tree genetics genomes - springer static content server10.1007...tree genetics & genomes dorothy...

6
Genome wide scans reveal cryptic lineages in a dryadapted eucalypt Tree Genetics & Genomes Dorothy A. Steane 1,2,3 , Brad M. Potts, Elizabeth McLean, Lesley Collins, Suzanne M. Prober, William D. Stock, René E. Vaillancourt and Margaret Byrne 1 School of Biological Sciences and National Centre for Future Forest Industries, University of Tasmania, Private Bag 55, Hobart, Tasmania 7000, Australia 2 Faculty of Science, Health, Education and Engineering and Collaborative Research Network, University of the Sunshine Coast, Locked Bag 4, Maroochydore, Queensland, 4558,Australia 3 Corresponding author: [email protected] Online Resource 4 When it became apparent that E. salubris comprised two distinct genetic lineages, we checked the result in a phylogenetic context using a variety of algorithms. (A) A distance matrix was calculated using the Additive Dollo Distance algorithm (Woodhams et al. 2013) that was developed for dominant binary data, particularly DArT; from this distance matrix, a tree was found by minimum evolution using FastME (Desper and Gascuel 2002) and was plotted using the Interactive Tree Of Life (Letunic and Bork 2011). (B) A Neighbornet network was constructed using Splitstree 4.13.1 (Huson and Bryant 2006), using uncorrected P values and 1000 bootstrap replicates. (C) One of two most parsimonious trees from maximum parsimony analysis. Numbers above branches show bootstrap support for major clades. Star indicates branch that collapsed in strict consensus. (D) A MrBayes (Altekar et al. 2004; Huelsenbeck and Ronquist 2001; Ronquist and Huelsenbeck 2003) analysis was conducted using two parallel runs of eight chains, heating set to 0.2, run for 12,420,000 generations, sampling every 5000 generations. This yielded 2484 trees per run. Stationarity was reached after about 5 million generations (Tracer; Rambaut et al. 2014), so a conservative burnin of 6 million generations resulted in the removal of 1200 trees per run. The remaining trees were used to compute a

Upload: doancong

Post on 21-May-2018

215 views

Category:

Documents


1 download

TRANSCRIPT

Genome wide scans reveal cryptic lineages in a dry‐adapted eucalypt 

 

Tree Genetics & Genomes 

 

Dorothy A. Steane1,2,3, Brad M. Potts, Elizabeth McLean, Lesley Collins, Suzanne M. Prober, William D. Stock, René E. Vaillancourt and Margaret 

Byrne 

1 School of Biological Sciences and National Centre for Future Forest Industries, University of Tasmania, Private Bag 55, Hobart, Tasmania 7000, 

Australia  

2 Faculty of Science, Health, Education and Engineering and Collaborative Research Network, University of the Sunshine Coast, Locked Bag 4, 

Maroochydore, Queensland, 4558,Australia 

3 Corresponding author: [email protected] 

 Online Resource 4 When it became apparent that E. salubris comprised two distinct genetic lineages, we checked the result in a phylogenetic context using a variety of algorithms.  (A) A distance matrix was calculated using the Additive Dollo Distance algorithm (Woodhams et al. 2013) that was developed for dominant binary data, particularly DArT; from this distance matrix, a tree was found by minimum evolution using FastME (Desper and Gascuel 2002) and was plotted using the Interactive Tree Of Life (Letunic and Bork 2011).  (B) A Neighbornet network was constructed using Splitstree 4.13.1 (Huson and Bryant 2006), using uncorrected P values and 1000 bootstrap replicates.  (C) One of two most parsimonious trees from maximum parsimony analysis.  Numbers above branches show bootstrap support for major clades.  Star indicates branch that collapsed in strict consensus.  (D) A MrBayes (Altekar et al. 2004; Huelsenbeck and Ronquist 2001; Ronquist and Huelsenbeck 2003) analysis was conducted using two parallel runs of eight chains, heating set to 0.2, run for 12,420,000 generations, sampling every 5000 generations.  This yielded 2484 trees per run.  Stationarity was reached after about 5 million generations (Tracer; Rambaut et al. 2014), so a conservative burnin of 6 million generations resulted in the removal of 1200 trees per run.  The remaining trees were used to compute a 

consensus.  The tree was built using FigTree (http://tree.bio.ed.ac.uk/software/figtree/).  Numbers above branches are posterior probability values.  References Altekar G, Dwarkadas S, Huelsenbeck JP, Ronquist F (2004) Parallel metropolis coupled Markov chain Monte Carlo for Bayesian phylogenetic 

inference. Bioinformatics 20:407‐415. doi:10.1093/bioinformatics/btg427 Desper R, Gascuel O (2002) Fast and accurate phylogeny reconstruction algorithms based on the minimum‐evolution principle. Journal of 

Computational Biology 9:687‐705. doi:10.1089/106652702761034136 Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754‐755. 

doi:10.1093/bioinformatics/17.8.754 Huson D, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23:254‐267 Letunic I, Bork P (2011) Interactive Tree Of Life v2: online annotation and display of phylogenetic trees made easy. Nucleic Acids Research 

39:W475‐W478. doi:10.1093/nar/gkr201 Rambaut A, Suchard MA, Xie D, Drummond AJ (2014) Tracer v1.6.  Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572‐1574. 

doi:10.1093/bioinformatics/btg180 Woodhams M, Steane DA, Jones RC, Nicolle D, Moulton V, Holland BR (2013) Novel Distances for Dollo Data. Syst Biol 62:62‐77. 

doi:10.1093/sysbio/sys071  

 

 (

Lin

(A) Minimum E  

neage 2

volution tree dderived from Addditive Dollo Diistance matrix ((Woodhams et al. 2013)

Lineage 1

(

    

(B) Splitstree N

Lineage 2

NeighbourNet (u

 

uncorrected P ddistances) 

100

L

Lineage 1

 

0.05

4_KH27_IZ

6_BR29_SWP

6_BR20_SWP

9_RT21_SWP

8_LR24_SWP

3_CR14_E

8_LR27_SWP

1_QV19_E

8_LR23_SWP

9_RT16_SWP

1_QV18_E

8_LR2_SWP

8_LR4_SWP

5_LJ30_IZ

2_BH26_E

2_BH4_E

9_RT2_SWP

8_LR18_SWP

8_LR7_SWP

5_LJ2_IZ

9_RT5_SWP

5_LJ20_IZ

8_LR11_SWP

1_QV11_E

3_CR20_E

6_BR4_SWP

7_DR30_SWP

2_BH24_E

1_QV29_E

9_RT22_SWP

3_CR25_E

5_LJ24_IZ

8_LR5_SWP

2_BH14_E

9_RT19_SWP

6_BR5_SWP

6_BR8_SWP

8_LR9_SWP

4_KH20_IZ

1_QV5_E

9_RT6_SWP

3_CR2_E

3_CR26_E

6_BR16_SWP

7_DR13_SWP

4_KH12_IZ

4_KH23_IZ

8_LR21_SWP

4_KH8_IZ

6_BR30_SWP

9_RT11_SWP

3_CR27_E

1_QV10_E

3_CR10_E

4_KH15_IZ

1_QV7_E

1_QV16_E

3_CR4_E

8_LR19_SWP

6_BR19_SWP

2_BH6_E

9_RT8_SWP

7_DR22_SWP

3_CR29_E

3_CR13_E

5_LJ12_IZ

7_DR4_SWP

3_CR18_E

7_DR2_SWP

2_BH29_E

7_DR27_SWP

2_BH17_E

4_KH2_IZ

1_QV24_E

7_DR1_SWP

8_LR17_SWP

7_DR10_SWP

9_RT23_SWP

5_LJ1_IZ

9_RT14_SWP

2_BH5_E

8_LR10_SWP

8_LR20_SWP

1_QV30_E

3_CR23_E

7_DR3_SWP

7_DR12_SWP

1_QV14_E

8_LR16_SWP

8_LR15_SWP

4_KH3_IZ

3_CR22_E

5_LJ26_IZ

4_KH14_IZ

2_BH12_E

2_BH3_E

1_QV3_E

8_LR26_SWP

5_LJ16_IZ

1_QV25_E

5_LJ7_IZ

5_LJ15_IZ

5_LJ3_IZ

1_QV12_E

3_CR24_E

6_BR12_SWP

7_DR17_SWP

8_LR25_SWP

7_DR8_SWP

2_BH20_E

1_QV26_E

5_LJ17_IZ

4_KH11_IZ

6_BR21_SWP

9_RT3_SWP

4_KH4_IZ

5_LJ25_IZ

1_QV6_E

6_BR14_SWP

4_KH29_IZ

2_BH15_E

7_DR29_SWP

2_BH30_E

3_CR28_E

3_CR17_E

9_RT28_SWP

8_LR30_SWP

4_KH6_IZ

8_LR6_SWP

7_DR19_SWP

2_BH8_E

5_LJ27_IZ

5_LJ9_IZ

6_BR2_SWP

6_BR24_SWP

7_DR14_SWP

2_BH2_E

9_RT4_SWP

8_LR12_SWP

1_QV20_E

4_KH21_IZ

7_DR6_SWP

3_CR12_E

5_LJ6_IZ

4_KH22_IZ

4_KH7_IZ

3_CR1_E

4_KH16_IZ

1_QV17_E

7_DR16_SWP

7_DR9_SWP

6_BR17_SWP

3_CR30_E

3_CR5_E

6_BR1_SWP

4_KH5_IZ

6_BR28_SWP

6_BR10_SWP

9_RT12_SWP

4_KH13_IZ

2_BH7_E

9_RT25_SWP

5_LJ13_IZ5_LJ14_IZ

7_DR20_SWP

7_DR15_SWP

2_BH1_E

3_CR9_E

9_RT26_SWP

6_BR22_SWP

6_BR13_SWP

4_KH17_IZ

7_DR25_SWP

6_BR18_SWP

7_DR24_SWP

2_BH28_E

1_QV27_E

2_BH10_E

9_RT24_SWP

9_RT9_SWP

7_DR21_SWP

4_KH1_IZ

3_CR15_E

7_DR18_SWP

9_RT10_SWP

9_RT20_SWP

3_CR21_E

1_QV22_E

8_LR14_SWP

9_RT27_SWP

4_KH25_IZ

7_DR5_SWP

3_CR16_E

5_LJ11_IZ

5_LJ22_IZ

9_RT29_SWP

6_BR23_SWP

1_QV13_E

8_LR13_SWP

8_LR8_SWP

2_BH25_E

4_KH24_IZ

9_RT18_SWP

3_CR8_E

6_BR26_SWP

5_LJ5_IZ

9_RT1_SWP

8_LR28_SWP

4_KH19_IZ

4_KH10_IZ

7_DR28_SWP

6_BR25_SWP

1_QV8_E

2_BH21_E

2_BH27_E

5_LJ10_IZ

5_LJ28_IZ

8_LR29_SWP

9_RT30_SWP

1_QV4_E

2_BH18_E

2_BH9_E

3_CR3_E

5_LJ29_IZ

7_DR7_SWP

2_BH16_E

3_CR6_E

3_CR7_E

6_BR6_SWP

5_LJ4_IZ

3_CR19_E

4_KH28_IZ

7_DR26_SWP

5_LJ19_IZ

2_BH22_E

4_KH9_IZ

9_RT13_SWP

1_QV28_E

5_LJ23_IZ

3_CR11_E

5_LJ21_IZ

7_DR11_SWP

9_RT17_SWP

4_KH30_IZ

6_BR11_SWP

1_QV1_E

2_BH23_E

2_BH11_E

6_BR3_SWP

9_RT7_SWP

1_QV2_E

2_BH19_E

8_LR1_SWP

1_QV9_E

6_BR9_SWP

9_RT15_SWP

7_DR23_SWP

1_QV15_E

8_LR22_SWP

2_BH13_E

6_BR27_SWP

5_LJ18_IZ

6_BR7_SWP

8_LR3_SWP

4_KH26_IZ

5_LJ8_IZ

1_QV21_E

6_BR15_SWP

1

1

1

0.93

1

0.99

1

1

1

1

0.5

1

0.92

1

1

0.5

1

1

1

1

1

1

1

1

0.93

0.5

1

1

1

1

1

1

0.59

1

1

0.93

1

1

1

1

1

1

1

0.93

1

1

1

1

1

1

0.57

1

1

1

1

1

0.5

1

1

1

0.5

0.75

1

1

0.5

0.93

1

0.56

0.5

1

1

1

1

1

0.5

1

1

0.97

1

1

0.57

1

1

1

1

1

1

1

1

0.88

0.5

1

1

0.5

1

1

0.91

1

1

1

0.5

0.73

1

1

1

1

1

1

1

1

1

1

1

1

0.93

1

1

1

0.93

0.5

1

0.5

1

1

1

1

1

1

1

0.5

0.5

1

0.5

1

0.97

0.93

1

1

1

1

0.5

1

1

1

1

1

0.93

1

1

1

1

1

1

1

1

0.5

1

0.93

0.82

0.57

0.57

1

1

0.57

0.94

1

1

1

1

1

0.57

1

1

1

1

1

1

1

1

0.79

1

1

1

1

1

1

1

1

1

1

0.52

0.93

1

1

0.52

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0.5

1

1

0.94

1

1

0.58

1

1

1

1

1

1

1

0.88

0.57

1

1

1

1

1

0.5

1

1

1

1

1

1

1

1

0.57

1

0.51

1

1

1

1

1

1

0.57

1

0.94

1

1

1

1

1

1

0.57

0.57

1

1

0.5

1

0.5

1

1

1

1

0.5

1

1

1

0.57

1

1

1

0.5

1

1

1

1

1

0.5

1

1

1

1

1

1

1

1

1

0.93

1

1

1

0.57

1

1

1

1

1

1

1

1

1

1

0.5

1

1

1

1

1

1

1

0.5

1

0.78

0.5

1

1

1

1

0.93

1

1

0.87

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0.93

1

1

0.5

1

1

0.62

1

1

0.5

1

0.51

1

1

1

0.93

1

1

0.57

1

1

1

1

1

1

1

0.93

1

1

1

1

1

1

1

1

1

1

0.57

1

1

0.5

1

1

1

1

1

1

1

1

0.54

1

1

1

1

1

1

0.5

1

1

1

1

1

1

1

0.93

1

1

0.86

1

1

1

1

0.5

1

1

1

1

1

1

1

0.5

1

1

1

1

1

0.57

1

0.55

1

0.88

1

1

1

1

1

1

1

1

1

0.63

1

1

1

1

0.82

0.56

0.5

1

0.5

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0.5

1

1

1

0.57

0.5

1

1

1

1

0.57

1

0.5

1

1

1

1

1

1

0.97

1

1

1

1

1

1

1

1

0.77

1

1

1

1

1

1

1

1

1

1

0.5

1