repository.arizona.edu€¦ · TTNT B THR Th th h bn bttd n prtl flfllnt f rrnt fr n dvnd dr t th nvrt f rzn nd dptd n th nvrt Lbrr t b d vlbl t brrr ndr rl f th lbrr. Brf ttn fr

187

U.S. Geological Survey, 1981, Twin Buttes Quadrangle, Arizona-Pima Co., 7.5Minute Series (Topographic).

U.S. Geological Survey, 1989, Ground Water Site Inventory (GWSI), unpublishedcomputer data base.

Walton, W.C., 1962, Selected Analytical Methods for Well and Aquifer Evaluation,Illinois State Water Survey, Bulletin 49, 81 p.

Wilson, C.A., 1960, Ore Controls of the San Xavier Mine, Pima County, Arizona,Unpublished M.S. Thesis, The University of Arizona, Tucson, Arizona, 58 p.

Wood, W.W., 1976, Guidelines for Collection and Field Analysis of Ground-WaterSamples for Selected Unstable Constituents, Techniques of Water-ResourcesInvestigations of the USGS, Chapter D2, Book 1, 24 p.

Zangar, C.N., 1953, Theory and problems of water percolation, U.S. Bureau ofReclamation Engineering Monograph, No. 8, 76 p.