transport processes: time scale correlation between flow and scalar concentration chris enright...

43
Transport processes: Time scale correlation between flow and scalar concentration Chris Enright CWEMF DSM2 Workshop February 6, 2007

Upload: roy-sherman

Post on 18-Dec-2015

216 views

Category:

Documents


0 download

TRANSCRIPT

Transport processes:Time scale correlation between flow and scalar concentration

Chris Enright

CWEMF DSM2 Workshop

February 6, 2007

Or, how Geometry “filters” estuarine drivers (tides, river input)

Chris Enright

CWEMF DSM2 Workshop

February 6, 2007

Transport processes

• For modeling purposes, validate that DSM2 transports salt etc. for the right reason…

• Reasons: Advection and dispersion

Advective Transport

• Correlation between net flow and net scalar concentration

• Mostly from river input and spring-neap estuary fill-drain cycle

• Advective Flux = <Qt><Ct>

Dispersive Transport

• Correlation between tidal flow and tidal scalar concentration

• Driven by tide

• Dispersive Flux = <Q’t*C’t>

Total Flux

• Superposition of advective and dispersive flux.

• Total Flux = advection + disperion

<Qt*Ct> = <Qt><Ct> + <Q’t*C’t>

• Compute with model output and field data and compare.

Suisun Marsh and BaySuisun Marsh and Bay

First Mallard First Mallard BranchBranch

Sheldrake Sheldrake SloughSlough

First Mallard BranchFirst Mallard BranchSheldrake SloughSheldrake Slough

Suisun Slough

Suisun Slough

Comparing Comparing

Sheldrake Sl. and First Mallard BranchSheldrake Sl. and First Mallard Branch

• Similar tidal prismSimilar tidal prism• Similar source waterSimilar source water• Different adjacent land useDifferent adjacent land use

First Mallard BranchFirst Mallard Branch

Suisun Slough

Suisun Slough

First Mallard BranchFirst Mallard Branch

Suisun Slough

Suisun Slough

First Mallard BranchFirst Mallard Branch

No LeveesNo Levees

Suisun Slough

Suisun Slough

First Mallard BranchFirst Mallard Branch

No LeveesNo Levees

Marsh plain Marsh plain elevation iselevation is~ MHHW~ MHHW

Suisun Slough

Suisun Slough

First Mallard BranchFirst Mallard Branch

No LeveesNo LeveesEdge of Marsh Plain is Edge of Marsh Plain is ~ 6.7 feet NAVD88~ 6.7 feet NAVD88

Marsh plain Marsh plain elevation iselevation is~ MHHW~ MHHW

Suisun Slough

Suisun Slough

First Mallard BranchFirst Mallard Branch

ADCPADCP

SondeSonde

No LeveesNo Levees

Marsh plain Marsh plain elevation iselevation is~ MHHW~ MHHW

Edge of Marsh Plain is Edge of Marsh Plain is ~ 6.7 feet NAVD88~ 6.7 feet NAVD88

Suisun Slough

Suisun Slough

Sheldrake SloughSheldrake Slough

Suisun SloughSuisun Slough

Sheldrake SloughSheldrake Slough

Completely dikedCompletely diked

Suisun SloughSuisun Slough

Sheldrake SloughSheldrake Slough

Diversion/Drain CulvertsDiversion/Drain Culverts

Completely dikedCompletely diked

Suisun SloughSuisun Slough

Sheldrake SloughSheldrake Slough

Diversion/Drain CulvertsDiversion/Drain Culverts

Completely dikedCompletely diked

Moderately subsidedModerately subsidedmarsh plain dependingmarsh plain dependingon land use practiceon land use practice

Suisun SloughSuisun Slough

Sheldrake SloughSheldrake Slough

ADCPADCP

SondeSonde

Completely dikedCompletely diked

Diversion/Drain CulvertsDiversion/Drain Culverts

Moderately subsidedModerately subsidedmarsh plain dependingmarsh plain dependingon land use practiceon land use practice

Suisun SloughSuisun Slough

MHHW

MSL

MLLW

Borrow Ditch

ManagedPond

~ Sheldrake ~ Sheldrake SloughSlough

Comparing Typical Cross-section Hypsography

Mean Sea LevelMean Sea Level

Levee

MHHW

MSL

MLLW

MHHW

MSL

MLLW

Borrow Ditch

ManagedPond

Marsh plain

~ Sheldrake ~ Sheldrake SloughSlough

~ First Mallard~ First MallardBranchBranch

Comparing Typical Cross-section Hypsography

Mean Sea LevelMean Sea Level

Levee

MHHW

MSL

MLLW

MHHW

MSL

MLLW

ManagedPond

Marsh plain

~ Sheldrake Sheldrake SloughSlough

~ First Mallard~ First MallardBranchBranch

Comparing Typical Cross-section Hypsography

Spring High TideSpring High Tide

Levee Borrow Ditch

First Mallard BranchFirst Mallard BranchSheldrake SloughSheldrake Slough

Suisun Slough

Suisun Slough

Data is flow, temperature, chlorophyll,Data is flow, temperature, chlorophyll,salt and DO flux at these locations:salt and DO flux at these locations:

Comparing Hydrodynamics

-1000

-800

-600

-400

-200

0

200

400

600 First Mallard Branch

-1000

-800

-600

-400

-200

0

200

400

600 Sheldrake Slough

15 22 29 6 13 20 27 3 10 17 24 1 8 15 22 29 5

Suisun Marsh Planning (DRAFT) Mon Oct 23 12:15:12 PDT 2006

FLO

W (

cfs)

FLO

W (

cfs)

April 2004 | May | June | July | August

Tidal FlowTidal Flow

Tidal Flow0

0

EBB (out)

EBB (out)

FLOOD (in)

FLOOD (in)

-1000

-800

-600

-400

-200

0

200

400

600 First Mallard Branch

-1000

-800

-600

-400

-200

0

200

400

600 Sheldrake Slough

15 22 29 6 13 20 27 3 10 17 24 1 8 15 22 29 5

Suisun Marsh Planning (DRAFT) Mon Oct 23 12:19:43 PDT 2006

FLO

W (

cfs)

FLO

W (

cfs)

Tidal and Net FlowTidal and Net Flow

Tidal FlowResidual “Net” Flow 0

0

EBB (out)

EBB (out)

FLOOD (in)

FLOOD (in)

April 2004 | May | June | July | August

Flu

x (k

g/s

)F

lux

(kg

/s)

Salt FluxSalt Flux Total = Advective + Dispersive Flux Flux Flux (Spring-Neap) (Tides)

<Qt*Ct> = <Qt><Ct> + <Q’t*C’t>

EBB (out)

EBB (out)

FLOOD (in)

FLOOD (in)

April 2004 | May | June | July | August

Flu

x (g

/s)

Flu

x (g

/s)

DO FluxDO FluxEBB (out)

EBB (out)

FLOOD (in)

FLOOD (in)

April 2004 | May | June | July | August

Total = Advective + Dispersive Flux Flux Flux (Spring-Neap) (Tides)

<Qt*Ct> = <Qt><Ct> + <Q’t*C’t>

-40

-30

-20

-10

0

10

First Mallard Branch

15 22 29 6 13 20 27 3 10 17 24 1 8 15 22 29 5

-40

-30

-20

-10

0

10

Sheldrake Slough

Temperature FluxTemperature Flux

April 2004 | May | June | July | August

Tem

pera

ture

Flu

x (C

*m /

s)T

empe

ratu

re F

lux

(C*m

/s)

33

EBB (out)

EBB (out)

FLOOD (in)

FLOOD (in)

Total = Advective + Dispersive Flux Flux Flux (Spring Neap) (Tides)

<Qt*Ct> = <Qt><Ct> + <Q’t*C’t>

Spring TideSpring TideAdvectiveAdvective FluxFlux

Flu

x (g

/s)

Flu

x (g

/s)

Chlorophyll FluxChlorophyll Flux

April 2004 | May | June | July | August

EBB (out)

EBB (out)

FLOOD (in)

FLOOD (in)

Total = Advective + Dispersive Flux Flux Flux (Spring-Neap) (Tides)

<Qt*Ct> = <Qt><Ct> + <Q’t*C’t>

Neap TideNeap TideAdvectiveAdvective FluxFlux

Flu

x (g

/s)

Flu

x (g

/s)

Chlorophyll FluxChlorophyll Flux

April 2004 | May | June | July | August

EBB (out)

EBB (out)

FLOOD (in)

FLOOD (in)

Total = Advective + Dispersive Flux Flux Flux (Spring-Neap) (Tides)

<Qt*Ct> = <Qt><Ct> + <Q’t*C’t>

Spring TideSpring TideDispersive FluxDispersive Flux

Flu

x (g

/s)

Flu

x (g

/s)

Chlorophyll FluxChlorophyll Flux

April 2004 | May | June | July | August

EBB (out)

EBB (out)

FLOOD (in)

FLOOD (in)

Total = Advective + Dispersive Flux Flux Flux (Spring-Neap) (Tides)

<Qt*Ct> = <Qt><Ct> + <Q’t*C’t>

Neap TideNeap TideDispersive FluxDispersive Flux

Flu

x (g

/s)

Flu

x (g

/s)

Chlorophyll FluxChlorophyll Flux

April 2004 | May | June | July | August

EBB (out)

EBB (out)

FLOOD (in)

FLOOD (in)

Total = Advective + Dispersive Flux Flux Flux (Spring-Neap) (Tides)

<Qt*Ct> = <Qt><Ct> + <Q’t*C’t>

Drivers(forcing mechanisms)

Outcomes(Chemical/BiologicalHabitat Characteristics)

Conceptual Model

Linkages (hydrodynamic

processes)

Drivers(forcing mechanisms)

Outcomes(Chemical/BiologicalHabitat Characteristics)• Meteorology

• Tides

• River inputs

• Exports/ Diversions/ Drainages

Conceptual Model

Linkages (hydrodynamic

processes)

Drivers(forcing mechanisms)

Outcomes(Chemical/BiologicalHabitat Characteristics)

• Advection

• Dispersion - network - velocity shear - tidal trapping

• Gravitational Circulation

• Meteorology

• Tides

• River inputs

• Exports/ Diversions/ Drainages

Conceptual Model

Linkages (hydrodynamic

processes)

Drivers(forcing mechanisms)

Outcomes(Chemical/BiologicalHabitat Characteristics)

Gradients of• Residence time• Salinity• Temperature• Sediment• Biota• Toxics• etc.

• Meteorology

• Tides

• River inputs

• Exports/ Diversions/ Drainages

Conceptual Model

Linkages (hydrodynamic

processes)

• Advection

• Dispersion - network - velocity shear - tidal trapping

• Gravitational Circulation

Drivers(forcing mechanisms)

Outcomes(Chemical/BiologicalHabitat Characteristics)

GeometryGeometry(Like a(Like a Filter)Filter)

Gradients of• Residence time• Salinity• Temperature• Sediment• Biota• Toxics• etc.

• Meteorology

• Tides

• River inputs

• Exports/ Diversions/ Drainages

Conceptual Model

Linkages (hydrodynamic

processes)

• Advection

• Dispersion - network - velocity shear - tidal trapping

• Gravitational Circulation

Drivers(forcing mechanisms)

• Meteorology

• Tides

• River inputs

• Exports/ Diversions/ Drainages

Outcomes(Chemical/BiologicalHabitat Characteristics)

GeometryGeometry(Like a(Like a Filter)Filter)

Gradients of• Residence time• Salinity• Temperature• Sediment• Biota• Toxics• etc.

Conceptual Model

Linkages (hydrodynamic

processes)

• Advection

• Dispersion - network - velocity shear - tidal trapping

• Gravitational Circulation

Drivers(forcing mechanisms)

Outcomes(Chemical/BiologicalHabitat Characteristics)

GeometryGeometry(Like a(Like a Filter)Filter)

Gradients of• Residence time• Salinity• Temperature• Sediment• Biota• Toxics• etc.

• Meteorology

• Tides

• River inputs

• Exports/ Diversions/ Drainages

First Mallard BranchFirst Mallard Branch

Conceptual Model

Linkages (hydrodynamic

processes)

• Advection

• Dispersion - network - velocity shear - tidal trapping

• Gravitational Circulation

Outcomes(Chemical/BiologicalHabitat Characteristics)

GeometryGeometry(Like a(Like a Filter)Filter)

Gradients of• Residence time• Salinity• Temperature• Sediment• Biota• Toxics• etc.

First Mallard BranchFirst Mallard Branch

Conceptual Model

Drivers(forcing mechanisms)

• Meteorology

• Tides

• River inputs

• Exports/ Diversions/ Drainages

Linkages (hydrodynamic

processes)

• Advection

• Dispersion - network - velocity shear - tidal trapping

• Gravitational Circulation

Outcomes(Chemical/BiologicalHabitat Characteristics)

GeometryGeometry(Like a(Like a Filter)Filter)

• Meteorology

• Tides

• River inputs

• Exports/ Diversions/ Drainages

Gradients of• Residence time• Salinity• Temperature• Sediment• Biota• Toxics• etc.

Sheldrake SloughSheldrake Slough

Drivers(forcing mechanisms)

Conceptual Model

Linkages (hydrodynamic

processes)

• Advection

• Dispersion - network - velocity shear - tidal trapping

• Gravitational Circulation

Thank you