transient behaviour of induction motors in island ...transient behaviour of induction motors in...

57
Transient behaviour of induction motors in island conditions due to interruptions in the ship’s electrical power supply Bachelor’s dissertation Facultat de Nàutica de Barcelona Universitat Politècnica de Catalunya Student: Harmanpreet Singh Rattan Director: Dr. Pau Casals Torrens Bachelor’s degree in Marine Technologies Barcelona, 19th of October of 2017

Upload: others

Post on 29-Dec-2019

2 views

Category:

Documents


0 download

TRANSCRIPT

  • Transientbehaviourofinductionmotorsinislandconditionsduetointerruptionsin

    theship’selectricalpowersupply

    Bachelor’sdissertation

    FacultatdeNàuticadeBarcelonaUniversitatPolitècnicadeCatalunya

    Student:HarmanpreetSinghRattan

    Director:

    Dr.PauCasalsTorrens

    Bachelor’sdegreeinMarineTechnologies

    Barcelona,19thofOctoberof2017

  • 3

    Summary

    Thefocuspresentdissertationwasaproblemthatoccursinindustrialinstallationsandships.

    Thesaidinstallationsexperienceovervoltageincaseofpowercut.Thisproblemisaresultof

    installingcapacitivecompensationparalleltomotors.Thisdissertationstudiedthisproblem

    withtwodifferentelectricmotorswidelyusedinbiginstallations.

    The motors were tested in laboratory in different operational conditions; with different

    connections (D and WYE), with different loads and without load and with and without

    capacitivecompensation.Thecapacitorbank,sourceofcapacitivecompensation,wasalso

    connectedinDandWYEduringthetests.

    Theovervoltagewasobservedwithcapacitivecompensationonlywhenthecapacitorbank

    wasconnectedinDandthemotorswereconnectedinWYE.Themechanicalloadontheshaft

    hasdeterminedthepeakvalueofthetransientvoltageandthedurationofthewaveform.

    The laboratory testing circuits, inwhich the overvoltagewas observed,were recreated in

    Matlabtovalidatetheresultsobtainedinreal-world.Thesimulationresultswereverysimilar

    totheirreal-worldcounterpartsin3ofthe4cases.

    In conclusion, theovervoltagehasmanifestedwhen thevoltage receivedby thecapacitor

    bankwassuperiorthanthemotor’s.Theloadhasalsoplayedanimportantroleindetermining

    thepeakvalueoftransientofwaveform.

  • 4

    Tableofcontents1 Introduction................................................................................................................8

    2 Mathematicalmodel.................................................................................................102.1 Physicalaspects............................................................................................................10

    2.1.1 Workingprincipleofamotor..........................................................................................11

    2.2 Equivalentcircuit..........................................................................................................112.2.1 Approximantequivalentcircuits......................................................................................13

    2.3 Characterizationofinductionmotor.............................................................................142.3.1 Blockedrotortest............................................................................................................16

    2.3.2 No-loadtest.....................................................................................................................17

    3 LaboratoryTesting....................................................................................................243.1 Testinginstallation........................................................................................................25

    3.1.1 Electriccircuit..................................................................................................................30

    3.2 Formula-basedanalysis.................................................................................................343.2.1 Dynamicanalysis.............................................................................................................35

    4 Test’sresults.............................................................................................................364.1 Results’analysis............................................................................................................46

    5 Matlabsimulation....................................................................................................475.1 Simulationresults.........................................................................................................51

    5.1.1 Simulationresults’analysis..............................................................................................53

    6 Conclusion................................................................................................................56

    7 Bibliography.............................................................................................................57

  • 5

    TableoffiguresFigure1:Motor'sparts............................................................................................................10

    Figure2:Exactequivalentcircuit............................................................................................12

    Figure3:Exactequivalentcircuitwithloadresistance...........................................................13

    Figure4:Approximantequivalentcircuitwithoutload..........................................................14

    Figure5:Approximantequivalentcircuitwithload................................................................14

    Figure6:Squirrelcageinductionmotor..................................................................................15

    Figure7:Woundrotorinductionmotor..................................................................................15

    Figure8:(Right)Dconnectionand(Left)WYEconnection.....................................................15

    Figure9:Testingcircuit(Source:Máquinaseléctricas:PauCasalsTorrens[1]).....................16

    Figure10:TheVo^2-Pographofmotorno.1.........................................................................18

    Figure11:TheVo^2-Pographofmotorno.2.........................................................................19

    Figure12:Simulationofexactequivalentcircuitinno-loadcondition(motorno.1)............21

    Figure13:Simulationofexactequivalentcircuitinblockedrotorcondition(motorno.1)...21

    Figure14:Simulationofexactequivalentcircuitinno-loadcondition(motorno.2)............21

    Figure15:Simulationofexactequivalentcircuitinblockedrotorcondition(motorno.2)...22

    Figure16:Powertriangle........................................................................................................24

    Figure17:Thecontactor.........................................................................................................26

    Figure18:Thecapacitorbank.................................................................................................26

    Figure19:Thetachometer(Onfarright),themechanicalbrake(Onfarleft)andtheammeter

    (Behindthetachometer).................................................................................................26

    Figure20:Theanalyser...........................................................................................................27

    Figure21:DatawatchPro'smainwindow...............................................................................27

    Figure22:Theanalysermountedintheprotectivecase........................................................28

    Figure23:Connectiondiagramoftheanalyser......................................................................28

    Figure24:Circuitimplementationoftheanalyser..................................................................29

    Figure25:TheOscilloscope.....................................................................................................29

    Figure26:ThemotorconnectedinD......................................................................................30

    Figure27:ThemotorconnectedinWYE.................................................................................30

    Figure28:MotorandcapacitorconnectedinWYE.................................................................30

    Figure29:MotorconnectedinWYEandcapacitorbankinD.................................................30

    Figure30:MotorconnectedinDandcapacitorbankinWYE.................................................31

    Figure31:MotorandcapacitorconnectedinD.....................................................................31

    Figure32:Phase-neutralconnectionofthecapacitorandthemotor....................................31

    Figure33:AsynchronousMachine(SIunits)...........................................................................47

    Figure34:Asynchronousmachine'sparameterswindow.......................................................48

    Figure35:Three-phaseprogrammablevoltagesource..........................................................49

    Figure36:Three-phaseload....................................................................................................49

    Figure37:Three-phasebreaker..............................................................................................49

    Figure38:Three-phaseV-Imeasurement...............................................................................50

    Figure39:Voltagemeasurement............................................................................................50

    Figure40:Scope......................................................................................................................50

    Figure41:Step........................................................................................................................50

    Figure42:Gain........................................................................................................................50

    Figure43:Ground...................................................................................................................51

    Figure44:Powergui................................................................................................................51

    Figure45:Simulationcircuit....................................................................................................51

    Figure46:Testno.5-Simulationresult..................................................................................52

    Figure47:Testno.5-Labtestresult......................................................................................52

  • 6

    Figure48:Testno.7-Simulationresult..................................................................................52

    Figure49:Testno.7-Labtestresult.......................................................................................52

    Figure50:Testno.30-Simulationresult................................................................................52

    Figure51:Testno.30-Labtestresult....................................................................................52

    Figure52:Testno.32-Simulationresult................................................................................53

    Figure53:Testno.32-Labtestresult....................................................................................53

    Figure54:Testno.34-Simulationresult................................................................................53

    Figure55:Testno.34-Labtestresult....................................................................................53

    Figure56:Transientthree-phasevoltagewaveform..............................................................54

    Figure57:Transientwaveformofthethree-phasecurrent....................................................55

    Figure58:TransientwaveformoftheRMS.............................................................................55

  • 7

    TableoftablesTable1:Ratedvaluesofmotors..............................................................................................14

    Table2:No-loadtestresults...................................................................................................18

    Table3:Mechanicallossesofmotors.....................................................................................19

    Table4:No-loadandblockedrotortests'results...................................................................20

    Table5:Motors'parameters...................................................................................................20

    Table6:Simulatedno-loadandblockedrotortest.................................................................23

    Table7:Simulatedvalueofimpedances.................................................................................23

    Table8:Differenttestconditions............................................................................................33

    Table9:Tableofequivalentimpedances................................................................................34

    Table10:Tableofresultsoflaboratorytests..........................................................................45

    Table11:Relationbetweenpowerandinertia(Source:Máquinaseléctricas.JesúsFraileMora

    [2])...................................................................................................................................48

    Table12:Valuesofmutualinductionandinertiaofsimulatedmotors..................................48

    Table13:Simulation’swaveforms..........................................................................................53

    Table14:Comparisonofsimulationresultsandtestresults..................................................54

  • 8

    1 IntroductionThe inventionof alternative currentmotor revolutionized theworld. It is efficient and

    requiresminimalmaintenance.Nowadays,thesemotorscanbespottedatanyindustry.

    Themainreasonofthatisitsscalability.Theycanbeasbigasorassmallasitstaskrequires

    ittobe.Anotherreasonforitspopularityisitsversatility.Bymakingsmallmodifications

    initsdesign,theoptimaloperationalpointcanbechanged.Inotherwords,itisrelatively

    easytotweakitsoptimalpower,speedandtorqueoutput.

    Themostwell-known and popularmotor in industrial environment is the three-phase

    inductionmotor. The principal behind the inductionmotor, also known as alternative

    currentmotor, functioning isthesameasthegeneratorofthealternativecurrent, i.e.,

    electromagneticinduction.Sincetheworkingprincipleofthesetwomachinesistheone

    and same, theoretically, the inductionmotor canoperateas thegenerator and supply

    currenttodevicesconnectedonsamenetwork.Anditdoesthat,foraverylittleduration,

    everytimethepowersupplyisshutdown.

    Innormaloperationalconditionsthisphenomenon isnotharmful.Becausethecurrent

    that the motor produces can be considered non-existent compared to what is being

    suppliedtootherequipmentbythenetwork.Theproblembeginswhenthereisapower

    cutandthemotor’soperationisinterrupted.Nowthecurrentthatisbeingproducedby

    themotor is reaching to the other electrical devices that are connected on the same

    networkorgridasthemotor.

    Themagnitudeandfrequencyofthecurrentandvoltageareanythingbutnominal.The

    electronicequipmentthatishighlysensibletosmallvariationsofthecurrentareinagreat

    danger under these circumstances. Theworst case scenario is when themotors have

    capacitivecompensationbecauseitcanproduceovervoltage.

    Theovervoltagederivedfromcapacitivecompensationcancorruptthedata,damagethe

    internalcomponentsorevencauseburninthewholeequipment.Thisphenomenontakes

    placeonshipsandinindustrialinstallations.That’swhythroughoutthisdissertationthere

    willbenodistinctionbetweenshipandindustrialnetwork.

    Sotheobjectiveof thisdissertation is toanalysethis transientbehaviourof themotor

    whenthereisapowercutandithascapacitivecompensation.Differentstepstoachieve

    thatgoalarelistedbelow:

    Ø The transientbehaviourwill be studiedon twodifferent typesmotors that arewidelyusedintheindustry.

  • 9

    Ø Itwillbestudiedindifferentoperationalconditionsforeachmotor.

    Ø Itwillbestudiedthathowtheloadconnectedtothemotorcanaffectthecurrentproducedbyitandhowtheabsenceofloadcontributestothisphenomenon.

    Ø Itwillbestudiedwhilethecapacitorbankisconnectedparalleltothemotor.

    Later on, the results gathered during the lab experiments will be compared with the

    simulated results onMatlab. The outcomes from the real-world experimentation and

    computersimulationshouldbeverysimilarifnotthesame.

  • 10

    2 Mathematicalmodel2.1 Physicalaspects

    Before looking intoamodel that representsanelectricmotor it ispertinent todiscuss

    aboutdifferentpartsofmotorandhowtheyinteractwitheachother.That’swhythispart

    isdedicatedtothemainpartsofthemotorandtheirfunction.

    Athreephaseinductionmotor,oranyelectricmotorforthatmatter,consistsoftwomajor

    parts:astatorandarotor.Therotorisnotattachedtothestatorinanyway;thereisa

    smallseparationdistancebetweenthetwoknownasairgap.Therotarymovementisthe

    resultofinteractionofmagneticfieldscreatedbythewindingsoftherotorandstator.

    Thestatorconsistsofframe,coreandwinding.Thestatorframeisanenclosureandthe

    outermost part of the induction motor. It houses the junction box where cables are

    connected that provide electric current to themotor. It acts as a protection fromany

    external damage that might occur. It provides mechanical strength to the internal

    components.

    Thestatorcore’smainpurposeistoserveashousingforthestatorwindings.Themagnetic

    fluxflowsthroughthecoreandtoreducetheeddycurrentsthecoreismadelaminated.

    Ithasvariousequidistantperipheralslotsparalleltoitscentralaxis.

    Therotoristhepartoftheinductionmotorthatisresponsiblefortherotarymovement.

    Ithasashaftthatconnectstothemechanicalloadandinthemiddleislocatedalaminated

    structureofcylindricalformthathousesslotsforthewinding.Thiswindingcanbeoftwo

    type:

    i. Conventionalthreephasewindingmadeofcopperwireii. Squirrelcagewinding.

    Figure1:Motor'sparts

  • 11

    Thesquirrelcagewindingconsistsofaluminiumorcopperbarsthatareinsertedinthe

    slotspreviouslymentioned.Attheextremesofthecylinderthesebarsareweldedtothe

    ringsmadeof samematerialas thebars.Thisway the ringsand thebars formaclose

    circuit.

    Theinductionmotorsarenameddependingontheirrotorconfiguration.Theoneswith

    squirrel cage windings are known as squirrel cage induction motor. The ones with

    conventionalwindingsareknownaswoundmotors.Thelatterisalsoknownasslipring

    motorsdue to the fact that ithasslip ringsmountedon its shaft thatareused toadd

    resistancetotherotor.Bydoingthis,thetorque-speedcurvaturecanbechangedtoobtain

    desiredstartingtorque.

    2.1.1 Workingprincipleofamotor

    The current enters through the junction box in the stator windings. When it starts

    circulating through the stator windings it creates a rotary magnetic field. Due to

    electromagnetism,thismagneticfieldinducescurrentinrotorwindings,i.e.,theelectrons

    intherotorwindingsstartmovinginaparticulardirection.

    Thecurrentthatnowcirculatesthroughtherotorwindingsalsocreatesarotarymagnetic

    field.Thetworotarymagneticfieldsinteractwitheachother.Theresultofthisinteraction

    istherotatorymotionoftherotor.

    2.2 Equivalentcircuit

    In order to analyse and study machine’s behaviour it is necessary to represent its

    functionalityinacomprehensiveway.Thisrepresentationmustenglobeeverykeyaspect

    ofthemachine;every importantcomponentmustbeincludedintherepresentation. It

    hastobesufficienttounderstandthathowthemachineworks,whatareitsparameters

    andhowtheseparametersinterconnectwitheachothertomakethemachinefunctional.

    Ininductionmotors,thisrepresentationisachievedbySteinmetzequivalentcircuit.This

    equivalent circuit features all the essential components required for the analysis of

    inductionmotors.That’swhy,itisfeaturedinalmosteverybookthattalksaboutinduction

    motors.

    Althoughtheinductionmotorisathree-phasemachine,theequivalentcircuitisasingle-

    phase representation for the sake of simplicity. For that reason, when using this

    representation onemust procure to use phase voltage since the connection is phase-

    neutral.

  • 12

    Thecircuitthatisshownbelowisknownasexactequivalentcircuit.Obviously,theactual

    motorcomponentsarenotconnectedinthismanner.However,itdoesgiveanideathat

    howthesepiecesinteractanddependoneachother.Themainpurposeofthiscircuitis

    todeterminethathowmuchcurrentpassesthrougheachwindingwhichwillultimately

    beusedtocalculatethepoweroutput.

    Where:

    Re=Statorresistance(W)Xe=Statorleakagereactance(W)Rr’/s=Rotorresistancereferredtostator(W)Xr’=Rotorleakagereactancereferredtostator(W)Rm=Corelosesresistance(W)Xm=Magnetizingreactance(W)

    Thecurrent thatenters through stator (I1) isdivided into twocurrents,one that flows

    through rotor (I2’) and another one that flows through magnetizing branch (I0). The

    amount of current that passes through the two fractions depends directly on the

    rotationalspeedandtorqueoutput.Thesetwoparametersdecidethevalueofslip(s)that

    isillustratedinthecircuit.So,therotorresistancedependsonthespeedandthetorque

    outputofthemotor.

    Themagnetizingbranch isnotaphysical componentof the inductionmotor.Rather it

    representstheimpedancethatisimposedbythecoreofthestator.Thecurrentthatflows

    throughthisbranch is theoneresponsible forcreatingtherotatingmagnetic fieldthat

    inducescurrentintherotor.

    I1 I2

    I0

    Figure2:Exactequivalentcircuit

  • 13

    Figure3:Exactequivalentcircuitwithloadresistance

    Inordertomakethecalculationseasiertherotorresistanceisdividedintotwoelements.

    Rr’+Rr’('()))=Rr’+Rr’('

    )− 1)=Rr’/s (2.1)

    Rr’('()))=Resistancethatrepresentsmechanicalloadontheinductionmotor.

    With this distinction it is very easy to calculate thedevelopedpowerby themotor as

    illustratedintheformulabelow.

    Pi=3*(I2’)2*[Rr’('()))] (2.2)

    Bysubtractingthemechanical lossesofthemotorfromthedevelopedpowerthetotal

    outputpowerisobtained.

    PO=Pi-Pm (2.3)

    Thedifferencebetweentwocurrents,I0andI2’,valueisratherbigindifferentoperational

    states. Therefore, an approximate equivalent circuit is used inwhich either current is

    considerednegligibledependingonoperationalstate.

    Therearetwomainstatesunderwhichaninductionmotorcanoperate,i.e.,underload

    ornoload.Thedistinctionbetweenthesetwooperationalstatesisimportantbecausethe

    presence or absence of load determines the path that current takes after node of

    magnetizingbranch.

    2.2.1 Approximantequivalentcircuits

    Whenthereisnoloadattherotorasmallfractionofcurrentpassesthroughrotor,enough

    to produce sufficient torque to overcome friction and winding losses associated with

    rotation.Soitcanbeconsiderednegligible.Underthisconditionthemajorityofcurrentis

    usedtoproducereactivepowerthatgeneratesthemagneticfield,i.e.,I1»I0.

    I1I2’

    I0

  • 14

    Figure4:Approximantequivalentcircuitwithoutload

    TheRminthemagnetizingbranchrepresentstheresistanceofairinairgap.Itisusually

    veryhigh.Forthatreason,manytimesitisomittedfromthecircuitsalltogetherbecause

    verylittleamountofcurrentpassesthroughthere.Itmakesthecalculationseasier.

    Whenthemotorisrotatingsomethingi.e.thereisaloadconnected,itneedstorqueand

    consequently power to rotate that load. Under load, the majority of current passes

    throughtherotorandthemagnetizingbranch’scurrentcanbeneglected,i.e.,I1»I2’.Thiscurrent isusedtocalculatethepoweroutputofthe inductionmotor.Thismechanical

    powerdependshighlyonthevalueofslip.

    Figure5:Approximantequivalentcircuitwithload

    2.3 Characterizationofinductionmotor

    For thepurposeof thisdissertation,parametersof twodifferent inductionmotorsare

    determined.One is a squirrel cage inductionmotorandanotherone is awound rotor

    motor.Theveryfirststeptowardsthecharacterizationistocollecttheratedvaluesofthe

    motor. It iseasilydonebyextracting information from thenameplate that is attached

    motorhousing.

    Motorno.1 Motorno.2Motortype Squirrelcageinductionmoto WoundrotorinductionmotorRatedvoltage 220/380V 220/380VRatedcurrent 4.8/2.8A 2.5/1.4ANominalpower 1000W 600WRatedspeed 1420rpm 1500rpmFrequency 50Hz 50HzPowerfactor - 0.8

    Table1:Ratedvaluesofmotors

  • 15

    Asitcanbeseen,therearetworatedvoltagesandcurrentsforeachmotor.Thatiswhy

    becausethreephasemachinesallowtwodifferenttypesofconnection,WYEandD(delta).

    Thetypeofconnectiondependsonthenominalvoltageofthenetwork.Ifthevoltageis

    thesameasthemotor’s,thentheconnectionmustbeinD.Ifthevoltageis3squareroot

    timesthenominalvoltageofmotor,thentheconnectionmustbedoneinWYE.

    Theapproachtakenindeterminingthesemotors’parametersisthemosttraditionalone.

    Itconsistsofdoingtwotestsonsubjectmotors,namely,no-loadtestandlocked-rotortest,

    andmeasuringthefollowingparameter:

    Figure6:Squirrelcageinductionmotor

    Figure7:Woundrotorinductionmotor

    Figure8:(Right)Dconnectionand(Left)WYEconnection

  • 16

    - Activepower(W)- Voltage(V)- Current(A)- Reactivepower(VAr)- Apparentpower(VA)- Powerfactor

    Withthisdatacollectedfromthebothtestsabovementionedresistancesandleakages

    reactancearecalculated.Variousformulasandassumptionsareemployedintheprocess

    ofcalculation.

    Bothtestsaredoneataroomtemperatureof24ºC.Beforecommencingthetests,the

    stator resistance of both motors is measured with an Ohmmeter. To measure the

    parametersabovementioned,followingcircuitisimplemented:

    2.3.1 Blockedrotortest.

    As the name suggests, during this test the rotor is blocked, i.e., there is no rotatory

    movement.Whenthereisnorotationthevalueofslip(s)is1.Oncetherotorissecured,

    withthehelpofvariablevoltagesourcesmallvoltageincrementsareapplied.Thevoltage

    supplymustbestoppedwhenthecurrentreachesitsratedvalue.Thisreadingisnamed

    asIRB.

    Apartfromthecurrentfollowingdataiscollected:

    VRB:Thevalueofthisvoltageiswellbelowtheratedone.Sincethevoltageissmalland

    theresistanceofthemagnetizingbranchisbig,theintensitydoesnotflowthroughthere.

    PRB:Itistheelectricpowerconsumedbythemotor.Itrepresentsthecopperlosses,due

    toJouleheating,inthestatorandtherotor.

    Figure9:Testingcircuit(Source:Máquinaseléctricas:PauCasalsTorrens[1])

  • 17

    fpRB:Ithasrelativelyhighvalue.

    Onceallthedataiscollectedfollowingformulasaretocalculatetheimpedances:

    ZRB=>RB?RB (2.4)

    ZRB=RRB+jXRB (2.5)

    RRB=DRB

    E∗?RB^H (2.6)

    RRB=Re+Rr’ÞRr’=RRB–Re (2.7)

    XRB=Xe+Xr’ (2.8)ThereisnoeasywaytoobtaintheXeandXr’.Forthemotorslessthan5.5kW,following

    relationbetweenreactancesisacceptable[2].

    Xe=Xr’=XRB/2 (2.9)

    2.3.2 No-loadtest

    Asthenamesuggests,thistestisperformedwithoutcouplinganyloadtothemotorshaft.

    Andagain, voltage (V0), intensity (I0),power (P0)and fparemeasuredusing the same

    equipment.Thesereadingsareusedtoestimatethepowerlossesinthemotor,namely,

    mechanical, coreandcopper losses.Thepower (P0) that is consumedby themotor is

    dividedasfollowing:

    P0=Pm+PH+Pcu (2.10)

    Pcu=3*Re*I02 (2.11)

    PH:Corelossespertainingtothemagnetizingbranch

    Pm:Mechanicallosses

    Pcu:Copperlosses

    Thistestisperformedwithvariousvoltages.Eachvoltagedeliversdifferentpower.With

    differentvaluesofvoltageandpowerV02-P0graphcanbetraced.Withthehelpofthis

    graphthevalueofpowercanbedeterminedwhenthevoltageis0.Withthevoltagebeing

  • 18

    0,corelossesarealso0sincethereisnocurrentflowingthroughthemagnetizingbranch.

    Sothatvalueofpowerrepresentsthemechanicallosses.

    Motorno.1 Motorno.2V0(V) P0(W) V0(V) P0(W)

    101,7 42,4 100 70,2

    125 52,1 125 83,05

    150 66,7 150 92,45

    175,4 76,7 175 100,73

    200,4 96,5 200 109,1

    219 143,4 230 128

    225,2 157,4 - -

    Table2:No-loadtestresults

    Followingthevalues listed inthetableabove,thevaluesofPmofbothmotorscanbe

    determined.Thevariationinvoltagesappliedtobothmotorsisduetothefactthatthe

    voltageofthegridisneverconstant.

    Figure10:TheVo^2-Pographofmotorno.1

    Whentheaxisofabscissasisformedbysquarenumberandtheaxisofordinatesisformed

    bynumbersthatarenotsquaredthegraphisrectilinear.That’swhy,inthegraphabove,

    atrendlinehasbeenusedtodescribetherelationbetweenP0andV0.Thistrendline

    passesclosetotherealpoints.

    Thesamestrategyhasbeenemployedinthegraphbelow.Bothtrendlineshavetheir

    correspondentequations.Tocalculatethemechanicallosses,thexissubstitutedwith0.

    y=0,0027x+6,1611

    0

    50

    100

    150

    200

    0 10000 20000 30000 40000 50000 60000

    Po(W)

  • 19

    Figure11:TheVo^2-Pographofmotorno.2

    Motorno.1 Motorno.2Pm(W) 6 61

    Table3:Mechanicallossesofmotors

    Intheabovetable,theapproximatevalueofmechanicallossesislisted.Becauseofthe

    small variationof speed inno-loadand full-loadconditions thePmcanbeconsidered

    constantineveryoperationalcondition.Thereisonlyoneparameterlefttodetermine

    and that is Xm. To calculate the Xm of magnetizing branch following formulas are

    employed:

    Z0=>0?0 (2.12)

    Z0=R0+jX0 (2.13)

    X0=Xe+XmÞXm=X0–Xe (2.14)

    Thereadingsobtainedfromthetestperformedonthemotorsaredisplayinthetables

    below.

    No-loadtest Motorno.1 Motorno.2V0(V) 219 230I0(A) 2.65 1.926P0(W) 143.1 128Q0(VAr) 994.7 756.4S0(VA) 1005 767fp 0.14 0.17

    y=0,0013x+61,25

    0

    20

    40

    60

    80

    100

    120

    140

    0 10000 20000 30000 40000 50000 60000

    Po(W)

  • 20

    BlockedrotortestVRB(V) 116.8 45.4IRB(A) 4.81 2.5PRB(W) 870 146.4QRB(VAr) 430 131.3SRB(VA) 960 196.6fpRB 0.9 0.74

    Table4:No-loadandblockedrotortests'results

    After applying the formulas mentioned earlier following values of impedances are

    obtained:

    Motorno.1 Motorno.2Re(measured) 9.5 6.68ZRB 12.6+j6.1 7.76+j7.05

    Z0 6.7+j47.45 11.72+j67.94Rr’ 3.1/s 1.08/sXe=Xr’ j3.05 j3.525Xm j44.4 J64.42Ze 9.5+j3.05 6.68+j3.525Zr’ 3.1/s+j3.05 1.08/s+j3.525

    Table5:Motors'parameters

    Atfirst,thereseemstobenoproblemwiththevaluesofimpedancesofmotorno.1.But

    acloseexaminationshowssomecontradiction in thevalues.Forexample, thecopper

    lossesintheno-loadtestare,atminimum:

    PCU=3*9.5*2.65^2=200.14W (2.15)

    ThisvalueclearlysurpassestheP0obtainedduringthetests.TheP0mustbe,at least,

    equaltothecorelosses.Theimpedancecalculatedinno-loadconditionrepresentsthe

    sumofresistanceandreactancesofthestatorandthemagnetizingbranch.

    Themeasuredresistanceofthestatorandthecalculatedonedonotmatchwitheach

    otherinbothcases.Partlytheworkingtemperatureistoblame.Thetemperatureofthe

    windingsissubjecttochangewiththetemperature.

    Inordertovalidatetheseresultsandobtainthetruevalueofeveryparameter,aMatlab

    simulation is employed. This simulation contains an exact equivalent circuit. The

    simulatedcircuithasalotofblocksformeasuringthesignals.

  • 21

    Figure12:Simulationofexactequivalentcircuitinno-loadcondition(motorno.1)

    Figure13:Simulationofexactequivalentcircuitinblockedrotorcondition(motorno.1)

    Figure14:Simulationofexactequivalentcircuitinno-loadcondition(motorno.2)

  • 22

    Figure15:Simulationofexactequivalentcircuitinblockedrotorcondition(motorno.2)

    The no-load and the blocked rotor test will be simulated in this circuit with the

    correspondingvoltages. For theno-load test the slip (s)willbe close to0and for the

    blockedrotortestitsvaluewillbe1.Thesourcevoltagewillbesameasmeasuredduring

    tests.

    Asmentionedbefore,theresistancesareunreliablewiththevaryingtemperature.But

    thisisnotthecaseforreactances.That’swhy,thestartingpointofthesesimulationswill

    betheRmandleakedreactancesofstatorandrotor.Thesevalueswillremainalmostthe

    sameduringthesimulations.

    Atstarting,thevalueoftheresistancewillbeclosetotheonemeasured.Fromthere,

    smallchangeswillbemadeinthevaluesofresistancesuntilthereadingsarecoherent.

    Theconsumedcurrentshouldbeveryclosetoonemeasured.

    Afternumeroustriesfollowingvaluesareobtained.Thesimulatedvaluesareveryclose

    totheirreal-worldcounterpart.

    No-loadtest Motorno.1 Motorno.2 Measured Simulated Measured SimulatedV0(V) 219 219 230 230I0(A) 2.65 2.62 1.926 1.817P0(W) 143.1 182.1 128 127.4Q0(VAr) 994.7 981.5 756.4 712.4S0(VA) 1005 998.25 767 723.7fp 0.14 0.18 0.17 0.176

  • 23

    BlockedrotortestVRB(V) 116.8 116.8 45.4 45.4IRB(A) 4.81 4.95 2.5 2.55PRB(W) 870 887.2 146.4 148.5QRB(VAr) 430 456.4 131.3 134.8SRB(VA) 960 997.7 196.6 200.56fpRB 0.9 0.889 0.74 0.74

    Table6:Simulatedno-loadandblockedrotortest

    Motorno.1 Motorno.2 Calculated Simulated Calculated Simulated

    Re 9.5 8.5 6.68 6.2

    ZRB 12.6+j6.1 12.6+j6.1 7.76+j7.05 7.76+j7.05Z0 6.7+j47.45 8.73+j47.68 11.72+j67.94 12.86+j71.94Rr’ 3.1/s 4.1/s 1.08/s 1.56/sXe=Xr’ j3.05 3.05 j3.525 3.525Xm j44.4 J44.6 J64.42 J69.11Ze 9.5+j3.05 8.5+j3.05 6.68+j3.525 6.2+j3.525Zr’ 3.1/s+j3.05 4.1/s+j3.05 1.08/s+j3.525 1.56/s+j3.525

    Table7:Simulatedvalueofimpedances

    Nowthevaluesareintunewitheachotherwithsmallvariations.Theonlyexceptionis

    theRethatdoesnotmatchwithresistanceofZ0.Everythingelse,fitsrightinplace.

    These obtained values of impedances will be later used in theMatlab simulation to

    validatetheresultsobtainedinthetests.Morespecifically,theymustbeintroducedin

    theblockofmotorsothatitcansimulatethemotor’sbehaviour.

  • 24

    3 LaboratoryTesting

    As outlined in the introduction, in this part, the transient behaviour of the motors

    willbeobservedwhenthereisapowercut.Asmentionedbefore,thesubjectofthese

    testsaretwothree-phaseelectricmotors,namely,squirrelmotorandwoundrotormotor

    thatwillbetestedindifferentoperationalconditions.

    Thesetestsarecarriedout in laboratoryconditions.Sotherearesomefactorsthatare

    verydifferentfromwhatonecanfindinfactories.Forexample,theroomtemperatureis

    notexcessivelyhot,therearenoEMI(electromagneticinterference)sourcesnearby,there

    isnoabruptvoltagechangesinthenetwork(duetohighenergyconsumptionelements

    connectinganddisconnecting)andtherearenoexternalvibrations.

    Saidthat,therearefactorsthatcanbecontrolledinthelaboratoryfacility.Thosefactors

    aregivenbelow.

    1) Theoperationalconditionsofmotorscanvaryfromonedaytoanother,speciallytheload.Sotosimulatethoseconditionsthetestswillbedonewithdifferentload.Itis

    achieved by connecting a mechanical brake with variable resistant torque to the

    motor. The torque that applies this brake can be controlled from a dedicated

    switchboard.

    2) Other than the load that varies, there is also two different type of connectionspossible,WYEandD.Mostofthetimes,thenominalvoltageofanygivengridisfixed

    since every security element and other elements are installed for one particular

    nominalvoltage.So, theconnectionof themotor remains thesameas longas the

    motoroperatesinthesamenetwork. Inthelaboratory,thenominalvoltageisaround230V.Sometimes,it’scloseto225V

    andothertimesitmayexceeditsnominalvalue,eventhough,itcannotbeconsidered

    overvoltage.Thesubjectmotorsoperate,nominally,at220V.Buttheavailablevoltage

    canbeconsideredvalidtoperformthetestssinceavariationofupto10%isadmitted.

    Nowasdiscussedearlier,itiscrystalclearthattheconnectioninthejunctionboxmust

    beinD.However,forthesakeofexperimentation,therewillbesometestingdone

    withWYEconnection.Thereasonforthatistoobservethathowtheoutcomevoltage

    willbewhenthemotorispoweredwithavoltagelowerthanitsnominal.

    3) Whenpeopletalkaboutpowerorelectricpowertheyrefertowatts(W)orkilowatts

    (kW) which is the active power. But

    there are two other powers that areFigure16:Powertriangle

  • 25

    consumedbyamachine.Thesearereactivepower(Q)andapparentpower(S)with

    unitsVArandVArespectively.Therelationbetweenthreeisshownbelow.

    P=V*I*cosj (3.1)Q=V*I*sinj (3.2)S=V*I (3.3)S= (PH + QH) (3.4)

    j=Thepowerfactor.

    The active power is the responsible for creating the output power. However, the

    powerconsumedbythemachineistheapparentpower.Thereactivepower,inthe

    caseofmotors,isinductiveanditisusedforcreatingthemagneticfield.Thepower

    factor shows the relation between S and P, the smaller the angle smaller is thedifferencebetweenbothpowers.

    Thebigger is reactivepowerbigger is theapparentpower,eventhough, theactive

    power remains the same.Which translates into bigger electric bill. That’swhy the

    capacitorbanksareusedtominimizethereactivepower. It isachievedbyinjecting

    capacitivereactivepower,whichhasanoppositedirectionthantheinductiveone,into

    theinstallation.

    Very often, industrial installations have capacitor banks to minimize the reactive

    powerconsumption.Since,motorsconsumeinductivereactivepower,thecapacitor

    banks lower the overall installation reactive power by contributing the capacitive

    reactivepower.ThesecanalsobeconnectedinWYEorDasperdemand.

    Consideringalloftheabove,thereareseveralpossiblecombinationsthatwillresultin

    different operational conditions. That’s why, tests will be done with different load

    conditions, i.e., no load, with mechanical brake coupled with the motor and with

    mechanicalbrakeperformingthetorqueof2N.m.intheoppositedirectionofthemotion

    ofmotor. Additiontothat,theeffectsofcapacitivecompensationonthevoltagegenerationwillbe

    observed.Forthat,testwillbedonewhenthecapacitorsareinWYEconnectionandD

    connection.And,asmentionedearlier,therewillbeexperimentationwithbothtypesof

    possibleconnections.

    3.1 Testinginstallation

    Thelaboratorytestsarecarriedoutusingfollowingequipment:

    • Themotors

    • ElectricCables–Forthesetests,electricwireswithcrosssectionareaof1.5mm2areemployed.Thissectionismorethanenoughbecausethecurrentthatpassesthrough

    themissmall.

    • A contactor - throughout the tests many power interruptions will be made.Disconnectingthewiresdirectlyfromswitchboardisveryrisky.Thispracticecanlead

  • 26

    toseriousinjuriesordeathduetoelectrocution.Toavoidthisdanger,acontactorwill

    beemployed.Itisaswitchthatcloseswhenitisconnected24V(DC)current.With

    thisamountofcurrentthereisnodangerofelectrocution.

    • Acapacitorbank–Itconstitutesofthreecapacitorsof10µF.ThesecanbeconnectedinWYEorDconfiguration.

    Figure18:Thecapacitorbank

    • Anadjustablemechanicalbrake–Thisdeviceisusedtoproducecounter-torque.

    • Atachometer–Thisdevicemeasurestherevolutionsperminute(rpm)ofthemotor.Itconnectsontheoppositeofthemechanicalbrake.

    • Anammeter–Thisdevice isusedtomeasuretheamps(A). Itwillbeconnected inserieswithoneofthephaseofthemotor. It isverysimpleandreliableelementto

    monitorthecurrent.

    Figure19:Thetachometer(Onfarright),themechanicalbrake(Onfarleft)andtheammeter(Behindthetachometer)

    Figure17:Thecontactor

  • 27

    Thefigure19representsthetypicalsetupduringthetests.Whenthereisnoneedfor

    load,themechanicalbrakeissimplydetachedfromthemotor.Theammeterisalways

    connected to one of the phases. The probe of oscilloscope connects in one of the

    terminalsofjunctionbox.

    • Ananalyser - Thisdevice isused toanalyseanarrayofparametersofdomesticorindustrialgrid.Itcanbeemployedinthree-phaseorsingle-phasenetwork.It isalso

    equippedwithportsthatcancontrolrelaysandalarmsifnecessary.Thepowersource

    ofthisdeviceisonethephases.

    Figure20:Theanalyser

    Themeasurementsaredisplayedonasmalldisplaymountedonthedevice.Themost

    commononesarevoltageandcurrent.Theanalyserhasmanymorefunctionsandto

    takeadvantageofitsfullcapabilitiesitisconnectedtoacomputeroralaptop.

    The connection is via Ethernet. The readings andmuchmore is visualized using a

    specializedsoftware.Thissoftwareismadebythesamecompanyastheanalyserand

    is called Datawatch Pro. Once the software is installed, the analyser is simply

    connectedtothecomputerusingRJ45cableandisconfiguredasperinstructions.

    Every reading taken by the analyser can be visualized on a computer in a form of

    numerical values or graphs in real time. Further to these readings, the device also

    measuresthepowerconsumption.Everyreadingandmeasurementisstoredlocally

    onthecomputerwhichcanbeconsultedonanylaterdate.

    Figure21:DatawatchPro'smainwindow

  • 28

    Theanalyseralsomeasuresharmonicspresentintheelectriccurrent.Notonlythat,it

    separatesthemaccordingtotheirtype.All inall, it isagreatdevicetomonitorthe

    parametersandqualityofelectriccurrent.

    Figure22:Theanalysermountedintheprotectivecase

    Theanalyserismountedinaplasticboxinordertoprotectitfromanyphysicalabuse.

    Itisconnectedbetweenthegridandthemachine,inthiscaseamotor.Thewiresfrom

    bothsidesareconnectedintheterminalstripadjacenttotheprotectivecase.

    Asitcanbeseen,therearefourpointstoconnectthewiresandoneofthemisfor

    neutralwire.InsidetheboxtherearethreeRogowskicoilsresponsibleformeasuring

    thecurrentofeveryphase.Thedelicatewireconnectionsofthesecoilsareanother

    reasontouseaprotectivecase.

    Figure23:Connectiondiagramoftheanalyser

    In thisparticular case,between theanalyserand themotor there isa contactoras

    showninthefigure24.Theanalyserturnsonautomaticallywhenconnectedtothe

    network.Beforecommencingwithanyoperation,thebuttonofstartreadingisclicked

    onthefirstpage.

  • 29

    Figure24:Circuitimplementationoftheanalyser

    Aftercommencingwithtesting,therewasaveryapparentproblem.Thedevicewas

    notregisteringthehighcurrentconsumption,around5timestheratedcurrent,atthe

    momentofstarting.Thisphenomenonisverycharacteristicoftheinductionmotors.

    Furthermore,itwasnotregisteringorreadinganytransientwaveformofthevoltage

    afterpowershutdown.Thevalueofthevoltagedroppedto0afterstoppingthesupply

    ofelectricity.Thisconditionwasconsistentineverytestperformedwiththeanalyser.

    Afterinspectionofeverysettinginthesoftware,itwasfoundthatitwasreadingor

    takingsampleseverysecond(s).Thatwasthesmallestpossiblesampletimeavailable.

    That is why, the mentioned phenomena did not appear on screen because they

    happenedinamatterofmilliseconds(ms).

    For the reasonmentioned above, it is impossible to perceive the transient voltage

    usingtheanalyser.Tovisualizeandcapturethetransientwaveformanoscilloscope

    willbeused.

    • Anoscilloscope–Thisapparatuswillbeusedtoobservethetransientwaveformofthevoltage.

    Figure25:TheOscilloscope

  • 30

    3.1.1 ElectriccircuitAsithasbeenexplainedbefore,thecapacitorbankandthemotorwillbeconnectedwith

    each other electrically in different forms. There are various possible configurations

    becausesometimes thecapacitorswillnotbeconnectedandother times theywillbe

    connectedintheWYEorDconnection.Allthesixpossiblecombinationsarelistedbelow.

    Figure27:ThemotorconnectedinWYE

    Figure28:MotorandcapacitorconnectedinWYE

    Figure29:MotorconnectedinWYEandcapacitorbankinD

    Figure26:ThemotorconnectedinD

  • 31

    Figure30:MotorconnectedinDandcapacitorbankinWYE

    Figure31:MotorandcapacitorconnectedinD

    Figure32:Phase-neutralconnectionofthecapacitorandthemotor

    All these combinations offer different equivalent impedance that is perceived by the

    electricgrid.Thefirststeptowardsfindingtheequivalentimpedancecircuitistoknow

    the impedanceofmotorduringeveryoperation. Thereare variouspoints to keep in

    mind:

    • Therotorresistancevarieswiththeload(Rr’/s).Slipcanbecalculatedbyknowingthespeedineverycaseandsynchronousspeedofthemotor(ns).

    s=b)(bc

    b) (3.5)

    • When there is no load connected, following the approximant equivalent

    circuit,ZeandXmaresummeduptocalculatetheimpedanceofthemotor.

    • Whenthereisaloadconnected,followingtheapproximantequivalentcircuit,ZeandZr’aresummeduptocalculatetheimpedanceofthemotor.

  • 32

    • If the capacitor bank is not connected to the grid, then the equivalentimpedancewillbelongtooneofthecasesmentionedabove.

    • IfthecapacitorbankisconnectedinWYE,thenimpedancesofthemotorandthecapacitorbankaresummedasinanyotherparallelRLCcircuit.

    Zt=

    qr∗qsqrtqs

    (3.6)

    Ifnot,thentheimpedanceofcapacitorbankinDmustbeconvertedintoitsequivalentimpedanceinWYEusingthefollowingformula.

    ZD-Y=qs^HE∗qs

    (3.7)

    Once the conversion is completed, the equivalent impedance is calculated

    accordingtotheformula3.6.

    Theimpedancehastwoparts,onerealandoneimaginary.Iftheimaginarypartisbigger

    than0thenthecircuitisinductive.Iftheimaginarypartissmallerthan0thenthecircuit

    iscapacitive.Theoreticallyspeaking,themorecapacitiveiscircuit,thelargeritsimpact

    wouldbeonthetransientvoltage.

    Additiontothedifferentcombinationsmentionedabove,themechanicalbrake isalso

    connected to themotor in somecases. In total,34 testare carriedoutwithdifferent

    combinationsofcapacitorbank,motorandmechanicalbrake.Thesecombinationsare

    listedbelowwiththeircorrespondenttestnumber.

    Testno. Motor MC CB Brake(N.m)1 1 WYE No No2 1 WYE No 03 1 WYE No 24 1 WYE WYE No5 1 WYE D No6 1 WYE WYE 07 1 WYE D 08 1 WYE WYE 29 1 WYE D 210 1 D WYE No11 1 D D No12 1 D WYE 013 1 D D 014 1 D WYE 215 1 D D 216 1 D D 4,217 2 D No No18 2 D No 019 2 D No 220 2 D WYE No

  • 33

    21 2 D D No22 2 D WYE 023 2 D D 024 2 D WYE 225 2 D D 226 2 WYE No No27 2 WYE No 028 2 WYE No 229 2 WYE WYE No30 2 WYE D No31 2 WYE WYE 032 2 WYE D 033 2 WYE WYE 234 2 WYE D 2

    Table8:Differenttestconditions

    MC:ItstandsformotorconnectionwhichcanbeinWYEorD.

    CB:Itstandsforcapacitorbankwhichcanbeconnectedornottothemotor.Itcanbe

    connectedinDorWYE.

    Brake:IfitsaysNothenthemechanicalbrakeisnotconnectedtothemotor.Ifthevalue

    is0thenitisconnectedtothemotorbutitisnotperforminganycounter-torque.Ifthe

    valueisgreaterthan0thenitrepresentsthecounter-torqueitisproducingonthemotor.

    Theequivalentimpedancehasbeencalculatedforeverytestdoneinthelaboratory.The

    list of these impedances can be found below. For the calculation of these equivalent

    impedances,thefactorsabovementionedaretakenintoconsideration.

    Testno. Equivalentimpedance1 8,5+47,65i2 90,5+6,1i3 22,17+6,1i4 11,74+55,67i5 27,43+82,51i6 86,78-18,93i7 56,01-44,21i8 50,19-1,74i9 44,76-15,68i10 11,74+55,67i11 27,43+82,50i12 116,09-42,68i13 56,01-44,21i14 86,78-18,93i15 44,76-15,68i16 15,21-29,01i17 6,2+72,635i18 45,2+7,05i

  • 34

    19 21,8+7,05i20 10,40+93,85i21 60,25+219,11i22 46,29+0,49i23 42,92-12,032i24 25,89+5,14i25 26,89+0,78i26 6,2+72,635i27 22,91+7,05i28 12,88+7,05i29 10,40+93,85i30 60,25+219,11i31 15,86+6,43i32 24,96+1,78i33 13,45+6,651i34 13,96+5,81i

    Table9:Tableofequivalentimpedances

    Theseimpedanceswillbecrosscheckedwiththecasesinwhichovervoltageisproduced.

    Thisway,itcanbeprovediftheequivalentimpedancehasanyimpactonthetransient

    voltageornot.

    3.2 Formula-basedanalysis

    Acircuitinwhichacapacitor,aninductorandaresistanceisconnectedtoeachotheris

    knownasasecondordersystem.Itisnamedlikethisbecauseithastwoenergystoring

    device,i.e.,thecapacitorandtheinductor.ItisalsoknownasRLCcircuit.Essentially,the

    RLCcircuit is thesameas thecapacitorandthemotorconnected inparallel inphase-

    neutralconfigurationasillustratedinFigure25.

    Whenthepoweriscutofffromthiscircuit,itproducestransientvoltageinsimilarfashion

    as the inductionmotors.Thisphenomenon isdubbedas transient responseofsecond

    ordersystem.This transient responsecanbestudiedwith formulas.Theoretically, the

    samemethodcanbeemployedtostudythetransientwaveformproducedbythemotor.

    vc(t)=2*úA1ú*e-at*cos(wdt+/A1),t>0 (3.8)

    The formula 3.8 describes the waveform produced by the RLC circuit. The negative

    exponentensuresthattheendvalueis0.Thespeedwithwhichthisequationequatesto

    0dependsonaandt.Thebiggerisathefasteritequatesto0.TheparametersofthisformulaforaparallelRLCcircuitarethefollowing:

    a= xHy (3.9)

    w02=

    'yz (3.10)

    wd= aH + {0H (3.11)

  • 35

    p1,p2=-a±wdi (3.12)

    TheR,LandCare, respectively, resistance, inductanceof inductorandcapacitanceof

    capacitor. The value of A1, which is a complex number, is obtained by solving the

    followingmatrixoperation.

    1 1|1 |2 x

    }1}2 =

    ~ 0t

    ~(0t) (3.13)

    y(0+)=vc(0

    +)=vc(0

    -)=V (3.14)

    y’(0+)=vc’(0

    +)=0 (3.15)

    A2iscomplexconjugateofA1.Itmeansthatthemagnitudeofrealpartandimaginary

    partofA2issamebutthevalueofcomplexcomponentofA2isoppositeinsign.TheVis

    thevoltageofthegridtowhichthecircuitisconnected.

    This formula-based analysis can be used to validate the results of real-world tests.

    However,inthecaseofinductionmotors,thephenomenonofovervoltageoccursatt=

    0.Thisformulaisusefulwhenthetimeisgreaterthan0.AlsotheproductofA1and2is

    equal to the voltage suppliedby the grid. So, themaximumvalueobtained from this

    formulawillneverexceedthevalueofnetwork’svoltage.

    3.2.1 Dynamicanalysis

    The next step in formula-based analysis of motor is to analyse its behaviour during

    acceleration and deceleration. Since the transient voltage is produced during the

    deceleration.Thisanalysiscommenceswiththefollowingformula:

    T–Tr=J dωdt (3.16)

    Where:

    T:Electromagnetictorqueofmotor(Nm)

    Tr:Counter-torqueoftheload(Nm)

    J:Inertia(kg.m2)

    ω:Rotationalspeedofmotor(rad/s)

    Aftertheprocessofintegrationofthegivenequation,followingequationisobtained:

    τmec=ÇÉ

    ÑÖÜá (3.17)

    Thisequationgivestheelectro-mechanictimeconstant,alsocalledtau,thatdetermines

    thetimethatarotorwithJinertiataketoacceleratetothesynchronousspeed(ω)under

    theinfluenceofthemaximumtorque(Tmax)

  • 36

    4 Test’sresults

    Followingeverythingexplainedupuntilnow34testareperformed.Theresultsofthese

    tests are catalogued in the tablebelow. Theparametersobtained from the tests are

    motor’sspeed,consumedcurrent,peakvalueoftransientwaveformandthedurationof

    thesaidwaveform.Theimageoftransientvoltagewaveformproducedineverytestcan

    befoundonthefarrightofthetable.

    Thetransientwaveformisobservedandanalysedontheoscilloscope.Theparameters

    suchaspeakvalueoftransientwaveformanditsdurationaremeasureddirectlyonthe

    oscilloscope.

    Theapparatusdoesnothavetheabilitytotellifthereisanyovervoltage.However,itis

    relativelyeasytovisuallytellthepresenceofanovervoltage.

    Thepeakvalueofthetransientwaveformiscomparedwiththepeakvalueofvoltagethat

    isbeingsuppliedbythegrid.Ifthevalueoflatterishigherthenthereisnoovervoltage.

    Forthesakeofthiscomparison,thepeakvalueofgrid’svoltageisalsolistedinthetable.

  • Testno. Motor Vp(V) RPM I(A) Vm(V) t(ms) Overvoltage Transientwaveform

    1 1 179,65 1450 0,66 124 482 No

    2 1 179,65 1425 1,53 122 334 No

    3 1 179,65 1050 3,85 90 158 No

    4 1 179,65 1450 0,3 172 940 No

  • 38

    5 1 179,65 1450 0,63 228 1060 Yes

    6 1 179,65 1425 0,5 148 434 No

    7 1 179,65 1425 0,7 200 432 Yes

    8 1 179,65 1350 1,25 144 216 No

  • 39

    9 1 179,65 1350 1,35 148 170 No

    10 1 311,17 1450 2,6 148 519 No

    11 1 311,17 1450 1,7 140 990 No

    12 1 311,17 1450 2,5 136 474 No

  • 40

    13 1 311,17 1425 1,7 140 508 No

    14 1 311,17 1425 2,82 176 162 No

    15 1 311,17 1350 2,2 134 252 No

    16 1 311,17 1400 3,5 94 112 No

  • 41

    17 2 311,17 1450 2 150 180 No

    18 2 311,17 1440 2,2 144 164 No

    19 2 311,17 1350 2,5 148 144 No

    20 2 311,17 1450 1,65 128 200 No

  • 42

    21 2 311,17 1450 0,85 164 400 No

    22 2 311,17 1440 1,65 180 216 No

    23 2 311,17 1440 0,9 156 286 No

    24 2 311,17 1375 2,2 168 134 No

  • 43

    25 2 311,17 1375 1,55 138 190 No

    26 2 179,65 1440 0,6 144 300 No

    27 2 179,65 1360 0,75 168 150 No

    28 2 179,65 1150 1,6 68 138 No

  • 44

    29 2 179,65 1440 0,3 158 552 No

    30 2 179,65 1440 0,7 296 600 Yes

    31 2 179,65 1240 1,2 112 175 No

    32 2 179,65 1360 0,82 248 434 Yes

  • 45

    Table10:Tableofresultsoflaboratorytests

    Motor:Ittellsthenumberofthemotorbeingtested.Vp:Itisthepeakvalueofvoltage.Itrepresentsthehighestvalueofthesinusoidalwaveformofthevoltage.ItissmallerinWYEconnection.RPM:Itrepresentsthespeedofthemotorineverycase.I:Itrepresentsthecurrentconsumedbythemotor.Vm:Itrepresentsthepeakvalueofthevoltageproducedbythemotoraftershuttingdownthepower.t:Itrepresentsthedurationofthevoltagewaveformproducedbythemotors.Overvoltage:IfitsaysNothenthereisnoovervoltageproduced.IfitsaysYesthentherehasbeenanovervoltage.

    33 2 179,65 1150 1,4 132 156 No

    34 2 179,65 1120 1,55 208 158 Yes

  • 46

    4.1 Results’analysis

    Theovervoltageisobservedinfivedifferentcases,twoformotor1andthreeformotor2.Ineverycase,thecapacitorbankisconnectedparalleltothemotor.Andineverycase,thecapacitorbankisconnectedinDandthemotorisconnectedinWYE.Inthemotorno.1,theovervoltageisproducedwhenitisnotconnectedtoanyloadanditisconnectedtothemechanicalbrake.Inthelattercase,therewasnocounter-torqueperformedonthemotor.Apartfromtheovervoltage,thecapacitorbankalsocontributesinextendingthetransienttimeregardlessofitstypeofconnection.Even if there is noovervoltage, theVm is greater in the caseswhereCB is connectedcomparedtothoseinwhichthereisnocapacitivecompensation.TheeffectsofCBaremitigatedwhenthemechanicalbrakeisconnectedInthemotorno.2,theovervoltageisproducedinthreedifferentinstances,inno-loadcondition,when it is connected to theMBwithoutanycounter-torqueandwhen it isconnectedtotheMBwiththecounter-torqueof2N.m.WhenthemotorsareconnectedinDconnection,theresultingVmisusuallyhigherwhentheCBisconnectedinWYEconfiguration.AndwhenthemotorsareinWYEconnectiontheVmisalwayshigherwhentheCBisinDconnection.Theloadconnectedtothemotoralwaysmitigatesthetransientvoltage.Bothinitspeakvalueandthetransienttime.Ifthereiscounter-torquetheeffectsofloadareaggravated.Butthereseemstobesomeexceptionsinthistrend.As for equivalent impedance, there seems to be no relation between the value ofimpedanceandthevoltageproduced.Thetestno.7istheonlycapacitivecircuitinwhichtheovervoltageisobserved.Intherestofthecases,thecircuitsareinductive.In conclusion, themotors do produce an overvoltage when they are connected to acapacitorbank.Forthattohappen,theCBmustbeconnectedtothehighervoltagethanthemotor.Evenifthereisnoovervoltage,thecapacitivecompensationleadstohigherVmthanthecaseswithoutanyCBconnected.

  • 47

    5 Matlabsimulation

    As outlined in the introduction, the data collected from tests is validated using thesimulationofthephenomenon.Forthesimulation,Matlabisused.Thecircuitusedinthelaboratorytestingisreproducedinthissoftware.

    It has an extensive library of elements to choose from. Every device, machine andapparatususedinthelaboratoryisavailableinMatlabintheformofblocks.Theseblockshave several parameters that one must know in order to make it functional in thedesirableway.Once the blocks have been updated with the correct information, they must beinterconnectedwitheachotherintherightway.Thesimulationwouldnotworkifanyessentialinformationisnotintroduced;itwouldgiveanerror.Thesimulationcircuitsforboththemotorsaresame.Theonlythingsthatchangearetheparameters.Now,followingtheintroduction,thecasesthatpresentovervoltagewillbesimulated. Thewaveforms of voltage of the simulationwill be compared to the onesobtainedduringthetests.Theblocksthatareusedinthesimulationsarelistedbelow.

    • Theasynchronousmachine(SIunits):Thisblockrepresentsthethree-phasemotor.It

    can be used as squirrel cagemotor or wound rotormotor. It has three inputs toconnectthewires.Italsohasaninputtointroducethecounter-torque(Tm)whichisnotused.Because, if thecounter-torque isestablished, itkeepsrotatingthemotorevenifthereisapowercut.Ithasoneoutputportwhichcanbeconfiguredtoshowavarietyofparameters.Forthesakeofthetesting,therotorspeedisselectedbecausethedataofmotor’sspeedisavailablefromthelaboratorytest.

    Asfortheparameters,basicmotorinformationisintroduced,suchasnominalpower,rated voltage and frequency. The motor’s resistances are also introduced in theparameterssection.Sincetherotorresistancereferredtothestator(Rr’/s)dependsonspeeditisadjustedwitheverychangeinthespeed.Anotherthanresistances,leakedreactancesarealsoaddedintheformofinduction(H).Theloadthatisdraggedbythemotoriscontrolledbyfrictionfactor.Actually,the

    Figure33:AsynchronousMachine(SIunits)

  • 48

    frictionfactordirectlyaffectsthespeed,thehigherthefrictionfactorthelowerthespeed.Sincetheloadaffectsthespeed,bycontrollingthespeedtheeffectofloadonthemotorissimulated.

    Figure34:Asynchronousmachine'sparameterswindow

    Other parameters, such as, mutual induction and inertia cannot be found in thetechnicalspecificationsnorcanbecalculated.AccordingtotheJesúsFraileMorainhisbookMáquinas eléctricas [2], the value of the inertia can be between 0.0015 and0.0035J(kg.m2).Belowisatablecontainingthevaluesofinertiafordifferentpowers.

    kW J(kg.m2)0.55 0.00150.75 0.00181.1 0.00251.5 0.0035

    Table11:Relationbetweenpowerandinertia(Source:Máquinaseléctricas.JesúsFraileMora[2])

    Thevaluespresentedinthetableserveasguidance.Asforthemutualinduction,itisamatteroftrialanderror.So,inordertogetthedesirableresults,manycombinationsofmutualinductionandinertiaaretried.Oncetheresultmatchwith,orcomescloseto,oneoftheresultsobtainedinthetests,thetwoparametersaredetermined.Theselectedvaluesofthesetwoparametersarelistedbelow.

    Squirrelcagemotor WoundrotormotorMutualinduction(H) 0.46 0.5Inertia(J(kg.m2)) 0.003 0.003

    Table12:Valuesofmutualinductionandinertiaofsimulatedmotors

  • 49

    Now for simulatingdifferent caseson the samemotor theonly things that requirealterationarethefrictionfactorandtherotorresistance.Therestoftheparametersremainunchanged.TheonlylimitationofthisblockofmotoristhatitispreconfiguredtorunwithWYEconnection.But,thisrestrictiondoesnotaffectthesimulations inanywaybecauseeveryovervoltagecaseintestswaswithmotorinWYEconnection.

    • Three-phaseprogrammablevoltagesource:Withoutthisblockthesimulationwouldnotwork.Thetwoparametersthatmustbeaddedtothisblockarelinetolinevoltageandthefrequencythatare220Vand50Hz.

    Figure35:Three-phaseprogrammablevoltagesource

    • Three-phase load:Thisblockrepresentsthecapacitorbank.Thetypeofconnectionmustbeselected;inthiscase,itisdelta(D)connection.Andthepowerproducedbythecapacitorsmustbeintroduced.

    QC=3*(VL^2)*2*p*50*C (4.1)

    Byapplyingthisformula,thecapacitivereactivepowerofthecapacitorsiscalculated.SincetheCis10µF,theQCis456.16VAr.

    Figure36:Three-phaseload

    • Three-phasebreaker:Thisblockisusedtointerruptthepowersupplytothemotor.It

    isequivalentof thecontactoremployed inthetesting. Itcutsoff thepowersupplyafter3seconds.

    Figure37:Three-phasebreaker

  • 50

    • Three-phaseV-Imeasurement:Thisblockhasanoutputportsthatshowsthevoltageandcurrentofeverysinglephase.

    Figure38:Three-phaseV-Imeasurement

    • Voltagereader:Thisblockisusedtomeasurethevoltageofasinglephase.Thereading

    ofthisblockisusedforthecomparisonsofthewaveforms.

    Figure39:Voltagemeasurement

    • Scopes:Theseblocksillustratethemeasurementsoftheblockstheyareconnectedto.

    Figure40:Scope

    • Step:Thisblockisusedtointroduceaconstantvalueinanyblock.Itisconnectedto

    theinputportofthecounter-torque(Tm)withvalue0.IftheTmisleftunconnectedthesimulationwouldnotwork.

    Figure41:Step

    • Gain:Thisblockisusedtomultiplythesignalwiththeestablishednumber.Theoutput

    signalofthemotorgivesthespeedinrad/s.Thestepblockisusedtoconvertrad/sintorpm.

    Figure42:Gain

    • Ground:Thisblockisusedtogroundanyelectriccircuit.Itisanessentialelementin

    powergridsthatcansavelivesinthecaseofshortcircuits.

  • 51

    Figure43:Ground

    • Powergui: Themajority of the abovementioned blocks fall under the category of

    SimscapePowerSystemSpecializedTechnologymodels.Whentheblocks fromthiscategoryareused,thepowerguiblockmustbeincludedinthesimulation.

    Figure44:Powergui

    Thefinalcircuitafterconnectingalltheblockslooksasfollowing.

    Figure45:Simulationcircuit

    5.1 Simulationresults

    Asmentionedearlier,fivedifferentsimulationsareexecuted,twoformotorno.1(squirrelcage motor) and three for motor no.2 (wound rotor motor). In order to do a visualcomparisonbetweenthe results fromtestingandsimulation, themeasurements fromtwoareplaceddownsidebysideinthefollowingtable.Alongsidetwomeasurements,thecorrespondingtestno.canbefound.

  • 52

    Testno.

    Simulationresult Testresult

    5

    Figure46:Testno.5-Simulationresult

    Figure47:Testno.5-Labtestresult

    7

    Figure48:Testno.7-Simulationresult

    Figure49:Testno.7-Labtestresult

    30

    Figure50:Testno.30-Simulationresult

    Figure51:Testno.30-Labtestresult

  • 53

    32

    Figure52:Testno.32-Simulationresult

    Figure53:Testno.32-Labtestresult

    34

    Figure54:Testno.34-Simulationresult

    Figure55:Testno.34-Labtestresult

    Table13:Simulation’swaveforms

    5.1.1 Simulationresults’analysis

    Thefirsttworeadings,i.e.,testno.5and7,belongtomotorno.1.Andtheotherthreereadings,i.e.,testsno.30,32and34belongtothemotorno.2.Asitcanbeobserved,thesimulationresultsareveryclosetotheonesoflaboratorytesting.Thecomparisonsofthemeasurementscanbefoundbelow.

    Testno. Test Simulation5 Vp(V) 228 227 t(ms) 1060 800 I(A) 0.63 1.27 Vp(V) 200 218 t(ms) 432 500 I(A) 0.7 1.230 Vp(V) 296 295 t(ms) 600 550 I(A) 0.7 1.132 Vp(V) 248 160 t(ms) 500 300 I(A) 0.82 1.4

  • 54

    34 Vp(V) 208 120 t(ms) 160 130 I(A) 1.55 5.85

    Table14:Comparisonofsimulationresultsandtestresults

    Thesimulatedtransientvoltageshownintheaboveimagesissingle-phase.Ithasbeenimplementedthiswaytoensureaneasycomparisonbetweentwokindofwaveforms.Thethree-phasewaveformhasappearanceasinfigure56.

    Figure56:Transientthree-phasevoltagewaveform

    Thefirstthreesimulationsareveryclosetotheirreal-worldcounterpart.Thepeakvalueofthetransientvoltageisverysimilartotheonesobtainedinthetests.Theshapeofthesimulation waveforms has a similar resemblance to ones of the oscilloscope. Withexceptionofthesecondcase,thetimeoftransientwaveformalwaysfallsshort.

    Thesecondsimulationhasagreaterpeakvaluethanthereal-worldtesting.Thetransientwaveformtimeisalsolongerinthesimulation.However,thewaveformlooksverymuchlikethewaveformofthetests.

    Inthefourthsimulation,thereisnoovervoltagewhereasthereisclearlyanovervoltageinthelaboratorytests.Eveninthetransienttimethereisabigdifferenceof200ms.Eventheformofthewaveformisdifferent. It issafetosaythatthesimulatedwaveformismitigatedineveryaspect.

    In the fifth case,during the test, theovervoltage seems tobe the resultof change inoperationalcondition.Manyfactorscontributetothemomentarilyovervoltage.Oneofthesefactorsisanabruptinterruptionoftheelectricityinacriticalmoment.Itissafetosaythatthisovervoltagewasnotproducebythecapacitivecompensation.

    Eventhough,thesecondpeakoftransientwaveformhasapproximatelythesamevalueastheoneobservedintests.Itisaround100V.Andthetransientwaveformtimeisalsoclosetoitsreal-worldcounterpart.

  • 55

    The current consumed in the simulation is always superior than its real-worldcounterpart.Thereisnopatternthatcoulddescribethisaugmentationineverycurrent.Inthecaseno.34,thevalueofsimulatedcurrentisexceptionallyhigher.Thecurrentisalsoaffectedbytheovervoltage.Themagnitudeofcurrentisaugmentedin the same fashion as of voltage, resulting in an overcurrent. The waveform of thistransientcurrentisassameasthewaveformofthetransientvoltage.Thedurationofthewaveformisalsothesameasthevoltage’sduration.For instance, in figure 56, it can be seen the three-phase transient waveformcorrespondenttotestno.7.Theformofthistransientwaveformissameasthetransientvoltagewaveform.

    Figure57:Transientwaveformofthethree-phasecurrent

    Whensomeonetalksaboutvoltageof220V,heorshereferstotheratedvoltagewhichistheRMSvalueofvoltage.Inthefigure58,theRMSvalueofthetransientvoltagecanbe seen. Before turning the power off the RMS value of voltagewas constant. Afterinterrupting thepowersupply, theRMSvaluestarted tobehave likeawaveform.Thereasonsbehindthispatternareprobablythechangesinthepeakvalueandfrequency.

    Figure58:TransientwaveformoftheRMS

    Theintensificationandmitigationofthewaveformsinthesimulationinrespecttoreal-world testing can be a product of many unforeseen factors and reasons. The mostimportant thing toemphasizehere is the fact that even simulated circuits experienceovervoltageandunderthesameconditionastherealcircuits.

    Havingsaidthat,itcanbeconfirmedthatthemeasurementsobservedinthelaboratorytestsarevalid.

  • 56

    6 Conclusion

    After many hours of laboratory testing and simulation, it is clear that the capacitivecompensation in the motors causes overvoltage under certain conditions. Withoutcapacitivecompensationtherewasnoovervoltageproducedineithermotors.Apartfromtheeffectofload,thevoltagereceivedbythemotorandthecapacitorbankinfluenced greatly on the voltage production. The overvoltage manifested when themotorreceivedvoltagelowerthantheratedvoltageandthecapacitorbankreceivedthevoltagethatishasbeendesignedfor.TheMatlabsoftwarehasallowedthevalidationofthedatacollectedinthelaboratory.Thesimulationresultswereverysimilar to their real-worldcounterparts.Without thispowerfultool itwouldhavebeenverydifficulttoknowifthelabresultswereactuallytrueorjustsomecoincidences.Theobjectivesoutlinedintheintroductionhavebeenmet.Theovervoltageproducedbythemotorwasobservedandhowitcanbeaffectedbytheloadconnectedtothemotor’sshaft.Itwasalsoobservedthathowthevoltagereceivedbymotorandcapacitorbankscanchangethevoltageproduction.Thisdissertationhasservedthepurposeofoutliningaproblemthatexistsintheshipsandindustrialinstallations.Moreworkisneededinthisfieldinordertocollectmoredata.Thenextdissertationinthisfieldshouldalsoexperimentwithmorepowerfulinductionmotors.Thecollecteddatamayhelpthecompaniestocomeupwithasolutiontocounterattackthisphenomenon.

  • 57

    7 Bibliography

    1. Casals Torrens, Pau; Bosch Tous, Ricard. Máquinas eléctricas: Aplicaciones deingenieríaeléctricaainstalacionesnavalesymarinas.Prácticas.1sted.Barcelona:UPC,2005.ISBN84-8301-813-6

    2. Fraile Mora, Jesús. Máquinas Eléctricas. 2nd ed. Barcelona: Servicio depublicaciones.ColegiodeIngenierosdeCamino,CanalesyPuertos,1993.ISBN84-7493-143-6

    3. Carlson,A.Bruce.Circuitos.1sted.Australia:ThomsonLearning,2001.ISBN970-686-033-9

    4. Glendinning, Eric H. English in electrical Engineering and Electronics. 13th ed.Oxford:OxfordUniversityPress,1992.ISBN019437517X

    5. Hayt, William H.; Kemmerly, Jack E.; Durbin, Steven M. Engineering CircuitAnalysis.8thed.NewYork:McGraw-Hill,2012.ISBN978-0-07-131706-1

    6. Corrales Martín, Juan. Cálculo Industrial de Máquinas Eléctricas: Tomo I.

    Barcelona:U.P.B.,1976.ISBN84-600-6752-1

    7. Slemon, G.R.; Straughen, A. Electric Machines. 2nd ed. Reading- UK: Addison-WesleyPublishingCompany,1980.ISBN0-201-07730-2