trends and seasonal variability in tropospheric no 2 ronald van der a, david peters, henk eskes,...

17
Trends and seasonal variability in tropospheric NO 2 Ronald van der A, David Peters, Henk Eskes, Folkert Boersma ESA-NRSCC DRAGON Cooperation Programme

Upload: maude-mathews

Post on 02-Jan-2016

214 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Trends and seasonal variability in tropospheric NO 2 Ronald van der A, David Peters, Henk Eskes, Folkert Boersma ESA-NRSCC DRAGON Cooperation Programme

Trends and seasonal variability in tropospheric NO2

Ronald van der A, David Peters, Henk Eskes, Folkert Boersma

ESA-NRSCC DRAGON

Cooperation Programme

Page 2: Trends and seasonal variability in tropospheric NO 2 Ronald van der A, David Peters, Henk Eskes, Folkert Boersma ESA-NRSCC DRAGON Cooperation Programme

Combined retrieval-modelling-assimilation approach

1. DOAS slant column

(GwinDOAS, developed at BIRA-IASB)

2. Assimilation strat. slant column

(TM4-DAM, developed at KNMI)

3. Modelling tropospheric amf

(DAK, developed at KNMI)

Page 3: Trends and seasonal variability in tropospheric NO 2 Ronald van der A, David Peters, Henk Eskes, Folkert Boersma ESA-NRSCC DRAGON Cooperation Programme

Annual mean 2004

Page 4: Trends and seasonal variability in tropospheric NO 2 Ronald van der A, David Peters, Henk Eskes, Folkert Boersma ESA-NRSCC DRAGON Cooperation Programme

NO2 over China

Annual mean of the tropospheric NO2 column

GOME-1997 SCIAMACHY-2004

Page 5: Trends and seasonal variability in tropospheric NO 2 Ronald van der A, David Peters, Henk Eskes, Folkert Boersma ESA-NRSCC DRAGON Cooperation Programme

NO2 data set

• Time series gridded to 1 x 1 degree • GOME: April 1996 – March 2003• SCIAMACHY: April 2003 – September 2005• Convolution of SCIAMACHY data to spatial

resolution of GOME.• Cloud filtering (only pixels with radiance from

clouds of less than 50 %)

Page 6: Trends and seasonal variability in tropospheric NO 2 Ronald van der A, David Peters, Henk Eskes, Folkert Boersma ESA-NRSCC DRAGON Cooperation Programme

Analysis of time series 1996-2005

Yt = Y0 + Bt + A∙sin(ωt + δ) + Nt + Ut

Nt = φNt-1 + εt

Y monthly mean of tropospheric NO2 t number of months after t=0Y0 start value at t=0 B monthly trendA amplitude of seasonal variabilityω period (fixed at π/6 month-1)δ phase shiftUt bias between GOME and SCIAMACHY Nt remainderφ autocorrelation in Nε noise

Page 7: Trends and seasonal variability in tropospheric NO 2 Ronald van der A, David Peters, Henk Eskes, Folkert Boersma ESA-NRSCC DRAGON Cooperation Programme

Statistical significance

From E.C. Weatherhead et al., JGR 103, 1998:

• Error on trend:

Φ autocorrelation in N

n number of data points

σN variance in N

• Trend B is real with 95 % confidence level if B/σB > 2

1

12/3nN

B

Page 8: Trends and seasonal variability in tropospheric NO 2 Ronald van der A, David Peters, Henk Eskes, Folkert Boersma ESA-NRSCC DRAGON Cooperation Programme

Trends of tropospheric NO2

Page 9: Trends and seasonal variability in tropospheric NO 2 Ronald van der A, David Peters, Henk Eskes, Folkert Boersma ESA-NRSCC DRAGON Cooperation Programme

Some hotspots in Asia[1015 molec/cm2/year]

NO2 in 1996 Trend Error on trend Growth

(Ref. year 1996)

Hong Kong 7.6 0.7 0.5 8 %

Beijing 10.9 1.2 0.5 11 %

Shanghai 5.5 1.4 0.35 25 %

Seoul 9.9 0.36 0.2 4 %

Page 10: Trends and seasonal variability in tropospheric NO 2 Ronald van der A, David Peters, Henk Eskes, Folkert Boersma ESA-NRSCC DRAGON Cooperation Programme

Sources

• NOx sources:– Anthropogenic (traffic, industry, power plants)– Soil emissions (grasslands, induced by rain)– Biomass burning (tropics, dry season)– Lightning (at 10.00 am)

• Phase shift to identify sources:– Anthropogenic winter maximum– Soil emissions summer maximum, rainfall– Biomass burning dry season – Lightning -

Page 11: Trends and seasonal variability in tropospheric NO 2 Ronald van der A, David Peters, Henk Eskes, Folkert Boersma ESA-NRSCC DRAGON Cooperation Programme

Month of maximum concentration

GOME/SCIAMACHY TM model

Grey areas: no significant amplitude

Page 12: Trends and seasonal variability in tropospheric NO 2 Ronald van der A, David Peters, Henk Eskes, Folkert Boersma ESA-NRSCC DRAGON Cooperation Programme

Other parameters

• Variability, defined as seasonal signal over the yearly mean:– To distinguish anthropogenic sources (constant

emissions) and biomass burning (strong seasonality)

• Comparing cloudy pixels with clear-sky pixels– To distinguish lightning, whose signal is higher in

cloudy pixels

Page 13: Trends and seasonal variability in tropospheric NO 2 Ronald van der A, David Peters, Henk Eskes, Folkert Boersma ESA-NRSCC DRAGON Cooperation Programme

Scheme of source identification

Anthropogenic Winter maximum

(outside tropics)

Low variability

Biomass Winter/Spring maximum High variability

Soil Summer maximum High variability

Lightning NO2 (above clouds) > NO2(clear-sky)

Page 14: Trends and seasonal variability in tropospheric NO 2 Ronald van der A, David Peters, Henk Eskes, Folkert Boersma ESA-NRSCC DRAGON Cooperation Programme

Source identification

Page 15: Trends and seasonal variability in tropospheric NO 2 Ronald van der A, David Peters, Henk Eskes, Folkert Boersma ESA-NRSCC DRAGON Cooperation Programme

Lightning

• Lightning occurs mainly in clouds above 500 hPa.

• NO2 measured in pixels with clouds above 500 hPa (derived with FRESCO) minus background value.

• Background value derived from cloudy pixels between 1000 hPa and 500 hPa.

Page 16: Trends and seasonal variability in tropospheric NO 2 Ronald van der A, David Peters, Henk Eskes, Folkert Boersma ESA-NRSCC DRAGON Cooperation Programme

NO2 due to lightning

Diurnal variation OTD/LIS source:K.Driscoll

Page 17: Trends and seasonal variability in tropospheric NO 2 Ronald van der A, David Peters, Henk Eskes, Folkert Boersma ESA-NRSCC DRAGON Cooperation Programme

Summary• 10 year data set of tropospheric NO2 from GOME and

SCIAMACHY (1996-2005) retrieved.• Global trend study: strong pos. trends in Asia (China, Iran).• Identifying sources using fitted seasonality.

• Observing NO2 from lightning in satellite observations with clouds above 500 hPa.

Outlook• OMI data can largely improve this study because

– much larger amount of observation per month– overpass time more interesting for lightning observations