transistors for thz systems · real systems→ lnas with low fmin, pas with high psat & high...

60
Transistors for THz Systems Mark Rodwell, UCSB IMS Workshop: Technologies for THZ Integrated Systems (WMD) Monday, June 3, 2013, Seattle, Washington (8AM-5PM) [email protected] Co-Authors and Collaborators: UCSB HBT Team: J. Rode, H.W. Chiang, A. C. Gossard , B. J. Thibeault, W. Mitchell Recent Graduates: V. Jain, E. Lobisser, A. Baraskar, Teledyne HBT Team: M. Urteaga, R. Pierson, P. Rowell, B. Brar, Teledyne Scientific Company Teledyne IC Design Team: M. Seo, J. Hacker, Z. Griffith, A. Young, M. J. Choe, Teledyne Scientific Company UCSB IC Design Team: S. Danesgar, T. Reed, H-C Park, Eli Bloch WMD: Technologies for THZ Integrated Systems RFIC2013, Seattle, June 2-4, 2013 1

Upload: others

Post on 17-Mar-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Transistors for THz Systems · Real systems→ LNAs with low Fmin, PAs with high Psat & high PAE InP HEMTs give the best noise. InP HBT & GaN HEMT compete for the PA. Comparing technologies

Transistors for THz Systems

Mark Rodwell, UCSB

IMS Workshop: Technologies for THZ Integrated Systems (WMD)

Monday, June 3, 2013, Seattle, Washington (8AM-5PM)

[email protected]

Co-Authors and Collaborators:

UCSB HBT Team: J. Rode, H.W. Chiang, A. C. Gossard , B. J. Thibeault, W. Mitchell Recent Graduates: V. Jain, E. Lobisser, A. Baraskar,

Teledyne HBT Team: M. Urteaga, R. Pierson, P. Rowell, B. Brar, Teledyne Scientific Company

Teledyne IC Design Team: M. Seo, J. Hacker, Z. Griffith, A. Young, M. J. Choe, Teledyne Scientific Company

UCSB IC Design Team: S. Danesgar, T. Reed, H-C Park, Eli Bloch

WMD: Technologies for THZ Integrated Systems RFIC2013, Seattle, June 2-4, 2013 1

Page 2: Transistors for THz Systems · Real systems→ LNAs with low Fmin, PAs with high Psat & high PAE InP HEMTs give the best noise. InP HBT & GaN HEMT compete for the PA. Comparing technologies

DC to Daylight. Far-Infrared Electronics

Video-resolution radar → fly & drive through fog & rain

How high in frequency can we push electronics ?

...and what we would be do with it ?

100+ Gb/s wireless networks near-Terabit optical fiber links

1982: ~20 GHz 2012: 820 GHz ~2030: 3THz

109

1010

1011

1012

1013

1014

1015

Frequency (Hz)

microwave

SHF*

3-30 GHz

10-1 cm

mm-wave

EHF*

30-300 GHz

10-1 mm

optic

al

385-7

90 T

Hz

sub-mm-wave

THF*

0.3-3THz

1-0.1 mm

far-IR: 0.3-6 THz

near-IR

100

-385

TH

z

3-0

.78

mmid-IR

6-100 THz

50-3 m

*ITU band designations

** IR bands as per ISO 20473

2

Page 3: Transistors for THz Systems · Real systems→ LNAs with low Fmin, PAs with high Psat & high PAE InP HEMTs give the best noise. InP HBT & GaN HEMT compete for the PA. Comparing technologies

THz Transistors: Not Just For THz Circuits

precision analog design at microwave frequencies → high-performance receivers

500 GHz digital logic → fiber optics

Higher-Resolution Microwave ADCs, DACs, DDSs

THz amplifiers→ THz radios → imaging, communications

3

Page 4: Transistors for THz Systems · Real systems→ LNAs with low Fmin, PAs with high Psat & high PAE InP HEMTs give the best noise. InP HBT & GaN HEMT compete for the PA. Comparing technologies

THz Communications Needs High Power, Low Noise

Real systems with real-world weather & design margins, 500-1000m range:

3-7 dB Noise figure, 50mW- 1W output/element, 64-256 element arrays

Will require:

→ InP or GaN PAs and LNAs, Silicon beamformer ICs 4

Page 5: Transistors for THz Systems · Real systems→ LNAs with low Fmin, PAs with high Psat & high PAE InP HEMTs give the best noise. InP HBT & GaN HEMT compete for the PA. Comparing technologies

THz Communications Needs High Power, Low Noise

Real systems→ LNAs with low Fmin, PAs with high Psat & high PAE

InP HEMTs give the best noise. InP HBT & GaN HEMT compete for the PA. Comparing technologies

CMOS is great for signal processing, but noise, power, PAE are poor. Harmonic generation is low power, inefficient. Harmonic mixing is noisy. 5

Page 6: Transistors for THz Systems · Real systems→ LNAs with low Fmin, PAs with high Psat & high PAE InP HEMTs give the best noise. InP HBT & GaN HEMT compete for the PA. Comparing technologies

III-V PAs and LNAs in today's wireless systems...

http://www.chipworks.com/blog/recentteardowns/2012/10/02/apple-iphone-5-the-rf/

Page 7: Transistors for THz Systems · Real systems→ LNAs with low Fmin, PAs with high Psat & high PAE InP HEMTs give the best noise. InP HBT & GaN HEMT compete for the PA. Comparing technologies

THz Device Scaling

7

Page 8: Transistors for THz Systems · Real systems→ LNAs with low Fmin, PAs with high Psat & high PAE InP HEMTs give the best noise. InP HBT & GaN HEMT compete for the PA. Comparing technologies

nm Transistors, Far-Infrared Integrated Circuits

IR today→ lasers & bolometers → generate & detect

It's all about the interfaces: contact and gate dielectrics...

Far-infrared ICs: classic device physics, classic circuit design

...wire resistance,...

...heat,...

...& charge density.

band structure and density of states !

8

Page 9: Transistors for THz Systems · Real systems→ LNAs with low Fmin, PAs with high Psat & high PAE InP HEMTs give the best noise. InP HBT & GaN HEMT compete for the PA. Comparing technologies

Transistor scaling laws: ( V,I,R,C,t ) vs. geometry

AR contact /

Bulk and Contact Resistances

Depletion Layers

T

AC

v

T

2

2

max)(4

T

Vv

A

I applsat

Thermal Resistance

Fringing Capacitances

~/ LC finging~/ LC finging

dominate rmscontact te

escapacitanc fringing FET )1

escapacitancct interconne IC )2

W

L

LK

PT

th

ln~transistor

LK

PT

th

ICIC

Available quantum states to carry current

→ capacitance, transconductance contact resistance 9

L

Page 10: Transistors for THz Systems · Real systems→ LNAs with low Fmin, PAs with high Psat & high PAE InP HEMTs give the best noise. InP HBT & GaN HEMT compete for the PA. Comparing technologies

THz & nm Transistors: State Density Limits

2-D: FET 3-D: BJT

current

conductivity

capacitance

2/1

2/1

3

2 2n

qc

3/2

3/22

8

3n

qc

32

23

4

*

VmqJ

22

2/32/12/52/3

3

*2

VmqJ sheet

2

*2

2

mqCDOS

# of available quantum states / energy determines FET channel capacitance FET and bipolar transistor current access resistance of Ohmic contact

10

Page 11: Transistors for THz Systems · Real systems→ LNAs with low Fmin, PAs with high Psat & high PAE InP HEMTs give the best noise. InP HBT & GaN HEMT compete for the PA. Comparing technologies

Bipolar Transistor Design eW

bcWcTbT

nbb DT 22

satcc vT 2

ELlength emitter

eex AR /contact

2

through-punchce,operatingce,max cesatc TVVAvI /)(,

contacts

contactsheet

612 AL

W

L

WR

e

bc

e

ebb

e

e

E W

L

L

PT ln1

cccb /TAC

11

Page 12: Transistors for THz Systems · Real systems→ LNAs with low Fmin, PAs with high Psat & high PAE InP HEMTs give the best noise. InP HBT & GaN HEMT compete for the PA. Comparing technologies

Bipolar Transistor Design: Scaling eW

bcWcTbT

nbb DT 22

satcc vT 2

ELlength emitter cccb /TAC

eex AR /contact

2

through-punchce,operatingce,max cesatc TVVAvI /)(,

contacts

contactsheet

612 AL

W

L

WR

e

bc

e

ebb

e

e

E W

L

L

PT ln1

12

Page 13: Transistors for THz Systems · Real systems→ LNAs with low Fmin, PAs with high Psat & high PAE InP HEMTs give the best noise. InP HBT & GaN HEMT compete for the PA. Comparing technologies

Breakdown: Never Less than the Bandgap

band-band tunneling: base bandgap impact ionization: collector bandgap

13

Page 14: Transistors for THz Systems · Real systems→ LNAs with low Fmin, PAs with high Psat & high PAE InP HEMTs give the best noise. InP HBT & GaN HEMT compete for the PA. Comparing technologies

FET Design

g

DSWL

RRS/D

contact

gW width gate

gfgsgd WCC ,

)/( gchgm LvCg

)/( vWLR ggDS

)density state /well(2// 2

wellwell qTT

WLC

oxox

gg

chg

masstransport

1

capacitors threeabove the

between ratiodivision voltage2/1

v

14

Page 15: Transistors for THz Systems · Real systems→ LNAs with low Fmin, PAs with high Psat & high PAE InP HEMTs give the best noise. InP HBT & GaN HEMT compete for the PA. Comparing technologies

FET Design: Scaling

g

DSWL

RRS/D

contact

gW width gate

gfgsgd WCC ,

)/( gchgm LvCg

)/( vWLR ggDS

)density state /well(2// 2

wellwell qTT

WLC

oxox

gg

chg

masstransport

1

capacitors threeabove the

between ratiodivision voltage2/1

v

15

Page 16: Transistors for THz Systems · Real systems→ LNAs with low Fmin, PAs with high Psat & high PAE InP HEMTs give the best noise. InP HBT & GaN HEMT compete for the PA. Comparing technologies

FET Design: Scaling

g

DSWL

RRS/D

contact

gW width gate

gfgsgd WCC ,

)/( gchgm LvCg

)/( vWLR ggDS

)density state /well(2// 2

wellwell qTT

WLC

oxox

gg

chg

masstransport

1

capacitors threeabove the

between ratiodivision voltage2/1

v

16

2:1 2:1

constant 2:1 2:1

2:1 2:1

2:1 2:1 2:1

2:1

constant

constant

2:1 2:1

constant

2:1 2:1

4:1

constant

constant

Page 17: Transistors for THz Systems · Real systems→ LNAs with low Fmin, PAs with high Psat & high PAE InP HEMTs give the best noise. InP HBT & GaN HEMT compete for the PA. Comparing technologies

FET parameter change

gate length decrease 2:1

current density (mA/m), gm (mS/m) increase 2:1

transport effective mass constant

channel 2DEG electron density increase 2:1

gate-channel capacitance density increase 2:1

dielectric equivalent thickness decrease 2:1

channel thickness decrease 2:1

channel density of states increase 2:1

source & drain contact resistivities decrease 4:1

Changes required to double transistor bandwidth

GW widthgate

GL

HBT parameter change

emitter & collector junction widths decrease 4:1

current density (mA/m2) increase 4:1

current density (mA/m) constant

collector depletion thickness decrease 2:1

base thickness decrease 1.4:1

emitter & base contact resistivities decrease 4:1

eW

ELlength emitter

constant voltage, constant velocity scaling nearly constant junction temperature → linewidths vary as (1 / bandwidth)2

fringing capacitance does not scale → linewidths scale as (1 / bandwidth )

17

Page 18: Transistors for THz Systems · Real systems→ LNAs with low Fmin, PAs with high Psat & high PAE InP HEMTs give the best noise. InP HBT & GaN HEMT compete for the PA. Comparing technologies

THz & nm Transistors: what needs to be done

Metal-semiconductor interfaces (Ohmic contacts): very low resistivity Dielectric-semiconductor interfaces (Gate dielectrics---FETs only): thin !

Ultra-low-resistivity (~0.25 W-m2 ), ultra shallow (1 nm), ultra-robust (0.2 A/m2 ) contacts

Mo

InGaAs

Ru

InGaAs

Heat

W

L

LK

PT

th

ln~transistor

LK

PT

th

ICIC

Available quantum states to carry current L

→ capacitance, transconductance contact resistance 18

Page 19: Transistors for THz Systems · Real systems→ LNAs with low Fmin, PAs with high Psat & high PAE InP HEMTs give the best noise. InP HBT & GaN HEMT compete for the PA. Comparing technologies

THz InP HBTs

19

Page 20: Transistors for THz Systems · Real systems→ LNAs with low Fmin, PAs with high Psat & high PAE InP HEMTs give the best noise. InP HBT & GaN HEMT compete for the PA. Comparing technologies

Scaling Laws, Scaling Roadmap

HBT parameter change

emitter & collector junction widths decrease 4:1

current density (mA/m2) increase 4:1

current density (mA/m) constant

collector depletion thickness decrease 2:1

base thickness decrease 1.4:1

emitter & base contact resistivities decrease 4:1

scaling laws: to double bandwidth

eW

bcWcTbT

ELlength emitter

150 nm device 150 nm device

20

Page 21: Transistors for THz Systems · Real systems→ LNAs with low Fmin, PAs with high Psat & high PAE InP HEMTs give the best noise. InP HBT & GaN HEMT compete for the PA. Comparing technologies

HBT Fabrication Process Must Change... Greatly

32 nm width base & emitter contacts...self-aligned

32 nm width emitter semiconductor junctions

Contacts: 1 W-m2 resistivities 70 mA/m2 current density ~1 nm penetration depths → refractory contacts

nm III-V FET, Si FET processes have similar requirements 21

Page 22: Transistors for THz Systems · Real systems→ LNAs with low Fmin, PAs with high Psat & high PAE InP HEMTs give the best noise. InP HBT & GaN HEMT compete for the PA. Comparing technologies

Needed: Greatly Improved Ohmic Contacts Needed: Greatly Improved Ohmic Contacts

~5 nm Pt contact penetration (into 25 nm base)

Pt/Ti/Pd/Au

22

Page 23: Transistors for THz Systems · Real systems→ LNAs with low Fmin, PAs with high Psat & high PAE InP HEMTs give the best noise. InP HBT & GaN HEMT compete for the PA. Comparing technologies

Ultra Low-Resistivity Refractory Contacts

10-9

10-8

10-7

10-6

1018

1019

1020

1021

N-InAs

Co

nta

ct

Re

sis

tiv

ity (

W

cm

2)

concentration (cm-3

)

1017

1018

1019

1020

N-InGaAs

concentration (cm-3

)

1018

1019

1020

1021

P-InGaAs

Ir

W

Mo

concentration (cm-3

)

Mo Mo

Barasakar et al IEEE IPRM 2012

32 nm node requirements

Contact performance sufficient for 32 nm /2.8 THz node.

Low penetration depth, ~ 1 nm

In-situ: avoids surface contaminants

Refractory: robust under high-current operation

23

Page 24: Transistors for THz Systems · Real systems→ LNAs with low Fmin, PAs with high Psat & high PAE InP HEMTs give the best noise. InP HBT & GaN HEMT compete for the PA. Comparing technologies

Ultra Low-Resistivity Refractory Contacts

10-9

10-8

10-7

10-6

1018

1019

1020

1021

N-InAs

Co

nta

ct

Re

sis

tiv

ity (

W

cm

2)

concentration (cm-3

)

1017

1018

1019

1020

N-InGaAs

concentration (cm-3

)

1018

1019

1020

1021

P-InGaAs

Ir

W

Mo

concentration (cm-3

)

Mo Mo

Barasakar et al IEEE IPRM 2012

32 nm node requirements

Schottky Barrier is about one lattice constant

what is setting contact resistivity ?

what resistivity should we expect ?

24

Page 25: Transistors for THz Systems · Real systems→ LNAs with low Fmin, PAs with high Psat & high PAE InP HEMTs give the best noise. InP HBT & GaN HEMT compete for the PA. Comparing technologies

Ultra Low-Resistivity Refractory Contacts

10-9

10-8

10-7

10-6

1018

1019

1020

1021

N-InAs

Co

nta

ct

Re

sis

tiv

ity (

W

cm

2)

concentration (cm-3

)

1017

1018

1019

1020

N-InGaAs

concentration (cm-3

)

1018

1019

1020

1021

P-InGaAs

Ir

W

Mo

concentration (cm-3

)

Mo Mo

Barasakar et al IEEE IPRM 2012

32 nm node requirements

limit)ty reflectivi-quantum

anddensity (state

:yresistivitcontact barrier -Zero

.cm/107 at m 1.0

tcoefficienon transmissi

ionconcentratcarrier

11

3

8

3192

3/22

3/2

2

W

n

T

n

nTq

c

c

25

Page 26: Transistors for THz Systems · Real systems→ LNAs with low Fmin, PAs with high Psat & high PAE InP HEMTs give the best noise. InP HBT & GaN HEMT compete for the PA. Comparing technologies

Needed: Greatly Improved Ohmic Contacts Refractory Emitter Contacts

negligible penetration

26

Page 27: Transistors for THz Systems · Real systems→ LNAs with low Fmin, PAs with high Psat & high PAE InP HEMTs give the best noise. InP HBT & GaN HEMT compete for the PA. Comparing technologies

HBT Fabrication Process Must Change... Greatly

Undercutting of emitter ends

control undercut → thinner emitter

thinner emitter → thinner base metal

thinner base metal → excess base metal resistance

{101}A planes: fast

{111}A planes: slow

tall, narrow contacts: liftoff fails !

27

Page 28: Transistors for THz Systems · Real systems→ LNAs with low Fmin, PAs with high Psat & high PAE InP HEMTs give the best noise. InP HBT & GaN HEMT compete for the PA. Comparing technologies

HBT: V. Jain. Process: Jain & Lobisser

TiW

W 100 nm

Mo

SiNx

Refractory contact, refractory post→ high-J operation

Sputter+dry etch→ 50-200nm contacts

Sub-200-nm Emitter Contact & Post

Liftoff aided by TiW/W interface undercut

Dielectric sidewalls

28

Page 29: Transistors for THz Systems · Real systems→ LNAs with low Fmin, PAs with high Psat & high PAE InP HEMTs give the best noise. InP HBT & GaN HEMT compete for the PA. Comparing technologies

RF Data: 25 nm thick base, 75 nm Thick Collector

0

5

10

15

20

25

1010

1011

1012

Ga

ins (

dB

)Frequency (Hz)

H21

U

f = 530 GHz

fmax

= 750 GHz

Required dimensions obtained but poor base contacts on this run

E. Lobisser, ISCS 2012, August, Santa Barbara

29

Page 30: Transistors for THz Systems · Real systems→ LNAs with low Fmin, PAs with high Psat & high PAE InP HEMTs give the best noise. InP HBT & GaN HEMT compete for the PA. Comparing technologies

DC, RF Data: 100 nm Thick Collector

0

4

8

12

16

20

24

28

32

109

1010

1011

1012

Ga

in (

dB

)

Frequency (Hz)

U

H21

f = 480 GHz

fmax

= 1.0 THz

Aje = 0.22 x 2.7 m

2

Ic = 12.1 mA

Je = 20.4 mA/m

2

P = 33.5 mW/m2

Vcb

= 0.7 V

0

5

10

15

20

25

30

0 1 2 3 4 5

Je (

mA

/m

2)

Vce

(V)

P = 30 mW/m2

Ib,step

= 200 A

BV

P = 20 mW/m2

Aje

= 0.22 x 2.7 m2

10-9

10-7

10-5

10-3

10-1

0

5

10

15

20

0 0.2 0.4 0.6 0.8 1I c

, I b

(A

)

Vbe

(V)

Solid line: Vcb

= 0.7V

Dashed: Vcb

= 0V

nc = 1.19

nb = 1.87

Ic

Ib

Jain et al IEEE DRC 2011

30

Page 31: Transistors for THz Systems · Real systems→ LNAs with low Fmin, PAs with high Psat & high PAE InP HEMTs give the best noise. InP HBT & GaN HEMT compete for the PA. Comparing technologies

Chart 31

THz InP HBTs From Teledyne

Urteaga et al, DRC 2011, June 31

Page 32: Transistors for THz Systems · Real systems→ LNAs with low Fmin, PAs with high Psat & high PAE InP HEMTs give the best noise. InP HBT & GaN HEMT compete for the PA. Comparing technologies

Towards & Beyond the 32 nm /2.8 THz Node

Base contact process: Present contacts too resistive (4Wm2) Present contacts sink too deep (5 nm) for target 15 nm base

→ refractory base contacts

Emitter Degeneracy: Target current density is almost 0.1 Amp/m2 (!) Injected electron density becomes degenerate. transconductance is reduced.

→ Increased electron mass in emitter

32

Page 33: Transistors for THz Systems · Real systems→ LNAs with low Fmin, PAs with high Psat & high PAE InP HEMTs give the best noise. InP HBT & GaN HEMT compete for the PA. Comparing technologies

Base Ohmic Contact Penetration

~5 nm Pt contact penetration (into 25 nm base)

Base Ohmic Contact Penetration

33

Page 34: Transistors for THz Systems · Real systems→ LNAs with low Fmin, PAs with high Psat & high PAE InP HEMTs give the best noise. InP HBT & GaN HEMT compete for the PA. Comparing technologies

Refractory Base Process (1)

low contact resistivity low penetration depth

low bulk access resistivity

base surface not exposed to photoresist chemistry: no contamination low contact resistivity, shallow contacts low penetration depth allows thin base, pulsed-doped base contacts

Blanket liftoff; refractory base metal Patterned liftoff; Thick Ti/Au

34

Page 35: Transistors for THz Systems · Real systems→ LNAs with low Fmin, PAs with high Psat & high PAE InP HEMTs give the best noise. InP HBT & GaN HEMT compete for the PA. Comparing technologies

Refractory Base Process (2)

0 100

5 1019

1 1020

1.5 1020

2 1020

2.5 1020

0 5 10 15 20 25

do

pin

g, 1

/cm

3

depth, nm

2 nm doping pulse

1018

1019

1020

1021

P-InGaAs

10-10

10-9

10-8

10-7

10-6

10-5

Hole Concentration, cm-3

B=0.8 eV

0.6 eV0.4 eV0.2 eV

step-barrierLandauer

Co

nta

ct

Res

isti

vit

y,

W

cm

2

32 nm node requirement

Increased surface doping: reduced contact resistivity, but increased Auger recombination. → Surface doping spike at most 2-5 thick. Refractory contacts do not penetrate; compatible with pulse doping. 35

Page 36: Transistors for THz Systems · Real systems→ LNAs with low Fmin, PAs with high Psat & high PAE InP HEMTs give the best noise. InP HBT & GaN HEMT compete for the PA. Comparing technologies

Refractory Base Ohmic Contacts Refractory Base Ohmic Contacts

<2 nm Ru contact penetration (surface removal during cleaning)

Ru / Ti / Au

36

Page 37: Transistors for THz Systems · Real systems→ LNAs with low Fmin, PAs with high Psat & high PAE InP HEMTs give the best noise. InP HBT & GaN HEMT compete for the PA. Comparing technologies

Degenerate Injection→ Reduced Transconductance

10-3

10-2

10-1

100

101

102

-0.3 -0.2 -0.1 0 0.1 0.2

J(m

A/

m2)

Vbe

-

Boltzmann

(-Vbe

)>>kT/q

)./exp( kTqVJJ bes

Transconductance is high

)./exp( kTqVJJ bes

JAg Em /

Current varies exponentially with Vbe

37

Page 38: Transistors for THz Systems · Real systems→ LNAs with low Fmin, PAs with high Psat & high PAE InP HEMTs give the best noise. InP HBT & GaN HEMT compete for the PA. Comparing technologies

)./exp( kTqVJJ bes

Degenerate Injection→ Reduced Transconductance

10-3

10-2

10-1

100

101

102

-0.3 -0.2 -0.1 0 0.1 0.2

J(m

A/

m2)

Vbe

-

Fermi-Dirac

Boltzmann

(-Vbe

)>>kT/q

Transconductance is reduced

Current varies exponentially with Vbe

38

Page 39: Transistors for THz Systems · Real systems→ LNAs with low Fmin, PAs with high Psat & high PAE InP HEMTs give the best noise. InP HBT & GaN HEMT compete for the PA. Comparing technologies

Degenerate Injection→ Reduced Transconductance

10-3

10-2

10-1

100

101

102

-0.3 -0.2 -0.1 0 0.1 0.2

J(m

A/

m2)

Vbe

-

Fermi-Dirac

Highly degenerate

(Vbe

->>kT/q

Boltzmann

(-Vbe

)>>kT/q

Highly degenerate limit:

)(8

* 2

32

3

beVmq

J

2* )( beE VmJ

current varies as the square of bias

39

Page 40: Transistors for THz Systems · Real systems→ LNAs with low Fmin, PAs with high Psat & high PAE InP HEMTs give the best noise. InP HBT & GaN HEMT compete for the PA. Comparing technologies

Degenerate Injection→ Reduced Transconductance

10-3

10-2

10-1

100

101

102

-0.3 -0.2 -0.1 0 0.1 0.2

J(m

A/

m2)

Vbe

-

Fermi-Dirac

Highly degenerate

(Vbe

->>kT/q

Boltzmann

(-Vbe

)<<kT/q

Highly degenerate limit:

)(8

* 2

32

3

beVmq

J

2* )( beE VmJ

Transconductance varies as J1/2

current varies as the square of bias

JmAg EEm

*/

At & beyond 32 nm, we must increase the emitter effective mass.

...and as (m*)1/2

40

Page 41: Transistors for THz Systems · Real systems→ LNAs with low Fmin, PAs with high Psat & high PAE InP HEMTs give the best noise. InP HBT & GaN HEMT compete for the PA. Comparing technologies

Degenerate Injection→Solutions

At & beyond 32 nm, we must increase the emitter (transverse) effective mass.

Other emitter semiconductors: no obvious good choices (band offsets, etc.).

Emitter-base superlattice: increases transverse mass in junction evidence that InAlAs/InGaAs grades are beneficial

Extreme solution (10 years from now): partition the emitter into small sub-junctions, ~ 5 nm x 5 nm. parasitic resistivity is reduced progressively as sub-junction areas are reduced.

41

Page 42: Transistors for THz Systems · Real systems→ LNAs with low Fmin, PAs with high Psat & high PAE InP HEMTs give the best noise. InP HBT & GaN HEMT compete for the PA. Comparing technologies

3-4 THz Bipolar Transistors are Feasible.

4 THz HBTs realized by:

Extremely low resistivity contacts

Extreme current densities

Processes scaled to 16 nm junctions

Impact: efficient power amplifiers and complex signal processing from 100-1000 GHz.

42

Page 43: Transistors for THz Systems · Real systems→ LNAs with low Fmin, PAs with high Psat & high PAE InP HEMTs give the best noise. InP HBT & GaN HEMT compete for the PA. Comparing technologies

InP HBT: Key Features

512 nm node: high-yield "pilot-line" process, ~4000 HBTs/IC

256 nm node: Power Amplifiers: >0.5 W/mm @ 220 GHz highly competitive mm-wave / THz power technology

128 nm node: >500 GHz f , >1.1 THz fmax , ~3.5 V breakdown breakdown* f = 1.75 THz*Volts highly competitive mm-wave / THz power technology

64 nm (2 THz) & 32 nm (2.8 THz) nodes: Development needs major effort, but no serious scaling barriers

1.5 THz monolithic ICs are feasible. 43

Page 44: Transistors for THz Systems · Real systems→ LNAs with low Fmin, PAs with high Psat & high PAE InP HEMTs give the best noise. InP HBT & GaN HEMT compete for the PA. Comparing technologies

Can we make a 1 THz SiGe Bipolar Transistor ?

InP SiGe

emitter 64 18 nm width

2 0.6 Wm2 access

base 64 18 nm contact width,

2.5 0.7 Wm2 contact

collector 53 15 nm thick

36 125 mA/m2

2.75 1.3? V, breakdown

f 1000 1000 GHz

fmax 2000 2000 GHz

PAs 1000 1000 GHz

digital 480 480 GHz

(2:1 static divider metric)

Assumes collector junction 3:1 wider than emitter.

Assumes SiGe contacts no wider than junctions

Simple physics clearly drives scaling

transit times, Ccb/Ic

→ thinner layers, higher current density

high power density → narrow junctions

small junctions→ low resistance contacts

Key challenge: Breakdown

15 nm collector → very low breakdown

Also required:

low resistivity Ohmic contacts to Si

very high current densities: heat

44

Page 45: Transistors for THz Systems · Real systems→ LNAs with low Fmin, PAs with high Psat & high PAE InP HEMTs give the best noise. InP HBT & GaN HEMT compete for the PA. Comparing technologies

THz InP Bipolar Transistor Technology Goal: extend the operation of electronics to the highest feasible frequencies

1 THz device Scaling roadmap through 3 THz 220 GHz power amplifiers

ultra-efficient 85 GHz power amplifiers

THz InP Heterojunction Bipolar Transistors 60-600 GHz IC examples; demonstrated & in fab

50 GHz sample/hold 40 GHz op-amp

100 GHz ICs for *electronic* demultiplexing of WDM optical communications

40 Gb/s phase-locked coherent optical receivers

Enabling Technologies : ~30 nm fabrication processes, extremely low resistivity (epitaxial, refractory) contacts, extreme current densities, doping at solubility limits, few-nm-thick junctions

Teledyne Scientific: moving THz IC Technology towards aerospace applications 1.1 THz pilot IC process 204 GHz digital logic (M/S latch) 670 GHz amplifier 300 GHz fundamental phase-lock-loop

Vout

VEE VBB

Vtune

Vout

VEE VBB

Vtune614 GHz fundamental oscillator (VCO)

182 mW 188 mW, 33% PAE

Page 46: Transistors for THz Systems · Real systems→ LNAs with low Fmin, PAs with high Psat & high PAE InP HEMTs give the best noise. InP HBT & GaN HEMT compete for the PA. Comparing technologies

THz InP HEMTs and

III-V MOSFETs

46

Page 47: Transistors for THz Systems · Real systems→ LNAs with low Fmin, PAs with high Psat & high PAE InP HEMTs give the best noise. InP HBT & GaN HEMT compete for the PA. Comparing technologies

FET parameter change

gate length decrease 2:1

current density (mA/m), gm (mS/m) increase 2:1

transport effective mass constant

channel 2DEG electron density increase 2:1

gate-channel capacitance density increase 2:1

dielectric equivalent thickness decrease 2:1

channel thickness decrease 2:1

channel density of states increase 2:1

source & drain contact resistivities decrease 4:1

Changes required to double transistor bandwidth

GW widthgate

GL

HBT parameter change

emitter & collector junction widths decrease 4:1

current density (mA/m2) increase 4:1

current density (mA/m) constant

collector depletion thickness decrease 2:1

base thickness decrease 1.4:1

emitter & base contact resistivities decrease 4:1

eW

ELlength emitter

constant voltage, constant velocity scaling nearly constant junction temperature → linewidths vary as (1 / bandwidth)2

fringing capacitance does not scale → linewidths scale as (1 / bandwidth )

47

Page 48: Transistors for THz Systems · Real systems→ LNAs with low Fmin, PAs with high Psat & high PAE InP HEMTs give the best noise. InP HBT & GaN HEMT compete for the PA. Comparing technologies

FET scaling challenges...and solutions

Gate barrier under S/D contacts → high S/D access resistance addressed by S/D regrowth

High gate leakage from thin barrier, high channel charge density (almost) eliminated by ALD high-K gate dielectric

Other scaling considerations: low InAs electron mass→ low state density capacitance → gm fails to scale increased m* , hence reduced velocity in thin channels minimum feasible thickness of gate dielectric (tunneling) and channel

48

Page 49: Transistors for THz Systems · Real systems→ LNAs with low Fmin, PAs with high Psat & high PAE InP HEMTs give the best noise. InP HBT & GaN HEMT compete for the PA. Comparing technologies

-0.2 0.0 0.2 0.4 0.60.0

0.4

0.8

1.2

1.6

2.0

2.4

Gm

(mS

/m

)

Cu

rre

nt

De

ns

ity

(m

A/

m)

Gate Bias (V)

0.0

0.4

0.8

1.2

1.6

2.0

2.4 VDS

=0.05 V

VDS

=0.5 V

III-V MOS

Peak transconductance; VLSI-style FET: 2.5 mS/micron ~85% of best THz InAs HEMTs

0.1 10.0

0.4

0.8

1.2

1.6

2.0

2.4

2.8 90 [011]

0 [01-1]

at Vds

=0.5V

Gate length (m)

Pe

ak

Tra

ns

co

nd

uc

tan

ce

(m

S/

m)

Lg = 40 nm (SEM)

III-V MOS will soon surpass HEMTs in RF performance

Sanghoon Lee

40 nm devices are nearly ballistic

49

Page 50: Transistors for THz Systems · Real systems→ LNAs with low Fmin, PAs with high Psat & high PAE InP HEMTs give the best noise. InP HBT & GaN HEMT compete for the PA. Comparing technologies

In ballistic limit, current and transconductance are set by: channel & dielectric thickness, transport mass, state density

2/3*

,

2/1*

1

2/3

1

)/()/(1 where,

V 1m

mA84

oequivodos

othgs

mmgcc

mmgK

VVKJ

FET Drain Current in the Ballistic Limit

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.01 0.1 1

no

rma

lized

drive

cu

rre

nt

K1

m*/mo

g=2

EET=1.0 nm

0.6 nm

0.4 nm

g=1

InGaAs <--> InP Si

0.3 nm

EET=Equivalent Electrostatic Thickness

=Tox

SiO2

/ox

+Tinversion

SiO2

/semiconductor

/EETε

)/c/c(c oxequiv

2SiO

1

depth

11

2

0

2

, 2/ mqc odos

minima band # g

50

Page 51: Transistors for THz Systems · Real systems→ LNAs with low Fmin, PAs with high Psat & high PAE InP HEMTs give the best noise. InP HBT & GaN HEMT compete for the PA. Comparing technologies

Low m* gives lowest transit time, lowest Cgs at any EOT.

Transit delay versus mass, # valleys, and EOT

51

2/1*

,

2/1

0

*

2

2/1

72 1 whereVolt 1

cm/s 1052.2

oeq

odos

thgs

g

D

chch

m

mg

c

c

m

mK

VV

LK

I

Q

0

0.5

1

1.5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

No

rma

lize

d t

ran

sit d

ela

y K

2

m*/mo

EOT=1.0 nm

EOT includes wavefunction depth term

(mean wavefunction depth*SiO2

/semiconductor

)

0.6 nm

0.4 nm

g=1, isotropic bands

g=2, isotropic bands

1 nm

0.4 nm

0.6 nm

/EOTε

)/c/c(c oxequiv

2SiO

1

semi

11

InGaAs

Si, GaN

Page 52: Transistors for THz Systems · Real systems→ LNAs with low Fmin, PAs with high Psat & high PAE InP HEMTs give the best noise. InP HBT & GaN HEMT compete for the PA. Comparing technologies

FET Scaling: fixed vs. increasing state density

52

0

500

1000

1500

2000

2500

3000 canonical scaling

stepped # of bands

transport only

f , G

Hz

0

500

1000

1500

2000

2500

3000

3500

4000

f ma

x, G

Hz

0

0.5

1

1.5

2

2.5

0 10 20 30 40 50 60

dra

in c

urr

ent

density, m

A/

m

gate length, nm

200 mV gate overdrive

0

200

400

600

800

1000

0 10 20 30 40 50 60

SC

FL

sta

tic d

ivid

er

clo

ck r

ate

, G

Hz

gate length, nm

f fmax

mA/m→ VLSI metric SCFL divider speed

Need higher state density for ~10 nm node

Page 53: Transistors for THz Systems · Real systems→ LNAs with low Fmin, PAs with high Psat & high PAE InP HEMTs give the best noise. InP HBT & GaN HEMT compete for the PA. Comparing technologies

2-3 THz Field-Effect Transistors are Feasible.

3 THz FETs realized by:

Ultra low resistivity source/drain

High operating current densities

Very thin barriers & dielectrics

Gates scaled to 9 nm junctions high-barrier HEMT MOSFET

Impact: Sensitive, low-noise receivers from 100-1000 GHz.

3 dB less noise → need 3 dB less transmit power.

or

53

Page 54: Transistors for THz Systems · Real systems→ LNAs with low Fmin, PAs with high Psat & high PAE InP HEMTs give the best noise. InP HBT & GaN HEMT compete for the PA. Comparing technologies

4-nm / 5-THz FETs: Challenges

4 nm

Channel thickness 0.8 nm: UTB 1.6 nm: fin atomically flat

Gate dielectric 0.1 nm EOT: UTB 0.2 nm EOT: fin

Estimated (WKB) tunneling current is just acceptable at 0.2 nm EOT.

How can we make a 1.6 nm thick fin, or a 0.8 nm thick body ? 54

Page 55: Transistors for THz Systems · Real systems→ LNAs with low Fmin, PAs with high Psat & high PAE InP HEMTs give the best noise. InP HBT & GaN HEMT compete for the PA. Comparing technologies

Thin wells have high scattering rate

Need single-atomic-layer control of thickness Need high quantization mass mq.

Sakaki APL 51, 1934 (1987).

./1y probabilit Scattering 62

wellqTm

55

Page 56: Transistors for THz Systems · Real systems→ LNAs with low Fmin, PAs with high Psat & high PAE InP HEMTs give the best noise. InP HBT & GaN HEMT compete for the PA. Comparing technologies

III-V vs. CMOS: A false comparison ?

UTB Si MOS UTB III-V MOS III-V THz MOS/HEMT

III-V THz HEMT

III-V MOS has a reasonable chance of future use in VLSI

The real THz / VLSI distinction: Device geometry optimized for high-frequency gain vs. optimized for small footprint and high DC on/off ratio.

56

Page 57: Transistors for THz Systems · Real systems→ LNAs with low Fmin, PAs with high Psat & high PAE InP HEMTs give the best noise. InP HBT & GaN HEMT compete for the PA. Comparing technologies

Conclusion

57

Page 58: Transistors for THz Systems · Real systems→ LNAs with low Fmin, PAs with high Psat & high PAE InP HEMTs give the best noise. InP HBT & GaN HEMT compete for the PA. Comparing technologies

THz and Far-Infrared Electronics

IR today→ lasers & bolometers → generate & detect

It's all about classic scaling: contact and gate dielectrics...

Far-infrared ICs: classic device physics, classic circuit design

...wire resistance,...

...heat,...

...& charge density. band structure and density of quantum states (new!).

Even 1-3 THz ICs will be feasible

58

Page 59: Transistors for THz Systems · Real systems→ LNAs with low Fmin, PAs with high Psat & high PAE InP HEMTs give the best noise. InP HBT & GaN HEMT compete for the PA. Comparing technologies

(backup slides follow)

59

Page 60: Transistors for THz Systems · Real systems→ LNAs with low Fmin, PAs with high Psat & high PAE InP HEMTs give the best noise. InP HBT & GaN HEMT compete for the PA. Comparing technologies

Electron Plasma Resonance: Not a Dominant Limit

*2kinetic

1

nmqA

TL

T

AC

ntdisplaceme

m

scatterL

Rf

2

1

2

1

frequency scattering

kinetic

bulk

mnmqA

TR

*2bulk

1

2

1

2/1

frequency relaxation dielectric

bulkntdisplaceme

RC

fdielecic

ntdisplacemekinetic

2/1

frequencyplasma

CLf plasma

THz 800 THz 7 THz 74319 cm/105.3

InGaAs-

n

319 cm/107

InGaAs-

pTHz 80 THz 12 THz 13

60