· transgenic horticultural crops edited by beiquan mou and ralph scorza challenges and...

347
TRANSGENIC HORTICULTURAL CROPS EDITED BY Beiquan Mou and Ralph Scorza Challenges and Opportunities

Upload: others

Post on 09-Jul-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

Transgenic HorTiculTural

crops

EditEd by

Beiquan Mou and ralph scorza

Challenges and Opportunities

Agriculture

As the world debates the risks and benefits of plant biotechnology, the proportion of the global area of transgenic field crops has increased every year, and the safety and value continue to be demonstrated. Yet, despite the success of transgenic field crops, the commercialization of transgenic horticultural crops (vegetables, fruits, nuts, and ornamentals) has lagged far behind. Transgenic Horticultural crops: challenges and opportunities examines the challenges for the creation and commercialization of horticultural biotechnology and identifies opportunities, strategies, and priorities for future progress.

A “must read” for anyone working in the fields of genetic engineering or plant breeding, for policy makers, educators, students, and anyone interested in the issues of genetic engineering of fruits, vegetables and ornamentals, this book covers:

• Past achievements, newest developments, and current challenges in transgenic fruit, nut, vegetable, ornamental, and pharmaceutical crops • Reviews transgenic horticultural crops in the U.S., Europe, Africa, and Asia • Hurdles to the commercialization of transgenic technology in economics and the marketplace, consumer acceptance, intellectual property rights protection, public–private partnership, and regulation • Critical evaluation of the benefits and risks of genetically engineered horticultural crops, including risk assessment and transgene containment • Presents case studies and an industry perspective on transgenic horticultural crops

The production and commercialization of transgenic horticultural crops are enormous tasks—their progress and realization require an informed research community, horticultural industry, government, and body of consumers. To aid in this effort, this book provides facts, analyses and insights by leading experts in this field to inform a wide audience of students, agricultural and genetic professionals, and the interested public. Part of the global conversation on the pros and cons of transgenic foods, Transgenic Horticultural crops aims to stimulate more interest and discussion on the subject and to promote the development of safe and sustainable genetically modified horticultural crop varieties.

w w w . c r c p r e s s . c o m

93789

w w w. c rc p r e s s . c o m

an informa business

6000 Broken Sound Parkway, NWSuite 300, Boca Raton, FL 33487711 Third AvenueNew York, NY 100172 Park Square, Milton ParkAbingdon, Oxon OX14 4RN, UK

93789_Cover_mech.indd 1 4/12/11 4:16 PM

Page 2:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

Transgenic HorTiculTural

crops

Page 3:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,
Page 4:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

Transgenic HorTiculTural

crops

EditEd by

Beiquan Mou and ralph scorza

Challenges and Opportunities

CRC Press is an imprint of theTaylor & Francis Group, an informa business

Boca Raton London New York

Page 5:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

Taylor & Francis6000 Broken Sound Parkway NW, Suite 300Boca Raton, FL 33487-2742

© 2011 by Taylor & Francis Group, LLCTaylor & Francis is an Informa business

No claim to original U.S. Government works

International Standard Book Number-13: 978-1-4200-9379-7 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information stor-age or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copy-right.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that pro-vides licenses and registration for a variety of users. For organizations that have been granted a pho-tocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site athttp://www.taylorandfrancis.com

and the CRC Press Web site athttp://www.crcpress.com

Page 6:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

v

ContentsPreface......................................................................................................................viiEditors........................................................................................................................ixContributors...............................................................................................................xi

Chapter 1 Transgenic.Fruit.and.Nut.Tree.Crops.Review.......................................1

Ana M. Ibáñez, Cecilia B. Agüero, Mathew A. Escobar, and Abhaya M. Dandekar

Chapter 2 Transgenic.Vegetables......................................................................... 31

Owen Wally, J. Jayaraj, and Zamir K. Punja

Chapter 3 Transgenic.Ornamental.Crops............................................................ 55

Beverly A. Underwood and David G. Clark

Chapter 4 Expression.and.Manufacture.of.Pharmaceutical.Proteins.in Genetically.Engineered.Horticultural.Plants.................................. 83

Qiang Chen

Chapter 5 Transgenic.Fruit.Crops.in.Europe..................................................... 125

Henryk Flachowsky and Magda-Viola Hanke

Chapter 6 Transgenic.Horticultural.Crops.on.the.African.Continent................ 147

Idah Sithole-Niang

Chapter 7 Transgenic.Horticultural.Crops.in.Asia............................................ 155

Desiree M. Hautea, Von Mark Cruz, Randy A. Hautea, and Vijay Vijayaraghavan

Chapter 8 The.Economic.and.Marketing.Challenges.of.Horticultural.Biotechnology.................................................................................... 175

Steven Sexton and David Zilberman

Page 7:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

vi Contents

Chapter 9 Consumer.Acceptance.of.Genetically.Modified.Foods:.Traits, Labels,.and.Diverse.Information............................................ 193

Wallace E. Huffman

Chapter 10 Intellectual.Property.and.Development.of.Transgenic.Horticultural.Crops........................................................................... 219

Cecilia L. Chi-Ham and Alan B. Bennett

Chapter 11 Structuring.University–Private.Partnerships.for.Developing.and Commercializing.Transgenic.Horticultural.Crops..................... 233

Gordon Rausser and Reid Stevens

Chapter 12 Why.Are.Regulatory.Requirements.a.Major.Impediment.to Genetic.Engineering.of.Horticultural.Crops?...............................249

Steven H. Strauss

Chapter 13 Virus-Resistant.Transgenic.Horticultural.Crops:.Safety.Issues.and.Lessons.from.Risk.Assessment.Studies..................................... 263

Jonathan E. Oliver, Paula F. Tennant, and Marc Fuchs

Chapter 14 Molecular.Approaches.for.Transgene.Containment.and.Their.Potential.Applications.in.Horticultural.Crops................................... 289

Yi Li and Hui Duan

Chapter 15 Prospects.for.the.Commercialization.of.Transgenic.Ornamentals...... 305

Michael S. Dobres

Chapter 16 Genetic.Engineering.of.Grapevine.and.Progress.toward.Commercial.Deployment.................................................................. 317

Dennis J. Gray, Sadanand A. Dhekney, Zhijian T. Li,

and John M. Cordts

Page 8:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

vii

PrefaceAt.the.dawn.of.the.twenty-first.century,.food.insecurity.and.malnutrition.continue.to.plague.humankind,.especially.in.developing.countries..It.has.been.estimated.that.world.food.supplies.must.increase.by.up.to.50%.over.the.next.20.years.due.to.popula-tion.growth,.even.while.farming.land.is.being.rapidly.lost.to.housing,.transportation,.and.industrial.uses..Global.warming.and.climate.change.also.pose.serious.threats.to.agricultural.production.and.place.unprecedented.pressures.on.the.sustainability.of.food.supplies..Transgenic.field.crop.production.is.a.major.component.of.modern.agriculture.and.promises. to.play.an. important.role.in.meeting. the.food.supply.challenges.that.we.face.today.and.in.the.future..The.global.planted.area.of.genetically.engineered.field.crops.soared.to.330.million.acres.in.25.countries.in.2009,.of.which.158.million.acres.(48%).were.in.the.United.States..Today,.more.than.three.quarters.of.the.soybean,.nearly.half.of.the.cotton,.and.more.than.a.quarter.of.the.global.maize.production. are. from. biotech. varieties,. primarily. with. herbicide. tolerance,. insect.resistance,.or.stacked.genes.for. the.two. traits..As.the.world.debates. the.risks.and.benefits.of.plant.biotechnology,.the.proportion.of.the.global.area.of.transgenic.field.crops.has.increased.every.year,.and.the.safety.and.benefits.continue.to.be.demon-strated..Yet,.despite.the.success.of.transgenic.field.crops,.the.commercialization.of.transgenic.horticultural.crops.(vegetables,.fruits,.nuts,.and.ornamentals).has.lagged.far.behind..Transgenic Horticultural Crops: Challenges and Opportunities.examines.the.challenges,.advances,.and.opportunities.for.the.creation.and.commercialization.of.transgenic.horticultural.crops.

The.consumption.and.production.of.horticultural.products.continue.to.increase,.and.now.horticultural.crops.account.for.50%.of.the.value.for.all.agricultural.crops.in.the.United.States..With.the.rising.demand.for.fruits.and.vegetables.by.health-conscious. consumers,. there. are. ever-increasing. interests. in. horticultural. crops..Although. horticultural. crops. were. the. first. biotech. crops. commercialized. in. the.United.States,.beginning.with.the.Flavr.Savr.tomato.in.1994,.they.have.not.made.an.impact.on.production.due.to.factors.that.include.consumer.concern.over.genetically.modified. (GM). food,.which. results. in. the. reluctance.of.processors.and.marketers.to. accept. the. biotech. products. already. developed;. complex. and. costly. regulatory.processes;.the.limited.acreage.of.most.horticultural.crops,.which.makes.it.difficult.to. recover. the. costs. of. research. and. development;. and. costly. segregation. of. GM.and. non-GM. commodities.. Current. practices. in. patenting. and. intellectual. prop-erty.protection.have.added.barriers.to.the.use.of.biotechnology.for.the.creation.and.commercialization.of.new.horticultural.crop.varieties..Additional.challenges.to.the.development.and.commercialization.of.GM.horticultural.crops.include.technical.dif-ficulties.in.the.transformation.of.certain.horticultural.crops,.barriers.to.regulatory.approval.in.many.countries,.and.the.uncertainties.of.post-commercialization.stew-ardship.. Although. there. are. many. volumes. dealing. with. plant. biotechnology. and.transgenic.plants,.those.focusing.on.horticultural.crops.are.rare..In.this.book,.inter-nationally.acclaimed.experts.from.different.disciplines.assess.the.current.status.of.

Page 9:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

viii Preface

transgenic.horticultural.crops,.examine.the.challenges.for.the.creation.and.com-mercialization.of.horticultural.biotechnology,.and.identify.opportunities,.strategies,.and.priorities.for.future.progress.in.this.important.field..The.authors.of.the.chapters.are.leading.experts.who.were.asked.not.to.conform.to.a.set.outline.but.to.approach.their.topics.in.their.own.unique.ways.

Chapters.1.through.4.describe.the.past.achievements,.newest.developments,.and.current.challenges.in.transgenic.fruit,.nut,.vegetable,.ornamental,.and.pharmaceuti-cal. crops.. Chapters. 5. through. 7. provide. reviews. of. transgenic. horticultural. crops.in.other.parts.of. the.world. such.as.Europe,.Africa,. and.Asia..Chapters.8. through.12. discuss. in. detail. hurdles. to. the. commercialization. of. transgenic. technology. in.economics.and.the.marketplace,.consumer.acceptance,. intellectual.property.rights.protection,.public–private.partnership,.and.regulation..Chapters.13.and.14.describe.the.risk.assessment.of.transgenic.crops.and.transgene.containment..Finally,.Chapters.15.and.16.present.some.case.studies.and.an.industry.perspective.on.transgenic.hor-ticultural.crops.

The. production. and. commercialization. of. transgenic. horticultural. crops. are.enormous. tasks—their. progress. and. realization. need. the. efforts. of. the. research.community,.horticultural.industry,.government,.and.consumers..Although.this.book.covers.many. topics,. it.by.no.means.has.exhausted.all. issues. related. to. transgenic.technology.in.horticulture..We.have.sought.to.provide.facts,.analyses,.and.insights.by.leading.experts.in.this.field.that.can.inform.a.wide.audience,.including.graduate.and.advanced. undergraduate. students. of. agriculture—and. horticulture. in. particular,.educators. at. all. levels,. breeders. of. horticultural. crops,. plant. geneticists,. biotech-nologists,.biologists,.molecular.biologists,.cell/tissue.culture.specialists,.horticultur-ists,.agronomists,.entomologists,.plant.pathologists,.physiologists,.nutrition.and.food.technologists,. food. safety. specialists,. economists,. environmentalists,. agricultural.extension.personnel,.growers,.farm.managers,.pest.control.agents,.government.regu-lators,.and.the.interested.public..We.hope.that.this.book.will.stimulate.more.interest.and.discussion.on.the.subject.and.promote.the.advancement.of. research.on.trans-genic.horticultural.crops.and.the.development.of.safe,.sustainable.GM.horticultural.crop.varieties.

Page 10:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

ix

EditorsDr. Beiquan Mou. is. currently. a. research. plant. geneticist. with. the. Agricultural.Research.Service,.U.S..Department.of.Agriculture,.Salinas,.California..He.obtained.his. PhD. degree. in. plant. breeding. and. genetics. from. Oregon. State. University. in.1993..He.then.worked.on.the.mechanism.and.inheritance.of.self-.and.interspecific.incompatibility. in.Nicotiana. at. the.University.of.Missouri–Columbia. and.carried.out.postdoctoral.research.on.the.transgenic.modification.of.cornstarch.structure.and.functionality. at. Iowa. State.University.. Since. 2001,. Dr..Mou. has. been. conducting.research.on.the.genetics.and.breeding.of.lettuce.and.spinach.for.disease.and.insect.resistance,. nutritional. improvement,. and. horticultural. traits.. He. has. released. 15.lettuce.and.spinach.varieties.possessing.unique.traits,.improved.quality,.new.genes,.and/or.disease.or.insect.resistance..He.currently.serves.as.chair.of.the.USDA.Leafy.Vegetable.Crop.Germplasm.Committee.and.the.Vegetable.Breeding.Working.Group.of.the.American.Society.for.Horticultural.Science..He.is.sought.out.for.consultation.nationally.and.internationally.by.other.researchers,.government.agencies,.industry,.and.the.media.

Dr. Ralph Scorza. is. a. research. horticulturist. and. lead. scientist. for. the. Genetic.Improvement. of. Fruit. Crops. Research.Unit. at. the. USDA-ARS.Appalachian.Fruit.Research.Station,.Kearneysville,.West.Virginia..He. received.his.BS. in.agronomy.and.MS.in.fruit.crops,.both.from.the.University.of.Florida,.and.his.PhD.in.genetics.and.plant.breeding.from.Purdue.University.in.1979..The.broad.objectives.of.his.research.program.at.the.USDA.are.to.develop.stone.fruit.(Prunus).germplasm.with.improved.fruit.quality,.resistance.to.biotic.and.abiotic.stress,.and.improved.tree.growth.habits.for.high-yielding,.mechanically.integrated.orchard.systems..His.breeding.program.combines.classical.and.molecular.approaches.

Dr..Scorza.has.released.nine.stone.fruit.varieties.developed.through.conventional.breeding..His.genetic.engineering.work.has.included.the.successful.development.of.disease-resistant.grapes,.pears,.and.plums..The.plum.pox.virus–resistant.plum.cultivar.‘HoneySweet’. developed. by.Dr.. Scorza. and.his. colleagues. is. the.first. genetically.engineered.temperate.fruit.crop.to.be.deregulated.and.approved.by.the.APHIS,.FDA,.and.EPA.in.the.United.States.

Dr..Scorza.is.a.recipient.of.the.Arthur.S..Flemming.Award.and.was.selected.as.an.ARS-NAA.Senior.Research.Scientist.of.the.Year..He.is.also.a.corecipient.of.three.Secretary.of.Agriculture.Honor.Awards..He.has.authored.over.190.research.publica-tions.and.is.a.fellow.of.the.American.Society.for.Horticultural.Science.

Page 11:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,
Page 12:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

xi

Contributors

Cecilia B. AgüeroViticulture.and.Enology.DepartmentUniversity.of.California,.DavisDavis,.California

Alan B. BennettDepartment.of.Plant.SciencesUniversity.of.California,.DavisDavis,.California

Qiang ChenLaboratory.of.Plant.Pharmaceutical.

ResearchBiodesign.Institute.and.College.

of Technology.and.InnovationArizona.State.UniversityTempe,.Arizona

Cecilia L. Chi-HamDepartment.of.Plant.SciencesUniversity.of.California,.DavisDavis,.California

David G. ClarkDepartment.of.Environmental.HorticultureUniversity.of.FloridaGainesville,.Florida

John M. CordtsBiotechnology.Regulatory.ServicesAnimal.and.Plant.Health.Inspection.

ServiceUnited.States.Department.

of AgricultureRiverdale,.Maryland

Von Mark CruzAgricultural.Research.ServiceUnited.States.Department.

of AgricultureNational.Center.for.Genetic.Resources.

PreservationFort.Collins,.Colorado

Abhaya M. DandekarPlant.Sciences.DepartmentUniversity.of.California,.DavisDavis,.California

Sadanand A. DhekneyMid-Florida.Research.and.Education.

CenterInstitute.of.Food.and.Agricultural.

SciencesUniversity.of.FloridaApopka,.Florida

Michael S. DobresNovaFlora.Inc.West.Grove,.Pennsylvania

Hui DuanJ..R..Simplot.CompanyBoise,.Idaho

Mathew A. EscobarDepartment.of.Biological.SciencesCalifornia.State.University,.San.MarcosSan.Marcos,.California

Henryk FlachowskyInstitute.for.Breeding.Research.on.

Horticultural.and.Fruit.CropsJulius.Kühn-InstituteDresden,.Germany

Marc FuchsDepartment.of.Plant.Pathology.

and Plant-Microbe.BiologyCornell.UniversityGeneva,.New.York

Page 13:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

xii Contributors

Dennis J. GrayMid-Florida.Research.and.Education.

CenterInstitute.of.Food.and.Agricultural.

SciencesUniversity.of.FloridaApopka,.Florida

Magda-Viola HankeInstitute.for.Breeding.Research.on.

Horticultural.and.Fruit.CropsJulius.Kühn-InstituteDresden,.Germany

Desiree M. HauteaInstitute.of.Plant.BreedingUniversity.of.the.PhilippinesLos.Baños,.Philippines

Randy A. HauteaInternational.Service.for.the.Acquisition.

of.Agri-Biotech.ApplicationsSEAsia.CenterManila,.Philippines

Wallace E. HuffmanDepartment.of.EconomicsIowa.State.UniversityAmes,.Iowa

Ana M. IbáñezPlant.Sciences.DepartmentUniversity.of.California,.DavisDavis,.California

J. JayarajDepartment.of.Biological.SciencesSimon.Fraser.UniversityBurnaby,.British.Columbia,.Canada

Yi LiDepartment.of.Plant.Science.

and Landscape.ArchitectureUniversity.of.ConnecticutStorrs,.Connecticut

Zhijian T. LiMid-Florida.Research.and.Education.

CenterInstitute.of.Food.and.Agricultural.

SciencesUniversity.of.FloridaApopka,.Florida

Jonathan E. OliverDepartment.of.Plant.Pathology.

and Plant-Microbe.BiologyCornell.UniversityGeneva,.New.York

Zamir K. PunjaDepartment.of.Biological.SciencesSimon.Fraser.UniversityBurnaby,.British.Columbia,.Canada

Gordon RausserDepartment.of.Agricultural.

and Resource.EconomicsUniversity.of.California,.BerkeleyBerkeley,.California

Steven SextonDepartment.of.Agricultural.

and Resource.EconomicsUniversity.of.California,.BerkeleyBerkeley,.California

Idah Sithole-NiangDepartment.of.BiochemistryUniversity.of.ZimbabweHarare,.Zimbabwe

Reid StevensDepartment.of.Agricultural.

and Resource.EconomicsUniversity.of.California,.BerkeleyBerkeley,.California

Page 14:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

xiiiContributors

Steven H. StraussDepartment.of.Forest.Ecosystems.

and SocietyOregon.State.UniversityCorvallis,.Oregon

Paula F. TennantDepartment.of.Life.SciencesThe.University.of.the.West.IndiesKingston,.Jamaica

Beverly A. UnderwoodDepartment.of.Environmental.

HorticultureUniversity.of.FloridaGainesville,.Florida

Vijay VijayaraghavanSathguru.Management.Consultants.

Pvt. Ltd.Hyderabad,.India

Owen WallyDepartment.of.Biological.SciencesSimon.Fraser.UniversityBurnaby,.British.Columbia,.Canada

David ZilbermanDepartment.of.Agricultural.

and Resource.EconomicsUniversity.of.California,.BerkeleyBerkeley,.California

Page 15:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

1

1 Transgenic Fruit and Nut Tree Crops Review

Ana M. Ibáñez, Cecilia B. Agüero, Mathew A. Escobar, and Abhaya M. Dandekar

CONTENTS

Introduction.................................................................................................................2Genetic.Transformation.of.Fruit.and.Nut.Tree.Crops.................................................3

Importance.of.Genetic.Engineering.......................................................................3Current.Status.of.Genetic.Transformation.of.Perennial.Crops..............................3

Genetic.Transformation.via.Organogenesis......................................................4Genetic.Transformation.via.Somatic.Embryogenesis.......................................4

Methods.of.Transformation....................................................................................5Agrobacterium-Mediated.Transformation.........................................................5Biolistic.Bombardment.....................................................................................6

Transient.Expression..............................................................................................6Rootstock.Transformation......................................................................................6

Input.Traits..................................................................................................................6Pathogen.Resistance...............................................................................................7

Viral.Resistance.................................................................................................7Bacterial.Resistance..........................................................................................9Fungal.Resistance............................................................................................ 12

Insect.Resistance.................................................................................................. 13Cydia pomonella............................................................................................. 13Epiphyas postvittana.(Light.Brown.Apple.Moth)........................................... 14

Output.Traits............................................................................................................. 14Delayed.Fruit.Ripening........................................................................................ 16Improving.Fruit.Quality.and.Nutritive.Value....................................................... 16Removal.of.Undesirable.Phytochemicals............................................................ 18Antigen.Production.............................................................................................. 18

Conclusions............................................................................................................... 19References................................................................................................................. 19

Page 16:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

2 Transgenic Horticultural Crops: Challenges and Opportunities

INTRODUCTION

Fruit.crop.plants.constitute.an.important.group.among.agricultural.crops,..adding.tens. of. billions. of. dollars. per. year. to. the. global. economy.. Worldwide,. over.45 million.hectares.of.land.have.been.devoted.to.their.production,.and.millions.of. growers. depend. on. continued. global. trade.1. Among. fruit. crops,. citrus. pro-duction.is.most.significant,.with.more.than.134.million.tons.produced.from.an.area.of.8.7.million.hectares. in.2008..This. is. followed.by.bananas.with.world-wide.production. at. just.under.100.million. tons,.apples. at. 76.million. tons,.and.grapes.at.74.million. tons.2. In.California,. the.production.of. fruit.and.nut.crops.contributes. to. more. than. one-third. of. the. total. farm. gate. value. of. the. state’s.agricultural.commodities..The.fruit.and.nut.crops.are.cultivated.using.a.highly.sophisticated.production.system.that.uses.vegetatively.propagated.clonal.cultivar.materials.grafted. to.clonal.or.seedling.rootstocks..The.plantings.are.perennial.and.orchard.systems.represent.several.decades.of.investment.to.a.grower..These.crop.plants.have.a.juvenile.phase,.which.can.last.from.2.to.8.years,.during.which.they.grow.vegetatively.without.any.fruit.production..Thus,.traditional.fruit.tree.breeding.takes.a.very.long.time—20.to.40.years.to.develop.new.varieties..This.is.primarily.due.to.the.time.it.takes.to.backcross.promising.selections.with.current.commercial.cultivars,.which.is.required.to.create.a.new.commercial.cultivar.with.optimal.fruit.characteristics..Transgenic.plants.offer.a.more.direct.and.quicker.strategy.to.provide.genetic.solutions.

Fruit.and.nut.crops.face.many.challenges,.including.the.need.to.be.grown.on.less.land.with.less.resources.and.the.need.to.yield.consistently.high.quality.fruit.that.can.sustain. the.economics.of.production..Disease.and.pests.pose. the.great-est.challenge.to.fruit.and.nut.crop.production,.and.we.discuss.below.the.different.diseases. and. pests. that. are. important. to. these. crops. and. the. specific. solutions.that.can.be.provided.using.transgenic.technologies..Many.of.these.are.production-eliminating. diseases,. so. finding. genetic. solutions. is. critical.. In. some. cases,. the.disease.resistance.traits.are.present.in.wild.germplasm,.so.introgression.of.disease.resistance.by. traditional.breeding. takes.place. at. the. cost. of. fruit.quality,.which.means. that. many. backcrosses. have. to. be. conducted. to. restore. fruit. quality.. In.some.cases,.there.is.no.resistance.even.in.the.wild.germplasm,.so.novel.sources.of. resistance.have. to.be.developed. (e.g.,. pathogen-derived. resistance)..For. these.strategies,.transgenic.technologies.need.to.be.employed..These.technologies.have.been.developed.in.many.of.the.tree.crops.(as.outlined.in.next.section);.however,.a.major.challenge.is.the.recalcitrance.that.these.plants.display.in.tissue.culture..The.percentage.of. tissue-cultured.explants. that.give. rise. to.a. transgenic.plant. is. low.and.thus.it.is.difficult.to.transform.these.plants.using.Agrobacterium tumefaciens..Successful.plant.transformation.requires.high.frequencies.of.both.transformation.and.regeneration,.such.that.a.successful.overlap.of.such.events.can.take.place.at.a.tissue.level.to.obtain.transgenic.plants..While.there.are.many.examples.of.success,.there.are.also.many.fruit.tree.species.that.have.proved.very.difficult.to.transform.due.to.this.problem.

Two.general.classes.of.traits.that.are.of.commercial.significance.are.discussed.in.this.review:.input.traits.and.output.traits..Input.traits.are.specifically.important.

Page 17:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

3Transgenic Fruit and Nut Tree Crops Review

for. growers,. producers,. and. handlers,. because. they. are. focused. on. sustaining.yields. and. productivity.. Disease. and. pest. resistance. are. examples. of. important.input.traits..Output.traits,.which.preserve.the.quality.and.nutritional.value.of.the.fruit,.are.of.primary.importance.to.the.consumer,.though.they.ultimately.benefit.the.grower.as.well..Increasingly,.fruit.consumption.has.been.linked.with.improved.nutrition.and.disease.prevention,.and.thus.USDA.guidelines.suggest.that.fruit.and.nuts.are.an.important.component.of.the.daily.diet..Many.fruit.quality.traits,.like.flavor,.are.important.for.consumption,.as.a.good.flavor.makes.the.fruit.more.desir-able..Fruit.quality.is.also.important.for.downstream.products.like.fruit.juice.and.wine..In.this.chapter,.we.outline.the.progress.that.has.been.made.in.different.fruit.crops.to.manipulate.both.input.and.output.traits.

GENETIC TRANSFORMATION OF FRUIT AND NUT TREE CROPS

Importance of GenetIc enGIneerInG

A. major. breeding. objective. is. to. combine. fruit. quality. with. other. horticulturally.important.traits.such.as.plant.architecture,.adaptation.to.extreme.environmental.con-ditions,.and.decreasing.the.amount.of.chemical.input.required.to.control.pests.and.diseases..The.production.of.new.varieties.by.conventional.breeding.is.a.complex.and.time-consuming.process,.especially.for.fruit.trees,.due.to.the.high.level.of.heterozy-gosity,.pronounced.inbreeding.depression,.long.juvenile.phase,.and.complex.repro-ductive.biology..The.plant.breeder.must.wait.many.years.to.be.able.to.evaluate.fruit.quality,.and,.because.fruit.trees.are.large.perennial.plants,.a.relatively.small.number.of.seedling.progeny.can.be.evaluated.3,4.In.addition,.the.characters.that.constitute.a.good.cultivar.in.most.instances.are.polygenic.in.their.inheritance;.thus,.the.probability.of.recombining.sets.of.genes.that.determine.the.essential.properties.of.a.given.cultivar.is.low.5.In.wine.grape.breeding,.legal.and.economic.hurdles.can.be.even.larger.than.the.biological.obstacles.described.above..New.wine.grape.varieties.are.not.welcome.because.the.wine.industry.relies.predominantly.on.a.few.select.and.ancient.cultivars;.also,.vintners.are.constrained.by. tradition,. regulation,.and.economics,. so. they.use.classical.varieties,.such.as,.‘Cabernet.Sauvignon’,.‘Merlot’,.and.‘Chardonnay’.6

Direct.genetic.modification.by.the.introduction.of.single.genes.offers.the.opportu-nity.to.direct.very.specific.changes.in.existing.cultivars,.to.increase.resistance.to.abi-otic.stress,.diseases,.and.pests.and.to.modify.fruit.composition.in.very.precise.ways..Vegetative.propagation.means.that.modifications.to.traditional.cultivars.by.genetic.transformation.leave.the.essential.characters.and.identity.of.the.cultivars.unaltered,.a.result.that.would.be.very.difficult.to.achieve.by.conventional.breeding.where.two.genomes.are.intermingled.7.Last.but.not.least,.genetic.transformation.also.offers.the.opportunity.to.study.how.genes.control.the.growth.and.development.of.plants.

current StatuS of GenetIc tranSformatIon of perennIal cropS

A. wide. variety. of. transformation. and. regeneration. protocols. have. been. used. to.produce.transgenic.fruit.trees..However,.in.most.species,.transformation.and.regen-eration. of. commercial. cultivars. are. not. routine,. generally. being. limited. to. a. few.

Page 18:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

4 Transgenic Horticultural Crops: Challenges and Opportunities

genotypes..Most.of.the.basic.protocols.were.developed.several.years.ago.and.subse-quent.efforts.have.been.oriented.toward.optimization.or.adaptation.of.the.technique.to.new.genotypes..Unfortunately,.the.time.required.to.produce.transgenic.fruit.trees.is.too.long,.especially.for.fruit.character.analysis,.and.there.is.a.need.for.faster.sta-ble.transformation.systems..Transient.expression.systems.are.less.time-consuming.methods.that.are.receiving.more.attention.as.a.tool.for.gene.functional.analysis..The.production.of.marker-free.transgenic.plants.is.another.growing.area.of.interest.due.mainly.to.consumer.concerns.

Genetic Transformation via OrganogenesisAlthough.a.common.factor.in.many.transformation.protocols.is.the.use.of.embryo-genic. cultures. as. starting.material. for. transformation,. some. species.have. been.successfully. transformed. through. the.use.of.organogenesis..This. system.offers.an.alternative.approach.for.genotypes.that.are.recalcitrant.to.plant.regeneration.by.somatic.embryogenesis,.although.the.probability.of.obtaining.chimeric.plants.is.higher.

Current.protocols. for. the.production.of. transgenic.citrus.involve.the. transfor-mation.of.cells.in.seedling.stem.pieces.and.regeneration.of.shoots.from.organo-genic.cultures..The.first.reliable.protocol.reported.the.transformation.of.the.citrus.relative. Poncirus trifoliata. by. cocultivation. of. etiolated. epicotyl. segments. with.Agrobacterium tumefaciens.8.A.similar.transformation.procedure.with.modifica-tions.has.been.used.to.produce.transgenic.plants.of.other.citrus.genotypes.9.In.general,.rooting. of. transgenic. shoots. in. citrus,. except. for. P. trifoliata. and. grapefruit,. is.rather.inefficient.but.can.be.alleviated.by.the.use.of.shoot.tip.grafting.9,10.Mature.tissues.have.also.been.used.as.explant.material.in.order.to.maintain.genotype.iden-tity.and.overcome.the.long.juvenile.growth.phase..Buds.collected.from.trees.are.grafted.onto.seedlings.of.a.vigorous.rootstock.grown.under.glasshouse.conditions;.new.shoots.elongated.from.them.are.then.used.as.starting.material.9

Transformation.via.organogenesis.has.also.been.applied.in.several.other.fruit.tree.species..For.example,.apple.transformation.was.first.reported.by.James.et.al.,.who.used.Agrobacterium-mediated.transformation.of.leaf.disks.from.the.apple.cultivar.‘Greensleeves’.11,12.Although.somatic.embryogenesis.is.the.most.prevalent.regenera-tion.method.used.in.grape.genetic.transformation,.transgenic.plants.of.table.grape.cultivars.‘Silcora’.and.‘Thompson.Seedless’.have.also.been.produced.via.organo-genesis..The.method.is.based.on.the.formation.of.meristematic.bulk.tissue.with.a.high. regenerative.capacity,.using.adventitious. shoots.as.a.starting.material..Shoot.regeneration.is.obtained.30.days.after.meristematic.bulk.slices.are.inoculated.with.Agrobacterium.13.Alternatively,. shoot. tips. subjected. to.wounding. and. then.cocul-tivated. with. Agrobacterium. have. been. shown. to. rebuild. complete. meristems. and.produce.non-chimeric.transgenic.‘Thompson.Seedless’.plants.14

Genetic Transformation via Somatic EmbryogenesisEmbryogenic.cultures.are. the.preferred.starting.materials. for. transformation.with.either.Agrobacterium.inoculation.or.microprojectile.bombardment.because.they.are.the.most.responsive.tissues,.with.competence.for.in.vitro.regeneration.and.genetic.transformation.15.The.entire.process. involves. induction.of. somatic.embryogenesis,.

Page 19:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

5Transgenic Fruit and Nut Tree Crops Review

maintenance.of.the.embryogenic.callus,.and.transformation,.selection,.and.regenera-tion.of.plants..The.large.number.of.cultivars.and.rootstocks.increases.the.complexity.due.to.genotype.differences.observed.at.all.tissue.culture.steps.

In.walnut,.somatic.embryogenesis.techniques.were.developed.for.Juglans regia.but.have.been.applied.to.other.Juglans. species.. In. this.system,. immature.walnuts.are.cultured.on.a.basal.medium.and.secondary.embryos. that.originate. from.cells.in. the.epidermal. layer.of. the.embryo.display.high.susceptibility. to. infection.with.Agrobacterium.16. A. major. challenge. today. in. walnut. tissue. culture. is. to. obtain.embryogenesis. from. maternal. tissue.. This. is. important. because. embryos. from.zygotic.tissue.do.not.allow.the.exact.genotype.to.be.predicted..Repetitively,.embryo-genic.cultures.have.been.obtained.from.immature.anther.tissue,.but.only.from.the.“Chandler”.cultivar..Recently,.a.modified.protocol.allowed.a.somatic.embryo.line.to.be.generated.from.immature.anthers.of.a.“Paradox”.hybrid.that.may.provide.a.source.of.elite.rootstock.tissue.for.genetic.transformation.17

In.grapevine,. anthers.collected.during.first. pollen.mitosis. are. the.most.widely.used.explant.for.culture.initiation,.with.the.embryogenic.callus.arising.from.diploid.tissue.18.Embryogenic.callus.maintenance.has.been.accomplished.in.liquid,.semisolid.or.solid.media.supplemented.with.a.variety.of.growth.regulator.combinations.19–23.The.variety.of.protocols.developed.for.maintenance.of.embryogenic.cultures.is.due.to.the.fact.that.the.production.of.suitable.embryogenic.cultures.for.transformation.with.Agrobacterium.has.represented.a.greater.challenge.than.the.initiation.step,.with.higher.transformation.efficiencies.being.obtained.with.embryogenic.lines.composed.of.fine.cells,.arrested.in.a.very.early.pre-embryogenic.state.7

methodS of tranSformatIon

Agrobacterium-Mediated TransformationThe. vast. majority. of. transformation. protocols. use. A. tumefaciens. (biovar. 1). as. a.vector.. Agrobacterium. strains. that. work. efficiently. for. walnut,. citrus,. and. apple.transformation.include.disarmed.derivatives.of. the.tumorigenic.strains.A281.(e.g.,.EHA101. and. EHA105). and. C58. (e.g.,. C58C1).3,12,16. The.disarmed. strains. possess.the.Ti.plasmid-based.vir.genes.required.for.plant.transformation,.but.lack.the.native.T-DNA.(which.is.associated.with.pathogenesis)..These.strains.are.transformed.with.broad. host. range. binary. plasmids. that. contain. the. desired. T-DNA. region,. carry-ing.the.gene.of.interest.and.selectable.marker.genes,.mainly.conferring.resistance.to. antibiotics,. such. as. kanamycin. and. hygromycin.24. However,. given. the. public.concern.with. the. introduction.of.antibiotic.resistance.genes. into.food,.methods. to.eliminate.these.selectable.marker.genes.from.the.transformed.plants.and.strategies.that. avoid. selection.with.antibiotics.are.being.developed.. In.citrus,.workable. trans-formation.efficiencies.have.been.achieved.using.a.multi-auto-transformation.(MAT).vector.combined.with.an.inducible.recombinase/recombination.sites.(R/RS)–specific.recombination.system.and.the.phosphomannose.isomerase/mannose.conditional.posi-tive.selection.system.25.In.addition,.a.cotransformation.system.using.a.mixture.of.two.Agrobacterium. strains. (one.harboring. the.gene.of. interest.and. the.other.containing.both.positive.and.negative.selectable.markers.genes).has.been.used.to.obtain.transgenic.grapevines.free.of.selectable.marker.genes.26

Page 20:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

6 Transgenic Horticultural Crops: Challenges and Opportunities

Biolistic BombardmentThe.biolistic.process.has.been.successfully.applied.to.grape;.however,.the.equipment.and.expertise.required.together.with.the.degree.of.optimization.needed.to.establish.a.suitable.bombardment.protocol.for.specific.cultivars.have.limited.the.value.and.wide.scale.application.of. this. technology..It.was.initially.tested.using.embryogenic.cell.suspensions.of.‘Chancellor’,.a.Vitis.complex.interspecific.hybrid,.and.then.success-fully.extended.to.Vitis vinifera.cultivars.‘Chardonnay’.and.‘Merlot’.27,28

tranSIent expreSSIon

Agrobacterium-mediated.transient.assays.have.become.an.important.tool.for.gene.function. analysis.. Two. high. quality. draft. genome. sequences. have. been. reported.for. grapevine.29,30.They. are. the.first. genome. sequences. produced. for. a. fruit. crop.and. will. stimulate. the. search. for. rapid. functional. genomics. screening. systems..Agroinfiltration.has.been.used. to. transform. leaves.of. in. vitro. cultured.grapevine.plants.31.Conversely,.transient.transformation.in.grape.berry.skin.has.been.achieved.by. treating. half-cut. berries. with. an. A. tumefaciens. suspension.32. In. intact. fruit.of. citrus,. efficient. transgene. expression. was. accomplished. through. injection. of.Agrobacterium.into.the.fruit.33

Viral.vectors.represent.an.alternative.transient.expression.system.that.has.been.shown.to.be.a.useful.strategy.for.overexpression.or.silencing.of.plant.genes.in.annu-als.. RNA. virus–based. vectors,. carrying. a. green. fluorescent. protein. coding. gene,.have.been.developed.for.citrus. trees..The.most.successful.vectors.were.unusually.stable.and.continued.producing.fluorescence.more.than.4.years.after.inoculation.of.Citrus macrophylla.seedlings.34

rootStock tranSformatIon

Nearly. all. commercial. fruit. trees. are. propagated. vegetatively.. Generally,. cuttings.or.buds.from.desired.varieties.are.grafted.onto.rootstocks.selected.for.adaptation.to.specific.soil.conditions.and.resistance.to.root-destroying.diseases.and.insects..For.this.reason,.genetic.transformation.of.rootstocks.has.been.oriented.to.improve.these.characteristics..However,.rootstock.genetic.engineering.can.be.directed.to.modify.the. properties. of. the. scion.. Currently,. the. signal. peptide. sequences. derived. from.mRNAs.found.in.grape.xylem.exudates.are.being.evaluated.for.delivery.of. thera-peutic.proteins.into.the.xylem.35.Such.transgenic.products,.if.synthesized.in.a.root-stock,.could.move.through.the.graft.union.and.confer.resistance.to.xylem-specific.infections.such.as.Xylella fastidiosa,.a.Gram-negative.bacterium.that.causes.Pierce’s.disease.(PD).in.grapevines.

INPUT TRAITS

Genetic. transformation. is.a. tool. for.creating.new.fruit. and.nut. tree.crop.varieties.with.improved.input.traits,.which.enhance.agronomic.characteristics.and.crop.per-formance,.conferring.great.benefit.to.growers..Traditional.breeding.to.improve.input.traits.like.resistance.to.pathogens.and.insects.is.very.inefficient,.labor-intensive,.and.

Page 21:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

7Transgenic Fruit and Nut Tree Crops Review

time-consuming.. However,. genetic. engineering. offers. a. real. possibility. to. create.fruit.and.nut.tree.crop.varieties.with.desirable.agronomic.traits.that.exhibit.increased.resistance.to.pathogens.and.insects..Here,.we.discuss.recent.progress.in.increasing.resistance.to.viruses,.bacteria,.fungi,.and.insects.through.the.genetic.transformation.of.fruit.and.nut.tree.crops.

pathoGen reSIStance

Viral ResistanceViruses. are. the.main. cause. of. economic. losses. to. agricultural. crops. worldwide..For.example,.Citrus tristeza virus.(CTV).causes.huge.economic.losses.for.the.cit-rus. industry.and.Plum pox virus. (PPV).causes.one.of. the.most.devastating.viral.diseases. of. stone. fruit. (Prunus. spp.).. Several. transgenic. approaches. have. been.successfully.applied.for.virus.resistance.in.fruit.crops.based.on.pathogen-derived.resistance.(PDR).strategies..Virus.resistant.transgenic.crops.have.been.developed.during.the.last.two.decades.through.both.the.expression.of.transgenic.virus.RNA.in.host.plants.and.protein-mediated.resistance.36–39.Described.as.a.potent.genetic.vaccination. against. viral. sequences,. RNA-mediated. virus. resistance. (RMVR). is.less. susceptible. to. variation. in. virus. sequence. and. is. highly. sequence-specific,.often.providing.complete. immunity. to. the. inoculated.virus.or.RNA.40,41.Protein-mediated.resistance.has.the.potential.for.broader.protection.but.generally.results.in.mild.resistance,.which.only.delays.symptoms.and.decreases.viral.titers..However,.the. combination. of. RNA-. and. protein-mediated. resistance. in. transgenic. plants.could.prove. to.be.potent,.broad,.and.durable.41.Gene.silencing. is.another.power-ful.biotechnological.tool.used.to.gain.virus.resistance.for.fruit.crops..This.method.has.produced.transgenic.plants.able.to.switch.off.endogenous.genes.and.invading.nucleic.acids.42–47

Papaya Ringspot VirusPapaya ringspot virus. (PRSV). causes. a. destructive. disease. in. papaya. (Carica papaya. L.),. an.economically. important. fruit. crop. in. tropical.and. subtropical. areas,.resulting.in.drastic.reduction.of.fruit.quality..PRSV.is.naturally.transmitted.by.aphids.in. a. nonpersistent. manner. and. induces. stunting. in. growth,. symptoms. of. mosaic.and.distortion.on. leaves,.and.streaks.on.petiole.and.stem..Resistance.against.PRSV.in.papaya.has.not.been.obtained.by.conventional.breeding.. In. the. last. two.decades,.effective.strategies.based.on.PDR.have.been.widely.used..The.coat.protein.(CP).gene.of.PRSV,.HA.5-1,.was.transferred.into.papaya.via.micro-projectile.bombardment.48–50.Transgenic.papaya.lines.highly.resistant.to.the.severe.Hawaiian.PRSV.strain.PRSPV.HA.were.selected.under.greenhouse.and.field.conditions.49,50.Rainbow.and.SunUp.cul-tivars.have.been.successfully.commercialized.in.Hawaii.since.1998,.representing.the.first. practical. application. of. transgenic. fruit. crop.51,52. However,. the.CP-hemizygous.line.Rainbow.is.susceptible.to.non-Hawaiian.PRSV.isolates.and.the.CP-homozygous.line.SunUp,.while.resistant.to.a.wider.range.of.isolates.from.Jamaica.and.Brazil,.is.still.susceptible.to.isolates.from.Thailand.and.Taiwan.51,53,54

In.Taiwan.transgenic.papaya.lines.carrying.the.CP.gene.of.a.Taiwan,.severe.strain,.PRSV.YK,.have.also.been.successfully.generated.55.Several.transgenic.lines.provide.

Page 22:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

8 Transgenic Horticultural Crops: Challenges and Opportunities

broad.spectrum.resistance.against.homologous.and.geographically.distinct.strains.of.PRSV.under.greenhouse.conditions56.and.a.high.degree.of.resistance.under.field.trials.57.During.the.field.trial,.some.transgenic.papaya.lines.showed.susceptibility.to. the.new.emerging.papaya leaf distortion mosaic virus. (PLDMV).which. indi-cates.that.the.virus.is.a.threat.for.PRSV-resistant.transgenic.papaya.in.Taiwan.and.elsewhere.58

Recently,.transgenic.papaya.lines.with.double.resistance.to.PRSV.and.PLDMV.were.generated.using.a.chimeric.construct.strategy.containing.a.fused.cDNA.frag-ment.composed.of.the.truncated.PLDMV.P-TW-WF.CP.and.PRSV.YK.CP.coding.regions..Three.of.nine.resistant.transgenic.papaya.lines.carrying.the.chimeric.con-struct.showed.high.levels.of.resistance.to.heterologous.PRSV.strains.from.Hawaii,.Thailand,. and. Mexico.. Transgenic. papaya. lines. look. promising. for. resistance. to.PRSV.strains.and.PLDMV.in.Taiwan.and.elsewhere.59

Citrus Tristeza VirusCitrus tristeza virus. (CTV). (Closterovirus). is. considered. the. most. economically.important. virus. affecting. citrus. production. worldwide.. CTV. is. spread. by. several.species. of. aphids. with. piercing-sucking. mouthparts,. Toxoptera citricidus. being.the. most. efficient. vector.. This. viral. disease. is. now. endemic. in. several. economi-cally.important.production.regions.around.the.world..Different.strains.of.CTV.can.cause.diverse.disease.syndromes. that.vary. in.severity..Symptoms.may.be.as.mild.as.weak.and.scattered.vein.clearing,.whereas.quick.decline,.a.syndrome.in.which.a.tree.with.normal.appearance.starts.showing.wilt.symptoms.and.completely.collapses.in. a. few. weeks,. is. the. most. dramatic. manifestation. of. disease.. The. development.and.identification.of.CTV.tolerant.rootstocks.was.one.of.the.main.strategies.for.the.control. of. quick-decline. disease.60. Recently,. biotechnology. tools. like.gene. silenc-ing. (GS).have. been. successfully. applied.. Specifically,. targeting. CTV.using. RNA.interference.(RNAi).strategies.is.the.major.strategy.in.plant.transformation.for.CTV.resistance..Citrus.lines.expressing.p23.CTV,.a.silencing.suppressor,.were.reported.as.resistant.to.CTV,.and.transgenic.viral.protein.accumulation.was.negatively.cor-related. to. resistance.. In. this.study,.posttranscriptional.gene.silencing.(PTGS).was.proposed.as.the.mechanism.for.resistance.to.CTV,.since.resistant.citrus.plants.had.multiple.copies.of.the.transgene,.low.levels.of.the.corresponding.mRNA,.methyla-tion.of.the.silenced.transgene,.and.accumulation.of.the.p23-specific.small.interfer-ing.RNAs. (siRNAs).61.RNA-mediated. resistance. for.CTV.has. also.been.obtained.in. transgenic. grapefruit.62,63. To. successfully. obtain. CTV. resistant. plants. through.gene.silencing,.it.is.important.to.understand.all.the.viral.counterdefense.strategies,.like.the.virus’s.RNAi.suppression.strategies.developed.during.their.coevolution.with.plants.43,45,64. Protein-mediated. resistance. strategies. have. also. been. described. for.CTV..CTV-resistant.citrus.plants.that.express.the.CP.of.the.virus.have.been.obtained.and. in. these.plants.virus. resistance.was. related. to. the. accumulation.of. the. trans-genic.viral.protein.in.plant.tissue,.with.PDR.as.the.proposed.mechanism.of.resis-tance.65–69.Protoplast.fusion.is.another.promising.biotech.tool.because.it.can.produce.somatic.hybrids,.which.would.be.very.valuable.for.the.development.of.CTV-resistant..rootstocks..Citrus.somatic.hybrids.with.resistance.to.CTV.infection.have.been.suc-cessfully.obtained.by.protoplast.fusion.70

Page 23:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

9Transgenic Fruit and Nut Tree Crops Review

Plum Pox VirusSharka,.or.plum.pox,.caused.by.the.plum pox virus.(PPV,.genus.Potyvirus),.is.one.of. the. most. serious. diseases. for. Prunus. stone. fruit. and. nut. species.. This. virus.has.caused.serious.economic.losses.to.the.stone.fruit.industry.in.Europe,71,72.and.may.eventually.spread.widely.throughout.North.America.and.South.America.73–75.Prune dwarf virus.(PDV),.prunus necrotic ringspot virus.(PNRSV),.and.tomato ringspot virus.(ToRSV).are.other.viruses.widespread.in.production.areas.world-wide. that. are. very. destructive. for. peach,. plum,. cherry,. and. apricot. production..Viruses. endemic. to. North. America,. including. peach mosaic virus. (PMV). and.American plum line pattern virus. (APLPV),.are.also.known. to.cause. important.diseases.of.stone.fruit.76,77

PPV.mainly.infects.plum,.apricot,.and.peach.trees.72,78,79.Sharka.disease.symptoms.range.from.weak.necrosis.on.leaf.blades.and.stems,.to.death.of.young.shoots..PPV.is.transmitted.by.aphids.in.a.nonpersistent.manner,.its.main.vectors.being.Myzus persicae.and.Aphis spiraecola.80–83.Due.to.the.severe.economic.losses.in.crop.production.for.the.stone. fruit. industry,.efforts.have.focused.on. the.development.of.PPV-resistant.Prunus.cultivars.either.by.conventional.breeding.or.by.biotechnology.approaches..PPV-resistant. plant. selection. by. traditional. breeding. has. not. been. successful,. but.the. use. of. biotechnology. approaches. to. obtain. resistant. plants. looks. promising..Pathogen-derived.resistance.to.PPV.has.been.achieved.by.the.introduction.of.either.wild.type.or.mutated.structural.and.nonstructural.genes.into.host.plants.38.A.gene.silencing. approach46. was. used. to. obtain. transgenic. European. plums. carrying. the.CP.gene.of.PPV..The.diversity.and.dynamics.of.PPV.and.aphid.population.in.trans-genic. European. plums. has. also. been. evaluated. in. the. field. during. 7. years. under.Mediterranean.conditions.84.After.7.years.of.experimental.trials,.the.transgenic.line.C5.(cv..Honey.Sweet).was.reported.to.be.free.from.PPV.84–86.The.resistance.mecha-nism.of.line.C5.was.confirmed.to.be.based.on.PTGS.46,87

Because.PPV.is.only.one.of.the.multiple.viruses.affecting.Prunus.stone.fruit.pro-duction,.it.is.highly.desirable.to.engineer.multivirus.resistance.in.plums..Accordingly,.PTGS-based.approaches.have.been.used.to.provide.multiple.resistances.to.important.viruses.affecting.Prunus.stone.fruit.and.nut.species..A.single.chimeric.transgene,.PTRAP6,.was.created.by.the.fusion.of.400–500.bp.long.fragments.from.six.major.Prunus. fruit.viruses. (APLPV,.PMV,.PPV,.PDV,.PNRSV,.and.ToRSV)..Nicotiana benthamiana.plants.transformed.with.PTRAP6.displayed.resistance.to.PDV,.PPV,.and.ToRSV.88

Bacterial ResistanceErwinia amylovoraFire. blight,. caused. by. the. Gram-negative. bacterium. Erwinia amylovora,. is. an.incredibly.destructive.bacterial.disease.of.pear,.apple,.and.other.members.of. the.Rosaceae.family,.as.well.as.grape..Most.commercially.available.apple.scion.cul-tivars.and.rootstocks.are.particularly.sensitive.to.E. amylovora..Resistance.to.fire.blight. in.apple.and.pear.has.been.engineered.using.several. transgenic. strategies..Expression.of. the.lytic.peptide.attacin.E.in.transgenic.apples.and.pears.provided.good. resistance. to. the. pathogenic. bacterium.89–96. Other. genes. used. to. improve.

Page 24:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

10 Transgenic Horticultural Crops: Challenges and Opportunities

fire.blight. resistance. are.epo,. a. gene. encoding. EPS-depolymerase,97,98. SB-37,91,99.T4. lysozyme,91,95,99,100. hrpN. (harpin),101. cecropin. MB. 39. (modified. SB-37),102,103.and. Shiva-1.91. Transgenic. apples. resistant. to. fire. blight. have. also. been. obtained.by.partially.silencing.certain.genes.encoding.pathogen-protein.receptors.104.There.are.also.opportunities.for.breeding.fire.blight-resistant.apple.and.pear.cultivars.by.exploiting.genetic.variation.in.germplasm.and.by.developing.quantitative.trait.loci.(QTL).markers.105,106

Agrobacterium tumefaciensCrown.gall,.caused.by.the.soil.bacterium.Agrobacterium tumefaciens,.greatly.dimin-ishes.tree.productivity.and.is.a.serious.disease.for.many.fruit,.nut,.and.ornamental.crops..Walnuts.in.particular.are.very.susceptible.to.this.disease..Losses.are.incurred.from.both.contaminated.nursery.stock.and.infected.orchard.trees..Current.prophy-lactic.measures.and.the.mechanical.removal.of.galls.have.not.adequately.controlled.the.problem..Pathogenic.A. tumefaciens. transforms.infected.plants.with.the.genes.iaaM. (tryptophan. monooxygenase),. iaaH. (indole-3-acetamide. hydrolase),. and. ipt.(isopentenyl. transferase)..The. iaaM. and. iaaH.gene.products.convert. tryptophan.into. indole-3-acetic. acid,. an. auxin,. while. the. ipt. gene. product. catalyzes. the. pro-duction.of.adenosine.monophosphate.(AMP),.which.is.converted.to.cytokinins.by.endogenous.plant.enzymes..The.resulting.overproduction.of.auxin.and.cytokinins.induces.proliferation.of.callus.tissue.at.the.wound.site,.resulting.in.the.development.of.large.galls.17,107

To.engineer.resistance.to.this.pathogen,.a.binary.vector.plasmid.containing.inverted.repeats.of.portions.of.the.iaaM.and.ipt.genes.was.constructed.and.transformed.into.walnut.108.Constitutive.expression.of.this.construct.induces.RNAi-mediated.degrada-tion.of.the.iaaM.and.ipt.transcripts,.demonstrating.the.use.of.RNAi.to.generate.resis-tance.to.a.major.bacterial.disease.109.Because.the.construct.and.the.oncogenes.do.not.need.to.have.perfect.homology.for.silencing.to.be.effective,.the.resulting.transgenic.plants.are.resistant.to.a.very.wide.range.of.A. tumefaciens.strains,.displaying.a.broad.spectrum.durable.resistance.108.Transgenic.walnut.plants.containing.the.iaaM-.and.ipt-silencing.constructs.are.currently.in.field.trials..RNAi has.also.been.used.to.gen-erate.crown.gall.resistance.for.tomato,110.apple,111,112.and.grape.113

Xylella fastidiosaXylella fastidiosa.(Xf ).is.a.xylem-limited,.Gram-negative.bacterium,114..transmitted.by. insect. vectors. (especially. the. glassy. winged. sharpshooter,. Homalodisca coagulate).. Different. Xf. strains. cause. devastating. diseases. in. economically.important.plants,.for.example.PD.in.grape,.citrus.variegated.chlorosis.(CVC).in.citrus,115. and.almond. leaf. scorch.disease. (ALSD). in.almond..Grape.PD.symp-toms.include.yellowing.and.gradual.necrosis.of.the.petiole.attached.to.the.cane.after. leaf. fall.. The. disease. progresses. rapidly,. resulting. in.occlusion.of. xylem.vessels.and.consequent.water.stress..Vine.death.often.occurs.within.2.years.116.Citrus.CVC.symptoms. include. leaf.variegated. chlorosis,. defoliation,. twig.die-back,.size.reduction,.and.hardening.of.fruits.115.The.disease.management.strat-egy.for.PD.in.grape.focuses.on.containing.vector.transmission.using.insecticides,.with.limited.success.

Page 25:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

11Transgenic Fruit and Nut Tree Crops Review

Recently,. transgenic. grapevines. containing. xylem-targeted. effector. proteins.like. polygalacturonase. inhibiting. protein. (PGIP). and/or. chimeric. antimicrobial.proteins.have.been.obtained.117–121.The.use.of.PGIP.to.transform.grapevines.was.based.on.the.knowledge.that.Xf.has.genes.that.encode.plant.cell.wall–degrading.enzymes,. including.polygalacturonases.117.Five.PGIP.expression.constructs.were.designed,.each.containing.different.signal.peptide.sequences.in.order.to.identify.which. most. efficiently. localizes. PGIP. to. xylem. tissues,. as. well. as. which. pro-vides. the. best. distribution. of. PGIP. through. the. graft. union. into. untransformed.scion.tissues.120.Chimeric.antimicrobial.protein.strategy.provides.a.protein-based..therapeutic.that.targets.the.causative.agent.specifically.resulting.in.its.clearance,.which. results. in. resistance. to. the. causative. agent.. Chimeric. proteins. have. two.domains,.a.surface.binding.domain.and.a.clearance.domain. linked.by.a.flexible.linker.such.that.both.components.can.act.independently.120,121.A.chimeric.antimi-crobial.protein.was.designed.to.obtain.resistance.to.PD.that.contained.a.surface.recognition.domain.(SRD).and.a.clearance.domain.(CD)..The.SRD.targeted. the.Xf surface.protein.mopB,.highly.conserved.among.all.Xf.strains.and.believed.to.be. unique. to. Xf118. linked. to. the. CD,. a. lytic. peptide. with. antimicrobial. activity.against. Gram-negative. bacteria.. Transgenic. grapevines. expressing. PGIP. or. the.chimeric. antimicrobial. protein. have. been. greenhouse. propagated. and. mechani-cally.inoculated.with.Xf.to.validate.their.efficiency.against.PD;.the.results.obtained.look.promising.120.Transgenic.grapevines.field.trials.in.multiple.locations.started.in.2010.

XanthomonasCitrus. canker. (CC). is. a. serious. endemic. disease. caused. by. Xanthomonas citri. (syn.  Xanthomonas campestris. pv..citri. or. related.Xanthomonas campestris.pv.  aurantifolii).. X. citri. affects. various. citrus. species. and. is. dispersed. by. wind-blown. rain,. contaminated. equipment,. and. human. activity.. Canker. threatens. the..existence. of. citrus. industry,. affecting. leading. citrus. producers. from. Brazil. and.Florida..Canker.symptoms.are.characterized.by.pustule-like.lesions.that.can.cover.the.surfaces.of.leaves,.stems,.and.fruits..Such.lesions.later.become.corky.and.sur-rounded.by.water-soaked.margins.with.a.yellow.halo.122.It.has.been.observed.that.soon.after..infection, X. citri.simultaneously.suppresses.the.host.basal.defense.and.induces.remarkable.changes.in.the.transcriptional.profiles.of.genes.associated.with.cell.wall.remodeling,.cell.division.and.expansion,.vesicle.trafficking.and.response.to.the.hormones.auxin.and.gibberellin.123–125

Genetic.transformation.has.been.used.in.citrus.cultivars.to.improve.CC.disease.resistance.by.the.expression.of.the.Sarcophaga peregrine.sarcotoxin,126.the.atta-cin E.antimicrobial.peptide.from.Tricloplusia ni,127,128.the.Xa21.gene.from.Oryza sativa,129.and.the.harpin.N.gene.(hrpN).from.Erwinia amylovora.130.For.example,.transgenic. Citrus sinensis. plants. expressing. hrpN. under. transcriptional. control.of.a.pathogen. inducible.promoter. (gst1).showed.up. to.79%.reduction. in.suscep-tibility.to.CC.compared.with.non-transgenic.plants.130.In.addition,.researchers.at.Integrated.Plant.Genetics.have.developed.the.Disease.Block™.technology,.which.consists. of. the. expression. of. a. recombinant. antibody. fragment. directed. against.PthA,.an.effector.protein.associated.with.division,.enlargement,.and.death.of.the.

Page 26:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

12 Transgenic Horticultural Crops: Challenges and Opportunities

host.cell.during.the.first.stages.of.canker.formation.131,132.The.cytoplasm-expressed.antibody.fragment.should.bind.to.PthA.upon.delivery.into.the.host.cell.and.prevent.its.nuclear.localization..This.strategy.did.not.produce.fully.resistant.plants.but.was.efficient.in.slowing.the.disease.process,.resulting.in.a.2000-fold.reduction.in.the.number.of.X. citri.cells.released.after.one.cycle.of.infection..Complete.immunity.is.considered.possible.by.improving.the.stability.and.expression.level.of.the.recom-binant.antibody.133

Fungal ResistanceVenturia inaequalisApple.scab,.caused.by.the.fungal.pathogen.Venturia inaequalis,.is.a.serious.dis-ease.in.almost.all.apple.cultivars.grown.commercially.around.the.world.and.causes.significant. losses. worldwide.. A. scab. resistance. locus,. Vf,. has. been. identified. in.the.crabapple.species.Malus floribunda.134.The.Vf.locus.confers.resistance.to.five.races. of. V. inaequalis135. but. not. to. races. 6. and. 7,. identified. in. Europe.105,136,137.A number.of.other.scab.resistance.genes.have.been.mapped.onto.the.apple.genome,.but.only.the.Vf.locus.has.been.analyzed.in.detail..Vf.is.a.complex.locus.contain-ing. four. paralogs,. Vfa1,. Vfa2,. Vfa3,. and Vfa4.138,139. HcrVf2,. a. homolog. to. the.Cladosporium fulvum.resistance.gene.of.tomato,.was.transformed.into.the.‘Gala’.cultivar. of. apple,. conferring. scab. resistance.140. In. addition,. the. Vfa1,. Vfa2,. and.Vfa4.genes.were.introduced.into.a.plant.cloning.vector,.pCAMBIA2301,.and.used.for.Agrobacterium-mediated.transformation.of.‘Galaxy’.and.‘McIntosh’.apple.cul-tivars.. Transformed. lines. expressing. Vfa1. and. Vfa2. exhibited. partial. resistance.to.apple.scab,.while.transformed.lines.expressing.Vfa4.were.found.to.be.suscep-tible.to.apple.scab.141.The.stilbene.synthase.(Vst)gene.from.Vitis vinifera.L..is.also.being.used.to.transform.apple.with.apple.scab.resistance.142.Alternative.approaches.to. engineer. resistance. include. expression. of. an. antimicrobial. peptide,143,144. chi-tinases,96,145,146. exochitinases,147–149. and. endochitinases.147,150,151. Transgenic. apple.plants.expressing.high. levels.of.endochitinase.are. resistant. to.V. inaequalis,.but.are.also. stunted.150.One.promising.strategy. for.breeding.durable. scab. resistance.is.to.combine.several.functionally.different.resistance.genes.into.a.single.cultivar.(pyramiding.of.resistance.genes).105,152,153

Botrytis cinereaGray.mold,.caused.by.Botrytis cinerea,.attacks.the.shoots,.leaves,.flowers,.and.fruits.of.grape,.tomato,.and.strawberry,.as.well.as.other.crops..It.is.one.of.the.most.destruc-tive.fruit.diseases,.resulting.in.significant.economic.losses.pre-.and.postharvest..The.most.common.strategy.to.control.B. cinerea.is.the.regular.application.of.fungicides.throughout.flowering..However,. new. strategies.utilizing.PGIPs,. cell.wall. proteins.that.can.inhibit.fungal.polygalacturonases,.have.been.shown.to.be.effective.in.con-trolling.B. cinerea.154.Transgenic.expression.of.pear.PGIP.in.tomato155.and.grape117.limits.fungal.colonization.by.inhibiting.fungal.polygalacturonases,.reducing.suscep-tibility.to.B. cinerea..Strategies.based.upon.altering.the.expression.of.native.plant.cell.wall–modifying.enzymes.have.also.proved.effective.in.controlling.gray.mold..For. example,. suppression. of. the. endo-beta-1,4-glucanases. Cel1. and. Cel2. reduces.gray. mold. in. tomato.156. Likewise,. simultaneous. suppression. of. genes. encoding.

Page 27:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

13Transgenic Fruit and Nut Tree Crops Review

polygalacturonase.(LePG).and.expansin.(LeExp1).in.transgenic.tomato.plants.dra-matically.reduced.the.susceptibility.of.ripening.fruit.to.B. cinerea..Pathogen.hydro-lases.targeting.the.plant.cell.wall.are.well-known.components.of.virulence,.and.it.has.been.experimentally.established. that.wall.disassembly.by. the.plant. itself.also.contributes.to.susceptibility.157.Strawberry.has.a.lack.of.natural.genetic.resistance.to.gray.mold,.but.transgenic.expression.of.genes.like.ch5B.encoding.a.chitinase158.and.thau II.encoding.thaumatin.II159.from.other.plant.species.have.been.used.to.obtain.transgenic. strawberry. lines. with. resistance. to. B. cinerea.. Transgenic. wild. straw-berry.(Fragaria vesca).fruits.overexpressing.the.Fragaria × ananassa.pectin.methyl.esterase.gene.(FaPE1).showed.increased.resistance.to.B. cinerea..This.resistance.is.related.to.the.increase.in.pectin-derived.oligogalacturonides,.essential.components.for.elicitation.of.defense.responses.to.B. cinerea.160

Phytophthora nicotianaePhytophthora.species.are.considered.one.of.the.most.important.soil.borne.problems.for. citrus,. leading. to. considerable. losses. worldwide.161,162. Gumosis,. encompassing.both.trunk.rot.and.root.rot,.is.the.most.relevant.disease.caused.by.this.pathogen.and.is.characterized.by.necrosis.and.gum.exudation.at.the.ground.level..Phytophthora nicotianae.has.been.most.frequently.associated.with.the.disease..Transgenic.orange.plants.have.been.engineered.using. the.coding.region.of. the. tomato.pathogenesis–related.protein.PR-5,.a.chitinase.with.antifungal.activity..Transgenic.plants.as.well.as.their.detached.bark.were.challenged.with.oomycete.cultures.and.P. citrophthora,.respectively..A.significant.reduction.in.lesion.development.was.observed.in.one.of.the.transgenic.lines.when.compared.with.the.control.plants.163.Somatic.hybridization.has.also.been.used.to.produce.citrus.somatic.hybrids.tolerant.to.trunk.and.root.rot.caused.by.Phytophthora nicotianae..In.Florida,.more.than.70.somatic.hybrids.have.already.entered.into.commercial.field.trials.as.potential.rootstocks.70

Uncinula necatorPowdery.mildew,.caused.by.Uncinula necator,.is.one.of.the.most.threatening.fun-gal. problems. for. grape.. Transgenic. plants. harboring. a. constitutively. expressing.rice. class. I. chitinase. gene. showed. enhanced. disease. resistance. to. powdery. mil-dew. and. anthracnose. when. compared. with. the. control. lines.164. Also,. transgenic.‘Chardonnay’. grapevines. containing. the. magainin. gene. (mag2),. a. peptide. with.broad.spectrum.antimicrobial.activity,.showed.measurable.symptom.reduction. in.response.to U. necator.under.greenhouse.conditions.165

InSect reSIStance

Cydia pomonellaThe.larvae.of.the.codling.moth.(CM).are.a.severe.threat.to.apple.and.walnut.pro-duction. worldwide.. The. CM. lays. its. eggs. on. fruit. or. leaf. clusters. near. fruit,. and.when.they.hatch,.the.larvae.feed.on.the.fruit,.causing.considerable.economic.dam-age..Application.of.chemical.pesticides,.the.main.method.of.controlling.this.insect,.has.failed.to.control.CM.larvae..Biotechnology.is.an.alternative.to.create.resistance.

Page 28:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

14 Transgenic Horticultural Crops: Challenges and Opportunities

to. insect. pests. and. to. avoid. chemical. pesticide. use.. The. predominant. strategy. to.engineer. CM. resistance. in. tree. crops. has. been. through. expression. of. Bacillus thuringiensis.(Bt).genes.that.encode.insecticidal.crystal.proteins.(ICP).166–169.In.vitro.studies.have.shown.that.ICPs.bind.with.high.specificity.and.affinity.to.specific.cell.receptors.on.the.insect.brush.border.membrane.of.midgut.epithelial.cells.170–172.This.binding.correlates.with. the. formation.of.pores.and.membrane. lesions. in. the.mid-gut. that. lead. to. swelling,. leakage,. and. lysis.of. the. epithelium,. ultimately. causing.death.of.the.insect.through.starvation.and.septicemia.172–174.ICP.genes.from.differ-ent. Bacillus. species. are. categorized. according. to. the. host. range. of. their. activity.and.DNA.sequence.homology.174,175.The.crylA(c).protein.was.found.to.be.the.most.toxic.to.CM.larvae,176.but.the.transformation.of.apple166.and.walnut167.with.cry1A(c).produced.very.low.levels.of.gene.expression..This.was.a.result.of.codon.bias.in.the.bacterial.gene.sequence,.which.resulted.in.very.low.levels.of.translation.167,169.Codon-optimized.synthetic.versions.of.cryIAc.have.been.introduced.into.apple,.where.they.confer.high.levels.of.mortality.to.CM.larvae.both.under.greenhouse.and.field.con-ditions.. Similar. experiments. have. also. been. done. in. walnut177. and. persimmon,178.where. chemically. synthesized. versions. of. cryIAc. provided. excellent. protection.against.target.insect.larvae..Transgenic.tissues.expressing.cryIAc.protein.at.as.low.as.0.02%.of.total.cellular.protein.produced.100%.mortality.in.CM.larvae.177.Recent.studies.have.shown.evidence.that.RNA.silencing.pathways.also.play.a.role.in.plant.defense.against.insects,.which.can.provide.an.alternative.biotechnological.strategy.to.develop.pest.control.in.plants.179

Epiphyas postvittana (Light Brown Apple Moth)Epiphyas postvittana,.the.light.brown.apple.moth,.is.a.native.pest.of.horticultural.crops. in. Australia. and. New. Zealand,180. and. is. now. present. in. New. Caledonia,.North-Western.Europe,.Hawaii,.and.California..The.larvae.of.the.light.brown.apple.moth.cause.significant.damage.to.apple.foliage.and.fruit..To.confer.resistance.to.E.  postvittana,. the. apple. cultivar. ‘Royal. Gala’. was. transformed,. incorporating.genes.encoding.the.potato.(Solanum tuberosum).biotin.binding.proteins.avidin.and.strepavidin.. In. the.absence.of.biotin,.an.essential.vitamin.for. insects,.80%–90%.of.larvae.feeding.on.the.transgenic.apple.lines.died.in.a.period.of.3.weeks,.com-pared.to.14%.on.the.control.plants.181.The.recent. identification.of.genes.involved.in. E. postvittana. digestion182. has. allowed. proof-of-concept. research. focused. on.the. development. of. an. alternative,. RNAi-based. strategy. to. combat. this. pest.. In.controlled.feeding.experiments.with.E. postvittana.larvae,.oral.delivery.of.dsRNA.homologous.to.the.EposCXE1.led.to.silencing.of.the.native.carboxylesterase.gene.EposCXE1,.which.encodes.a.larval.midgut.enzyme.involved.in.digestion.183

OUTPUT TRAITS

The.genetic.modification.of.input.traits.enhances.the.agricultural.properties.and.per-formance.of.a.crop,.with.the.grower.as.the.primary.beneficiary..In.contrast,.trans-genic.crops.with.altered.output.traits,.such.as.increased.shelf.life,.enhanced.nutritive.value,.or.reduced.allergenicity,.primarily.benefit.the.consumer..In.perennial.orchard.

Page 29:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

15Transgenic Fruit and Nut Tree Crops Review

crops,. the. modification. of. output. traits. necessarily. involves. characteristics. mani-fested.in.fruit.or.seed.tissue..Because.most.fruit.and.nut.tree.crops.have.an.extended.juvenile.period,.initial.characterization.of.modified.output.traits.in.transgenic.trees.often.cannot.occur.until.5–10.years.after.the.initial.transformation..Thus,.with.some.notable.exceptions,.most.work.outlining.the.genetic.modification.of.output.traits.in.fruit.and.nut.tree.crops.is.preliminary,.with.many.transgenic.lines.currently.described.only.in.USDA.field.trial.listings.(Table.1.1)..Below,.we.discuss.current.progress.in.the.modification.of.ripening,.the.improvement.of.fruit.quality.and.nutritive.value,.the.removal.of.undesirable.phytochemicals,.and.antigen.production.in.transgenic.fruit.and.nut.tree.crops.

TABLE 1.1U.S. Field Trials of Transgenic Fruit and Nut Tree Crops with Enhanced Output Traits

Crop Trait Gene Institution(s)Related

Publication

Apple Reduced.postharvest.browning

Polyphenol.oxidase.(antisense)

Cornell.Univ.;.Okanagan.Specialty.Fruits,.Inc.

Murata.et.al.198,199

Delayed.ripening ACC.synthase.(antisense);.ACC.oxidase.(antisense)

Cornell.Univ.;.UC Davis;.UC Berkeley

Dandekar.et al.187

Delayed.ripening SAM.transferase Excelcis;.Agritope —

Altered.sugar.profile Sorbitol-6-phosphate.dehydrogenase.(antisense)

UC.Davis;.Cornell.Univ.;.Oregon.State.Univ.

Teo.et.al.195

Coffee Delayed.ripening ACC.oxidase.(antisense)

Univ..of.Hawaii —

Reduced.caffeine Xanthosine.methyltransferase.(antisense)

Univ..of.Hawaii Ogita.et.al.201

Grapefruit Altered.carotenoid.profile

Chalcone.synthase,.chalcone.isomerase,.rhamnosyl.transferase

Univ..of.Hawaii Costa.et.al.193

Papaya Delayed.ripening ACC.synthase.(antisense)

Univ..of.Hawaii —

Pear Delayed.ripening SAM.transferase Excelcis;.Agritope Gao.et.al.191

Persimmon Delayed.softening Polygalacturonase.inhibitor.protein

UC.Davis —

Pineapple Delayed.ripening ACC.synthase.(antisense)

Univ..of.Hawaii Botella.et.al.188

Increased.sweetness Mabinlin Univ..of.Hawaii —

Plum Delayed.ripening ACC.oxidase.(antisense)

United.States.Dept..of.Agriculture

Page 30:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

16 Transgenic Horticultural Crops: Challenges and Opportunities

delayed fruIt rIpenInG

Many. tree. fruits. are. transported. long. distances. from. their. point. of. cultivation. to.their.point.of.sale.to.the.consumer..As.demonstrated.in.several.annual.plant.systems,.genetically.manipulating.the.biosynthesis.of.the.hormone.ethylene.can.substantially.slow.fruit.ripening,.allowing.increased.flexibility.in.transport.time.and.fruit.maturity.at.harvest.184,185.In.climacteric.fruits,.ethylene.triggers.a.rapid.increase.in.respiratory.rate.and.initiates.a.cascade.of.biochemical.and.physiological.changes.associated.with.ripening.88.Beginning.with.the.precursor.S-adenosyl.methionine.(SAM),.ethylene.is.synthesized.in.two.enzymatic.steps.in.plants..First,.SAM.is.converted.to.1-amino-cyclopropane-1-carboxylic.acid. (ACC),. a. reaction. catalyzed.by. the.ACC.synthase.enzyme..Second,.the.ACC.oxidase.enzyme.converts.ACC.to.ethylene.186.The.strat-egies. applied. to. minimize. ethylene. production. in. transgenic. fruit. tree. crops,. and.thereby. slow.ethylene-associated. fruit. ripening.processes,. have.primarily. focused.on.posttranscriptional.silencing.of.the.genes.encoding.the.ACC.synthase.and.ACC.oxidase.enzymes.

Delayed.ripening.in.transgenic.fruit.trees.has.been.demonstrated.most.convinc-ingly.in.apple.and.papaya.88,187.Silencing.of.ACC.oxidase.in.papaya.resulted.in.a.40%.reduction.in.fruit.ethylene.production,.with.a.corresponding.delay.in.fruit.softening.and.the.retention.of.green.peel.color..However,.the.fruit.appears.to.have.limited.com-mercial.application,.as.the.unripe.fruit.retains.high.susceptibility.to.pathogen.infection/decay,. leading. to. a. direct. transition. from. unripe. fruit. to. rotten. fruit.88. Dandekar.et. al.. pursued. a. similar. approach. in. apple,. silencing. both. the. ACC. synthase. and.ACC..oxidase.genes.in.separate.transgenic.lines..Apples.collected.from.both.ACC.synthase-. and. ACC. oxidase-silenced. lines. displayed. >90%. reduction. in. ethylene.production..The.transgenic.fruits.were.firmer.and.had.a.longer.shelf.life.than.compa-rable.controls.(Figure.1.1),.but.their.sugar/acid.balance.(a.key.aspect.of.fruit.flavor).was.unaffected..Fruit.aroma.was.likely.altered.in.these.lines,.however,.as.total.vola-tile.ester.production.was.reduced.by.65%–70%.compared.to.controls.187

Several.additional.studies.have.described.comparable.delayed.ripening.strategies.in.pineapple,188.mango,189.and.avocado,190.though.no.phenotypic.characterization.of.the.transgenic.plants.has.been.reported..Similarly,.the.silencing.of.ACC.oxidase.in.transgenic.pear.reduced.ethylene.production.by.85%.in.in.vitro.shoots,.but.effects.on.pear.fruit.have.not.yet.been.determined.191

ImprovInG fruIt QualIty and nutrItIve value

Several.recently.published.studies.have.focused.on.the.generation.of.transgenic.fruit.and.nut.tree.crops.with.enhanced.nutritive.value.or.increased.levels.of.specific.phyto-chemicals.beneficial.to.human.health..For.example,.the.grape.stilbene.synthase.gene,.which.is.responsible.for.the.synthesis.of.the.phytoalexin.resveratrol,.has.been.intro-duced.into.apple.and.kiwifruit.143,192.Resveratrol.is.an.antifungal.compound.involved.in.pathogen-induced.plant.defense.responses,.but.it.also.has.a.variety.of.beneficial.effects.on.human.health,.including.anti-inflammatory.and.anticarcinogenic.proper-ties.143.The.accumulation.of.glycosylated.resveratrol.derivatives.was.demonstrated.in.the.leaves.of.both.transgenic.kiwifruit.and.apple.plants,.though.it.is.currently.unclear.

Page 31:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

17Transgenic Fruit and Nut Tree Crops Review

whether.the.fruit.from.these.plants.would.accumulate.these.compounds.at.levels.that.could.potentially.benefit.human.health.142,192.Preliminary.reports.have.also.described.attempts. to. increase. vitamin. A. content. in. grapefruit. (through. expression. of. the..carotenoid.biosynthetic.genes.phytoene.synthase,..phytoene.desaturase,.and.lycopene.β-cyclase).and.attempts.to.increase.the.content.of.“heart.healthy”.oleic.acid.in.palm.oil.(through.expression.of.the.fatty.acid.modifying.genes.β-ketoacyl-ACP.synthase II,.Δ9-stearoyl-ACP-desaturase,. and. palmitoyl-ACP-thioesterase. .[antisense]).193,194.However,.no.phenotypic.characterization.of.the.transgenic.grapefruit.and.oil.palm.plants.has.yet.been.reported.

A.unique.balance.of.soluble.sugars,.starch,.acids,.and.volatiles.underlies.the.flavor.and.quality.of.each.type.of.fruit..The.recent.work.of.Teo.et.al..has.demonstrated.that.fruit.quality/flavor.can.be.dramatically.altered.using.transgenic.approaches.195.Unlike.most. plant. species,. apples. accumulate. and. transport. photosynthate. largely. in. the.form.of.the.sugar.alcohol.sorbitol,.rather.than.sucrose..Sorbitol.is.synthesized.from.glucose-6-phosphate.through.the.action.of. the.enzyme.sorbitol-6-phosphate.dehy-drogenase.(S6PDH),.and.Teo.et.al..generated.transgenic.apple.plants.expressing.an.antisense.copy.of.the.S6PDH.gene.195.Leaves.from.several.resultant.transgenic.lines.

(a) (b)

(c)

(d)

(e)

FIGURE 1.1 (See color insert.). Delayed. fruit. ripening. in. transgenic. apples.. (a). An.apple.tree.expressing.an.antisense.ACC.oxidase.(ACO).transgene..Ethylene.production.is.reduced.>90%.in.this.transgenic.line.compared.to.wild-type.controls..(b, c).ACO-silenced.(b) and.wild-type.(c).apples.stored.at.room.temperature.for.1.month..(d, e).ACO-silenced.(d). and. wild-type. (e). apples. stored. at. room. temperature. for. 3. months.. (Reprinted. with.kind.permission.from.Springer.Science+Business.Media:.Transgenic Res.,.Effect.of.down-regulation.of.ethylene.biosynthesis.on.fruit.flavor.complex.in.apple.fruit,.13,.2004,.373,.Dandekar,.A..M..et.al.)

Page 32:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

18 Transgenic Horticultural Crops: Challenges and Opportunities

displayed.80%–90%.reductions. in.S6PDH.enzyme.activity.and.70%–80%.reduc-tions.in.sorbitol. levels..Dramatic.changes.in.fruit.composition.were.also.observed.in.the.transgenic.lines,.including.significant.increases.in.glucose.levels,.flesh.firm-ness,.and.soluble.solids.content,.and.corresponding.significant.decreases.in.fructose.levels,.sorbitol.levels,.starch.levels,.malic.acid.levels,.and.titratable.acidity..Overall,.these.results.demonstrate.that.fruit.quality.characteristics.(and.likely.flavor).are.real-istic.targets.for.manipulation/improvement.via.biotechnology.

removal of undeSIrable phytochemIcalS

Postharvest.enzymatic.browning,.caused.primarily.by.the.enzyme.polyphenol.oxi-dase,. is.a. substantial.quality.problem. in.a.variety.of. fruit. crops,. including.apple,.pear,. grape,. and.pineapple.. Polyphenol.oxidase. comes. in. contact.with. its. pheno-lic.substrates.during.fruit.ripening.or.tissue.damage,.generating.reactive.quinones.that.crosslink.to.form.dark-colored.phytomelanins.196.Following.the.lead.of.studies.performed. in. annual. crops,197. several. groups. have. attempted. to. silence. the. poly-phenol.oxidase.gene. in.order. to. reduce.postharvest.browning. in. tree. fruits..Most.notable. is.work.by.Murata.et.al.,. in.which.expression.of.an.antisense.polyphenol.oxidase.gene.in.transgenic.apple.lines.reduced.polyphenol.oxidase.activity.and.tis-sue.browning.by ~50%.compared.to.wild-type.controls.198,199.However,.only.callus.and.shoot.tissues.were.examined;.it.remains.to.be.seen.whether.reductions.in.post-harvest.browning.will.also.be.observed.in.apple.fruit.198,199.Similar.approaches.have.been. pursued. to. reduce. blackheart. in. pineapple200. and. grape. berry. darkening,196.though.no.characterization.of.the.transgenic.polyphenol.oxidase-silenced.plants.has.yet.been.reported.

Posttranscriptional. gene. silencing. has. also. been. utilized. to. reduce. caffeine.content. in.coffee.plants..Caffeine. is.generated.from.xanthosine.by. two.sequential.methylation.reactions.catalyzed.by.the.enzymes.theobromine.synthase.and.caffeine.synthase..Ogita.et.al.. transformed.coffee.plants.with.an.RNAi.vector.designed. to.initiate.posttranscriptional.gene.silencing.of.the.theobromine.synthase.gene.201.The.resultant. transgenic. lines. were. morphologically. normal,. but. displayed. 50%–70%.less.caffeine.in.leaf.tissues.than.controls..Effects.on.caffeine.content.in.coffee.fruit.were.not.described..Although.not.yet.reported.in.the.literature,.a.similar.gene.silenc-ing.strategy.could.be.used.to.reduce.the.levels.of.allergenic.proteins.in.tree.nuts.(e.g.,.walnuts.and.chestnuts)..This.approach.was.recently.applied.to.reduce.the.levels.of.the.immunodominant.Ara.h.2.protein.in.transgenic.peanut.plants.202

antIGen productIon

Several. studies. have. shown. that. transgenic. plants. that. produce. viral. or. bacterial.antigen.proteins.can.induce.a.protective.immune.response.(as.measured.by.the.pro-duction. of. antigen-specific. serum. antibodies). when. fed. to. mice. and. humans.203,204.These.plants,.which.act.as.“edible.vaccines,”.have.several.significant.advantages.over.traditionally.purified.and.administered.vaccines,.including.ease.of.human.delivery,.increased.stability,.and.decreased.production.and.transport.costs.205.While.most.stud-ies. on. edible. vaccines. have. focused. on. annual. crops,. recently. the. “s”. gene. of. the.

Page 33:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

19Transgenic Fruit and Nut Tree Crops Review

Hepatitis.B.surface.antigen.(HBsAg).was.expressed.in.banana.plants.206.Hepatitis.B.is.the.major.cause.of.persistent.viremia.in.humans,.and.banana.is.an.ideal.host.for.expression.of.HBsAg.due.to.its.palatability.to.infants.and.year-round.availability.in.the.tropics..By.expressing.an.HBsAg.“s”.gene-ER.retention.sequence.fusion.under.the.control.of.the.banana.ethylene.forming.enzyme.promoter,.Sunil-Kumar.et.al..success-fully.produced.antibody-reactive.antigen.in.banana.leaves.and.fruits.206.Unfortunately,.antigen.levels.in.banana.fruit.were.very.low.compared.to.antigen.levels.achieved.in.several.previously.described.annual.plant.systems.(1.ng/g.vs..16.μg/g.fresh.weight.in.potato.tuber),.precluding.immunogenicity.testing.and.the.use.of.these.bananas.for.oral.vaccination.

CONCLUSIONS

The.high.value.of.fruit.and.nut.crops.and.their.increasing.dietary.importance.due.to.their.unique.nutritional.and.disease-preventing.attributes.has. focused.attention.on.genetic.strategies.to.solve.production.limitations..The.technology.to.produce.trans-genic.trees.is.relatively.mature,.especially.the.use.of.the.Agrobacterium-mediated.transformation.process..However,.regeneration.of.transgenic.plants.continues.to.pose.the.greatest.challenge.for.many.of.these.crops,.especially.Prunus..In.most.fruit.and.nut.tree.species,.only.a.few.of.the.commercially.significant.phenotypes.have.been.exten-sively.tested.in.the.field..Viral.resistance.in.plum.and.papaya.has.been.deregulated,.and.commercialized.in.the.case.of.papaya..Many.tree.crops.are.promising.candidates.for.the.use.of.transgenic.technologies.to.prevent.disease.and.pest.infestation,.espe-cially.through.the.use.of.Bt.insecticidal.proteins.that.target.lepidopteran.insect.pests..Resistance.to.bacterial.pathogens.poses.the.greatest.challenge,.as. they.present. the.greatest.threat.to.commercial.viability.in.many.perennial.crop.species..Substantial.progress.has.been.made. toward.gaining.resistance. to.PD. in.grapevine.and.crown.gall.disease.in.walnut..Many.fruit.quality.traits.have.also.been.manipulated,.primar-ily.through.the.RNAi-mediated.regulation.of.ethylene. .biosynthesis.and/or.sorbitol.biosynthesis,.where.the.phenotypes.have.been.documented.in.field-grown.transgenic.fruit..Many.interesting.transgenic.approaches.have.been.developed.for.other.quality.traits.that.are.of.importance.to.consumers,.including.postharvest.storage.disorders,.fruit. texture,. appearance,. sugar. and. lipid. composition,. and. allergenicity;. how-ever,.these.phenotypes.remain.to.be.established.in.the.field..With.the.exception.of.papaya,.no.other.transgenic.fruit.variety.has.been.commercialized.and.the.technol-ogy.development.toward.commercialization.for.scion.varieties.in.particular.has.been.“soft-pedaled”.due.to.the.public.acceptance.issue..Perhaps.the.greatest. immediate.promise.lies.in.the.potential.for.commercialization.of.transgenic.rootstocks,.as.they.can.provide.resistance.to.disease,.pest,.and.environmental.issues.while.sustaining.the.production.of.a.wild-type.fruit.crop.from.the.grafted.(non-transgenic).scion.

REFERENCES

. 1.. Rieger,.M.,.Introduction to Fruit Crops,.Food.Products.Press,.New.York,.p..462,.2006.

. 2.. FAOStat..http://faostat.fao.org/,.2008,.Accessed.on.March.3,.2010.

. 3.. Gomez-Lim,.M..A..and.Litz,.R..E.,.Genetic.transformation.of.perennial.tropical.fruits,.In Vitro Cell. Dev. Biol. Plant,.40,.442,.2004.

Page 34:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

20 Transgenic Horticultural Crops: Challenges and Opportunities

. 4.. Petri,.C..and.Burgos,.L.,.Transformation.of.fruit.trees:.Useful.breeding.tool.or.continued.future.prospect?.Transgenic Res.,.14,.15,.2005.

. 5.. Perl,.A..and.Eshdat,.Y.,.Grapes,.Springer-Verlag,.Berlin,.p..189,.2007.

. 6.. Meredith,.C..P..and.Reisch,.B.,.Grapevine.genetics:.New.tools.for.vine.improvement,.gene.mapping,.genetic.engineering.and.DNA.fingerprinting,.Am. J. Enol. Vit.,.48,.265,.1997.

. 7.. Thomas,.M.,.Iocco,.P.,.and.Franks,.T.,.Transgenic.grapevines:.Status.and.future,.Acta Hort.,.528,.281,.2000.

. 8.. Kaneyoshi,. J.. et. al.,.A. simple. and. efficient. gene-transfer. system. of. trifoliate. orange.(Poncirus-trifoliata.raf),.Plant Cell Rep.,.13,.541,.1994.

. 9.. Pena,.L..et.al.,.Agrobacterium-mediated.transformation.of.citrus,.in.Transgenic crops of the world—essential protocols,. ed.. Curtis,. I.. S.,. Kluwer. Academic. Publishers,.Dordrecht,.the.Netherlands,.p..145,.2004.

. 10.. Pena,.L..et.al.,.Agrobacterium-mediated.transformation.of.sweet.orange.and.regenera-tion.of.transgenic.plants,.Plant Cell Rep.,.14,.616,.1995.

. 11.. James,. D.. J.. et. al.,. Genetic-transformation. of. apple. (Malus-pumila. mill). using. a.disarmed.Ti-binary.vector,.Plant Cell Rep.,.7,.658,.1989.

. 12.. Dandekar,.A..M..et.al.,.Apple.(Malus.x.domestica),.in.Methods in Molecular Biology,.ed..Wang,.K.,.Humana.Press.Inc.,.Totowa,.NJ,.p..253,.2006.

. 13.. Mezzetti,. B.. et. al.,. Genetic. transformation. of. Vitis vinifera. via. organogenesis,. BMC Biotechnol.,.2,.1,.2002.

. 14.. Dutt,.M..et.al.,.Transgenic.plants.from.shoot.apical.meristems.of.Vitis vinifera.l..“Thompson.seedless”.via.Agrobacterium-mediated.transformation,.Plant Cell Rep.,.26,.2101,.2007.

. 15.. Suprasanna,.P.,.Ganapathi,.T..R.,.and.Bapat,.V..A.,.Genetic. transformation.of.woody.plants.using.embryogenic.cultures,.J. New Seeds,.7,.17,.2005.

. 16.. Leslie,.C..A..et.al.,.Walnut.(Juglans),.in.Methods in Molecular Biology,.ed..Wang,.K.,.Humana.Press.Inc.,.Totowa,.NJ,.pp..344,.297,.2006.

. 17.. Britton,. M.. et. al.,. Juglans—Walnuts. v.. biotechnology. in. agriculture. and. forestry,.Transgenic Crops: Biotechnol. Agric. Forest.,.5,.349,.2007.

. 18.. Rajasekaran,.K..and.Mullins,.M..G.,.The.origin.of.embryos.and.plantlets.from.cultured.anthers.of.hybrid.grapevines.Vitis vinifera.x.Vitis repestris,.Am. J. Enol. Vitic.,.34,.108,.1983.

. 19.. Mauro,.M..C..et.al.,.Analysis.of.41.B.(Vitis vinifera.x.Vitis berlandieri).grapevine.root-stocks.for.grapevine.fanleaf.virus.resistance,.Acta Hort.,.528,.313,.2000.

. 20.. Perl,.A.,.Colova-Tsolova,.V.,.and.Eshdat,.Y.,.Agrobacterium-Mediated Transformation of Grape Embryogenic Calli,.Academic.Publisher,.Dordrecht,.the.Netherlands,.p. 229, 2004.

. 21.. Perrin,. M.,. Gertz,. C.,. and. Masson,. J.. E.,. High. efficiency. initiation. of. regenerable.embryogenic.callus.from.anther.filaments.of.19-grapevine.genotypes.grown.worldwide,.Plant Sci.,.167,.1343,.2004.

. 22.. Aguero,.C..B.,.Meredith,.C..P.,.and.Dandekar,.A..M.,.Genetic.transformation.of.Vitis vinifera.l..cvs.Thompson.seedless.and.Chardonnay.with.the.pear.PGIP.and.GFP.encod-ing.genes,.Vitis,.45,.1,.2006.

. 23.. Bouquet,.A..et.al.,.Grapevine.(Vitis vinifera.l.),.in.Methods in Molecular Biology,.ed..Wang,.K.,.Humana.Press.Inc.,.Totowa,.NJ,.pp..344,.273,.2006.

. 24.. Torregrosa,.L.,.Iocco,.P.,.and.Thomas,.M..R.,.Influence.of.agrobacterium.strain,.culture.medium,.and.cultivar.on. the. transformation.efficiency.of.vitis.vinifera. l,.Am J. Enol. Vitic.,.53,.183,.2002.

. 25.. Ballester,.A.,.Cervera,.M.,.and.Pena,.L.,.Evaluation.of.selection.strategies.alternative.to.NPTII.in.genetic.transformation.of.citrus,.Plant Cell Rep.,.27,.1005,.2008.

. 26.. Dutt,.M.. et.al.,.A.co-transformation.system. to.produce. transgenic.grapevines. free.of.marker.genes,.Plant Sci.,.175,.423,.2008.

. 27.. Reisch,.B..et.al.,.Genetic.transformation.of.Vitis vinifera.to.improve.disease.resistance,.Acta Hort.,.603,.303,.2002.

Page 35:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

21Transgenic Fruit and Nut Tree Crops Review

. 28.. Vidal,. J..R.. et. al.,.Biolistic. transformation.of.grapevine.using. minimal.gene.cassette.technology,.Plant Cell Rep.,.25,.807,.2006.

. 29.. Jaillon,.O..et.al.,.The.grapevine.genome.sequence.suggests.ancestral.hexaploidization.in.major.angiosperm.phyla,.Nature,.449,.463,.2007.

. 30.. Velasco,.R..et.al.,.High.quality.draft.consensus.sequence.of.the.genome.of.a.heterozy-gous.grapevine.variety,.PLoS ONE,.2,.1326,.2007.

. 31.. Zottini,.M..et.al.,.Agroinfiltration.of.grapevine.leaves.for.fast.transient.assays.of.gene.expression.and.for. long-term.production.of.stable. transformed.cells,.Plant Cell Rep.,.27,.845,.2008.

. 32.. Azuma,.A..et.al.,.Genomic.and.genetic.analysis.of.MYB-related.genes.that..regulate.anthocyanin.biosynthesis.in.grape.berry.skin,.Theoret. Appl. Genet.,.117,.1009,.2008.

. 33.. Ahmad,.M..and.Mirza,.B.,.An.efficient.protocol.for.transient.transformation.of.intact.fruit.and.transgene.expression.in.citrus,.Plant Mol. Biol. Rep.,.23,.419,.2005.

. 34.. Folimonov,.A..S..F..et.al.,.A.stable.RNA.virus-based.vector.for.fruit.species,.Virology,.368,.205,.2007.

. 35.. Aguero,.C..B..et.al.,.Xylem.sap.proteins.from.Vitis vinifera.l..Chardonnay,.Am. J. Enol. Vit.,.59,.306,.2008.

. 36.. Prins,.M..et. al.,.Characterization.of.RNA-mediated. resistance. to. tomato. spotted.wilt.virus.in.transgenic.tobacco.plants,.Biotechnology,.10,.1133,.1992.

. 37.. Lindbo,.J..A..and.Dougherty,.W..G.,.Untranslatable.transcripts.of.the.tobacco.etch.virus.coat.protein.gene.sequence.can. interfere.with. tobacco.etch.virus.replication. in. trans-genic.plants.and.protoplasts,.Virology,.189,.725,.1992.

. 38.. Liu,.Z..et.al.,.Engineering.resistance.to.multiple.Prunus.fruit.viruses.through.expression.of.chimeric.hairpins,.J. Am. Soc. Hort. Sci.,.132,.407,.2007.

. 39.. Wilson,.T.. M..A.,. Strategies. to. protect. crop. plants. against. viruses:.Pathogen-derived.resistance.blossoms,.Proc. Natl. Acad. Sci.,.90,.3134,.1993.

. 40.. Baulcombe,.D..C.,.Mechanisms.of.pathogen-derived.resistance.to.viruses.in.transgenic.plants,.Plant Cell,.8,.1833,.1996.

. 41.. Prins,.M.,.Broad.virus.resistance.in.transgenic.plants,.Trends Biotechnol.,.21,.373,.2003.

. 42.. Brigneti,.G..et.al.,.Viral.pathogenicity.determinants.are.suppressors.of.transgene.silenc-ing.in.Nicotiana benthamiana,.EMBO J.,.17,.6739,.1998.

. 43.. de.Souza,.A..J.,.Mendes,.B..M..J.,.and.Filho,.F..A..A..M.,.Gene.silencing:.Concepts,.applications,.and.perspectives.in.woody.plants,.Sci. Agric.,.64,.645,.2007.

. 44.. Hannon,.G..J.,.RNA.interference,.Nature,.418,.244,.2002.

. 45.. Moreno,. P.. et. al.,. Plant. diseases. that. changed. the. world—Citrus. tristeza. virus:.A pathogen.that.changed.the.course.of.the.citrus.industry,.Mol. Plant Pathol.,.9,.251,.2008.

. 46.. Scorza,.R..et.al.,.Post-transcriptional.gene.silencing.in.plum pox virus.resistant.trans-genic.European.plum.containing.the.plum.pox.potyvirus.coat.protein.gene,.Transgenic Res.,.10,.201,.2001.

. 47.. Voinnet,.O.,.Pinto,.Y..M.,.and.Baulcombe,.D..C.,.Suppression.of.gene.silencing:.A.gen-eral.strategy.used.by.diverse.DNA.and.RNA.viruses.of.plants,.Proc. Natl. Acad. Sci.,.96,.14147,.1999.

. 48.. Fitch,.M..M..M..et.al.,.Stable.transformation.of.papaya.via.microprojectile.bombard-ment,.Plant Cell Rep.,.9,.189,.1990.

. 49.. Fitch,.M..M..M..et.al.,.Virus.resistance.papaya.plants.derived.from.tissues.bombarded.with.the.coat.protein.gene.of.Papaya ringspot virus,.Biotechnology,.10,.1466,.1992.

. 50.. Lius,.S.. et. al.,.Pathogen-derived. resistance.provides.papaya.with.effective.protection.against.papaya.ringspot.virus,.Mol. Breed.,.3,.161,.1997.

. 51.. Gonsalves,. D.,. Coat. protein. transgenic. papaya. “acquired”. immunity. for. controlling.papaya.ringspot.virus,.Curr. Top. Microbiol. Immunol.,.266,.73,.2002.

Page 36:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

22 Transgenic Horticultural Crops: Challenges and Opportunities

. 52.. Tripathi,.S.,.Suzuki,.J.,.and.Gonsalves,.D.,.Development.of.genetically.engineered.resis-tant.papaya.for.papaya.ringspot.virus.in.a.timely.manner:.A.comprehensive.and.success-ful.approach,.Methods Mol. Biol.,.354,.197,.2007.

. 53.. Gonsalves,. D.,. Control. of. papaya. ringspot. virus. in. papaya:.A. case. study,. Ann. Rev. Phytopathol.,.36,.415,.1998.

. 54.. Tennant,.P..et.al.,.Papaya.ringspot.virus.resistance.of.transgenic.rainbow.and.sunup.is.affected.by.gene.dosage,.plant.development,.and.coat.protein.homology,.Eur. J. Plant Pathol.,.107,.645,.2001.

. 55.. Cheng,.Y..H.,.Yang,.J..S.,.and.Yeh,.S..D.,.Efficient.transformation.of.papaya.by.coat.pro-tein.gene.of.Papaya ringspot virus.mediated.by.Agrobacterium.following.liquid-phase.wounding.of.embryogenic.tissues.with.carborundum,.Plant Cell Rep.,.16,.127,.1996.

. 56.. Bau,.H..J..et.al.,.Broad-spectrum.resistance.to.different.geographic.strains.of.Papaya ringspot virus.in.coat.protein.gene.transgenic.papaya,.Phytopathology,.93,.112,.2003.

. 57.. Bau,.H..J..et.al.,.Field.evaluation.of.transgenic.papaya.lines.carrying.the.coat.protein.gene.of.Papaya ringspot virus.in.Taiwan,.Plant Dis.,.88,.848,.2004.

. 58.. Bau,.H..J..et.al.,.Potential.threat.of.a.new.pathotype.of.Papaya leaf distortion mosaic virus. infecting. transgenic.papaya.resistant. to.Papaya ringspot virus,.Phytopathology,.98,.848,.2008.

. 59.. Kung,.Y.. J.. et. al.,.Generation.of. transgenic.papaya.with.double. resistance. to.Papaya ringspot virus.and.Papaya leaf-distortion mosaic virus,.Phytopathology,.99,.1312,.2009.

. 60.. Bar-Joseph,.M.,.Marcus,.R.,.and.Lee,.R..F.,.The.continuous.challenge.of.Citrus.tristeza.virus.control,.Ann. Rev. Phytopathol.,.27,.291,.1989.

. 61.. Fagoaga,.C..et.al.,.Post-transcriptional.gene.silencing.of.the.p23.silencing.suppressor.of.Citrus.tristeza.virus.confers.resistance.to.the.virus.in.transgenic.Mexican.lime,.Plant Mol. Biol.,.60,.153,.2006.

. 62.. Rai,.M.,.Refinement.of.the.Citrus.tristeza.virus.resistance.gene.(CTV).positional.map.in.Poncirus trifoliata.and.generation.of.transgenic.grapefruit.(Citrus paradisi).plant.lines.with.candidate.resistance.genes.in.this.region,.Plant Mol. Biol.,.61,.399,.2006.

. 63.. Febres,.V..J.,.Lee,.R..F.,.and.Moore,.G..A.,.Transgenic.resistance.to.Citrus.tristeza.virus.in.grapefruit,.Plant Cell Rep.,.27,.93,.2008.

. 64.. Tatineni,.S..et.al.,.Three.genes.of.Citrus.tristeza.virus.are.dispensable.for.infection.and.movement.throughout.some.varieties.of.citrus.trees,.Virology,.376,.297,.2008.

. 65.. Mauro,.M.C..et.al.,.High.efficiency.regeneration.grapevine.plants.transformed.with.the.GFLV.coat.protein.gene,.Plant Sci.,.112,.97,.1995.

. 66.. Valat,. L.,. Fuchs,. M.,. and. Burrus,. M.,. Transgenic. grapevine. rootstock. clones.expressing. the.coat. protein.or.movement.protein. genes.of.grapevine. Fanleaf. virus:.Characterization.and.reaction.to.virus.infection.upon.protoplast.electroporation,.Plant Sci.,.170,.739,.2006.

. 67.. Zanek,.M..C..et.al.,.Genetic.transformation.of.sweet.orange.with.the.coat.protein.gene.of.Citrus.psorosis.virus.and.evaluation.of.resistance.against.the.virus,.Plant Cell Rep.,.27,.57,.2008.

. 68.. Dominguez,.A..et.al.,.Efficient.production.of.transgenic.citrus.plants.expressing.the.coat.protein.gene.of.Citrus.tristeza.virus,.Plant Cell Rep.,.19,.427,.2000.

. 69.. Dominguez,.A.. et. al.,. Pathogen-derived. resistance. to. Citrus. tristeza. virus. (CTV). in.transgenic.Mexican.lime.(Citrus aurantifolia.(Christ.).Swing.).plants.expressing.its.p25.coat.protein.gene,.Molecular Breeding,.10,.1,.2002.

. 70.. Mourao. Filho,. F..A..A.. et. al.,. Evaluation. of. citrus. somatic. hybrids. for. tolerance. to.Phytophthora nicotianae.and.Citrus.tristeza.virus,.Sci. Hort.,.115,.301,.2008.

. 71.. Kegler,.H..et.al.,.Some.results.of.50.years.of. research.on.the. resistance. to.plum.pox.virus,.Acta Virol.,.42,.200,.1998.

. 72.. Ravelonandro,.M..et.al.,.The.use.of.transgenic.fruit.trees.as.a.resistance.strategy.for.virus.epidemics:.The.plum pox.(Sharka).model,.Virus Res.,.71,.63,.2000.

Page 37:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

23Transgenic Fruit and Nut Tree Crops Review

. 73.. Levy,.L.,.Damsteegt,.V.,.and.Welliver,.R.,.First.report.of.plum.pox.virus.(Sharka.disease).in.Prunus persica.in.the.United.States.,.Plant Dis.,.84,.202,.2000.

. 74.. Rosales,.M.,.Hinrichsen,.P.,.and.Herrera.,.G.,.Molecular.characterization.of.plum pox virus.isolated.from.apricots,.plums.and.peaches.in.Chile.,.Acta Hort.,.472,.401,.1998.

. 75.. Thompson,.D..et.al.,.First.report.of.plum.pox.potyvirus.in.Ontario,.Canada,.Plant Dis.,.85,.97,.2001.

. 76.. Gilmer,.R..M.,.Nyland,.G.,.and.Moore,.J..D.,.Virus.diseases.and.noninfectious.disorders.of.stone.fruits.in.North.America,.in.U.S. Department of Agriculture Handbook 437,.U.S..Government.Printing.Office,.Washington,.DC,.1976.

. 77.. American.Phytopathology.Society,.Compendium of Stone Fruit Diseases,.eds..Ogawa,.J..M.,.Zehr,.E..I.,.and.Bird,.G..W.,.American.Phytopathology.Society,.St..Paul,.MN,.p..1,.1995.

. 78.. Garcıa,. J..A..and.Cambra,.M.,.Plum.pox.virus.and.Sharka.disease,.Plant Viruses,.1, 69,.2007.

. 79.. Moreno,. A.,. Fereres,. A.,. and. Cambra,. M.,. Quantitative. estimation. of. plum. pox.virus. targets. acquired. and. transmitted. by. a. single. Myzus. Persicae,. Arch. Virol.,.154,.1391,.2009.

. 80.. Glasa,.M.,.Boeglin,.M.,.and.Labonne,.G.,.Aphid.transmission.of.natural.recombinant.plum.pox.virus.isolates.to.different.Prunus ssp.—A.contribution.for.understanding.the.epidemiology.of.an.atypical.PPV,.Acta Hort.,.657,.217,.2004.

. 81.. Cambra,. M.. et. al.,. Molecular Methods for Detection and Quantification of Virus in Aphids,.Springer,.Dordrecht,.the.Netherlands,.p..81,.2006.

. 82.. Gildow,. F.. et. al.,. Plum. pox. in. North.America:. Identification. of. aphid. vectors. and. a.potential.role.for.fruit.in.virus.spread,.Phytopathology,.94,.868,.2004.

. 83.. Powell,.G.,.Intracellular.salivation.is.the.aphid.activity.associated.with.inoculation.of.non-persistently.transmitted.viruses,.J. Gen. Virol.,.86,.469,.2005.

. 84.. Capote,.N..et.al.,.Assessment.of.the.diversity.and.dynamics.of.plum pox virus.and.aphid.populations.in.transgenic.European.plums.under.Mediterranean.conditions,.Transgenic Res.,.17,.367,.2008.

. 85.. Malinowski,.T..et.al.,.Field.trials.of.plum.clones.transformed.with.the.plum pox virus.coat.protein.(PPV-CP).gene,.Plant Dis.,.90,.1012,.2006.

. 86.. Scorza,.R.,.The.development.of.‘Honeysweet’—A.transgenic.plum.pox.virus.(PPV)-resistant. plum. and. the. application. of. intron-hairpin. (ihp). RNA. technology. for. PPV.resistance.in.stone.fruits,.Hortscience,.42,.904,.2007.

. 87.. Hily,. J.-M..et. al.,.Accumulation.of. the. long.class.of. siRNA. is. associated.with. resis-tance.to.plum.pox.virus.in.a.transgenic.woody.perennial.plum.tree,.Mol. Plant Microbe Interact.,.18,.794,.2005.

. 88.. Lopez-Gomez,.R..et.al.,.Ripening.in.papaya.fruit.is.altered.by.ACC.oxidase.co-suppression,.Transgenic Res.,.18,.89,.2008.

. 89.. Ko,. K.. et. al.,. Galaxy. lines. transgenic. for. attacin. E. and. T4. lysozyme. genes. have.increased.resistance.to.fire.blight,.Curr. Plant Sci. Biotech. Agric.,.36,.507,.1999.

. 90.. Norelli,.J..L..et.al.,.Transgenic.“Malling.26”.apple.expressing. the.attacin.E.gene.has.increased.resistance.to.Erwinia amylovora,.Euphytica,.77,.123,.1994.

. 91.. Norelli,.J..L..et.al.,.Transgenic.Gala.apple.expressing.attacin.E.has.increased.field.resis-tance.to.Erwinia amylovora.(fire.blight),.Phytopathology,.89,.56,.1999.

. 92.. Norelli,.J..L..et.al.,.Transgenic.‘Royal.Gala’.apple.expressing.attacin.E.has.increased.field.resistance.to.Erwinia amylovora.(fire.blight),.Acta Hort.,.538,.633,.2000.

. 93.. Aldwinckle,.H..S..et.al.,.Development.of.fire.blight.resistant.apple.cultivars.by.genetic.engineering,.Acta Hort.,.622,.105,.2003.

. 94.. Ko,.K..et.al.,.Effect.of.untranslated.leader.sequence.of.AMV.RNA.4.and.signal.pep-tide.of.pathogenesis-related.protein.1b.on.attacin.gene.expression,.and.resistance.to.fire.blight.in.transgenic.apple,.Biotechnol. Lett.,.22,.373,.2000.

Page 38:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

24 Transgenic Horticultural Crops: Challenges and Opportunities

. 95.. Ko,.K..et.al.,.T4.lysozyme.and.attacin.genes.enhance.resistance.of.transgenic.‘galaxy’.apple.against.Erwinia amylovora,.J. Am. Soc. Hort. Sci.,.127,.515,.2002.

. 96.. Hanke,.V..et.al.,.Tranformation. in.apple. for. increased.disease. resistance,.Acta Hort.,.538,.611,.2000.

. 97.. Hanke,.V.,.Kim,.W.-S.,. and.Geider,.K.,.Plant. transformation.for. induction.of. the.fire.blight. resistance:. Transgenic. apples. expressing. viral. EPS-depolymerase,. Acta Hort.,.590,.393,.2002.

. 98.. Flachowsky,.H..et.al.,.Transgenic.expression.of.a.viral.EPS-depolymerase.is.potentially.useful.to.induce.fire.blight.resistance.in.apple,.Ann. Appl. Biol.,.153,.345,.2008.

. 99.. Aldwinckle,.H..S..et.al.,.Genetic.engineering.of.disease.resistance.in.apple.fruit.cultivars.and.rootstocks,.Curr. Plant Sci. Biotech. Agric.,.36,.449,.1999.

.100.. Hanke,.V..et.al.,.Transformation.of.apple.cultivars.with.T4-lysozyme-gene.to.increase.disease.resistance,.Acta Hort.,.489,.253,.1999.

.101.. Kader,.A..A..et.al.,.Evaluation.of.the.hrpN.gene.for.increasing.resistance.to.fire.blight.in.transgenic.apple,.Acta Hort.,.489,.247,.1999.

.102.. Liu,. Q.. et. al.,. Transgenic. ‘Royal. Gala’. apple. plants. with. cecropin-MB39. gene. has.increased.resistance.to.Erwinia amylovora,.Acta Hort.,.560,.95,.1999.

.103.. Liu,.Q..et. al.,.Response.of. transgenic.Royal.Gala.apple. (Malus.x.domestica.Borkh.).shoots.carrying.a.modified.cecropin.mb39.gene,.to.Erwinia amylovora,.Plant Cell Rep.,.20,.306,.2001.

.104.. Borejsza-Wysocka,.E..E..et.al.,.Strategies.for.obtaining.fire.blight.resistance.in.apple.by.rDNA.technology,.Acta Hort.,.738,.283,.2007.

.105.. Kellerhals,. M.,. Bertschinger,. L.,. and. Gessler,. C.,. Use. of. genetic. resources. in.apple. breeding. and. for. sustainable. fruit. production,. J. Fruit Ornament. Plant Res.,.12,.53,.2004.

.106.. Calenge,.F..et.al.,.Identification.of.a.major.QTL.together.with.several.minor.additive.or.epistatic.QTLs.for.resistance.to.fire.blight.in.apple.in.two.related.progenies,.Theoret. Appl. Genet,.111,.128,.2005.

.107.. Britton,.M..T.,.Escobar,.M..A.,.and.Dandekar,.A..M.,.The.oncogenes.of.Agrobacterium tumefaciens. and. Agrobacterium rhizogenes,. in. Agrobacterium: From Biology to Biotechnology,.eds..Tzfira,.T..and.Citovsky,.V.,.Springer,.New.York,.2008,.Chap..14.

.108.. Escobar,.M..A..et.al.,.Silencing.crown.gall.disease.in.walnut.(Juglans regia.L.),.Plant Sci.,.163,.591,.2002.

.109.. Escobar,.M..A..et.al.,.RNAi-mediated.oncogene.silencing.confers.resistance.to.crown.gall.tumorigenesis,.Proc. Natl. Acad. Sci.,.98,.13437,.2001.

.110.. Escobar,. M.. A.. et. al.,. Characterization. of. oncogene-silenced. transgenic. plants:.Implications. for.Agrobacterium.biology.and.post-transcriptional.gene.silencing,.Mol. Plant Pathol.,.4,.1,.2003.

.111.. Lee,. H.. et. al.,. Translation. start. sequences. affect. the. efficiency. of. silencing. of.Agrobacterium tumefaciens.t-DNA.oncogenes,.Plant Physiol.,.133,.966,.2003.

.112.. Viss,.W..J..et.al.,.Crown-gall-resistant.transgenic.apple.trees.that.silence.Agrobacterium tumefaciens.oncogenes,.Mol. Breed.,.12,.283,.2003.

.113.. Burr,. T.. J.. et. al.,. Breeding. for. crown. gall. resistance:. Traditional. and. molecular.approaches,.Acta Hort.,.603,.441,.2003.

.114.. Lambais,.M..R..et.al.,.A.genomic.approach.to.the.understanding.of.Xylella fastidiosa.pathogenicity,.Curr. Opin. Microbiol.,.3,.459,.2000.

.115.. Bove,. J.. M.. and. Ayres,. A.. J.,. Etiology. of. three. recent. diseases. of. citrus. in. Sao.Paulo. state:. Sudden. death,. variegated. chlorosis. and. Huanglongbing,. IUBMB Life,.59,.346,.2007.

.116.. Goodwin,.P..H.,.De.Vay,.J..E.,.and.Meredith,.C..P.,.Roles.of.water.stress.and.phytotoxins.in.the.development.of.Pierce’s.disease.of.the.grapevine,.Physiol. Mol. Plant Pathol.,.32,.1,.1988.

Page 39:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

25Transgenic Fruit and Nut Tree Crops Review

.117.. Aguero,.C..B..et.al.,.Evaluation.of.tolerance.to.Pierce’s.disease.and.botrytis.in.trans-genic.plants.of.Vitis vinifera.l..Expressing.the.pear.PGIP.gene,.Mol. Plant Pathol.,.6,.43,.2005.

.118.. Bruening,.G..E..et.al.,.Exploiting.Xylella fastidiosa.proteins.for.Pierce’s.disease.control,.in.Pierce’s Disease Research Symposium,.CDFA.Pierce’s.Disease.Board,.San.Diego,.CA,.p..221,.2005.

.119.. Dandekar,.A..M..et.al.,.Design.of.chimeric.antimicrobial.proteins.for.rapid.clearance.of.Xyllela,. in.Pierce’s Disease Research Symposium,.CDFA.Pierce’s. Disease. Board,.San Diego,.CA,.p..233,.2004.

.120.. Dandekar,.A..M..et.al.,.In planta.testing.of.signal.peptides.and.anti-microbial.proteins.for.rapid.clearance.of.Xylella,.in.Pierce’s Disease Research Symposium,.CDFA.Pierce’s.Disease.Board,.Sacramento,.CA,.p..117,.2009.

.121.. Kunkel,.M..et.al.,.Rapid.clearance.of.bacteria.and.their.toxins:.Development.of.therapeutic.proteins,.Crit. Rev. Immunol.,.27,.233,.2007.

.122.. Schubert,.T..S..et.al.,.Meeting.the.challenge.of.eradicating.citrus.canker.in.Florida-again,.Plant Dis.,.85,.340,.2001.

.123.. Brunings,.A.. M.. and. Gabriel,. D..W.,. Xanthomonas citri:. Breaking. the. surface,. Mol. Plant Pathol.,.4,.141,.2003.

.124.. Cernadas,. R.. A.,. Camillo,. L.. R.,. and. Benedetti,. C.. E.,. Transcriptional. analysis.of  the. sweet. orange. interaction. with. the. citrus. canker. pathogens. Xanthomonas axonopodis. pv.. citri. and. Xanthomonas axonopodis. pv.. aurantifolii,. Mol. Plant Pathol.,.9, 609, 2008.

.125.. Cernadas,.R..A.. and.Benedetti,.C..E.,.Role.of. auxin. and.gibberellin. in. citrus. canker.development.and.in.the.transcriptional.control.of.cell-wall.remodeling.genes.modulated.by.Xanthomonas axonopodis.pv..Citri,.Plant Sci.,.177,.190,.2009.

.126.. Bespalhok.Filho,.J..C..et.al.,.Transformacao.de.laranja.visando.resisteñcia.ao.cancro.cítrico. usando. genes. de. peptídeos. antibacterianos,. Biotec. Cien. Desenv.,. 23,. 62,.2001.

.127.. Boscariol,. R.. L.. et. al.,.Attacin. a. gene. from. Tricloplusia ni. reduces. susceptibility. to.Xanthomonas axonopodis.pv..citri.in.transgenic.Citrus sinensis.‘Hamlin’,.J. Am. Soc. Hort. Sci.,.131,.530,.2006.

.128.. Dutt,.M..et.al.,.Resistance.to.bacterial.spot.can.be.correlated.with.resistance.to.canker.in.transgenic.citrus,.Phytopathology,.99,.30,.2009.

.129.. Omar,. A.. A.. and. Grosser,. J.. W.,. Protoplast. co-transformation. and. regeneration. of..transgenic.‘Hamlin’.sweet.orange.plants.containing.a.cDNA.xa21.Xanthomonas.resis-tance.gene.and.GFP,.Acta Hort.,.738–235,.2007.

.130.. Barbosa-Mendes,.J..M..et.al.,.Genetic.transformation.of.Citrus sinensis.cv..Hamlin.with.hrpN.gene.from.Erwinia amylovora.and.evaluation.of.the.transgenic.lines.for.resistance.to.citrus.canker,.Sci. Hort.,.122,.109,.2009.

.131.. Yang,.Y..and.Gabriel,.D.-W.,.Xanthomonas.avirulence/pathogenicity.gene.family.encodes.functional.plant.nuclear.targeting.signals,.Mol. Plant Microbe Interact.,.8,.627,.1995.

.132.. Duan,.Y.-P..et.al.,.Expression.of.a.single,.host.specific,.bacterial.pathogenicity.gene.in.plant.cells.elicits.division,.enlargement,.and.cell.death,.Mol. Plant Microbe Interact.,.12,.556,.1999.

.133.. Powell,.W..A..et.al.,.Fungal.and.bacterial.resistance.in.transgenic.trees,.in.Tree Transgenesis,.eds..Fladung,.M..and.Ewald,.D.,.Springer-Verlag,.Berlin,.Germany,.2006,.235.

.134.. Maliepaard,.C..et.al.,.Aligning.male.and.female.linkage.maps.of.apple.(Malus pumila.mill.).using.multi-allelic.markers,.Theoret. Appl. Genet.,.97,.60,.1998.

.135.. Hemmat,. M.. et. al.,. Molecular. markers. for. the. scab. resistance. (Vf). region. in. apple,.J. Am. Soc. Hort. Sci.,.123,.992,.1998.

.136.. Durel,.C..E..et.al.,.Genetic.dissection.of.partial.resistance.to.race.6.of.Venturia inaequa-lis.in.apple,.Genome,.46,.224,.2003.

Page 40:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

26 Transgenic Horticultural Crops: Challenges and Opportunities

.137.. Guerin,. F.. and. Le. Cam,. B.,. Breakdown. of. the. scab. resistance. gene. Vf. in. apple.leads. to. a. founder. effect. in. populations. of. the. fungal. pathogen. Venturia inaequalis,.Phytopathology,.94,.364,.2004.

.138.. Vinatzer,.B..A..et.al.,.Apple.contains.receptor-like.genes.homologous.to.the.Cladosporium fulvum.resistance.gene.family.of.tomato.with.a.cluster.of.genes.cosegregating.with.Vf.apple.scab.resistance,.Mol. Plant–Microbe Interact.,.14,.508,.2001.

.139.. Xu,.M..L..and.Korban,.S..S.,.A.cluster.of.four.receptor-like.genes.resides.in.the.Vf.locus.that.confers.resistance.to.apple.scab.disease,.Genetics,.162,.1995,.2002.

.140.. Belfanti,.E..et.al.,.The.HcrVf2.gene.from.a.wild.apple.confers.scab.resistance.to.a.trans-genic.cultivated.variety,.Proc. Natl. Acad. Sci.,.101,.886,.2004.

.141.. Malnoy,. M.. et. al.,.Two. receptor-like. genes,.Vfa1. and.Vfa2,. confer. resistance. to. the.fungal.pathogen.Venturia inaequalis. inciting.apple.scab.disease,.Mol. Plant–Microbe Interact.,.21,.448,.2008.

.142.. Szankowski,. I.. et. al.,. Transformation. of. apple. (Malus domestica. Borkh.). with. the.stilbene.synthase.gene.from.grapevine.(Vitis vinifera.L.).and.a.PGIP.gene.from.kiwi.(Actinidia deliciosa),.Plant Cell Rep.,.22,.141,.2003.

.143.. De.Cubber,.K..et.al.,.Progress.in.genetic.transformation.as.a.tool.for.increased.disease.resistance.in.apple,.Acta Hort.,.525,.309,.2000.

.144.. Faize,. M.. et. al.,. Expression. of. wheat. puroindoline-b. reduces. scab. susceptibility. in..transgenic.apple.(Malus.x.domestica.Borkh.),.Plant Sci.,.167,.347,.2004.

.145.. Mehlenbacher,.S..A.,.Classical.and.molecular.approaches.to.breeding.fruit.and.nut.crops.for.disease.resistance,.HortScience,.30,.466,.1995.

.146.. Faize,.M..et.al.,.Chitinases.of.Trichoderma atroviride.induce.scab.resistance.and.some.metabolic.changes.in.two.cultivars.of.apple,.Phytopathology,.93,.1496,.2003.

.147.. Bolar,.J..P..et.al.,.Synergistic.activity.of.endochitinase.and.exochitinase.from.Trichoderma atroviride.(t..Harzianum).against.the.pathogenic.fungus.(Venturia inaequalis).in.trans-genic.apple.plants,.Transgenic Res.,.10,.533,.2001.

.148.. Bolar,.J..P..et.al.,.Expression.of.an.exochitinase.gene.from.Trichoderma harzianum.in.transgenic.apple.lines,.Phytopathology,.88,.8,.1998.

.149.. Bolar,. J.. P.. et. al.,. Expression.of. fungal. chitinolytic. enzymes. in. transgenic. apples.confers. high. levels. of. resistance. to. scab,. Curr. Plant Sci. Biotechnol. Agric.,.36, 465, 1999.

.150.. Bolar,.J..P..et.al.,.Endochitinase-transgenic.McIntosh.apple.lines.have.increased.resis-tance.to.scab,.Phytopathology,.87,.10,.1997.

.151.. Bolar,.J..P..et.al.,.Expression.of.endochitinase.from.Trichoderma harzianum.in.transgenic.apple.increases.resistance.to.apple.scab.and.reduces.vigor,.Phytopathology,.90,.72,.2000.

.152.. Liebhard,.R..et.al.,.Mapping.quantitative.field.resistance.against.apple.scab.in.a.‘Fiesta’.x.‘Discovery’.progeny,.Phytopathology,.93,.493,.2003.

.153.. Gygax,.M..et.al.,.Molecular.markers.linked.to.the.apple.scab.resistance.gene.Vbj.derived.from.Malus.baccata.jackii,.Theoret. Appl. Genet.,.109,.1702,.2004.

.154.. Kars,.I..et.al.,.Necrotizing.activity.of.five.Botrytis cinerea.endopolygalacturonases.pro-duced.in.Pichia pastoris,.Plant J.,.43,.213,.2005.

.155.. Powell,.A..L..T..et.al.,.Transgenic.expression.of.pear.PGIP.in.tomato.limits.fungal.colo-nization,.Mol. Plant–Microbe Interact.,.13,.942,.2000.

.156.. Flors,.V..et.al.,.Absence.of.the.endo-beta-1,4-glucanases.cel1.and.cel2.reduces.suscepti-bility.to.Botrytis cinerea.in.tomato,.Plant J.,.52,.1027,.2007.

.157.. Cantu,.D..et.al.,.Strangers.in.the.matrix:.Plant.cell.walls.and.pathogen.susceptibility,.Trends Plant Sci.,.13,.610,.2008.

.158.. Vellicce,.G..R..et.al.,.Enhanced.resistance.to.Botrytis cinerea.mediated.by.the.transgenic.expression.of.the.chitinase.gene.ch5B.in.strawberry,.Transgenic Res.,.15,.57,.2006.

.159.. Schestibratov,.K..A..and.Dolgov,.S..V.,.Transgenic.strawberry.plants.expressing.a.thauma-tin.II.gene.demonstrate.enhanced.resistance.to.Botrytis cinerea,.Sci. Hort.,.106,.177,.2005.

Page 41:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

27Transgenic Fruit and Nut Tree Crops Review

.160.. Osorio,.S..et.al.,.Partial.demethylation.of.oligogalacturonides.by.pectin.methyl..esterase 1.is.required.for.eliciting.defense.responses.in.wild.strawberry.(Fragaria vesca),.Plant J.,.54,.43,.2008.

.161.. Erwin,. D.. C.. and. Ribeiro,. O.. K.,. Phytophthora. diseases. worldwide,. J. Agric. Sci.,.131,.245,.1998.

.162.. Graham,. J..H.. and.Menge,. J..A.,. Phytophthora-induced. diseases,. in. Compendium of Citrus Diseases,. eds.. Timmer,. L.W.,. Garnsey,. S.M.,. and. Graham,. J.H.,. APS. Press,.St. Paul,.MN,.p..12,.2000.

.163.. Fagoaga,. C.. et. al.,. Increased. tolerance. to. Phytophthora citrophthora. in. transgenic.orange.plants.constitutively.expressing.a.tomato.pathogenesis.related.protein.PR-5,.Mol. Breed.,.7,.175,.2001.

.164.. Vidal,.J..et.al.,.Evaluation.of.transgenic.Chardonnay.(Vitis vinifera).containing.magainin.genes.for.resistance.to.crown.gall.and.powdery.mildew,.Transgenic Res.,.15,.69,.2006.

.165.. Yamamoto,. T.. et. al.,. Transgenic. grapevine. plants. expressing. a. rice. chitinase. with.enhanced.resistance.to.fungal.pathogens,.Plant Cell Rep.,.19,.639,.2000.

.166.. Dandekar,.A..M..et.al.,.Engineering.for.apple.and.walnut.resistance.to.codling.moth,.in.Brighton Crop Protection Conference: Pests and Diseases,.Vol..3,.Brighton,.England,.p. 741,.1992.

.167.. Dandekar,.A..M..et.al.,.Low-levels.of.expression.of.wild-type.Bacillus-thuringiensis.var. kurstaki. cryIA(c). sequences. in. transgenic. walnut. somatic. embryos,. Plant Sci.,.96, 151,.1994.

.168.. Escobar,.M..A..et.al.,.Using.GFP.as.a.scorable.marker.in.walnut.somatic.embryo.trans-formation,.Ann. Bot.,.85,.831,.2000.

.169.. Leslie,. C.. A.. et. al.,. Genetic. engineering. of. walnut. (Juglans regia. L.),. Acta Hort.,.442,.33,.1997.

.170.. Hofmann,.C..et.al.,.Binding.of.the.delta.endotoxin.from.Bacillus-thuriengiensis.to.brush-border. membrane. vesicles. of. cabbage. butterfly. (Pieris brassicae),. Eur. J. Biochem.,.173, 85,.1988.

.171.. Van.Rie,.J..et.al.,.Mechanism.of.insect.resistance.to.the.microbial.insecticide.Bacillus-thuringiensis,.Science,.247,.72,.1990.

.172.. Schnepf,.E..et.al.,.Bacillus thuringiensis.and.its.pesticidal.crystal.proteins,.Microbiol. Mol. Biol. Rev.,.62,.775,.1998.

.173.. Knowles,.B..H..and.Ellar,.D..J.,.Colloid-osmotic.lysis.is.a.general.feature.of.the.mecha-nism.of.action.of.Bacillus-thuringiensis.delta.endotoxins.with.different.insect.specific-ity,.Biochim. Biophys. Acta,.924,.509,.1987.

.174.. Hofte,.H.. and.Whiteley,.H..R.,. Insecticidal.crystal.proteins.of.Bacillus-thuringiensis,.Microbiol. Rev.,.53,.242,.1989.

.175.. Crickmore,.N..et.al.,.Revision.of.the.nomenclature.for.the.Bacillus thuringiensis.pesti-cidal.crystal.proteins,.Microbiol. Mol. Biol. Rev.,.62,.807,.1998.

.176.. Vail,. P.. V.. et. al.,. Response. of. production. and. postharvest. walnut. pests. to. Bacillus thuringiensis.insecticidal.crystal.protein.fragments,.Biol. Control,.1,.329,.1991.

.177.. Dandekar,. A.. M.. et. al.,. High. levels. of. expression. of. full-length. cryIA(c). gene.from. Bacillus thuringiensis. in. transgenic. somatic. walnut. embryos,. Plant Sci.,.131, 181, 1998.

.178.. Tao,. R.. et. al.,. Engineering. genetic. resistance. against. insects. in. Japanese. persim-mon. using. the. cryIA(c). gene. of. Bacillus thuringiensis,. J. Am. Soc. Hort. Sci.,.122, 764, 1997.

.179.. Eamens,. A.. et. al.,. RNA. silencing. in. plants:.Yesterday,. today,. and. tomorrow,. Plant Physiol.,.147,.456,.2008.

.180.. Wearing,. C.. H.. et. al.,. Tortricid. pests. of. pome. and. stone. fruits,.Australian. and. New.Zealand. species,. in. Tortricid Pests,. Their Biology,. Natural Enemies and Control,.Elsevier,.Amsterdam,.the.Netherlands,.p..453,.1991.

Page 42:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

28 Transgenic Horticultural Crops: Challenges and Opportunities

.181.. Markwick,.N..P..et.al.,.Transgenic.tobacco.and.apple.plants.expressing.biotin-binding.proteins. are. resistant. to. two. cosmopolitan. insect. pests,. potato. tuber. moth. and. light.brown.apple.moth,.respectively,.Transgenic Res.,.12,.671,.2003.

.182.. Simpson,.R..M..and.Newcomb,.R..D.,.Binding.of.Bacillus thuringiensis.delta-endotoxins.cry1AC.and.cry1BA.to.a.120-kDa.aminopeptidase-n.of.Epiphyas postvittana.purified.from.both.brush.border.membrane.vesicles.and.baculovirus-infected.Sf9.cells,.Insect Biochem. Mol. Biol.,.30,.1069,.2000.

.183.. Turner,.C..T..et.al.,.RNA.interference.in.the.light.brown.apple.moth,.Epiphyas postvittana.(walker).induced.by.double-stranded.RNA.feeding,.Insect Mol. Biol.,.15,.383,.2006.

.184.. Oeller,.P..W..et.al.,.Reversible.inhibition.of.tomato.fruit.senescence.by.antisense.RNA,.Science,.254,.437,.1991.

.185.. Ayub,.R..et.al.,.Expression.of.ACC.oxidase.antisense.gene.inhibits.ripening.of.canta-loupe.melon.fruits,.Nat. Biotechnol.,.14,.862,.1996.

.186.. Adams,.D..O..and.Yang,.S..F.,.Ethylene.biosynthesis—Identification.of.1-aminocyclopropane-1-carboxylic.acid.as.an.intermediate.in.the.conversion.of.methionine.to.ethylene,.Proc. Natl. Acad. Sci.,.76,.170,.1979.

.187.. Dandekar,.A..M..et.al.,.Effect.of.down-regulation.of.ethylene.biosynthesis.on.fruit.flavor.complex.in.apple.fruit,.Transgenic Res.,.13,.373,.2004.

.188.. Botella,.J..R.,.Cavallaro,.A..S.,.and.Cazzonelli,.C..I.,.Towards.the.production.of.trans-genic.pineapple.to.control.flowering.and.ripening,.Acta Hort.,.529,.115,.2000.

.189.. Cruz-Hernandez,.A.,. Gomez-Lim,. M..A.,. and. Litz,. R.. E.,. Transformation. of. mango.somatic.embryos,.Acta Hort.,.455,.292,.1997.

.190.. Litz,.R..E..et.al.,.Plant.recovery.following.transformation.of.avocado.with.anti-fungal.protein.and.SAM.hydrolase.genes,.Acta Hort.,.738,.447,.2007.

.191.. Gao,. M.. et. al.,. Gene. expression. and. ethylene. production. in. transgenic. pear. (Pyrus communis.cv..‘La.France’).with.sense.or.antisense.cDNA.encoding.ACC.oxidase,.Plant Sci.,.173,.32,.2007.

.192.. Kobayashi,. S.. et. al.,. Kiwifruits. (Actinidia deliciosa). transformed. with. a. Vitis.stilbene. synthase. gene. produce. piceid. (resveratrol-glucoside),. Plant Cell Rep.,.19, 904,.2000.

.193.. Costa,.M..G..C.,.Otoni,.W..C.,.and.Moore,.G..A.,.An.evaluation.of.factors.affecting.the.efficiency. of. Agrobacterium-mediated. transformation. of. Citrus paradisi. (Macf.). and.production. of. transgenic. plants. containing. carotenoid. biosynthetic. genes,. Plant Cell Rep.,.21,.365,.2002.

.194.. Yunus,.A..M..M..and.Kadir,.A..P..G.,.Development.of.transformation.vectors.for.the.production.of.potentially.high.oleate.transgenic.oil.palm,.Electron. J. Biotechnol.,.11,.1,.2008.

.195.. Teo,.G..et.al.,.Silencing.leaf.sorbitol.synthesis.alters.long-distance.partitioning.and.apple.fruit.quality,.Proc. Natl. Acad. Sci.,.103,.18842,.2006.

.196.. Thipyapong,.P.,.Stout,.M..J.,.and.Attajarusit,.J.,.Functional.analysis.of.polyphenol.oxi-dases.by.antisense/sense.technology,.Molecules,.12,.1569,.2007.

.197.. Rommens,. C.. M.. et. al.,. Crop. improvement. through. modification. of. the. plant’s. own.genome,.Plant Physiol.,.135,.421,.2004.

.198.. Murata,.M..et.al.,.A.transgenic.apple.callus.showing.reduced.polyphenol.oxidase.activ-ity.and.lower.browning.potential,.Biosci. Biotechnol. Biochem.,.65,.383,.2001.

.199.. Murata,.M..et.al.,.Transgenic.apple.(Malus.x.domestica).shoot.showing.low.browning.potential,.J. Agric. Food Chem.,.48,.5243,.2000.

.200.. Ko,. H.. L.. et. al.,. The. introduction. of. transgenes. to. control. blackheart. in. pineapple.(Ananas comosus.L.).cv..Smooth.Cayenne.by.microprojectile.bombardment,.Euphytica,.150,.387,.2006.

.201.. Ogita,.S..et.al.,.Producing.decaffeinated.coffee.plants,.Nature,.423,.823,.2003.

Page 43:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

29Transgenic Fruit and Nut Tree Crops Review

.202.. Dodo,.H..W..et.al.,.Alleviating.peanut.allergy.using.genetic.engineering:.The. silenc-ing.of. the. immunodominant.allergen.Ara.H.2. leads. to. its. significant. reduction.and.a.decrease.in.peanut.allergenicity,.Plant Biotechnol. J.,.6,.135,.2008.

.203.. Thanavala,.Y.. et. al.,. Immunogenicity. of. transgenic. plant-derived. hepatitis-b. surface-antigen,.Proc. Natl. Acad. Sci.,.92,.3358,.1995.

.204.. Kong,.Q..X.. et. al.,.Oral. immunization. with.hepatitis.B. surface. antigen. expressed. in.transgenic.plants,.Proc. Natl. Acad. Sci.,.98,.11539,.2001.

.205.. Mor,. T.. S.,. Gomez-Lim,. M.. A.,. and. Palmer,. K.. E.,. Perspective:. Edible. vaccines—A.concept.coming.of.age,.Trends Microbiol.,.6,.449,.1998.

.206.. Sunil-Kumar,.G..B..et.al.,.Expression.of.hepatitis.B.surface.antigen.in.transgenic.banana.plants,.Planta,.222,.484,.2005.

Page 44:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,
Page 45:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

31

2 Transgenic Vegetables

Owen Wally, J. Jayaraj, and Zamir K. Punja

INTRODUCTION

There. are. a. range. of. vegetable. crop. species. that. are. grown. worldwide. to. provide.humans.with.a.source.of.nutrients,.vitamins,.and.fiber..These.vegetables.are.usually.consumed.fresh,.e.g.,.carrot,.cucumber,.lettuce,.and.tomato,.while.others.may.be.eaten.after.cooking,.e.g.,.broccoli,.cabbage,.peas,.and.squash..Vegetable.crops.are.usually.grown.under.field.conditions,.and.certain.high-value.crops.can.be.grown.in.the.green-house,.e.g.,.tomato.and.cucumber..These.crops.have.been.bred.to.produce.cultivars.with.high.yield,.optimal.flavor.and.appearance,.and.disease.and.pest.resistance.

The.tools.of.biotechnology.have.been.applied.to.vegetable.crops.to.achieve.for-eign.gene. insertion.and.expression.of.additional. and,. in. some.cases,. novel. traits..The. work. conducted. during. the. period. 1995–2002. on. 23. vegetable. crop. species.belonging.to.9.botanical.families.has.been.summarized.by.Punja.and.Feeney.1.In.this.chapter,.recent.work.over.the.period.2002–2008.on.genetic.transformation.of.vegetable.crops.for.the.purpose.of.introducing.potentially.useful.traits.is.discussed..The.traits.that.have.been.engineered.are.diverse.and.include.insect.and.nematode.resistance,.disease.resistance.(to.viruses,.fungi,.and.bacteria),. tolerance. to.abiotic.

CONTENTS

Introduction............................................................................................................... 31Insect.Resistance....................................................................................................... 39Nematode.Resistance................................................................................................40Pathogen.Resistance..................................................................................................40

Virus.Resistance...................................................................................................40Fungal.and.Bacterial.Resistance.......................................................................... 41

Abiotic.Stress.Tolerance........................................................................................... 42Medical.Applications................................................................................................ 43

Edible.Vaccines.................................................................................................... 43Therapeutic.Products............................................................................................44

Nutritional.Modifications..........................................................................................44Enhanced.Nutritional.Quality..............................................................................44Enhanced.Taste..................................................................................................... 45Enhanced.Antioxidant.Activities..........................................................................46Fruit.Ripening...................................................................................................... 47

Discussion................................................................................................................. 47References.................................................................................................................48

Page 46:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

32 Transgenic Horticultural Crops: Challenges and Opportunities

TAB

LE 2

.1V

eget

able

Cro

p Sp

ecie

s Th

at H

ave

Bee

n En

gine

ered

to

Expr

ess

Spec

ific

Tran

sgen

es, a

nd t

heir

Res

ulti

ng E

ffec

ts

Cro

pTr

aits

Gen

e Ex

pres

sed

Res

ult

Ref

eren

ces

Car

rot

Path

ogen

.re

sist

ance

Whe

at.c

hitin

ase/

gluc

anas

e,.r

ice.

pero

xida

sePe

roxi

dase

.exp

ress

ion.

enha

nced

.res

ista

nce.

to.f

olia

r.fu

ngal

.pa

thog

ens

[31]

Tric

hode

rma.

chiti

nase

Enh

ance

d.to

lera

nce.

to.f

unga

l.pat

hoge

ns[3

0]

Pse

udom

onas

fluo

resc

ens .

mic

robi

al.f

acto

r.3

Enh

ance

d.to

lera

nce.

to.f

olia

r.fu

ngal

.pat

hoge

ns[1

04]

Bar

ley.

chiti

nase

,.whe

at.li

pid.

tran

sfer

.pro

tein

Low

er.f

olia

r.di

seas

e.du

e.to

.fun

gal.p

atho

gens

[33]

Ric

e.th

aum

atin

-lik

e.pr

otei

nL

ower

.fol

iar.

dise

ase.

sym

ptom

s.to

.a.r

ange

.of.

fung

al.p

atho

gens

[34]

Abi

otic

.str

ess.

resi

stan

ceC

arro

t.bet

aine

.ald

ehyd

e.de

hydr

ogen

ase,

.chl

orop

last

.ex

pres

sion

Incr

ease

d.re

sist

ance

.to.s

alin

ity.u

p.to

.400

.mM

.NaC

l[5

1]

Met

abol

ic.

engi

neer

ing

Hae

mat

ococ

cus

pluv

iali

s.β-

caro

tene

.ket

olas

eE

nhan

ced.

prod

uctio

n.of

.sev

eral

.ket

o-ca

rote

noid

s[9

8]

Med

ical

.ap

plic

atio

nsM

easl

es.p

olyp

eptid

es.in

.sus

pens

ion.

cultu

reFu

nctio

nal.m

easl

es.v

acci

ne.p

rodu

ctio

n[6

9,70

]

[74]

Shal

lot

Inse

ct.

resi

stan

ceB

acil

lus

thur

ingi

ensi

s.(B

T).

Cry

1Ca.

or.H

04.to

xin.

gene

sC

ompl

ete.

resi

stan

ce.to

war

d.ar

myw

orm

.(S.

exi

gua)

[8]

Cab

bage

,.C

hine

se.

cabb

age.

and.

colla

rds

Path

ogen

.re

sist

ance

Ant

i-se

nse.

Tur

nip.

Mos

aic.

Vir

us.N

ib.g

ene

Hig

h.le

vels

.of.

resi

stan

ce.to

.Tur

nip.

Mos

aic.

Vir

us[2

4]

Asp

ergi

llus

nig

er.g

luco

se.o

xida

seD

ecre

ased

.lesi

ons.

by.X

anth

omon

as c

ampe

stri

s[1

05]

Met

abol

ic.

engi

neer

ing

Thr

ee.A

rabi

dops

is.g

enes

.(M

AM

1,.C

YP7

9F1,

.C

YP8

3A1)

.invo

lved

.in.g

ener

atio

n.of

.alip

hatic

.gl

ucos

inol

ates

Alte

red.

gluc

osin

olat

e.co

mpo

sitio

n.to

war

ds.p

harm

acol

ogic

al.

impo

rtan

t.met

hyls

ulph

inyl

alky

l.glu

cosi

nola

tes

[101

]

Page 47:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

33Transgenic Vegetables

Thr

ee.A

rabi

dops

is.g

enes

.(C

YP7

9B3,

.CY

P79B

2,.

CY

P83B

1).in

volv

ed.in

.indo

le.g

luco

sino

late

.pr

oduc

tion

Alte

red.

gluc

osin

olat

e.ac

cum

ulat

ion,

.dri

ving

.acc

umul

atio

n.of

.in

dole

.glu

cosi

nola

tes

[102

]

Inse

ct.

resi

stan

ceB

T.C

ry1a

b.pr

otei

n,.c

hlor

opla

st.e

xpre

ssio

nH

igh.

leve

ls.o

f.re

sist

ance

.to.P

lute

lla

xylo

stel

la[9

]

BT

.Cry

1AC

.or.

Cry

1CC

olla

rds.

expr

essi

ng.e

ither

.gen

e.w

ere.

high

ly.r

esis

tant

.to.P

. xy

lost

ella

[10]

Abi

otic

.str

ess

E. c

oli.s

uper

oxid

e.di

smut

ase.

(SO

D).

and.

cata

lase

,.bot

h.co

nstit

utiv

e.an

d.ch

loro

plas

ticC

o-ex

pres

sion

.of.

both

.gen

es.e

nhan

ced.

tole

ranc

e.to

.SO

2.an

d.ot

her.

reac

tive.

oxyg

en.s

peci

es.(

RO

S)[5

9,58

]

Bra

ssic

a na

pus,

.LE

A.p

rote

inE

nhan

ced.

resi

stan

ce.to

.sal

t.and

.dro

ught

.str

esse

s[4

5]

E. c

oli .t

reha

lose

-6-p

hosp

hate

.syn

thas

e.ge

ne.o

r.ho

t.pe

pper

.LE

A.p

rote

in.g

ene

Res

ista

nce.

to.lo

w.le

vels

.of.

NaC

l.(20

0.m

M).

and.

mod

erat

e.le

vels

.of.

heat

.str

ess.

(45°

C)

[47]

Bro

ccol

i/ca

ulifl

ower

Nut

ritio

nal.

mod

ifica

tion

Bro

ccol

i.chl

orop

hylla

se,.a

ntis

ense

.exp

ress

ion

Slow

ing.

of.c

hlor

ophy

ll.b

reak

dow

n.an

d.1–

2.da

y.de

lay.

in.

post

harv

est.y

ello

win

g[1

06]

Bro

ccol

i.sol

uble

.aci

d.in

vert

ase,

.ant

isen

se.e

xpre

ssio

nH

ighe

r.le

vels

.of.

suga

rs.a

nd.p

rote

in.p

osth

arve

st.a

nd.s

low

ed.

flore

t.yel

low

ing

[107

]

Bro

ccol

i.AC

C.s

ynth

ase.

1.an

d.A

CC

.oxi

dase

,.ant

isen

se.

expr

essi

onD

ecre

ased

.leve

l.of.

post

harv

est.e

thyl

ene.

and.

dela

yed.

chlo

roph

yll.l

oss.

by.2

.day

s[1

08,1

09]

Inse

ct.

resi

stan

ceB

T.C

ry1a

b,.in

duci

ble.

expr

essi

onPr

otec

tion.

to.P

. xyl

oste

lla.

for.

up.to

.8.w

eeks

.aft

er.in

duct

ion

[110

]

Synt

hetic

.BT

.Cry

1Ab

Enh

ance

d.re

sist

ance

.to.P

. xyl

oste

lla

[12]

BT

.Cry

1AC

.and

.Cry

1C.o

r.C

ry1A

.and

.Cry

1CR

educ

ed.s

prea

d.of

.P. x

ylos

tell

a[1

3,11

1]

BT

.Cry

1Ab

Inhi

bite

d.gr

owth

.of.

P. x

ylos

tell

a[1

4]

Indi

an.

mus

tard

Inse

ct.

resi

stan

ceB

T.C

ry1A

c,.C

ry1C

.and

.co-

expr

esse

d.C

ry1A

c.an

d.C

ry1C

Res

ista

nce.

to.P

. xyl

oste

lla.

and.

BT-

resi

stan

t.mot

h.va

riet

ies

[15]

Nut

ritio

nal.

mod

ifica

tion

Ara

bido

psis

.γ-to

coph

erol

.met

hyltr

ansf

eras

eSh

ift.f

rom

.γ-t

ocop

hero

l.poo

ls.to

.the.

mor

e.ac

tive.

vita

min

.E.

(α-t

ocop

hero

l)

[112

]

(con

tinu

ed)

Page 48:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

34 Transgenic Horticultural Crops: Challenges and Opportunities

TAB

LE 2

.1 (

cont

inue

d)V

eget

able

Cro

p Sp

ecie

s Th

at H

ave

Bee

n En

gine

ered

to

Expr

ess

Spec

ific

Tran

sgen

es, a

nd t

heir

Res

ulti

ng E

ffec

ts

Cro

pTr

aits

Gen

e Ex

pres

sed

Res

ult

Ref

eren

ces

Pea/

bean

Dis

ease

.re

sist

ance

Bea

n.go

lden

.mos

aic.

viru

s.(B

GM

V).

AC

1.ge

ne,.R

NA

i.ex

pres

sion

Hig

h.re

sist

ance

.tow

ards

.BG

MV

[26]

Mut

ated

.rep

.gen

e.of

.BG

MV

Incr

ease

d.nu

mbe

r.of

.sym

ptom

less

.pla

nts.

com

pare

d.to

.no

ntra

nsfo

rmed

[25]

Abi

otic

.str

ess

B. n

apus

.LE

AIm

prov

ed.r

esis

tanc

e.to

.bot

h.N

aCl.a

nd.d

roug

ht.s

tres

ses

[46]

Nut

ritio

nal.

mod

ifica

tion

Mod

ified

.fee

dbac

k.in

sens

itive

.ric

e.an

thra

nila

te.

synt

hase

Hig

her.

leve

ls.o

f.fr

ee.tr

ypto

phan

.acc

umul

atio

n.an

d.to

tal.

tryp

toph

an.le

vels

[113

]

Inse

ct.

resi

stan

ceB

ean.

alph

a.am

ylas

e.in

hibi

tor.

1D

elay

ed.la

rval

.dev

elop

men

t.of.

the.

pea.

wee

vil

[6]

Com

mon

.bea

n.α-

amyl

ase.

inhi

bito

r.2

Incr

ease

d.re

sist

ance

.to.M

exic

an.b

ean.

wee

vil

[114

]

Cuc

umbe

rD

isea

se.

resi

stan

ceR

ice.

clas

s.I.

chiti

nase

Hig

h.re

sist

ance

.tow

ards

.B. c

iner

ea[2

9]

Abi

otic

.str

ess

Wild

.pot

ato.

dehy

drin

sE

nhan

ced.

resi

stan

ce.to

.chi

lling

.str

ess.

and.

incr

ease

d.fr

eezi

ng.

tole

ranc

e[1

15,1

16]

Nut

ritio

nal.

mod

ifica

tion

Cas

sava

.sup

erox

ide.

dism

utas

e,.f

ruit.

expr

essi

onH

ighe

r.ac

cum

ulat

ion.

of.S

OD

[117

]

Tha

umat

ococ

cus

dani

elli

i .tha

umat

in.I

ISw

eet.t

astin

g.ph

enot

ype,

.with

.min

or.r

esis

tanc

e.to

.P

seud

oper

onos

pora

cub

ensi

s[1

18]

Let

tuce

/sp

inac

hD

isea

se.

resi

stan

ceC

oat.p

rote

in.(

CP)

.gen

e.of

.lettu

ce.b

ig-v

ein.

asso

ciat

ed.

viru

s.(L

BV

aV).

in.s

ense

.or.

antis

ense

.ori

enta

tion

Sens

e.C

P.pr

ovid

ed.r

esis

tanc

e.to

.LB

VaV

,.whi

le.a

nti-

sens

e.C

P.ex

pres

sion

.gav

e.re

sist

ance

.to.L

BV

aV.a

nd.m

irafi

ori.l

ettu

ce.

viru

s

[20]

Fla

mm

ulin

a .sp

..oxa

late

.dec

arbo

xyla

se.g

ene

Red

uced

.Scl

erot

inia

scl

erot

ioru

m.d

isea

se.s

ympt

oms

[37]

Abi

otic

.str

ess

Ara

bido

psis

.AB

F3,.A

BA

.res

pons

ive.

gene

.tran

scri

ptio

n.fa

ctor

Hig

her.

tole

ranc

e.to

.bot

h.dr

ough

t.and

.col

d.st

ress

es[1

19]

B. n

apus

.LE

AIn

crea

sed.

tole

ranc

e.to

.sal

t.and

.dro

ught

.str

ess

[48]

Page 49:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

35Transgenic Vegetables

Nut

ritio

nal.

mod

ifica

tion

E. c

oli.a

spar

agin

e.sy

nthe

tase

.AIn

crea

sed.

aspa

ragi

ne,.a

spar

tate

.and

.glu

tam

ine.

in.a

dditi

on.to

.en

hanc

ed.v

eget

ativ

e.gr

owth

[120

]

Ara

bido

psis

.R2R

3-M

YB

.tran

scri

ptio

n.fa

ctor

Inhi

bite

d.pr

oduc

tion.

of.a

ntho

cyan

in.p

igm

ents

.and

.less

.red

.co

lora

tion

[121

]

E. c

oli .a

spar

agin

e.sy

nthe

tase

.AD

ecre

ased

.suc

rose

,.glu

cose

.and

.fru

ctos

e.an

d.in

crea

sed.

inul

in.

leve

ls[9

2]

Ara

bido

psis

.hom

ogen

tisat

e.ph

ytyl

tran

sfer

ase.

(hpt

).or

.to

coph

erol

.cyc

lase

.(T

C)

Ele

vate

d.vi

tam

in.E

.leve

ls[9

4]

Part

heno

ciss

us h

enry

ana.

stilb

ene.

synt

hase

Incr

ease

d.pr

oduc

tion.

of.r

esve

ratr

ol[1

22]

Tast

e.m

odif

ying

.mir

acul

in.f

rom

.Ric

hade

lla

dulc

ifica

Enh

ance

d.sw

eetn

ess.

and.

tast

e[8

9]

Ara

bido

psis

.gam

ma-

toco

pher

ol.m

ethy

ltran

sfer

ase

Alte

red.

pool

.of.

γ-to

coph

erol

.to.p

rodu

ce.m

ore.

activ

e.α-

toco

pher

ols

[93]

Med

ical

.ap

plic

atio

nsC

hick

en.α

-int

erfe

ron.

(ChI

FN)

Rec

ombi

nant

.ChI

FN.w

as.c

orre

ctly

.fol

ded.

and.

activ

e.in

.le

aves

,.with

.hig

h.le

vels

.of.

antiv

iral

.act

ivity

[80]

Cho

lera

.toxi

n.B

-pro

insu

lin.f

usio

n.pr

otei

nH

igh.

leve

ls.o

f.pr

oins

ulin

,.and

.red

uced

.sym

ptom

s.of

.pa

ncre

atic

.insu

litis

.in.m

ice

[83]

Synt

hetic

.E. c

oli.e

nter

otox

in.B

.(sL

TB

),.f

or.a

djuv

ant.

for.

co-a

dmin

iste

red.

antig

ens

Bio

logi

cally

.act

ive.

sLT

B.w

ere.

form

ed.in

.the.

leav

es[8

2]

Synt

hetic

.cho

lera

.toxi

n.B

.sub

unit.

(sC

TB

)H

igh.

leve

ls.o

f.sC

TB

,.pot

entia

lly.f

or.a

n.ed

ible

.vac

cine

[71]

HIV

-1.T

at.p

rote

inSp

inac

h.w

as.o

rally

.con

sum

ed.b

y.m

ice.

and.

wer

e.pr

imed

.upo

n.fu

rthe

r.di

rect

.DN

A.v

acci

natio

n.fo

r.hi

gh.ti

tre.

prod

uctio

n.of

.Ta

t.ant

ibod

ies

[72]

Rab

ies.

viru

s.gl

ycop

rote

inSp

inac

h.w

as.o

rally

.con

sum

ed.a

nd.d

eliv

ered

.Rab

ies.

viru

s.pr

otec

tion.

to.m

ice.

and.

hum

an.v

olun

teer

s[7

3]

Mea

sles

.hem

aggl

utin

in.p

rote

inL

ettu

ce.o

rally

.con

sum

ed.b

y.m

ice.

resu

lted.

in.h

igh.

leve

l.of.

mea

sle.

antib

ody.

prod

uctio

n[7

5]

Swee

t.po

tato

Nut

ritio

nal.

mod

ifica

tions

RN

Ai.o

f.gr

anul

e-bo

und.

star

ch.s

ynth

ase.

IR

emov

ed.o

ver.

90%

.of.

the.

amyl

ase.

in.s

tarc

h[8

7]

(con

tinu

ed)

Page 50:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

36 Transgenic Horticultural Crops: Challenges and Opportunities

TAB

LE 2

.1 (

cont

inue

d)V

eget

able

Cro

p Sp

ecie

s Th

at H

ave

Bee

n En

gine

ered

to

Expr

ess

Spec

ific

Tran

sgen

es, a

nd t

heir

Res

ulti

ng E

ffec

ts

Cro

pTr

aits

Gen

e Ex

pres

sed

Res

ult

Ref

eren

ces

Med

ical

.ap

plic

atio

nsH

uman

.lact

ofer

rin

Hig

h.le

vels

.of.

viab

le.p

oten

tially

.ther

apeu

tic.p

rote

in[1

23]

Tom

ato

Dis

ease

.re

sist

ance

Whe

at.o

xala

te.o

xida

seR

educ

tion.

in.f

olia

r.le

sion

s.by

.B. c

iner

ea.a

nd.S

. scl

erot

ioru

m[3

6]

Swee

t.pep

per.

ferr

edox

in.I

.(PF

LP)

Res

ista

nce.

to.R

. sol

anac

earu

m.a

nd.E

. car

otov

ora

[39]

Tom

ato.

β-1,

3.gl

ucan

ase.

(GL

U),

.alf

alfa

.def

ensi

n.ge

ne.

(AFP

).an

d.bi

vale

nt.G

LU

-AFP

Hig

h.le

vels

.of.

the.

GL

U-A

FP.r

esul

ted.

in.e

nhan

ced.

resi

stan

ce.

to.R

alst

onia

sol

anac

earu

m[3

8]

Pepp

er.b

asic

.PR

-1.a

nd.a

scor

bate

.per

oxid

ase-

like.

1E

nhan

ced.

tole

ranc

e.to

.Phy

toph

thor

a ca

psic

i[3

5]

Toba

cco.

osm

otin

.and

.bea

n.ch

itina

seR

esis

tanc

e.to

.Fus

ariu

m o

xysp

orum

f. s

p. L

ycop

ersi

ci[3

2]

Tom

ato.

leaf

.cur

l.vir

us.(

TL

CV

).re

plic

ase.

1,an

ti-se

nse.

expr

essi

onH

igh.

leve

l.of.

resi

stan

ce.to

.TL

CV

[22]

RN

Ai.f

or.T

LC

V.r

ep1.

and.

rep4

Res

ista

nce.

to.T

LC

V.w

as.o

bser

ved,

.the.

addi

tion.

of.th

e.se

cond

.R

NA

i.pre

vent

ed.e

volu

tion.

of.r

esis

tanc

e[2

3]

Mir

abil

is ja

lapa

.ant

imic

robi

al.p

eptid

e.an

d.m

aize

.gl

ucan

ase

Enh

ance

d.re

sist

ance

.to.A

lter

nari

a so

lani

[124

]

Tom

ato.

spot

ted.

wilt

.vir

us.(

TSW

V).

nucl

eopr

otei

nC

ompl

ete.

resi

stan

ce.in

.the.

field

.with

.no.

outc

ross

ing

[27,

28]

TL

CV

.coa

t.pro

tein

.(C

P)Sy

mpt

omle

ss.w

hen.

inoc

ulat

ed.w

ith.T

LC

V.a

fter

.15.

days

[19]

Ara

bido

psis

.thio

nin.

(thi

2.1)

,.fru

it.in

activ

e.ex

pres

sion

Lea

ves.

and.

root

s.w

ere.

sign

ifica

ntly

.mor

e.re

sist

ant.t

o.F

usar

ium

.and

.bac

teri

al.w

ilt[1

25]

Abi

otic

.str

ess

Tom

ato.

hydr

oxyc

inna

moy

l.CoA

.qui

nate

.tran

sfer

ase

Incr

ease

d.ph

enol

ic.le

vels

.and

.incr

ease

d.to

lera

nce.

tow

ard.

UV

.ra

diat

ion

[60]

Tom

ato.

omeg

a-3.

fatty

.aci

d.de

satu

rase

Res

ista

nce.

to.c

hilli

ng.s

tres

s.at

.low

.irra

dian

ce[6

1]

Chi

li.pe

pper

.ank

yrin

.rep

eat.d

omai

n.zi

nc.fi

nger

Dec

reas

ed.a

ccum

ulat

ion.

of.f

ree.

oxyg

en.r

adic

als.

and.

enha

nced

.re

sist

ance

.to.s

alin

ity.a

nd.o

xida

tive.

stre

ss[6

2]

Page 51:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

37Transgenic Vegetables

Tom

ato.

glyc

erol

-3-p

hosp

hate

.acy

ltran

sfer

ase.

gene

Incr

ease

d.le

vels

.of.

cis-

unsa

tura

ted.

fatty

.aci

ds.in

.the.

thyl

akoi

d.m

embr

ane,

.incr

easi

ng.to

lera

nce.

tow

ard.

chill

ing

[63]

Popl

ar.b

oilin

g.st

able

.pro

tein

.A.(

bspA

)In

crea

se.in

.wat

er.s

tres

s.to

lera

nce

[126

]

Art

hrob

acte

r gl

obif

orm

is.c

holin

e.ox

idas

eA

ccum

ulat

ion.

of.g

lyci

ne.b

etai

ne.a

nd.in

crea

se.in

.chi

lling

.to

lera

nce

[50]

E. c

oli .c

atal

ase,

.fol

iar.

expr

essi

onE

nhan

ced.

resi

stan

ce.to

.the.

herb

icid

e.pa

raqu

at.a

nd.in

crea

sed.

tole

ranc

e.to

.chi

lling

.and

.dro

ught

.str

esse

s[5

7]

Atr

iple

x ho

rten

sis.

beta

ine.

alde

hyde

.deh

ydro

gena

seE

nhan

ced.

tole

ranc

e.to

.mod

erat

e.le

vels

.of.

NaC

l[4

9]

Nut

ritio

nal.

mod

ifica

tion

Soyb

ean.

isofl

avon

e.sy

ntha

seM

ouse

.met

allo

thio

nein

s.(M

T-1)

Hig

h.le

vel.o

f.is

oflav

one.

accu

mul

atio

n.in

.the.

frui

t.ski

nE

leva

ted.

leve

ls.o

f.Z

n.an

d.SO

D[1

27]

[128

]

Ric

hade

lla

dulc

ifica

.mir

acul

inH

igh.

leve

ls.o

f.m

irac

ulin

.acc

umul

atio

n,.in

crea

sing

.tom

ato.

swee

tnes

s[9

0]

Oci

mum

bas

ilic

um.g

eran

iol.s

ynth

ase,

.rip

enin

g-sp

ecifi

c.ex

pres

sion

Alte

red.

terp

enoi

d.po

ol.a

nd.e

nhan

ced.

flavo

r[9

1]

Synt

hetic

.mam

mal

ian.

GT

P.cy

cloh

ydro

lase

,.fr

uit-

spec

ific.

expr

essi

onH

eigh

tene

d.ac

cum

ulat

ion.

of.p

teri

dine

.and

.fol

ates

[84]

[85]

Bac

teri

al.ly

cope

ne.b

eta-

cycl

ase.

(LB

c),.p

last

id.

expr

essi

onC

onve

rted

.hig

h.le

vels

.of.

lyco

pene

.to.β

-car

oten

e[9

7]

RN

Ai.o

f.en

doge

nous

.pho

tom

orph

ogen

esis

.reg

ulat

ory.

gene

,.det

iola

ted.

1.(D

ET

1),.f

ruit-

spec

ific.

expr

essi

onR

educ

tion.

in.D

ET

1.ac

tivity

,.with

.bot

h.ca

rote

noid

.and

.fla

vono

id.c

onte

nts.

incr

ease

d.si

gnifi

cant

ly[9

6]

Ara

bido

psis

.3-h

ydro

xym

ethy

lglu

tary

l.CoA

.and

.ba

cter

ial.1

-deo

xy-d

-xyl

ulos

e-5-

phos

phat

e.sy

ntha

seE

leva

ted.

tota

l.phy

tost

erol

s.an

d.ph

ytoe

ne.a

nd.β

-car

oten

e[9

5]

RN

A.s

ilenc

ing.

of.p

olyg

alac

turo

nase

.(PG

).an

d.ex

pans

in.f

ruit-

spec

ific.

expr

essi

onSi

gnifi

cant

ly.fi

rmer

.fru

it.th

roug

hout

.rip

enin

g.an

d.re

duce

d.su

scep

tibili

ty.to

.det

erio

ratio

n.in

.long

-ter

m.s

tora

ge[1

03]

[129

]

T. d

anie

llii

.thau

mat

inFr

uit.n

otic

eabl

y.sw

eete

r[8

8]

(con

tinu

ed)

Page 52:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

38 Transgenic Horticultural Crops: Challenges and Opportunities

TAB

LE 2

.1 (

cont

inue

d)V

eget

able

Cro

p Sp

ecie

s Th

at H

ave

Bee

n En

gine

ered

to

Expr

ess

Spec

ific

Tran

sgen

es, a

nd t

heir

Res

ulti

ng E

ffec

ts

Cro

pTr

aits

Gen

e Ex

pres

sed

Res

ult

Ref

eren

ces

Vac

cine

/m

edic

alH

uman

.inte

rleu

kin-

12.(

IL12

)R

educ

ed.b

acte

rial

.load

.whe

n.fe

d.to

.mic

e.in

fect

ed.w

ith.

myc

obac

teri

a[7

9]

Mod

ified

.hum

an.a

lpha

-1-a

ntitr

ypsi

nA

ccum

ulat

ion.

of.h

igh.

leve

ls.o

f.bi

olog

ical

ly.a

ctiv

e,.th

erap

eutic

.pr

otei

n[1

30]

Hum

an.b

eta-

amyl

oid

Acc

umul

atio

n.of

.hig

h.le

vels

.of.

the.

prot

ein,

.whe

n.fe

d.to

.mic

e.ex

hibi

ted.

an.im

mun

e.re

spon

se[1

31]

HIV

-1.T

at.p

rote

in,.f

ruit-

spec

ific.

expr

essi

onH

igh.

leve

ls.o

f.pr

otei

n.ac

cum

ulat

ion,

.that

.pro

duce

d.an

.im

mun

e.re

spon

se.in

.mic

e.w

hen.

cons

umed

[65]

Hep

atiti

s.B

.vir

us.la

rge.

surf

ace.

antig

en,.f

ruit-

spec

ific.

expr

essi

onH

igh.

leve

ls.o

f.pr

otei

n.ac

cum

ulat

ion.

in.m

atur

e.fr

uits

[66]

Hum

an.c

oagu

latio

n.Fa

ctor

.IX

,.fru

it-sp

ecifi

c.ex

pres

sion

Hig

h.le

vels

.of.

func

tiona

l.pro

tein

[81]

Hep

atiti

s.B

.sur

face

.ant

igen

Imm

une-

prim

ed.m

ice.

whe

n.fr

uit.w

as.o

rally

.con

sum

ed[6

7]

Part

ial.O

RF2

.of.

Hep

atiti

s.E

.vir

usPr

oduc

ed.im

mun

oact

ive.

Hep

atiti

s.E

.pro

tein

[68]

Inse

ct.

resi

stan

cePo

tato

.pol

yphe

nol.o

xida

seB

acil

lus

thur

ingi

ensi

s.C

ry6A

Incr

ease

d.re

sist

ance

.to.c

omm

on.c

utw

orm

sIn

crea

sed.

resi

stan

ce.to

.roo

t.kno

t.nem

atod

e[2

][1

6]

Popl

ar.c

hitin

ase,

.leaf

.exp

ress

ion

Del

ayed

.dev

elop

men

t.of.

Col

orad

o.po

tato

.bee

tle.la

rvae

[3]

Pota

to.P

I-II

.and

.car

boxy

pept

idas

e.in

hibi

tors

,.pr

otei

nase

.inhi

bito

rs,.l

eaf-

spec

ific.

expr

essi

onIn

crea

sed.

resi

stan

ce.to

.Hel

ioth

is o

bsol

eta.

and.

Lir

iom

yza

trif

olii

.larv

ae[5

]

Not

e:.

Gen

e.ex

pres

sion

.was

.con

stitu

tive.

unle

ss.o

ther

wis

e.st

ated

.

Page 53:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

39Transgenic Vegetables

stresses.(salinity.and.drought),.production.of.edible.vaccines.and.therapeutic.prod-ucts,.nutritional.enhancement,.and.metabolic.engineering..The.published.results.from.these.studies.show.some.very.interesting.trends.toward.better.stress.tolerance,.pest.and.disease.resistance,.and.more.nutritious.vegetable.crops.(Table.2.1)..For.the.most.part,.these.transgenic.vegetable.crop.species.have.been.evaluated.under.laboratory.and.greenhouse.conditions,.with.limited.field.trials..Several.studies,.however,.have.evaluated.these.materials.in.trials.with.animal.systems.for.the.assessment.of.vaccines.and.therapeutics..Collectively,.these.studies.clearly.show.the.potential.of.transgenic.vegetable.crops.with.beneficial.traits,.and.they.are.discussed.in.more.detail.below.

INSECT RESISTANCE

Resistance.of.plants.to.insects.is.a.much.desired.attribute,.potentially.reducing.the.number. of. insecticide. sprays. required.. The. following. are. examples. of. transgenic.strategies.used.to.reduce.insect.damage.on.vegetable.crops.

. 1..Manipulation.of.polyphenol.oxidase.(PPO).activity.could.provide.resistance.simultaneously.to.both.diseases.and.insect.pests.2.Transgenic.tomato.plants.constitutively.expressing.potato.PPO.gene.were.tested.for.insect.resistance..These.transgenic.plants.exhibited.up.to.nearly.sixfold.higher.PPO.activity.levels.compared.to.controls.2.The.PPO.transgenic.plants.clearly.showed.an.increase.in.resistance;.simple.growth.rates.of.common.cutworms.on.these.plants.were.up.to.three.times.lower.than.on.controls.and.larvae.consumed.less.foliage..In.addition,.increased.PPO.activity.led.to.higher.larval.mortality.2.These.results.suggest.a.critical.role.for.PPO-mediated.phenolic.oxidation.in.resistance.to.this.insect.2

. 2.. Insect.cytoskeletons.and.digestive.systems.contain.large.amounts.of.chitin,.which.can.be.broken.down.by.certain.plant.chitinases..Transgenic.tomato.seedlings. expressing. a. poplar. chitinase. gene. were. tested. for. resistance.toward.the.Colorado.potato.beetle,.which.can.cause.severe.losses.in.tomato.and.other.crops.3.The.plants.expressing.the.poplar.chitinase.gene.reduced.the. larval.development. allowing.approximately.50%. to. reach. the. second.larval.instar,.as.compared.to.over.90%.in.the.control.plants,3.suggesting.the.possibility.of.using.a.plant.chitinase.gene.for.promoting.insect.resistance.3

. 3..Plant.proteinase.inhibitors.(PIs).have.been.well.established.to.play.a.potent.defensive. role. against. predators. and. pathogens. (reviewed.by. Mosolov.and.Valueva4)..The.defensive.capacities.of.plant.PIs.rely.on.inhibition.of.proteases.present.in.insect.guts.or.secreted.by.microorganisms,.causing.a.reduction.in.the.availability.of.amino.acids.necessary.for.their.growth.and.development..Unlike. other. insecticidal. proteins,. for. PIs. to. be. active,. very. high. levels.of.recombinant.PI.protein.are.required.to.achieve.pest.resistance.4.Tissue.specific.or. inducible.expression.would.yield.higher. levels.at. the.required.site. and. time..Leaf-specific.overexpression.of. the.potato.protease. inhibi-tor.and.carboxypeptidase.inhibitors.in.tomato.resulted.in.increased.resis-tance.to.Heliothis obsoleta.and.Liriomyza trifolii.larvae.in.high-expressing.

Page 54:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

40 Transgenic Horticultural Crops: Challenges and Opportunities

homozygous. transgenic. lines. compared. to. controls.5. Seeds. of. transgenic.peas.expressing.a.α-amylase.inhibitor.reduced.pea.weevil.(Bruchus piso-rum.L.).survival.by.nearly.100%,.with.the.larval.mortality.occurring.at.an.early.instar..Conversely,.in.nontransgenic.cultivars,.essentially.100%.of.the.pea.weevils.emerged.as.adults.6

. 4..Bacillus thuringiensis. (Bt).crystalline. toxin.genes.(cry).have.been.exten-sively.used.to.develop.transgenic.insect.resistant.crop.plants.over.the.past.two.decades..Several.reports.are.available.on.different.synthetic.Bt.genes.expressed.both.individually.and.in.a.combinatorial.way.and.their.efficiency.in.pest. control. (reviewed. in.Christou. et. al.7)..A.cry1Ca. or. a.H04. hybrid.gene. was. expressed. in. leaf. tissues. of. beet. and. shallot.8. When. either. of.these.genes.were.expressed.at.high.levels.in.the.leaves,.it.resulted.in.nearly.complete.resistance.against.beet.armyworm.in.shallot.or.beet.8.Similarly,.transgenic. garlic. plants. expressing. cry1Ca. were. completely. resistant. to.beet.armyworm.in.a.number.of.in.vitro.bioassays.8.There.are.several.other.successful. examples. of. increased. insect. resistance. in. a. variety. of. trans-genic.vegetables.using.Bt.cry.genes.alone.or.in.combination..These.include.cabbage,9. collards,10. broccoli,11–13. and. cauliflower.14. The. success. of. Bt. in.controlling.insects.has.been.very.promising,.with.the.only.major.concern.being. the.development. of. pest. resistance. to. particular. Cry. proteins.. The.use. of. trap. plants. and. pyramiding. different. Cry. proteins. at. high. levels.through. chloroplast. expression. can.help. alleviate. the.potential. for. future.pest.resistance.13,15

NEMATODE RESISTANCE

Some.of.the.Bt.toxin.genes.also.have.known.nematicidal.activity..Expression.of.nema-ticidal.Cry6A.in.transgenic.tomato.plants.provided.protection.against.plant-parasitic.nematodes.16. When. Cry6A-expressing. roots. were. challenged. with. Meloidogyne incognita,.the.nematode.was.able.to.ingest.the.toxin,.which.resulted.in.a.significant.decrease.in.gall.production.by.up.to.fourfold..This.report.suggests. that.Bt.protein.can.confer.resistance.to.endoparasitic.nematodes,.and.therefore.Bt.toxin.proteins.are.potential.candidates.for.developing.nematode-resistant.transgenic.plants.17

PATHOGEN RESISTANCE

vIruS reSIStance

The.earliest.successful.development.of.virus-resistant.transgenic.vegetable.crops.uti-lized.the.viral.coat.protein-mediated.resistance.(CPMR).strategy.to.engineer.patho-gen.resistance.18.The.use.of.CPMR.continues.to.be.one.of.the.most.useful.mechanisms.for.viral.resistance,.having.been.used.for.tomato.leaf.curl.virus.resistance.in.tomato19.and.big.vein-associated.virus.resistance.in.lettuce.20.CPMR.requires.expression.of.the. viral. coat. (or. capsid). protein. gene. from. the. virus. in. transgenic.plants..When.exposed.to.the.viral. inoculum,.the.transgenic.plants.displayed.reduced.number.of.

Page 55:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

41Transgenic Vegetables

lesions,.reduced.rate.of.systemic.disease.development,.and.very.low.levels.of.virus.accumulation.compared.to.control.plants..In.some.instances,.the.transgenic.plant.was.protected.not.only.against.the.virus.from.which.the.coat.protein.gene.was.derived.but.also.against.other.serologically.unrelated.viruses.(reviewed.in.Prins.et.al.18)..Despite.the.widespread.use.of.CPMR,.it.is.believed.that.multiple.molecular.mechanisms.of.resistance.exist,.which.are.not.fully.understood.21.Currently,.CPMR.is.registered.for.use. in. transgenic.squash.and.zucchini,.with.the.potential.for.many.new.vegetable.crops.in.the.future.

Expression.of.viral.RNA-dependant.RNA-polymerases.(replicase).using.antisense.or.sense.constructs.has.also.been.effective.at.limiting.infection.and.spread.of.RNA.viruses..Replicase-mediated.resistance.appears. to.be.strain-specific.and. functions.through.lowering.the.overall.level.of.viral.replicases,.thus.reducing.the.viral.concen-tration..Replicase-mediated.viral.resistance.has.been.successfully.used.in.tomato.to.increase.resistance.to.tomato.leaf.curl.virus.22,23

Plant.DNA.viruses. do.not. encode. polymerases;. instead,. they. require. an. inter-action.between.viral.replication-associated.protein.(rep).and.the.host.plant’s.DNA.polymerase..Expression.of.mutated.viral.rep.gene.or.rep-gene.silencing.through.anti-sense.technologies.can.reduce.viral.titer.and.has.been.used.to.improve.viral.resis-tance.in.cabbage24.and.bean.25,26

Other.mechanisms.of.viral.resistance.include.expression.of.viral.nucleoproteins,.which.serve.to.disrupt.normal.movement.of.viral.proteins.and.nucleic.acid.packing.leading. to. resistance,. reducing. viral. symptoms.. Expression. of. nucleoproteins. has.been.used.in.tomato.to.reduce.symptoms.in.response.to.tomato-spotted.wilt.virus.27,28

funGal and bacterIal reSIStance

Enhanced.resistance.to.fungi.and.bacteria.has.been.demonstrated.using.a.number.of.different.strategies.for.several.vegetable.crop.species.(Table.2.1)..These.include.carrot,. cucumber,. lettuce,. and. tomato.. The. genes. and. corresponding. enzymes..produced. include. hydrolytic. enzymes. (chitinases. and. glucanases),. peroxidase,..pathogenesis-related.(PR).proteins.(thaumatin),.and.peptides..Expression.of.chitin-ases.or.β-1,3-glucanases,.which.are.PR-proteins.that.can.hydrolyze.the.major.struc-tural.polysaccharides.in.the.fungal.cell.wall.(chitin.and.laminarin),.provided.varying.levels. of. resistance. to. Botrytis cinerea. in. cucumber29. and. to. a. number. of. fungal.pathogens.infecting.carrot.30,31.Chitinase.expression.has.been.achieved.in.combina-tion.with.other.genes. including. osmotin. in. tomato32. to. reduce.Fusarium.wilt. and.with. lipid-transfer.protein. in. carrot,33.which. resulted. in. reduced. fungal. infection..Expression.of.another.PR-protein,. thaumatin,.also. enhanced. fungal.disease. resis-tance.in.carrot.34.Peroxidase.expression.reduced.Botrytis.and.Sclerotinia.infection.of.carrot.leaves31.and,.when.expressed.in.combination.with.PR-1,.reduced.Phytophthora.development.in.tomato.35

A.secondary.approach.has.been.to.engineer.expression.of.enzymes.that.degrade.pathogen. virulence. products,. e.g.,. oxalic. acid. oxidase. or. decarboxylase. to. break.down.oxalic.acid..For.example,.expression.of.a.wheat.oxalate.oxidase.gene.in.tomato.reduced.the.development.of.Botrytis.and.Sclerotinia36.while.an.oxalate.decarboxyl-ase.gene.from.the.fungus.Flammulina.also.led.to.reduced.Sclerotinia.development.

Page 56:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

42 Transgenic Horticultural Crops: Challenges and Opportunities

in. transgenic. lettuce.37.Both.of. these.genes.exhibited.the.ability.to.degrade.oxalic.acid,.an.important.pathogenicity.factor.for.this.fungus.36,37

For.bacterial.resistance,.gene.products.such.as.peroxidase,.ferredoxin,.and.defen-sins.reduced.disease.development.on.tomato.(Table.2.1).caused.by.several.pathogens..In.tomato,.bacterial.wilt.development.was.reduced.through.combined.expression.of.a.β-1,3-glucanase.and.defensin.gene38.while.expression.of.a.sweet.pepper.ferredoxin.gene.also.reduced.the.development.of.bacterial.blight.39

ABIOTIC STRESS TOLERANCE

Abiotic.stresses,.including.salinity,.temperature,.and.water.stresses,.are.among.the.most. limiting.stresses,. lowering.crop.yield.and.quality.worldwide..Growing.areas.that.experience.extreme.salt.and.water.stress.typically.grow.limited.amounts.of.veg-etable.crops,.which.can. lead. to. local.human.nutritional.deficiencies..Transgenic.vegetable. crops. capable.of.growing. on. saline. soil. or.with.minimum. irrigation. in.these.areas.could.help.stabilize.food.and.nutritional.production.in.these.regions.40

Osmotic.adjustment.at.the.cellular.level.is.a.vital.response.in.dealing.with.water,.salinity,. and. freezing. stresses.. Natural. plant. defenses. to. these. stresses. include.the. synthesis. and. accumulation. of. plant. compatible. solutes,. including. glycine.betaine,. sugars,. proline,. and. compatible. proteins. (late-embryogenesis. abundant.protein.[LEA],.dehydrins,.and.heat.shock.proteins).(reviewed.in.Cheong.and.Yun41)..Compatible. osmolytes. protect. the. plant. through. osmotic. adjustment,. which. helps.maintain. turgor,. scavenging. of. reactive. oxygen. species. (ROS),. and. the. stabiliza-tion.of.protein.structure.40.The.ability.to.regulate.osmotic.potential.using.compatible.solutes.has.increased.yield.under.drought.conditions.in.many.crop.plants.42,43.There.are. reports. of. transgenic. vegetables.with. increased. production. of. compatible. sol-utes,.resulting.in.increased.resistance.to.abiotic.stresses.(Table.2.1)..Two.of.the.more.commonly.used.strategies.in.transgenic.vegetables.are.the.overexpression.of.LEA.genes.and.overproduction.of.glycine.betaine..Normally,.LEA.genes.are.expressed.during. the. late. stages. of. seed. development;. however,. many. LEA. genes. are. also.expressed.in.vegetative.tissue.when.the.plants.undergo.an.abiotic.stress.44.Many.of.the.LEA.proteins.have.been.shown.to.confer.tolerance.to.drought,.salinity,.and.freez-ing.stresses.45.Overexpression.of.heterologous.LEA.proteins.has.been.successful.in.increasing.abiotic.stress.resistance.in.kidney.bean,46.Chinese.cabbage,45,47.and.let-tuce.48.Glycine.betaine.is.naturally.produced.in.many.plant.species,.and.high.accu-mulation.levels.are.associated.with.drought.and.salt.tolerance..Tomato.plants.do.not.produce.endogenous.glycine.betaine;.therefore,.plants.were.transformed.to.express.heterologous.betaine.aldehyde.dehydrogenase.(BADH)49.or.choline.oxidase.50.These.tomato.plants.were.able.to.withstand.moderately.high.levels.of.salinity.and.produced.viable.fruit.and.seeds..Carrot.accumulates.low.levels.of.glycine.betaine.naturally,.but.chloroplastic.overexpression.of.endogenous.BADH.resulted.in.enhanced.glycine.betaine.levels.51.These.transgenic.carrots.were.able.to.grow.on.soil.containing.physi-ologically.very.high.salt.levels.

Another. strategy. used. by. drought. and. salinity-resistant. plants. is. to. compart-mentalize. the.abundant.but. toxic.Na+. ions. to.utilize. them.for.osmotic.adjustment.

Page 57:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

43Transgenic Vegetables

by. transporting. the. ions. into. the. vacuole. using. tonoplastic. Na+/H+. antiporters.52.Transgenic.tomato.plants,.overexpressing.the.Arabidopsis.Na+/H+.antiporter.(Atnhx).gene,.were.able.to.grow.and.produce.fruit.at.relatively.high.levels.of.Na+,.without.accumulating.excess.Na+.in.the.fruit.52.The.Atnhx.gene.has.also.been.overexpressed.in.sugar.beet,.which.became.more.resistant.to.drought.stress,.in.addition.to.increas-ing.the.natural.level.of.sucrose.in.the.taproot.53,54

Abiotic.stresses.disrupt.normal.plant.metabolism.by.affecting.reaction.rate,.protein. stability,. and. membrane. integrity.. This. alteration. in. metabolism. leads.to.an. increase. in.accumulation.of.ROS. to.potentially. toxic. levels. (reviewed. in.Ashraf55).. Detoxification. of. ROS. occurs. naturally. to. some. extent. in. all. plant.species.through.the.production.of.detoxifying.enzymes.and.antioxidants.56.The.recently.employed.strategies.for.detoxifying.ROS.in.vegetable.crops.include.the.overexpression. of. the. detoxifying. enzymes. superoxide. dismutase. and. catalase.in. tomato57. and. Chinese. cabbage,58,59. resulting. in. enhanced. tolerance. to. abi-otic.stresses..Additionally,.more.complex.metabolic.engineering.to.increase.the.production.of.antioxidants.has.been.made.to.enhance.resistance.toward.abiotic.stresses.in.tomato.60–63

MEDICAL APPLICATIONS

edIble vaccIneS

Transgenic.vegetables.offer.an.attractive.option.for.vaccine.production,.since.nearly.any.antigenic.protein.can.be.expressed.in.plants.at.a.large.scale,.and.the.crops.can.be.grown.locally.64.Vaccines.can.also.be.produced.in.edible.parts.of.plants,.which.aids.in.delivery..Edible.plant-based.vaccines.can.be.made.against.an.entire.protein.or.just.the.desired.antigenic.peptides.from.viruses,.parasites,.or.bacterial.pathogens.64.Development.of. edible.vaccines.has.been.primarily.directed. to.pathogens,. which.infect.the.host.via.the.mucosal.surfaces.lining.the.digestive,.respiratory,.and.urinor-eproductive.tracts.of.the.body,.since.these.vaccines.need.to.be.absorbed.in.a.similar.fashion..Much.of.the.research.on.edible.vaccines.has.focused.on.tomato.fruit,.car-rot.taproots,.and.leafy.greens,65–73.since.they.can.be.consumed.raw,.eliminating.the.possibility. of. degradation. of. the. vaccine. during. the. cooking. process.. Expression.of. these. polypeptides. has. been. mainly. with. constitutive. promoters. while. some.research.in.tomatoes.used.fruit-specific.E8.promoter.65,66.In.recent.years,.successful..vegetable-based.edible.vaccines.have.been.produced.against.common.viruses.such.as.measles,69,70,74,75.rabies,73.and.hepatitis.B,66,68.common.bacterial.diseases.such.as.cholera,71.and.HIV,65,72,76.which.are.extremely.difficult.to.treat.

While.there.are.many.benefits.associated.with.the.production.of.vegetable-based.edible. vaccines,. there. are. a.number. of. limitations. to. this. technology.. One.of. the.major.limitations.is.obtaining.adequate.protein.concentrations.that.initiate.sufficient.immune.response.to.result.in.complete.immunity..Additionally.timing.of.doses.and.application.of.multiple.doses.is.crucial.and.will.need.to.be.addressed.before.these.edible.vaccines.are.used.for.larger.scale.applications..Despite.the.promise.in.allevi-ating.important.global.diseases,.there.are.currently.no.commercial.transgenic.veg-etable.plants.producing.edible.vaccines.

Page 58:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

44 Transgenic Horticultural Crops: Challenges and Opportunities

therapeutIc productS

A.range.of.other.therapeutic.agents.have.been.derived.from.transgenic.plants,.includ-ing.potato,.rice,.wheat,.and.corn.77.Recently,.there.has.been.increasing.focus.on.the.use.of.vegetable.crops.to.produce.these.therapeutic.products,.since.they.can.be.con-sumed.raw.(Table.2.1)..The.biopharmaceuticals.produced.to.date.in.vegetables.include.enzymes,.interleukins,.and.antimicrobial.peptides.for.humans.and.animals.as.well.as.blood-clotting.peptides..These.therapeutic.products.were.previously.or.are.currently.produced.in.animal,.yeast,.or.bacterial-cell.cultures..Plant-based.products.have.the.potential.for.significantly.lower.costs.and.reduced.potential.for.contamination.78.Oral.consumption.of.transgenic.tomato.fruit.containing.human.interleukin-12.resulted.in.a.dramatic.reduction.in.the.symptoms.of.tuberculosis.in.mice.79.The.production.of.transgenic.lettuce.expressing.chicken.interferon.has.indicated.the.possibility.of.using.transgenic.forage.crops.for.avian.feed.and.potentially.for.other.livestock.80

For.the.most.part,.the.amount.of.pharmaceutical.proteins.produced.in.the.trans-genic.vegetables.would.be.quite.low.(less.than.1%.of.total.soluble.protein)..This.level.of.expression.is.insufficient.for.compounds.that.are.not.highly.active,.such.as.blood.coagulation.factors.81.These.proteins.would.either.need.to.be.extracted.and.further.purified,.or.an.alternative.expression.system.would.need.to.be.employed.

A. limitation. of. using. edible. biopharmaceuticals. is. the. low. absorption. of. the.active.agent.through.the.mucosal.lining,.without.excessive.degradation..To.increase.the. absorption,. the. use. of. nontoxic. bacterial. adjuvants. has. been. investigated.82.Potentially,.very.promising.results.have.been.seen.in.lettuce.expressing.proinsulin.fusion.protein.with.a.bacterial.adjuvant.in.the.chloroplast.83.The.fusion.allowed.for.easier.uptake.of.the.insulin.and.alleviated.the.symptoms.of.pancreatic. insulitis. in.mice,.a.condition.similar.to.type.I.diabetes.

NUTRITIONAL MODIFICATIONS

enhanced nutrItIonal QualIty

Vegetable.crops.are.a.major.nutritional.source.of.many.essential.human..nutrients,.including.vitamins,.carotenoids,.and.flavonoids,.as.well.as.other.important..nutrients..However,.not.all.vegetables.are.rich.in.all.these.essential.nutrients..Folate.or..vitamin B9.is.an.essential.cofactor.for.the.synthesis.of.many.amino.acids.and.purines..Humans.cannot.synthesize.folates.that.must.be.supplemented.through.the.diet,.which.is.mainly.from.plant.sources..Leafy.greens.contain.high.natural.levels.of.folate;.however,.many.of.the.worldwide.food.staples.(grains.and.tubers).contain.inadequate.levels.of.folate,.which.can.lead.to.widespread.deficiencies.84.Folate.deficiency.can.lead.to.neural.tube.defects. and. other.human.diseases. and. is. a.global. health.problem..Because.plants.are.major.folate.sources.for.humans,. there.is.always.scope.to.enhance.plant.folate.levels.(biofortification)..Plants.synthesize.folate.from.pteridine,.p-aminobenzoic.acid.(PABA),.and.glutamate.moieties..A.synthetic.mammalian.GTP cyclohydrolase1.was.expressed.in.tomato.in.a.fruit-specific.manner.84.As.a.result,.the.fruit.pteridine.and.folate.increased.relative.to.controls.84.PABA.pools.were.depleted.in.engineered.fruit.that.were.higher.in.folate,.and.supplying.such.fruit.with.PABA.further.increased.their.

Page 59:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

45Transgenic Vegetables

folate.content.84.When.transgenic.PABA-.and.pteridine-overproduction. traits.were.combined.by.crossing,.vine-ripened.fruit.accumulated.up.to.25-fold.more.folate.than.controls.85.Transferring.the.folate.biosynthetic.branch.developed.in.tomatoes.to.staple.food.plants.such.as.sweet.potato,.could.potentially.increase.the.folate.intake.in.poor.countries.with.limited.access.to.fresh.vegetables.

Modification.of.starch.composition.of.tubers.enables.them.to.be.used.for.diverse.industrial. applications.. Amylose. and. amylopectin. are. the. two. principal. polysac-charide. components. of. most. natural. starches.86. In. sweet. potato. plants,. the. range.of.amylose.content.(10%–20%).is.narrow.in.comparison.with.other.crops,.thereby.making.them.less.amenable.for.industrial.uses..Since.the.ratio.of.amylase.to.amy-lopectin. is. an. important. textural. property. of. starch,. development. of. a. plant. type.that.contains.amylose-free.or.low.amylose.would.envisage.new.industrial.applica-tions.86,87. Amylose-free. transgenic. sweet. potato. plants. were. produced. by. inhibit-ing.sweet potato granule-bound starch synthase I (GBSSI).gene.expression.through.RNA.interference.86,87.GBSSI.is.one.of.the.key.enzymes.catalyzing.the.formation.of.amylose,.a.linear.alpha.(1,4)d-glucan.polymer,.from.ADP-glucose..Due.to.silencing.of.GBSSI.gene,.over.70%.of.the.regenerated.transgenic.plant.roots.contained.amylo-pectin.but.not.amylose..These.reports.suggest.that.RNA.interference.is.an.effective.method.for.manipulating.gene.expression.in.the.starch.metabolic.pathway.86,87

enhanced taSte

Fruit.taste.is.a.complex.genetic.trait.governed.by.multiple.genes.and.gene.interac-tions..Although. taste. improvement. in. food.crops.has.been.classically.achieved.by.careful.selection.and.hybridization.for.centuries,.it.is.one.of.the.traits.that.still.cannot.be.directly.manipulated.by.conventional.plant-breeding.methods.but.may.be.possible.through.genetic.engineering..Taste-modifying.proteins.are.alternative.sweeteners.and.flavor.enhancers,.and.manipulation.of.their.expression.may.enhance.the.nutritional.quality.and.consumer.preference..Thaumatin.is.a.sweet-tasting,.flavor-enhancing.pro-tein.present.in.the.fruits.of.Thaumatococcus daniellii,.an.African.shrub.88.Transgenic.tomato.lines.expressing.recombinant-thaumatin.protein.in.fruits.were.sweeter.than.the.controls,.which.was.confirmed.by.organoleptic.evaluation.88.Miraculin.is.a.taste-modifying.protein.present. in.the.red.berries.of.Richadella dulcifica..Miraculin.by.itself.is.not.sweet;.it.converts.the.sour.taste.of.ascorbic.acid,.acetic.acid,.and.citric.acid.into.a.sweet.taste.after.being.held.in.the.mouth.for.some.time..This.unique.property.has.led.to.increasing.interest.in.this.protein.for.expression.in.other.plants..Miraculin.was.constitutively.expressed.in.lettuce,.and,.as.a.result,.the.transgenic.leaves.accumu-lated.significant.levels.of.miraculin,.which.eventually.attributed.sweetness-inducing.activity.89,90. Similarly,. transgenic. tomato. plants. expressing. recombinant. miraculin.protein.accumulated.high.levels.in.both.leaves.and.fruits..The.purified.recombinant.miraculin.protein.from.transgenic.tomato.plants.showed.strong.sweetness-inducing.activity,.which.was.similar.to.that.of.native.miraculin.90

Similar.to.taste,.flavor.and.aroma.are.traits.that.are.often.rarely.available.within.existing.germplasm.and.hence.have.to.be.imported.from.related.or.alien.gene.pool..Ocimum basilicum. geraniol. synthase. gene. was. expressed. in. tomatoes. in. a. fruit-.specific.manner.using.the.tomato.ripening-specific.polygalacturonase.(PG).promoter..

Page 60:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

46 Transgenic Horticultural Crops: Challenges and Opportunities

Various.monoterpenes.that.contribute.to.fruity.and.floral.scents.were.found.to.accu-mulate.in.the.transgenic.tomatoes,.which.eventually.enhanced.the.flavor.and.aroma.of.the.flesh.91

Inulins. are. beneficial. for. human. health. and. are. produced. naturally. in. some.plants.as.storage.carbohydrates..They.serve.as.replacements.for.high.caloric.fats.and.sugars,.since.inulins.have.a.sweet.taste.and.are.not.absorbed.through.the.digestive.tract.. Transgenic. lettuce. lines. expressing. the. asparagine synthetase A. gene. from.Escherichia coli. accumulated. lowered.amounts.of. sucrose,.glucose,. and. fructose,.whereas.inulin.content.increased.up.to.30.times.in.transgenic.leaves.92.These.lettuce.genotypes.with.high.content.of.foliar.inulin.represent.useful.materials.for.breeding.strategies.and.a.potential.source.for.low-molecular-weight.inulin.useful.for.dietary.supplements,.in.addition.to.the.potential.for.enhanced.taste.

enhanced antIoxIdant actIvItIeS

Enhancement.of. antioxidant. content. is. an. important. trait. in. the. light.of.potential.health. benefits. imparted. by. these. chemicals. in. plants. and. animals.. α-Tocopherol.is. the.most.biologically.active.form.of.vitamin.E,.which.is. implicated.in.decreas-ing. the. risk.of. several. types.of.cancers,. coronary.heart.disease,.and.a.number.of..degenerative. human. conditions.. Manipulating. the. tocopherol. biosynthetic. path-way. in. plants. to. convert. tocopherols. into. more. active. α-tocopherol. form. could.have. significant. health. benefits.93. An. Arabidopsis. γ-tocopherol methyltransferase.(γ-TMT).gene.was.overexpressed.in.lettuce.to.improve.the.tocopherol.composition..This.resulted.in.higher.TMT.activity.and.the.conversion.of.the.γ-tocopherol.pool.to.α-tocopherol.in..transgenic.plants.93.In.another.attempt,.in.order.to.increase.tocoph-erol.content.by.increasing.total.flux.to.the.tocopherol.biosynthetic.pathway,.two.dif-ferent.Arabidopsis.genes.were.constitutively.expressed.in.lettuce..Transgenic.plants.expressing.either.of.these.genes.had.total.tocopherol.content.increased.by.more.than.twofold.mainly.due.to.an.increase.in.γ-tocopherol.94

Increased.isoprenoid.levels,.the.precursors.to.many.important.nutrients,.can.be.achieved. in. tomato. through. genetic. manipulation. of. mevalonic. acid. (MVA). and.methylerythritol-4-phosphate. (MEP). pathways,. leading. to. the. formation. of. iso-pentenyl. diphosphate. (IPP),. using. 3-hydroxymethylglutaryl. CoA. (hmgr-1). and.1-deoxy-d-xylulose-5-phosphate synthase.(dxs).genes,.respectively..Transgenic.toma-toes. expressing. the. Arabidopsis. hmgr-1. gene. had. double. the. phytosterol. levels.95.Additionally,. tomatoes. expressing. a. bacterial. dxs. gene. targeted. to. the. plastids.resulted. in. significantly. increased. carotenoid. content,. which. was. attributed. to.enhanced. levels.of.phytoene.and.β-carotene.95. In.order. to. increase. the.carotenoid.and.flavonoid.content.in.tomato.fruits,.an.endogenous.phytomorphogenesis.regula-tory.gene.(DET1).was.suppressed.by.RNAi.in.a.fruit-specific.manner.96.The.resulting.transgenic.fruits.accumulated.higher.levels.of.carotenoids.and.flavonoids.compared.to.the.controls.96.Plastid.expression.of.a.bacterial.lycopene-β-cyclase.gene.in.tomato.resulted.in.the.conversion.of.the.main.storage.carotenoid–lycopene,.to.β-carotene,.leading.to.a.fourfold.increase.in.provitamin.A.content.of.the.fruits.97

Although. β-carotene. (provitamin. A),.α-carotene,. and. lutein. are. widely. preva-lent. in. many. fruits. and. vegetables,. ketocarotenoids,. such. as. canthaxanthin. and.

Page 61:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

47Transgenic Vegetables

astaxanthin,.are.rarely.present.in.plants..Ketocarotenoids.are.strong.antioxidants.and.are.chemically.synthesized.and.used.as.dietary.supplements.and.as.pigments.in.the.aquaculture.and.neutraceutical.industries..Ketocarotenoid.biosynthetic.pathway.was.engineered.in.carrot.tissues.by.introducing.a.β-carotene ketolase.gene.isolated.from.the.red.alga.Haematococcus pluvialis.98.In.the.transgenic.carrot.taproots,.up.to.70%.of.total.carotenoids.were.converted.to.novel.ketocarotenoids,.with.accumulation.up.to.2.4.mg/g.root.dry.weight..Astaxanthin,.adonirubin,.and.canthaxanthin.were.most.prevalent,.followed.by.echinenone,.adonixanthin,.and.β-cryptoxanthin,.and.all.these.ketocarotenoids.have.neutraceutical.importance.98

Glucosinolates.are.an.important.group.of.secondary.metabolites.found.in.almost.all.the.members.of.the.family.Brassicaceae..Although.glucosinolates.are.well.known.for.their.toxic.effects.in.both.humans.and.animals.at.high.doses,.at.subtoxic.doses,.their.hydrolytic.and.metabolic.products.act.as.chemoprotective.agents.against.chemi-cally.induced.carcinogens.and.thereby.block.initiation.of.a.variety.of.tumors.in.addition.to.having.a.wide.range.of.bioactivities.99.Sulforaphane,.a.metabolite.of.methionine-derived.4-methylsulfinylbutyl.glucosinolate.(glucoraphanin),.has.attracted.attention.because.of. its. potential.anticarcinogenic.activity.100.Glucoraphanin. is.an.aliphatic.glucosinolate.abundant.in.broccoli.and.Arabidopsis.ecotype.Columbia,.but.nonexis-tent.in.Chinese.cabbage..Three.Arabidopsis.genes,.required.for.aliphatic.glucosino-late.biosynthesis,.were.introduced.into.Chinese.cabbage.101.The.resulting.transgenic.lines.accumulated.significantly.higher.levels.of.the.aliphatic.glucosinolates,.gluco-napin,.and.glucobrassicanapin.101,102

fruIt rIpenInG

Although.ripening.is.a.process,.which.renders.the.fruits.to.become.more.edible,.the.ripening-phenomenon. itself. can. be. either. beneficial. or. detrimental. to. both. fresh-ness. and. processing. quality. of. fruits. and. vegetables.. For. instance,. during. ripen-ing. of. tomato,. cell.wall. disassembly. is. closely. associated. with. loss. of. fresh. fruit.firmness.and.subsequently.with.a.loss.of.viscosity.in.the.processed.products..In.tomato,.PG and.expansin.(Exp).are.among.the.cell.wall.proteins.that.cooperatively.participate.in.ripening-associated.cell.wall.disassembly..Transgenic.suppression.of.either.LePG.or.LeExp1.expression.alone.resulted.in.altered.softening.and.shelf-life.characteristics. of. fruits.103. Suppression. of. LeExp1. or. LePG. alone. did. not. signifi-cantly.increase.fruit.firmness..However,.fruits.suppressed.for.both.LePG.and.LeExp1.expression. were. significantly. firmer. throughout. the. ripening. phase. and. were. less.susceptible.to.deterioration.during.long-term.storage..The.viscosity.of.juice.prepared.from. the. transgenic. tomato. fruit.with. reduced.LePG. and.LeExp1. expression. was.higher.than.that.of.controls.103

DISCUSSION

Although. genetically. engineered. tomato. (Flavr. Savr). with. enhanced. fruit-quality.characteristics.was.the.first.example.of.a.transgenic.vegetable.crop.to.be.marketed.in.the.United.States.and.United.Kingdom.in.the.1990s,.most. transgenic.vegetable.crop.species.have.not.reached.the.market.as.rapidly.as,.for.example,.transgenic.field.

Page 62:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

48 Transgenic Horticultural Crops: Challenges and Opportunities

crops. that. include.canola,.corn,. potato,. and.soybean..Transgenic. squash. and.zuc-chini.with.virus.resistance.followed.tomato.as. the.next.vegetable.crop.in.the.U.S..market..This.chapter.has.summarized.many.other.potentially.beneficial.traits. that.have.been.engineered. into.vegetable. crop. species..Some.of. these. traits. can.be.of.direct.benefit.to.the.grower,.e.g.,.insect.or.herbicide.resistance,.while.others.would.have.benefits.to.the.consumer,.e.g.,.enhanced.vitamins,.flavor,.and.quality..While.there.appears.to.be.continuing.interest.in.the.applications.of.biotechnology.to.vegetable.crop.species,.several.requirements.still.must.be.met.to.ensure.success.in.transforma-tion..A.well.defined.and.reproducible.tissue-culture.system.is.needed,.together.with.an.efficient.transformation.method.as.well.as.an.appropriate.selection.system.to.dis-tinguish.transformed.cells.from.non-transformed.cells..While.an.increasing.number.of.vegetable.crop. species. are.becoming.amenable. to. transformation. technologies,.there.are.still.some.limitations..It.appears.that.only.a.few.techniques.are.available.to.introduce.foreign.genes.into.vegetable.crop.species,.with.the.most.popular.being.Agrobacterium-mediated. transformation.. Optimization. of. gene. transfer. methods,.transformation.efficiencies,.and.tissue-culture.procedures.still.remain.a.challenge.for.some.vegetable.species..The.most.amenable.species.appear.to.be.tomato.and.carrot.

There.are.also.other.issues.that.need.to.be.addressed.before.widespread.utility.of.transgenic.vegetable.crop.species.occurs..The.traits.engineered.into.the.respective.crops.need. to.be. evaluated.under. replicated.field. conditions.over. several.years. to.ensure.the.introduced.genes.confer.the.desired.phenotype..Furthermore,.the.horti-cultural.attributes.in.the.transgenic.lines.should.be.similar.to.those.in.the.existing.non-transgenic. cultivar..These. lines. should. demonstrate. a. clear. advantage. (to. the.grower,.the.consumer).compared.to.that.currently.existing.in.the.crop.species.germ-plasm..While. these.criteria.have.been.met.with. the.currently.approved. transgenic.corn,.canola,.soybean,.and.potato.cultivars,.they.still.require.additional.effort.for.the.transgenic.lines.of.vegetable.crops.under.study.

Consumer. acceptance. of. vegetable. crops. that. contain. transgenes. will. require.that.the.same.stringent.criteria.used.to.evaluate.other.transgenic.food.plants.be.met..Perhaps.more.so. than. transgenic.field.crops,. transgenic.vegetable.crops. that.are.consumed.fresh.may.face.additional.consumer.concerns.that.will.require.that.evi-dence. of. their. benefits. be. made. clear.. In. the. case. of. vitamin-enhanced. tomatoes.or.high-antioxidant.carrots,. these.could.provide.a.strong.example.of. the.potential.benefits.of.the.transgenic.produce..The.other.issues.regarding.use.of.marker.genes,.spread.of.the.transgenes.through.pollen,.potential.for.resistance.selection.in.the.case.of.insect.or.fungal.pests,.and.allergenicity.of.the.introduced.protein.are.all.similar.to.those.required.for.other.transgenic.crops.and.need.to.be.satisfied.

REFERENCES

. 1.. Punja,.Z..K..and.Feeney,.M.,.Progress.in.vegetable.crop.transformation.and.future.pros-pects.and.challenges,.in.Genetically Modified Crops,.eds..Liang,.G..H..and.Skinner,.D..Z.,.Haworth.Press,.New.York,.2004,.Chap..12.

. 2.. Mahanil,.S..et.al.,.Overexpression.of.tomato.polyphenol.oxidase.increases.resistance.to.common.cutworm,.Plant Sci.,.174,.456,.2008.

. 3.. Lawrence,.S..D..and.Novak,.N..G.,.Expression.of.poplar.chitinase.in.tomato.leads.to.inhibition.of.development.in.Colorado.potato.beetle,.Biotechnol. Lett.,.28,.593,.2006.

Page 63:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

49Transgenic Vegetables

. 4.. Mosolov,.V..V..and.Valueva,.T..A.,.Proteinase.inhibitors.in.plant.biotechnology:.A.review,.Appl. Biochem. Microbiol.,.44,.233,.2008.

. 5.. Abdeen,.A..et.al.,.Multiple.insect.resistance.in.transgenic.tomato.plants.over-expressing.two.families.of.plant.proteinase.inhibitors,.Plant Mol. Biol.,.57,.189,.2005.

. 6.. Sousa-Majer,.M..J..et.al.,.Bean.alpha-amylase.inhibitors.in.transgenic.peas.inhibit.devel-opment.of.pea.weevil.larvae,.J. Econ. Entomol.,.100,.1416,.2007.

. 7.. Christou,.P..et.al.,.Recent.developments.and.future.prospects.in.insect.pest.control.in.transgenic.crops,.Trends Plant Sci.,.11,.302,.2006.

. 8.. Zheng,.S..J..et.al.,.Two.different.Bacillus thuringiensis.toxin.genes.confer.resistance.to.beet.armyworm.(Spodoptera exigua Hubner).in.transgenic.Bt-shallots.(Allium cepa L.),.Transgenic Res.,.14,.261,.2005.

. 9.. Liu,.C..W..et.al.,.Expression.of.a.Bacillus thuringiensis.toxin.(cry1Ab).gene.in.cabbage.(Brassica oleracea L. var. capitata L.).chloroplasts.confers.high. insecticidal.efficacy.against.Plutella xylostella,.Theor. Appl. Genet.,.117,.829,.2008.

. 10.. Cao,.J.,.Shelton,.A..M.,.and.Earle,.E..D.,.Development.of.transgenic.collards.(Brassica oleracea L.,.var. acephala).expressing.a.cry1Ac.or.cry1C.Bt.gene. for.control.of. the.diamondback.moth,.Crop. Prot.,.24,.804,.2005.

. 11.. Chen,. M.. et. al.,. Impact. of. single-gene. and. dual-gene. Bt. broccoli. on. the. herbivore.Pieris rapae.(Lepidoptera:.Pieridae).and.its.pupal.endoparasitoid.Pteromalus puparum.(Hymenoptera:.Pteromalidae),.Transgenic Res.,.17,.545,.2008.

. 12.. Viswakarma,.N..et.al.,.Insect.resistance.of.transgenic.broccoli.(‘Pusa.Broccoli.KTS-1’).expressing.a.synthetic.cryIA(b).gene,.J. Hort. Sci. Biotechnol.,.79,.182,.2004.

. 13.. Cao,.J..et.al.,.Broccoli.plants.with.pyramided.cry1Ac.and.cry1C.Bt.genes.control.diamond-back.moths.resistant.to.Cry1A.and.Cry1C.proteins,.Theor. Appl. Genet.,.105,.258,.2002.

. 14.. Chakrabarty,.R..et.al.,.Agrobacterium-mediated.transformation.of.cauliflower:.Optimization.of.protocol.and.development.of.Bt-transgenic.cauliflower,.J. Biosci.,.27,.495,.2002.

. 15.. Cao,. J.,. Shelton,.A..M.,. and. Earle,. E.. D.,. Sequential. transformation. to. pyramid. two.Bt genes.in.vegetable.Indian.mustard.(Brassica juncea L.).and.its.potential.for.control.of.diamondback.moth.larvae,.Plant Cell Rep.,.27,.479,.2008.

. 16.. Li,.X..Q..et.al.,.Resistance.to.root-knot.nematode.in.tomato.roots.expressing.a.nemati-cidal.Bacillus thuringiensis.crystal.protein,.Plant Biotechnol. J.,.5,.455,.2007.

. 17.. Li,.X..Q..et.al.,.Expression.of.Cry5B.protein.from.Bacillus thuringiensis.in.plant.roots.confers.resistance.to.root-knot.nematode,.Biol. Control,.47,.97,.2008.

. 18.. Prins,.M..et.al.,.Strategies.for.antiviral.resistance.in.transgenic.plants,.Mol. Plant Pathol.,.9,.73,.2008.

. 19.. Raj,. S.. K.. et. al.,. Agrobacterium-mediated. tomato. transformation. and. regeneration.of. transgenic. lines.expressing.Tomato. leaf.curl.virus.coat.protein.gene. for. resistance.against.TLCV.infection,.Curr. Sci.,.88,.1674,.2005.

. 20.. Kawazu,.Y.. et. al.,.A. transgenic. lettuce. line. with. resistance. to. both. lettuce. big-vein..associated.virus.and.mirafiori.lettuce.virus,.J. Am. Soc. Hort. Sci.,.131,.760,.2006.

. 21.. Bendahmane,.M..et.al.,.Coat.protein-mediated.resistance.to.TMV.infection.of.Nicotiana tabacum. involves.multiple.modes.of.interference.by.coat.protein,.Virology,.366,.107,.2007.

. 22.. Praveen,.S..et.al.,.Engineering.tomato.for.resistance.to.tomato.leaf.curl.disease.using.viral.rep.gene.sequences,.Plant Cell Tissue Organ Cult.,.83,.311,.2005.

. 23.. Ramesh,.S..V.,.Mishra,.A..K.,. and.Praveen,.S.,.Hairpin.RNA-mediated. strategies. for.silencing.of.Tomato.leaf.curl.virus.AC1.and.AC4.genes.for.effective.resistance.in.plants,.Oligonucleotides,.17,.251,.2007.

. 24.. Yu,.Z..D.,.Zhao,.S..Y.,.and.He,.Q..W.,.High.level.resistance.to.Turnip.mosaic.virus.in.Chinese.cabbage.(Brassica campestris ssp pekinensis.(Lour).Olsson).transformed.with.the.antisense.NIb.gene.using.marker-free.Agrobacterium tumefaciens.infiltration,.Plant Sci.,.172,.920,.2007.

Page 64:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

50 Transgenic Horticultural Crops: Challenges and Opportunities

. 25.. Faria,. J.. C.. et. al.,. Partial. resistance. to. Bean. golden. mosaic. virus. in. a. transgenic.common.bean.(Phaseolus vulgar L.).line.expressing.a.mutated.rep.gene,.Plant Sci.,.171, 565,.2006.

. 26.. Bonfim,.K..et.al.,.RNAi-mediated.resistance.to.Bean.golden.mosaic.virus.in.geneti-cally.engineered.common.bean.(Phaseolus vulgaris),.Mol. Plant–Microbe Interact.,.20,.717,.2007.

. 27.. Nervo,.G..et.al.,.Characterization.of.two.tomato.lines.highly.resistant.to.tomato.spotted.wilt.virus.following.transformation.with.the.viral.nucleoprotein.gene,.J. Plant Pathol.,.85,.139,.2003.

. 28.. Accotto,.G..P..et.al.,.Field.evaluation.of.tomato.hybrids.engineered.with.tomato.spotted.wilt.virus.sequences.for.virus.resistance,.agronomic.performance,.and.pollen-mediated.transgene.flow,.Phytopathology,.95,.800,.2005.

. 29.. Kishimoto,.K..et.al.,.Detailed.analysis.of.rice.chitinase.gene.expression.in.transgenic.cucumber.plants.showing.different. levels.of.disease.resistance.to.gray.mold.(Botrytis cinerea),.Plant Sci.,.162,.655,.2002.

. 30.. Baranski,.R.,.Klocke,.E.,.and.Nothnagel,.T.,.Chitinase.CHIT36.from.Trichoderma har-zianum. enhances. resistance.of. transgenic.carrot. to.fungal.pathogens,.J. Phytopathol.,.156,.513,.2008.

. 31.. Wally,.O.,.Jayaraj,.J.,.and.Punja,.Z..K.,.Comparative.resistance.to.foliar.fungal.pathogens.in.transgenic.carrot.plants.expressing.genes.encoding.for.chitinase,.B-1,3-glucanase.and.peroxidase,.Eur. J. Plant Pathol.,.123,.331,.2009.

. 32.. Ouyang,.B..et.al.,.Transformation.of. tomatoes.with.osmotin.and.chitinase.genes.and.their.resistance.to.Fusarium.wilt,.J. Hort. Sci. Biotechnol.,.80,.517,.2005.

. 33.. Jayaraj,.J..and.Punja,.Z..K.,.Combined.expression.of.chitinase.and.lipid.transfer.protein.genes.in.transgenic.carrot.plants.enhances.resistance.to.foliar.fungal.pathogens,.Plant Cell Rep.,.26,.1539,.2007.

. 34.. Punja,.Z..K.,.Transgenic.carrots.expressing.a.thaumatin-like.protein.display.enhanced.resistance.to.several.fungal.pathogens,.Can. J. Plant Pathol.,.27,.291,.2005.

. 35.. Sarowar,.S..et.al.,.Constitutive.expression.of.two.pathogenesis-related.genes.in.tomato.plants. enhanced. resistance. to. oomycete. pathogen. Phytophthora capsici,. Plant Cell Tissue Organ Cult.,.86,.7,.2006.

. 36.. Walz,.A..et.al.,.Expression.of.an.oxalate.oxidase.gene.in.tomato.and.severity.of.disease.caused.by.Botrytis cinerea.and.Sclerotinia sclerotiorum,.Plant Pathol.,.57,.453,.2008.

. 37.. Dias,.B..B..A..et.al.,.Expression.of.an.oxalate.decarboxylase.gene.from.Flammulina.sp..in.transgenic.lettuce.(Lactuca sativa).plants.and.resistance.to.Sclerotinia sclerotiorum,.Plant Pathol.,.55,.187,.2006.

. 38.. Chen,.S..C.,.Liu,.A..R.,.and.Zou,.Z..R.,.Overexpression.of.glucanase.gene.and.defensin.gene.in.transgenic.tomato.enhances.resistance.to.Ralstonia solanacearum,.Russ. J. Plant Physiol.,.53,.671,.2006.

. 39.. Huang,.H..E..et.al.,.Resistance.enhancement.of.transgenic.tomato.to.bacterial.pathogens.by.the.heterologous.expression.of.sweet.pepper.ferredoxin-I.protein,.Phytopathology,.97,.900,.2007.

. 40.. Bohnert,.H.. J..and.Jensen,.R..G.,.Strategies. for. engineering.water-stress. tolerance. in.plants,.Trends Biotechnol.,.14,.89,.1996.

. 41.. Cheong,.M..S..and.Yun,.D..J.,.Salt-stress.signaling,.J. Plant. Biol.,.50,.148,.2007.

. 42.. Wang,.W..X.,.Vinocur,.B.,.and.Altman,.A.,.Plant.responses.to.drought,.salinity.and.extreme.temperatures:.Towards.genetic.engineering.for.stress.tolerance,.Planta,.218,.1,.2003.

. 43.. Zhang,.J..X.,.Nguyen,.H..T.,.and.Blum,.A.,.Genetic.analysis.of.osmotic.adjustment.in.crop.plants,.J. Exp. Bot.,.50,.291,.1999.

. 44.. Bray,. E.. A.,. Bailey-Serres,. J.,. and. Weretilnyk,. E.,. Responses. to. abiotic. stresses,. in.Biochemistry and Molecular Biology of Plants,.eds..Buchanan,.B.,.Gruissem,.W.,.and.Jones,.R.,.American.Society.of.Plant.Physiologists,.Rockville,.MD,.2000,.Chap..22.

Page 65:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

51Transgenic Vegetables

. 45.. Park,.B..J..et.al.,.Genetic.improvement.of.Chinese.cabbage.for.salt.and.drought.tolerance.by.constitutive.expression.of.a.B. napus.LEA.gene,.Plant Sci.,.169,.553,.2005.

. 46.. Liu,.Z..C..et.al.,.The.novel.use.of.a.combination.of.sonication.and.vacuum.infiltration.in.Agrobacterium-mediated.transformation.of.kidney.bean.(Phaseolus vulgaris L.).with.lea.gene,.Mol. Breed.,.16,.189,.2005.

. 47.. Park,. S.. H.. et. al.,.A. comparative. study. on. the. protective. role. of. trehalose. and. LEA.proteins.against.abiotic.stresses. in. transgenic.Chinese.cabbage. (Brassica campestris).overexpressing.CaLEA.or.otsA,.J. Plant. Biol.,.46,.277,.2003.

. 48.. Park,.B..J..et.al.,.Increased.tolerance.to.salt-.and.water-deficit.stress.in.transgenic.lettuce.(Lactuca sativa L.).by.constitutive.expression.of.LEA,.Plant Growth Regul.,.45,.165,.2005.

. 49.. Jia,.G..X..et.al.,.Transformation.of.tomato.with.the.BADH.gene.from.Atriplex.improves.salt.tolerance,.Plant Cell Rep.,.21,.141,.2002.

. 50.. Park,.E.. J.. et. al.,.Genetic. engineering. of.glycinebetaine. synthesis. in. tomato. protects.seeds,.plants,.and.flowers.from.chilling.damage,.Plant J.,.40,.474,.2004.

. 51.. Kumar,.S.,.Dhingra,.A.,.and.Daniell,.H.,.Plastid-expressed.betaine.aldehyde.dehydro-genase.gene.in.carrot.cultured.cells,.roots,.and.leaves.confers.enhanced.salt.tolerance,.Plant Physiol.,.136,.2843,.2004.

. 52.. Zhang,.H..X..and.Blumwald,.E.,.Transgenic.salt-tolerant.tomato.plants.accumulate.salt.in.foliage.but.not.in.fruit,.Nat. Biotechnol.,.19,.765,.2001.

. 53.. Yang,.A..F.. et. al.,.Efficient. transformation.of. beet. (Beta vulgaris). and.production.of.plants.with.improved.salt-tolerance,.Plant Cell Tissue Organ Cult.,.83,.259,.2005.

. 54.. Liu,.H..et.al.,.Transgenic.salt-tolerant.sugar.beet.(Beta vulgaris L.).constitutively.express-ing.an.Arabidopsis thaliana.vacuolar.Na+/H+.antiporter.gene,.AtNHX3,.accumulates.more.soluble.sugar.but.less.salt.in.storage.roots,.Plant Cell Environ.,.31,.1325,.2008.

. 55.. Ashraf,.M.,.Biotechnological.approach.of.improving.plant.salt.tolerance.using.antioxi-dants.as.markers,.Biotechnol. Adv.,.27,.84,.2009.

. 56.. Zhu,.J..K.,.Salt.and.drought.stress.signal.transduction.in.plants,.Annu. Rev. Plant Biol.,.53,.247,.2002.

. 57.. Mohamed,.E..A..et.al.,.Overexpression.of.bacterial.catalase.in.tomato.leaf.chloroplasts.enhances.photo-oxidative.stress.tolerance,.Plant Cell Environ.,.26,.2037,.2003.

. 58.. Tseng,.M..J.,.Liu,.C..W.,.and.Yiu,.J..C.,.Tolerance.to.sulfur.dioxide.in.transgenic.Chinese.cabbage. transformed. with. both. the. superoxide. dismutase. containing. manganese. and.catalase.genes.of.Escherichia coli,.Sci. Hort.,.115,.101,.2008.

. 59.. Tseng,.M..J.,.Liu,.C..W.,.and.Yiu,.J..C.,.Enhanced.tolerance.to.sulfur.dioxide.and.salt.stress.of.transgenic.Chinese.cabbage.plants.expressing.both.superoxide.dismutase.and.catalase.in.chloroplasts,.Plant Physiol. Biochem.,.45,.822,.2007.

. 60.. Cle,.C..et.al.,.Modulation.of.chlorogenic.acid.biosynthesis.in.consequences.for.phenolic.accumulation.and.UV-tolerance,.Phytochemistry,.69,.2149,.2008.

. 61.. Liu,.X..Y..et.al.,.Overexpression.of. tomato.chloroplast.omega-3.fatty.acid.desaturase.gene. alleviates. the. photoinhibition. of. photosystems. 2. and. 1. under. chilling. stress,.Photosynthetica,.46,.185,.2008.

. 62.. Seong,.E..S..et.al.,.Tomato.plants.overexpressing.CaKR1.enhanced.tolerance.to.salt.and.oxidative.stress,.Biochem. Biophys. Res. Commun.,.363,.983,.2007.

. 63.. Sui,.N..et. al.,.Overexpression.of.glycerol-3-phosphate.acyltransferase.gene. improves.chilling.tolerance.in.tomato,.Planta,.226,.1097,.2007.

. 64.. Mason,.H..S..et.al.,.Edible.plant.vaccines:.Applications.for.prophylactic.and.therapeutic.molecular.medicine,.Trends Mol. Med.,.8,.324,.2002.

. 65.. Ramirez,.Y..J..P..et.al.,.Fruit-specific.expression.of.the.human.immunodeficiency.virus.type. 1. Tat. gene. in. tomato. plants. and. its. immunogenic. potential. in. mice,. Clin. Vac. Immunol.,.14,.685,.2007.

. 66.. Lou,.X..M..et.al.,.Expression.of.the.human.hepatitis.B.virus.large.surface.antigen.gene.in.transgenic.tomato.plants,.Clin. Vac. Immunol.,.14,.464,.2007.

Page 66:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

52 Transgenic Horticultural Crops: Challenges and Opportunities

. 67.. Gao,.Y..et.al.,.Oral.immunization.of.animals.with.transgenic.cherry.tomatillo.expressing.HBsAg,.World J. Gastroenterol.,.9,.996,.2003.

. 68.. Ma,.Y.. et. al.,. Expression. of. ORF2. partial. gene. of. hepatitis. E. virus. in. tomatoes. and.immunoactivity.of.expression.products,.World J. Gastroenterol.,.9,.2211,.2003.

. 69.. Bouche,.F..B..et.al.,.Neutralizing.immunogenicity.of.a.polyepitope.antigen.expressed.in. a. transgenic. food. plant:.A. novel. antigen. to. protect. against. measles,. Vaccine,.21, 2065,.2003.

. 70.. Marquet-Blouin,.E..et.al.,.Neutralizing. immunogenicity.of. transgenic.carrot. (Daucus carota L.)-derived.measles.virus.hemagglutinin,.Plant Mol. Biol.,.51,.459,.2003.

. 71.. Kim,.Y..S..et.al.,.Expression.of.a.cholera.toxin.B.subunit.in.transgenic.lettuce.(Lactuca sativa L.). using. Agrobacterium-mediated. transformation. system,. Plant Cell Tissue Organ Cult.,.87,.203,.2006.

. 72.. Karasev,.A..V.. et. al.,. Plant. based. HIV-1. vaccine. candidate:.Tat. protein. produced. in.spinach,.Vaccine,.23,.1875,.2005.

. 73.. Yusibov,.V..et.al.,.Expression.in.plants.and.immunogenicity.of.plant.virus-based.experi-mental.rabies.vaccine,.Vaccine,.20,.3155,.2002.

. 74.. Bouche,.F..B..et.al.,.Induction.of.broadly.neutralizing.antibodies.against.measles.virus.mutants.using.a.polyepitope.vaccine.strategy,.Vaccine,.23,.2074,.2005.

. 75.. Webster,.D..E..et.al.,.Measles.virus.hemagglutinin.protein.expressed.in.transgenic.let-tuce. induces.neutralizing.antibodies. in.mice. following.mucosal.vaccination,.Vaccine,.24,.3538,.2006.

. 76.. Zhou,.F..et.al.,.High-level.expression.of.human.immunodeficiency.virus.antigens.from.the.tobacco.and.tomato.plastid.genomes,.Plant Biotechnol. J.,.6,.897,.2008.

. 77.. Goldstein,.D..A..and.Thomas,.J..A.,.Biopharmaceuticals.derived.from.genetically.modi-fied.plants,.QJM. Int. J. Med.,.97,.705,.2004.

. 78.. Pujol,. M.. et. al.,. Fighting. cancer. with. plant-expressed. pharmaceuticals,. Trends Biotechnol.,.25,.455,.2007.

. 79.. Elias-Lopez,.A..L..et.al.,.Transgenic.tomato.expressing.interleukin-12.has.a.therapeutic.effect.in.a.murine.model.of.progressive.pulmonary.tuberculosis,.Clin. Exp. Immunol.,.154,.123,.2008.

. 80.. Song,. L.. et. al.,. Transient. expression. of. chicken. alpha. interferon. gene. in. lettuce,.J. Zhejiang Univ.,.9,.351,.2008.

. 81.. Zhang,. H.. et. al.,. Expression. of. human. coagulation. Factor. IX. in. transgenic. tomato.(Lycopersicon esculentum),.Biotechnol. Appl. Biochem.,.48,.101,.2007.

. 82.. Kim,.T..G..et.al.,.Synthesis.and.assembly.of.Escherichia coli.heat-labile.enterotoxin.B.subunit.in.transgenic.lettuce.(Lactuca sativa),.Protein Expr. Purif.,.51,.22,.2007.

. 83.. Ruhlman,.T..et.al.,.Expression.of.cholera.toxin.B-proinsulin.fusion.protein.in.lettuce.and.tobacco.chloroplasts—Oral.administration.protects.against.development.of.insulitis.in.non-obese.diabetic.mice,.Plant Biotechnol. J.,.5,.495,.2007.

. 84.. de.la.Garza,.R..D..et.al.,.Folate.biofortification.in.tomatoes.by.engineering.the.pteridine.branch.of.folate.synthesis,.Proc. Natl. Acad. Sci. USA,.101,.13720,.2004.

. 85.. de.la.Garza,.R..I..D.,.Gregory,.J..F.,.and.Hanson,.A..D.,.Folate.biofortification.of.tomato.fruit,.Proc. Natl. Acad. Sci. USA,.104,.4218,.2007.

. 86.. Noda,.T..et.al.,.Physicochemical.properties.of.amylose-free.starch.from.transgenic.sweet.potato,.Carbohydr. Polym.,.49,.253,.2002.

. 87.. Otani,.M..et.al.,.Inhibition.of.the.gene.expression.for.granule-bound.starch.synthase.I.by.RNA.interference.in.sweet.potato.plants,.Plant Cell Rep.,.26,.1801,.2007.

. 88.. Bartoszewski,. G.. et. al.,. Modification. of. tomato. taste. in. transgenic. plants. carrying. a.thaumatin.gene.from.Thaumatococcus daniellii.Benth,.Plant Breed.,.122,.347,.2003.

. 89.. Sun,. H.. J.. et. al.,. Functional. expression. of. the. taste-modifying. protein,. miraculin,. in.transgenic.lettuce,.FEBS Lett.,.580,.620,.2006.

Page 67:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

53Transgenic Vegetables

. 90.. Sun,.H..J..et.al.,.Genetically.stable.expression.of.functional.miraculin,.a.new.type.of.alternative.sweetener,.in.transgenic.tomato.plants,.Plant Biotechnol. J.,.5,.768,.2007.

. 91.. Davidovich-Rikanati,.R..et.al.,.Enrichment.of.tomato.flavor.by.diversion.of. the.early.plastidial.terpenoid.pathway,.Nat. Biotechnol.,.25,.899,.2007.

. 92.. Sobolev,.A..P..et.al.,.Strong.increase.of.foliar.inulin.occurs.in.transgenic.lettuce.plants.(Lactuca sativa L.).overexpressing.the.Asparagine Synthetase.A.gene.from.Escherichia coli,.J. Agric. Food Chem.,.55,.10827,.2007.

. 93.. Cho,.E..A..et.al.,.Expression.of.gamma-tocopherol.methyltransferase.transgene.improves.tocopherol.composition.in.lettuce.(Lactuca sativa L.),.Mol. Cells,.19,.16,.2005.

. 94.. Lee,. K.. et. al.,. Overexpression. of. Arabidopsis. homogentisate. phytyltransferase. or.tocopherol.cyclase.elevates.vitamin.E.content.by.increasing.gamma-tocopherol.level.in.lettuce.(Lactuca sativa L.),.Mol. Cells,.24,.301,.2007.

. 95.. Enfissi,.E..M..A..et.al.,.Metabolic.engineering.of.the.mevalonate.and.non-mevalonate.isopentenyl. diphosphate-forming. pathways. for. the. production. of. health-promoting.isoprenoids.in.tomato,.Plant Biotechnol. J.,.3,.17,.2005.

. 96.. Davuluri,. G.. R.. et. al.,. Fruit-specific. RNAi-mediated. suppression. of. DET1. enhances.carotenoid.and.flavonoid.content.in.tomatoes,.Nat. Biotechnol.,.23,.890,.2005.

. 97.. Wurbs,. D.,. Ruf,. S.,. and. Bock,. R.,. Contained. metabolic. engineering. in. tomatoes.by  expression. of. carotenoid. biosynthesis. genes. from. the. plastid. genome,. Plant J.,.49,.276,.2007.

. 98.. Jayaraj,. J.,.Devlin,.R.,.and.Punja,.Z.,.Metabolic. engineering.of.novel.ketocarotenoid.production.in.carrot.plants,.Transgenic Res.,.17,.489,.2008.

. 99.. Keck,.A..S..and.Finley,.J..W.,.Cruciferous.vegetables:.Cancer.protective.mechanisms.of.glucosinolate.hydrolysis.products.and.selenium,.Integr. Cancer Ther.,.3,.5,.2004.

.100.. Fahey,. J.. W.. et. al.,. Sulforaphane. inhibits. extracellular,. intracellular,. and. antibiotic-resistant.strains.of.Helicobacter pylori.and.prevents.benzo[a]pyrene-induced.stomach.tumors,.Proc. Natl. Acad. Sci. USA,.99,.7610,.2002.

.101.. Zang,.Y..X.. et. al.,.Metabolic. engineering.of. aliphatic.glucosinolates. in.Chinese.cabbage.plants.expressing.Arabidopsis.MAM1,.CYP79F1,.and.CYP83A1,.BMB Rep.,.41,.472,.2008.

.102.. Zang,.Y..X..et.al.,.Metabolic.engineering.of.indole.glucosinolates.in.Chinese.cabbage.plants.by.expression.of.Arabidopsis.CYP79B2,.CYP79B3,.and.CYP83B1,.Mol. Cells,.25,.231,.2008.

.103.. Powell,.A..L..T..et.al.,.Simultaneous.transgenic.suppression.of.LePG.and.LeExp1.influ-ences.fruit.texture.and.juice.viscosity.in.a.fresh.market.tomato.variety,.J. Agric. Food Chem.,.51,.7450,.2003.

.104.. Baranski,.R.,.Klocke,.E.,.and.Nothnagel,.T.,.Enhancing.resistance.of.transgenic.carrot.to.fungal.pathogens.by.the.expression.of.Pseudomonas fluorescence.microbial.factor.3.(MF3).gene,.Physiol. Mol. Plant Pathol.,.71,.88,.2007.

.105.. Lee,.Y..H..et.al.,.Enhanced.disease.resistance.in.transgenic.cabbage.and.tobacco.express-ing.a.glucose.oxidase.gene.from.Aspergillus niger,.Plant Cell Rep.,.20,.857,.2002.

.106.. Chen,.L..F..O..et.al.,.Transgenic.broccoli.(Brassica oleracea var. italicia).with.antisense.chlorophyllase.(BoCLH1).delays.postharvest.yellowing,.Plant Sci.,.174,.25,.2008.

.107.. Eason,.J..R..et.al.,.Suppressing.expression.of.a.soluble.acid.invertase.(BoINV2).in.broccoli.(Brassica oleracea). delays. postharvest. floret. senescence. and. downregulates. cysteine.protease.(BoCP5).transcription,.Physiol. Plant.,.130,.46,.2007.

.108.. Higgins,.J..D..et.al.,.The.production.of.marker-free.genetically.engineered.broccoli.with.sense.and.antisense.ACC.synthase.1.and.ACC.oxidases.1.and.2.to.extend.shelf-life,.Mol. Breed.,.17,.7,.2006.

.109.. Gapper,.N..E..et.al.,.Senescence-associated.down-regulation.of.1-aminocyclopropane-1-carboxylate.(ACC).oxidase.delays.harvest-induced.senescence.in.broccoli,.Funct. Plant Biol.,.32,.891,.2005.

Page 68:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

54 Transgenic Horticultural Crops: Challenges and Opportunities

.110.. Cao,. J.. et. al.,. Bacillus thuringiensis. protein. production,. signal. transduction,. and.insect. control. in. chemically. inducible. PR-1a/cry1Ab. broccoli. plants,. Plant Cell Rep.,.25,.554,.2006.

.111.. Zhao,.J..Z..et.al.,.Transgenic.plants.expressing.two.Bacillus thuringiensis.toxins.delay.insect.resistance.evolution,.Nat. Biotechnol.,.21,.1493,.2003.

.112.. Yusuf,.M..A..and.Sarin,.N..B.,.Antioxidant.value.addition.in.human.diets:.Genetic.trans-formation.of.Brassica juncea.with.gamma-TMT.gene. for. increased.alpha-tocopherol.content,.Transgenic Res.,.16,.109,.2007.

.113.. Hanafy,.M..S..et.al.,.Accumulation.of.free.tryptophan.in.azuki.bean.(Vigna angularis).induced.by.expression.of.a.gene.(OASA1D).for.a.modified.at-subunit.of.rice.anthrani-late.synthase,.Plant Sci.,.171,.670,.2006.

.114.. Nishizawa,.K..et.al.,.Assessment.of. the. importance.of. alpha-amylase. inhibitor-2. in.bruchid.resistance.of.wild.common.bean,.Theor. Appl. Genet.,.114,.755,.2007.

.115.. Yin,.Z..M..et.al.,.Transcriptional.expression.of.a.Solanum sogarandinum.pGT:.Dhn10.gene.fusion.in.cucumber,.and.its.correlation.with.chilling.tolerance.in.transgenic.seedlings,.Cell. Mol. Biol. Lett.,.9,.891,.2004.

.116.. Yin,.Z..M..et.al.,.Expression.of.a.Solanum sogarandinum.SK3-type.dehydrin.enhances.cold.tolerance.in.transgenic.cucumber.seedlings,.Plant Sci.,.170,.1164,.2006.

.117.. Lee,.H..S..et.al.,.Transgenic.cucumber.fruits.that.produce.elevated.level.of.an.anti-aging.superoxide.dismutase,.Mol. Breed.,.11,.213,.2003.

.118.. Szwacka,.M.. et. al.,.Variable.properties.of. transgenic. cucumber.plants. containing. the.thaumatin.II.gene.from.Thaumatococcus daniellii,.Acta Physiol. Plant.,.24,.173,.2002.

.119.. Vanjildorj,.E..et.al.,.Overexpression.of.Arabidopsis.ABF3.gene.enhances.tolerance.to.drought.and.cold.in.transgenic.lettuce.(Lactuca sativa),.Plant Cell Tissue Organ Cult.,.83,.41,.2005.

.120.. Giannino,.D..et.al.,.The.overexpression.of.asparagine synthetase.A.from.E-coli.affects.the. nitrogen. status. in. leaves. of. lettuce. (Lactuca sativa L.). and. enhances. vegetative.growth,.Euphytica,.162,.11,.2008.

.121.. Park,.J..S..et.al.,.Arabidopsis.R2R3-MYB.transcription.factor.AtMYB60.functions.as.a.transcriptional.repressor.of.anthocyanin.biosynthesis.in.lettuce.(Lactuca sativa),.Plant Cell Rep.,.27,.985,.2008.

.122.. Liu,.S..J..et.al.,.High.content.of.resveratrol.in.lettuce.transformed.with.a.stilbene.syn-thase.gene.of.Parthenocissus henryana,.J. Agric. Food Chem.,.54,.8082,.2006.

.123.. Min,.S..R..et.al.,.Production.of.human.lactoferrin.in.transgenic.cell.suspension.cultures.of.sweet.potato,.Biol. Plant.,.50,.131,.2006.

.124.. Schaefer,. S.. C.. et. al.,. Enhanced. resistance. to. early. blight. in. transgenic. tomato. lines.expressing.heterologous.plant.defense.genes,.Planta,.222,.858,.2005.

.125.. Chan,. Y.. L.. et. al.,. Transgenic. tomato. plants. expressing. an. Arabidopsis. thionin.(Thi2.1). driven. by. fruit-inactive. promoter. battle. against. phytopathogenic. attack,.Planta,.221, 386,.2005.

.126.. Roy,. R.. et. al.,.Transformation. of. tomato. cultivar. ‘Pusa. Ruby’. with. bspA. gene. from.Populus tremula.for.drought.tolerance,.Plant Cell Tissue Organ Cult.,.84,.55,.2006.

.127.. Shih,.C..H..et.al.,.Accumulation.of.isoflavone.genistin.in.transgenic.tomato.plants.over-expressing.a.soybean.isoflavone.synthase.gene,.J. Agric. Food Chem.,.56,.5655,.2008.

.128.. Sheng,.J..P..et.al.,.Improving.zinc.content.and.antioxidant.activity.in.transgenic.tomato.plants.with.expression.of.mouse.metallothionein-I.by.mt-I.gene,.J. Agric. Food Chem.,.55,.9846,.2007.

.129.. Brummell,.D..A..et.al.,.Postharvest.fruit.quality.of.transgenic.tomatoes.suppressed.in.expression.of.a.ripening-related.expansin,.Postharvest Biol. Tech.,.25,.209,.2002.

.130.. Agarwal,.S..et. al.,.Expression.of.modified.gene.encoding. functional.human.alpha-1-antitrypsin.protein.in.transgenic.tomato.plants,.Transgenic Res.,.17,.881,.2008.

.131.. Youm,.J..W..et.al.,.Transgenic. tomatoes.expressing.human.beta-amyloid.for.use.as.a.vaccine.against.Alzheimer’s.disease,.Biotechnol. Lett.,.30,.1839,.2008.

Page 69:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

55

3 Transgenic Ornamental Crops

Beverly A. Underwood and David G. Clark

INTRODUCTION

Ornamental.crops.can.be.classified.as.floriculture.and.nursery.plants,.shrubs,.trees,.and.foliage.plants.for.outdoor.and.indoor.use..Ornamental.crops.are.produced.with.the.purpose.of.beautifying,.decorating,.or.enhancing.the.environment,.and.exclude.plants. intended. for. commercial. food. production. such. as. vegetables. and. fruits.1.

CONTENTS

Introduction............................................................................................................... 55Flower.Color............................................................................................................. 56

Flavonoids............................................................................................................56Chalcones.and.Aurones................................................................................... 57Anthocyanins................................................................................................... 58

Carotenoids..........................................................................................................60Plant.Volatiles............................................................................................................ 62

Floral.Fragrance................................................................................................... 62Fragrance.and.Color........................................................................................65

Volatiles.and.Insect.Plant.Defense.......................................................................65Flower.and.Leaf.Longevity.......................................................................................66

Floral.Longevity...................................................................................................66Altering.Ethylene.Responses.Genetically.by.Inhibiting.Ethylene Biosynthesis..................................................................................... 67Inhibiting.Ethylene.Responses.by.Disrupting.Ethylene.Signal.Transduction....... 68

Leaf.Longevity.....................................................................................................69Plant.Architecture...................................................................................................... 70

Plant.Height.......................................................................................................... 71Flower.Morphology............................................................................................. 71Fruit.and.Flower.Size........................................................................................... 72Agrobacterium rhizogenes rol.Genes................................................................... 72

Biotic.Stress.Tolerance.............................................................................................. 73Current.and.Future.Issues.in.Ornamental.Biotechnology......................................... 74Acknowledgments..................................................................................................... 75References................................................................................................................. 75

Page 70:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

56 Transgenic Horticultural Crops: Challenges and Opportunities

Production. of. ornamental. crops. is. a. global. industry,. having. a. multibillion. dollar.value. worldwide. driving. the. development. and. introduction. of. novel. ornamental.plants.solely.for.human.use.

Novel.ornamental.plants.have.been.developed.by.traditional.breeding.techniques,.including.hybridization. and.mutation.breeding,. and.more. recently.by. introducing.precise,.direct.genetic.changes.through.genetic.engineering..There.are.major.poten-tial.benefits. to.genetic.engineering. including. the.opportunity. for. the. introduction.of.genes. and. traits.not.present. in. the.natural. gene.pool.of. the. species.of. interest.without.altering.the.genetic.background..A.variety.of.consumer.and.producer.traits.have.been.successfully.modified.in.ornamental.plants.through.genetic.engineering,.including. flower. color,. fragrance,. plant. architecture,. cut. flower. vase. life,. disease.resistance,.abiotic.stress,.and.herbicide.tolerance.2,3.This.chapter.provides.an.over-view. of. the. traits. modified. by. transgenic. technology,. examines. the. benefits,. and.discusses.issues.that.have.limited.the.commercialization.of.transgenic.ornamental.crops.over.the.past.decade.

FLOWER COLOR

Flower.color.and.color.pattern.are.key.elements.in.consumer.selection.of.flowering.ornamentals.. It.has.been.of. considerable. interest. to.develop.commercial. series.of.plants.with.a.full.spectrum.of.flower.colors..Producing.a.series.of.plants.having.flow-ers.with.the.full.color.palette.through.traditional.breeding.is.challenging.for.most.species.since.the.genetics.required.for.producing.all.the.color.compounds.is.usually.limiting..Through. identification.and. introduction.of.color.producing.enzymes.and.pathways.from.other.plants,.new.colors.can.be.introduced.into.varieties.that.would.otherwise.be.difficult.to.obtain.(Table.3.1).

Flavonoids,.carotenoids,.chlorophyll,.and.betalins.are.the.primary.classes.of.com-pounds.that.give.flowers.their.characteristic.color..Flavonoids.are.widely.distributed.in.many.plant.families,.conferring.shades.of.red,.orange,.yellow,.blue,.and.violet..Carotenoids.are. derived. from. isoprenoids. and. give. rise. to. orange. and. yellow. shades,. marigolds.being. the. classic. example.. Betalins. are. water-soluble. nitrogen-containing. com-pounds.derived.from.tyrosine.and.are.taxonomically.restricted.to.the.Caryophyllales.4.Biosynthesis.of.these.compounds.has.been.well.characterized.in.many.plant.species.and.readers.are.referred.to.published.reviews.elsewhere.for.detailed.information.about.their.biosynthesis.4,5

flavonoIdS

Chalcones,.aurones,.anthocyanins,.flavones,.and.flavonols.are.the.major.groups.of.flavonoids.that.impart.the.colorful.floral.display.seen.in.the.angiosperms..Novel.and.complex.coloration.patterns.have.been.achieved.primarily.by.manipulation.of.the.fla-vonoid.biosynthetic.pathway.including.preventing.or.redirecting.flavonoid.synthesis.through.gene. silencing,. introducing.biosynthetic.enzymes.with.different. substrate.preferences.or.novel.activities,.and.modifying.expression.of.regulatory.transcription.factors.controlling.flavonoid.biosynthetic.genes.(Table.3.1).

Page 71:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

57Transgenic Ornamental Crops

Chalcones and AuronesChalcone.synthesis.is.the.first.committed.step.in.flavonoid.synthesis..The.chalcones.serve. as. the. substrates. for. anthocyanin. and,. in. some. plant. species,. aurone. synthe-sis..The.first.committed.step.in.flavonoid.synthesis.is.catalyzed.by.chalcone.synthase.(CHS),. which. produces. tetrahydroxychalcone. (THC). from. p-coumaroyl. CoA. and.three. molecules. of. malonyl-CoA. (reviewed. in. Grotewold4).. Silencing. CHS. expres-sion. through. antisense. or. cosuppression. techniques. leads. to. white. or. complex. col-oration.patterns.in.many.plant.species.including.petunia,6,7.lisianthus,8.gerbera,9.and.chrysanthemums.10.THC.has.a.pale.yellow.color,.but.does.not.accumulate.in.plants..

TABLE 3.1Genetically Engineered Ornamental Plants with Modified Flower Color

Plant Initial Flower ColorGenetic

ModificationTransgenic Phenotype References

Petunia.x.hybrida Pale.pink 35S::ZmDFR Red [19]

Purple Antisense.CHS White,.white-purple.patterning

[148]

Purple Sense.CHS White,.white-purple.patterning

[6,7]

White 35S::MtCHR Pale.yellow [12]

Purple Pale.purple

Dianthus caryophyllus

Pink Sense.CHS Pale.pink [149]

Red-orange Antisense.F3H White [58]

White PhF3′5′H.and.DFR Blue [16]

Dendrathema grandiflora

Pink Sense.CHSAntisense.CHS

Pink,.white,.light.pink

[10]

Eustoma grandiflorum

Purple Antisense.CHS White,.white-purple.patterning

[8]

Rosa hybrida Red Sense.CHS Pale.pink [149]

Pink,.mauve 35S::VwF3′5′H Bluish.flowers [150]

Mauve RNAi.DFR,.35S::IhDFR,.35S::VwF3′5′H

Plants.with.all.three.genes.have.bluish.flowers

[150]

Gerbera hybrida Red Antisense.CHS,.DFR Pink [9]

Lotus japonicus Pale.yellow 35S::crtW Bright.yellow,.bright.orange

[29]

Torenia hybrida Purple-blue Sense.CHS White [151]

Purple-blue Sense.DFR White.patterning [151]

Purple-blue Sense.F3′5′H Pink [151]

Purple-blue Sense.F3′5′H Dark.pink [152]

35S::.F3′HPurple-blue Coexpression.of.

Am4′CGT + AmAS1.and.RNAi.DFR

Yellow.flowers [14]

Page 72:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

58 Transgenic Horticultural Crops: Challenges and Opportunities

In nonlegumes,.THC.is.quickly.converted.to.naringenin.by.chalcone.isomerase,.which.closes.the.central.ring.of.THC.leading.to.synthesis.of.flavanones..However,.in.legumes,.such.as.Medicago truncatula and Glycine max,. chalcone. reductase. (CHR). reduces.THC.to.6′-deoxychalcone.11.Transgenic.petunias.expressing.Medicago CHR.in.a.white.flowering.background.accumulate.novel.6′-deoxychalcones,.have.lower.levels.of.flavo-nols,.and.exhibit.a.pale.yellow.corolla.color.while.a.pale.purple.color.is.observed.when.the.transgene.is.expressed.in.a.purple.petunia.background.12

Aurones.are.a.class.of.flavonoids.produced.from.chalcones.that.give.flowers.bright.fluorescent.yellow.colors..They.often.provide.nectar.guides.for.visiting.pollinators.and.have.a.more.limited.species.distribution.in.plants.13,14.In.Antirrhinum,.the.chal-cone.THC.undergoes.glucosylation.and.oxidative.cyclization.to.produce.aurones.15.Yellow.Torenia hybrida.flowers.were.created.from.a.line.normally.producing.blue.flowers.by.silencing.native.dihydroflavonol.4-reductase.(DFR).expression.and.intro-ducing.two.Antirrhinum.genes.for.aurone.biosynthesis.14.By.blocking.anthocyanin.accumulation. and. expressing. the. Antirrhinum. aureusidin. synthase. and. chalcone.4′-O-glucosyltransferase.genes,.aurones.accumulated.and.were.not.masked.by. the.blue.malvidin-type.anthocyanins.normally.accumulating.in.the.Summer.Wave.Blue.Torenia.cultivar.

AnthocyaninsAnthocyanins.give.flowers.red,.orange,.blue,.and.violet.hues..They.are.synthesized.in.the.cytosol.from.flavonones.and.accumulate.in.the.vacuole.where.molecular.inter-actions,. vacuolar. pH,. ion. cofactors,. and. cellular. shape. all. contribute. to. the. final.visual.effect..There.are.six.main.groups.of.anthocyanins:.cyanidin,.delphinidin,.mal-vidin,.pelargonidin,.peonidin,.and.petunidin..Their.synthesis.begins.with.the.pro-duction.of.dihydroflavonols.when.hydroxyl.groups.are.positioned.on.the.flavonones.by.flavanone.3-hydroxylase.(F3H),.flavonone.3′-hydroxylase.(F3′H),.and.flavanone.3′5′-hydroxylase.(F3′5′H).(Figure.3.1)..Dihydroflavonols.are.reduced.to.leucoantho-cyanidins.by.DFR..DFR.substrate.preference. is.variable.in.different.plant.species.and.represents.a.critical.entry.point.in.color.production.

Lack. of. F3′5′H. activity. is. associated. with. the. absence. of. blue. coloration. in.many.families.of.flowering.plants,.including.carnation.(reviewed.by.Chandler.and.Tanaka16)..Blue.color.has.been. introduced. into.carnation. through. introduction.of.petunia.F3′5′H.and.DFR.genes.into.a.white.flowered.background.lacking.DFR.and.F3′H.activity.16.Transgenic.carnations.expressing.both.of. these.genes.accumulate.the.delphinidin.type.anthocyanins.17.These.blue-violet.transgenic.carnations,.mar-keted.as.the.Moon.series,.were.developed.by.Florigene.Pty..Ltd..and.Suntory.Ltd..and.are.the.first.and.only.transgenic.ornamental.to.date.that.has.been.successfully.commercialized.. While. F3′H. and. F3′5′H. activities. are. important. for. blue. color.other.factors.including.co-pigments.and.coordinating.metal.ions.are.also.key.fac-tors. in. determining. blue. color.. Cyanidin. type. anthocyanins. are. packaged. into. a.supermolecular.complex.to.give.blue.color.to.flowers.of.blue.cornflower.while.the.same.anthocyanins.give.red.color.to.rose.18.The.brilliant.blue.color. in.cornflower.is.attributed.to.a.tetranuclear.complex.of.cyanidin.anthocyanin,.a.flavone,.and.che-lating. Fe3+,. Mg2+,. and. Ca2+. ions.. An. understanding. of. the. genetics. contributing.

Page 73:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

59Transgenic Ornamental Crops

to the formation.of.this.type.of.complex.is.of.interest.for.engineering.blue.color.in.flowers.but.has.yet.to.be.elucidated.

A.novel.orange.color.was.first.introduced.into.Petunia.by.incorporating.a.maize.DFR.gene.into.the.genome.of.a.variety.lacking.F3′H.and.F3′5′H.activity.19.The.back-ground. chosen. for. introducing. the. maize. DFR. was. important. as. petunias. lacking.F3′H.and.F3′5′H.activity.accumulate.the.dihydroflavonol.dihydrokaempferol.since.the.Petunia.DFR.does.not.accept.dihydrokaempferol.as.a.substrate.for.leucoanthocyanidin.synthesis..The.maize.DFR,.which.uses.the.substrate.dihydrokaempferol,.opened.up.a.

O

CoASOH

O

OH OHHO

OH

O

O

OH

HO

OH

O

OHOH

OOH

HOO

OHOH

OOH

HO OH

O

OHOH

OOH

HO

OH

OOH

OH

OOH

HO OHOH

O

O

OH

HO

OH

OH

OOH

OHOH

OH

HO

OH

OH

OOH

OHOH

HO

OH

OOH

OHOH

HO

OH

OH

OOH

OH

OHOH

HO

O

OH

OH

OHOH

HO

OH

OOH

OHOH

HO OOH

OHOH

HO

OH

O

OH

OH

HO

OH

Tetrahydroxychalcone

p-Coumaroyl CoA

Pentahydroxyavanone Naringenin

Dihydromyricetin Dihydroquercetin

Leucodelphinidin

Delphinidin Pelargonidin Cyanidin Luteolinidin

+ 3 Malonyl-CoA

CHS

CHI

F3’H

F3’HF3’5’H

F3’5’H

DFR DFR DFR DFR

LDOX/ANS LDOX/ANS LDOX/ANS

F3H F3H F3H

AB

56

87 5’

4’3’

Chalcones

Flavanones

Dihydro avonols

Leucoanthocyanidins

Anthocyanidins

C

Eriodictyol

LuteoforolLeucocyanidinLeucopelargonidin

Dihydrokaempferol

FIGURE 3.1 Key. steps. of. anthocyanin. pigment. biosynthesis. in. plants.. CHS,. chalcone.synthase;. CHI,. chalcone. isomerase;. F3′5′H,. flavanone. 3′5′-hydroxylase;. F3′H,. flavanone.3′-hydroxylase;. F3H,. flavanone. 3-hydroxylase;. DFR,. dihydroflavonol. 4-reductase;. LDOX/ANS,.leucoanthocyanidin.dioxygenase/anthocyanidin.synthase..(Reprinted.from.Grotewold,.E.,.Annu. Rev. Plant Biol.,.57,.761,.2006..With.permission..©.2006.by.Annual.Reviews.www.annualreviews.org)

Page 74:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

60 Transgenic Horticultural Crops: Challenges and Opportunities

pathway.for.orange.pelargonidin.anthocyanin.production..However,.a.commercially.acceptable,.stable.color.was.not.obtained.in.the.initial.report.20.Commercially.accept-able,.stable,.improved.orange.colors.were.achieved.through.introgression.of.the.maize.DFR.into.elite.breeding.lines.accumulating.cyanidin,.peonidin,.delphinidin,.petuni-din,.and.malvidin.anthocyanins.and.three.generations.of.selfing.the.F1.crosses.21

carotenoIdS

Carotenoids.are.plastid.synthesized,.lipid.soluble,.isoprenoid-derived.C40.compounds.essential.to.all.photosynthetic.organisms..Carotenoids.are.structurally.diverse.with.over.700.structures.identified..They.function.in.light.harvesting,.energy.transfer,.and.photoprotection..They.also.provide.pink,.red,.orange,.and.yellow.color.to.flowers.and.fruits,.are.precursors.of.plant.hormones.and.fragrance.compounds,.and.have.signifi-cant.nutritional.value.in.animal.diets.(reviewed.by.Lu.and.Li22).

Carotenoid.synthesis.is.initiated.by.the.condensation.of.two.molecules.of.gera-nylgeranyl. pyrophosphate. (GPP). by. phytoene. synthase. (PSY). to. form. colorless.phytoene..Phytoene.is.converted.to.all.trans.lycopene.through.four.desaturation.reac-tions.catalyzed.by.phytoene.desaturase.(PDS).and.ζ-carotene.desaturase.(ZDS).and.an.isomerization.reaction.catalyzed.by.carotenoid.isomerase.(CRTISO)..The.desatu-ration.reactions.introduce.conjugated.double.bonds,.leading.to.a.shift.in.the.absorp-tion.spectra.that.causes.color.to.appear..Lycopene.represents.a.branch.point.in.the.pathway,.where.either.(1).δ-carotene,.α-carotene,.and.ultimately.lutein.are.produced.through. the.action.of. lycopene.ε-cyclase,. lycopene.β-cyclase,.and.carotenoid.ring.hydroxylases. or. (2). γ-carotene,. β-carotene,. and. zeaxanthin. are. produced. through.the. action. of. lycopene. β-cyclase. and. carotenoid. β-ring. hydroxylases. (Figure.3.2).(reviewed.by.Hirschberg23)..Naturally.occurring.mutants. for.many.of. these.carot-enoid.biosynthetic.genes.exist. in. tomato,.and. fruits. from. these. lines. show.visible.differences.in.color.24.For.example,.the.tomato.R.mutant.has.yellowish-green.fruit.due.to.a.mutation.in.the.phytoene.synthase.gene.25.Mutants.with.ectopic.expression.of.a.lycopene.β-cyclase.have.orange.fruit,.accumulating.high.levels.of.β-carotene.and.less.lycopene.than.control.plants.26

Most.of.the.research.on.engineering.carotenoid.synthesis.in.transgenic.plants.has.focused.on.the.alteration.of.nutritional.characteristics.in.food.plants..For.example,.β-carotene.accumulating.“golden”.rice.varieties.were.developed.by.introducing.daf-fodil.or.maize.phytoene synthase. (Psy).and.a.bacterial.phytoene desaturase (crtl).gene. into. the. rice.genome.27,28.Although. these.plants.may.be.valuable. for.helping.solve. worldwide. vitamin. A. deficiency,. they. also. demonstrate. the. ability. to. drive.heterologous.expression.of.yellow.color.in.plants.

By.transferring.bacterial.genes.for.ketocarotenoid.synthesis,.deep.yellow,.orange,.and. red. colors. have. been. introduced. into. plants. normally. displaying. pale. yellow.colors. (Table.3.1)..Bright.orange.nectaries.were. created. in.Nicotiana. by. transfor-mation. with. the. alga. Haematococcus pluvialis. β-carotene. ketolase. gene,. causing.accumulation.of.astaxanthin.in.nectary.tissue..This.application.has.more.of.a.neu-traceutical.value.since.astaxanthin.has.many.uses.related.to.animal.health..While.nectaries.generally.do.not.contribute.much.to.the.overall.aesthetic.appeal.of.a.plant,.it. demonstrates. that. novel. carotenoids. can.be. expressed. in.plants. to. introduce.

Page 75:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

61Transgenic Ornamental Crops

new  colors.. Indeed,. bright. yellow. and. orange. Lotus. flowers. were. observed. in.transgenic. plants. transformed. with. the. Agrobacterium aurantiacum. β-carotene.ketolase. (crtW). gene.29. The. CrtW. enzyme. accepts. β-carotene,. β-cryptoxanthin,.and.zeaxanthin.substrates.for.production.of.ketocarotenoids,.which.are.compounds.found.in.bacteria,.fungi,.algae,.and.only.a.few.plant.species..Transgenic.lotus.plants.expressing.crtW.had.altered.carotenoid.profiles.with.orange.lines.exhibiting.a.1.5-fold.increase.in.total.carotenoids.and.ketocarotenoids.making.up.about.one-quarter.of.the.total.carotenoid.content.

Flower. color. range. can. also. be. extended. through. modification. of. carotenoid.breakdown.pathways.(Table.3.1)..Oxidative.breakdown.of.carotenoids.is.catalyzed.by.a.family.of.carotenoid.cleavage.dioxygenases.(CCDs).found.in.plants,.animals,.and.bacteria..The.carotenoid.breakdown.products,.or.apocarotenoids,.are.biologi-cally. important. molecules. functioning. as. hormones,. flavor. and. fragrance. com-pounds,.and.defense.molecules.(reviewed.by.Auldridge.et.al.30)..There.are.multiple.lines.of.evidence.that.support.a.role.for.CCDs.in.carotenoid.turnover..Arabidopsis.ccd1-1.loss.of..function.mutants.have.increased.seed.carotenoid.content.31.Expression.

OH

HO

OH

HOOH

HOO

O

OH

HOOH

O

O P PP P O

GGDP

GGDP

Phytoene

Lycopene

Zeaxanthin

Violaxanthin

Neoxanthin

Lutein

ζ-Carotene

δ-Carotene

α-Carotene

γ-Carotene

β-CaroteneCrtR-eCrtR-b

CrtR-b

aba2

?

CrtL-b

CrtL-b

Psy (crtB)

Pds (crtP)

Zds (crtQ)

CrtL-b

CrtL-e

FIGURE 3.2 Carotenoid.biosynthesis. in.plants..GGDP,.geranylgeranyl.diphosphate;.Psy,.phytoene.synthase;.Pds,.phytoene.desaturase;.Zds,.ζ-carotene.desaturase;.CrtL-e,.lycopene.ε-cyclase;.CrtL-b,.lycopene.β-cyclase;.aba2,.zeaxanthin.epoxidase..(From.Ronen,.G..et.al.,.Plant J.,.17,.341,.1999..With.permission.)

Page 76:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

62 Transgenic Horticultural Crops: Challenges and Opportunities

of. the.carotenoid.cleavage.dioxygenase.CCD4.was.demonstrated. to.give.chrysan-themum. flowers. white. color. instead. of. yellow.32. To. date,. this. area. of. research. is.under-explored.and.could.have.considerable.potential.for.development.of.new.color.phenotypes.. Manipulating. CCD. expression. also. opens. up. the. exciting. possibili-ties.of engineering.both.color.and.fragrance.since.many.of.the.apocarotenoids.are..important.floral.fragrance.volatile.compounds.33,34

PLANT VOLATILES

Thousands.of.plant.volatiles.have.been.identified.and.are.generally.classified. into.four.major.groups.including.terpenes,.phenylpropanoids,.fatty.acid.derivatives,.and.amino. acid. derivatives. (reviewed. by. Dudareva. and. Pichersky35).. Only. subsets. of.the.thousands.of.plant.volatiles.identified.are.found.in.any.given.species,.thus.plant.volatiles.are.generally.thought.of.as.secondary.metabolites.with.their.synthesis.being.highly.intertwined.with.primary.metabolism.(reviewed.by.Pichersky.et.al.36)..Plant.volatile. production. occurs. in. many. plant. tissues. including. leaves,. flowers,. fruits,.and.roots.with.functions.relating.to.pollinator.attraction,.seed.dispersal,.inter-.and.intra-plant. communication,. and. defense.. Many. genes. involved. with. plant. volatile.synthesis.have.been.cloned.and.manipulated.in.transgenic.plants.resulting.in.altered.volatile.profiles..These.studies.demonstrate.that.plant.volatile.profiles.can.be.geneti-cally.engineered.and.will.be.useful.in.improving.floral.fragrance.and.plant.defense.

floral fraGrance

Floral.fragrance.has.been.a.source.of.pleasure.and.reverence.in.human.culture.where.fragrant.flowers.have.had.places.in.religious.ceremonies.and.societal.customs.since.ancient.times..Modern.technology.has.allowed.flower.fragrance.profiles.to.be.chemi-cally.copied.for.use.in.cosmetics,.perfumes,.home.fragrances,.aromatherapy.items,.cleaning.products,.and.detergents,. to.name.a. few.popular.uses..Many.of. the.com-pounds.found.in.floral.fragrance.are.documented.to.have.positive.effects.on.human.behavior.and.therefore.could.be.used.as.tools.for.improving.the.health.and.welfare.of.humanity.37–39.There.are.minimal.publicly.available.marketing.research.data.that.investigate.the.value.added.by.making.new.flower.varieties.with.enhanced.fragrance..One.marketing.report.on.Anthurium.suggests.that.about.60%.of.consumers.agreed.fragrance.would. add.value. to. the.product.40.Floraculture. International. reported. in.November. 2008. that. the. demand. for. fragrant. roses. was. increasing. but. the. num-ber. of. “fragrant”. roses. available. is. minimal. (http://www.floracultureinternational.com/index.php?option=com_content&task=view&id=125&Itemid=159&ed=25)..Fragrance.has.historically.not.been.the.focus.of.ornamental.plant.breeding.programs.and. flowers. have. lost. their. characteristic. fragrance. since. breeders. are. primarily.concentrating.on.flower.color.and.longevity,.plant.growth.habit,.disease.resistance,.among.other.genetic.factors..Genetic.engineering.could.help.overcome.the.hurdles.of.reintroducing.this.trait.into.crops.where.there.is.demand.for.fragrant.flowers.and.would.also.provide.testing.material.for.determining.the.real.market.value.of.this.trait.

Over.the.past.decade,.our.understanding.of.the.biochemistry.and.physiology.of.floral.scent.has.progressed.rapidly..Floral.scent.is.a.highly.variable,.complex.mixture.

Page 77:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

63Transgenic Ornamental Crops

of. low.molecular.weight,.volatile.organic.compounds. that.attracts. insect.and.ani-mal.pollinators..Hundreds,.perhaps.thousands,.of.different.volatile.compounds.are.emitted.from.flowers.in.varying.levels.and.mixtures.41.In.many.species,. including.Antirrhinum,.Petunia,. and.Rosa,. petals. are. the.primary. site.of.floral. scent. emis-sion42–44.with.fragrance.compounds.emitted.from.both.the.adaxial.and.abaxial.petal.epidermal.layers.of.Rosa.x.hybrida.‘Anna’.44.Fragrance.is.a.dynamic.trait,.with.quan-titative.and.qualitative.changes.occurring.during.flower.development,.in.response.to.pollination,.through.day–night.cycles,.and.in.response.to.the.environment.(reviewed.by.Clark.et.al.45).

Petunia. x.hybrida. has.emerged.as.a.popular.model. system.for.characterizing.floral.volatile.benzenoid/phenylpropanoid.synthesis.(Table.3.2).(reviewed.by.Clark.et. al.45).. The. floral. perfume. of. Petunia. cultivar. ‘Mitchell’. is. dominated. by. ben-zyl. alcohol,. benzaldehyde,. methylbenzoate,. benzylbenzoate,. phenylacetaldehyde,.2-phenylethanol,.phenylethylacetate,.phenethylbenzoate,. isoeugenol,.and.eugenol,.

TABLE 3.2Published Reports of Genetically Engineered Plants with Modified Floral Fragrance

Plant Genetic Modification Effect on Floral Volatiles References

Petunia.x.hybrida 35S::CbLIS Accumulation.of.nonvolatile.linalool.conjugate

[153]

Petunia.CCD1.RNAi Reduced.β-ionone [33]

35S::SAAT No.effect [55]

Petunia.BSMT.RNAi Reduced.methylbenzoate [53]

Petunia.ODO1.RNAi Reduced.volatile.benzenoids [47]

Petunia.PAAS.RNAi Reduced.phenylacetaldehyde [50]

Reduced.2-phenylethanol

Petunia.BPBT.RNAi Reduced.benzylbenzoate [51,52]

Reduced.phenethylbenzoate

35S::RhAAT Higher.benzyl.acetate [154]

Higher.phenethyl.acetate

Petunia.CFAT.RNAi Reduced.isoeugenol [49]

35S::LePAR Reduced.phenylacetaldehyde [54]

Higher.2-phenylethanol

35S::AtPAP Higher.benzaldehyde [60]

Higher.phenylacetaldehyde

Higher.benzaldehyde.4-hydroxy

Higher.benzaldehyde.3,4-dimethoxy

Higher.vanillin

Dianthus caryophyllus 35S::CbLIS Linalool.production [57]

35S::antisenseF3H Higher.methyl.benzoate [58]

Eustoma grandiflorum 35S::CbBEAT No.effect [155]

Nicotiana tabacum 35S::ClTER,.35S::ClLIM,.35S::ClPIN

Plants.with.all.three.genes.emit.β-pinene,.limonene,.γ-terpinene,.and.side.products

[153]

Page 78:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

64 Transgenic Horticultural Crops: Challenges and Opportunities

which.are.compounds.derived.from.the.amino.acid.phenylalanine..Small.amounts.of. the. apocarotenoids. β-ionone. and. 6-methyl-5-hepten-2-one. are. also. detectable.in. the. fragrance.profile.33,46. Many.of. these. compounds. have. been. removed. from.the.petunia.volatile.profile.through.silencing.of.regulatory.and.biosynthetic.genes.(Table.3.2)..A.reduction.in.multiple.benzenoid.compounds.was.achieved.by.silenc-ing.odorant1. (ODO1),. a. transcription. factor. that. regulates. transcription.of.genes.important.for.supplying.substrates.for.floral.volatile.production.47.β-Ionone.emis-sion.was. reduced.by.approximately.50%. in. transgenic.petunias.with.RNA.inter-ference. (RNAi)-suppressed. CCD1.33. While. emission. of. β-ionone. is. low,. only.detectable. in. picogram. quantities,. the. published. human. odor. threshold. is. low.(0.007.nL.L−1).compared.to.other.more.abundant.volatiles.in.petunia.33,48.Therefore,.β-ionone.could.potentially.be. important. in. the.overall. fragrance.of.petunia..The.clove-like.component.of.petunia.scent.was.removed.from.the.fragrance.profile.by.suppression.of.coniferyl alcohol acyltransferase.(CFAT).expression.49.CFAT.cata-lyzes.the.acetylation.of.coniferyl.alcohol.to.form.coniferyl.acetate,.the.precursor.of.isoeugenol.and.eugenol..The.two.volatile.compounds.imparting.rosy,.floral.notes.to.petunia.fragrance.were.reduced.by.silencing.phenylacetaldehyde synthase (PAAS)..Transgenic. RNAi. suppressed. PAAS. plants. had. reduced. phenylacetaldehyde. and.2-phenylethanol.levels.50.Dexter.et.al.51.and.Orlova.et.al.52.removed.benzyl.benzoate.and.phenethylbenzoate.from.the.petunia.fragrance.by.RNAi-induced.silencing.of.benzyl CoA:benzyl alcohol/phenylethanol benzoyl transferase. (BPBT)..Silencing.of. benzoic acid/salicylic acid carboxyl methyltransferase1. and. 2. (BSMT1. and.BSMT2). led. to. a. reduction. in. methylbenzoate,. the. most. predominant. volatile. of.petunia. fragrance.. Flowers. lacking. normal. methylbenzoate. levels. had. a. distinct,.detectable.change.in.fragrance,.and.80%.of.human.olfactory.panelists.were.able.to.distinguish.them.from.control.flowers.53

Increasing. flux. through. existing. biosynthetic. pathways. and. introducing. new.fragrance.pathways.are.a.means.to.make.novel. fragrance.profiles. (Table.3.2)..For.example,.petunia.flowers.that.smell.more.like.a.rose.could.be.developed.by.increas-ing.2-phenylethanol.synthesis.and.decreasing.levels.of.endogenous.volatiles,.which.may.mask.the.perception.of.rose.aroma..Petunias.that.produced.more.intense.rose-like. 2-phenylethanol. were. developed. by. introducing. tomato. phenylacetaldehyde reductase.(LePAR).into.the.petunia.genome.54.Introduction.of.a.strawberry.alcohol.acyltransferase.(SAAT).gene.into.petunia.did.not.affect.the.volatile.profile.55.Feeding.isoamyl.alcohol,.a.substrate.of.SAAT,.to.the.transgenic.tissue.resulted.in.emission.of.acetyl.ester.products..Lücker.et.al.56. introduced. the.Clarkia breweri S-linalool synthase.gene.into.petunia..However,.plants.did.not.produce.linalool.and.instead.accumulated. a. nonvolatile. conjugated. form.. Linalool. was. detected. in. transgenic.CbLIS Dianthus caryophyllus.cultivar.‘Eilat’.plants.57.While.these.plants.produced.linalool. and. derivatives. thereof,. the. transgenic. flowers. did. not. smell. differently.from.control.flowers.in.human.olfaction.tests..It.will.be.of.interest.to.introduce.the.LIS.gene.into.a.different.background.of.carnation.that.has.less.fragrance.since.it.is.possible.that.there.was.masking.by.other.volatile.compounds.

The.reports.discussed.in.this.section.unequivocally.demonstrate.that.floral.fra-grance.can.be.engineered..A.number.of.important.issues.can.be.highlighted,.includ-ing. (1).altering. fragrance.profiles.with.heterologous.genes. is.possible.and.will.be.

Page 79:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

65Transgenic Ornamental Crops

useful,. (2). substrate. availability. needs. to.be. considered. when.altering. volatile.pathways,.and.(3).endogenous.activities.can.convert.products.to.nonvolatile.forms..The.opportunities.for.significant.increases.in.floral.volatile.production.most.likely.lie.with.controlled.expression.of.genes.early.in.the.biosynthetic.pathways.and.regulatory.factors.controlling.gene.expression.of.several.biosynthetic.pathways.

Fragrance and ColorFragrance.benzenoids.and.anthocyanin.color.metabolites.are.produced.from.phen-ylpropanoid.metabolism..Therefore,.altering.fragrance.metabolism.could.influence.the. production. of. color. and. vice. versa.. While. there. are. no. consistent. trends. for.direct. relationships. between. color. and. fragrance,. there. is. evidence. that. this. does.occur. in. carnation.. White. flowers. from. antisense. F3H. carnation. plants. produced.higher.amounts.of.benzenoids.compared.to.the.red-orange.control.flowers.58.These.transgenic.flowers.produced.five-.to.sevenfold.higher.levels.of.methyl.benzoate.and.2-hydroxy.methyl.benzoate..Thus,. in.carnation,. loss.of.F3H.function.may. reduce.flux.through.anthocyanin.synthesis.causing.phenylpropanoid.metabolism.to.be.redi-rected.toward.benzenoid.production.

Interplay.between.color.and.fragrance.production.is.less.clear.in.petunia..Vivid.pink.color.was.introduced.into.a.white.flowered,.nocturnally.fragrant.Petunia axil-laris. background. by. transformation. with. the. AN2. flavonoid. biosynthesis. regula-tor.59.The.transgenic.colored.flowers.did.not.exhibit.significant.changes.in.benzenoid.volatile.production..Likewise,.colored.petunias.with.reduced.expression.of.ODO1,.a.transcription.factor.thought.to.control.substrate.flux.to.benzenoid.fragrance.produc-tion. in.petunia,. did.not. exhibit. any.visible.differences. in. pigmentation. compared.to.controls.47.Recently,.Ben.Zvi.et.al.60.showed.that.heterologous.expression.of.the.Arabidopsis thaliana PAP1. Myb. transcription. factor. in. Petunia hybrida. cultivar.‘Blue.Spark’. led. to. increased.flower.pigmentation. and. increased. levels.of.certain.fragrance.volatiles..There.were. three. to.five. times.more.benzaldehyde.and.higher.internal. pools. of. phenylacetaldehyde,. benzyaldehyde. 4-hydroxy,. benzaldehyde.3,4-dimethoxy,.and.vanillin.60.The.mechanism.of.how.PAP1.is.regulating.these.two.processes.in.the.‘Blue.Spark’.petunias.remains.to.be.elucidated.

volatIleS and InSect plant defenSe

Plants.produce.a.myriad.of.volatiles.in.response.to.herbivores.that.serve.to.intoxicate,.attract.predators.and.parasitoids,.and/or.elicit.an.avoidance.response. in. the. insect.inflicting.damage.to.the.plant..There.are.only.a.handful.of.documented.examples.of.engineering.of.plant.defense-related.volatiles..However,.as.this.will.likely.be.a.useful.method.in.the.future.for.improving.plant.defense.in.both.agronomic.and.ornamental.crops,.a.few.examples.in.model.systems.will.be.highlighted.here..Increased.para-sitoid.attraction.and.increased.pest.repellant.properties.have.been.achieved.through.introducing.single.genes.into.Arabidopsis..For.example,.increased.aphid.parasitoid.attraction.and.aphid.repellant.behavior.was.induced.in.Arabidopsis.plants.expressing.(E)-β-farnesene.(Eβf).synthase.cloned.from.Mentha.x.piperita.61.The.Eβf.express-ing.plants.emitted.high.levels.of.Eβf,.an.aphid.alarm.pheromone..Arabidopsis.plants.overexpressing. a. strawberry. linalool/nerolidol. synthase. (FaNES1). gene. produced.

Page 80:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

66 Transgenic Horticultural Crops: Challenges and Opportunities

high.levels.of.linalool,.which.was.a.repellant.to.aphids.62.By.targeting.FaNES1.to.the.mitochondria. instead.of. the. cytosol,. synthesis.of.4,8-dimethyl-1,3(E),7-nonatriene.((E)-DMNT).and.nerolidol.was. induced.making. transgenic.plants.more.attractive.to.predatory.mites.63.Both.of. these.studies.with.FaNES1.report.a.growth.retarda-tion.phenotype.that.could.be.a.phytotoxic.effect.of.the.new.volatiles.being.produced.or.the.new.pathway.causing.a.metabolic.drain.on.metabolites.essential.for.normal.growth.and.development..In.the.case.of.the.latter,.fine.tuning.expression.through.use.of.promoters.conferring.lower.or.more.specific.transgene.expression.may.be.useful.for. balancing.metabolite. flow. between. the.newly. introduced.pathway. and.endog-enous.pathways.

FLOWER AND LEAF LONGEVITY

Retention.of.high.quality.flowers.and.leaves.for.visual.appearance.is.of.utmost.impor-tance.to.the.ornamental.plant.industry..Flowers.that.are.short-lived.or.highly.sensi-tive.to.postharvest.handling.conditions.are.limited.in.their.marketability..Similarly,.leaf.yellowing.or.senescence.negatively.affects.the.consumer.appeal.of.potted.plants.and. bedding. plants.. Plant. and. cut. flower. quality. has. been. improved. through. the.use.of.proper.postharvest.handling.procedures.and.chemical.preservatives..Applying.transgenic.technology.to.ornamentals.to.improve.their.postharvest.attributes.presents.the.opportunity.for.saving.on.postharvest.costs.associated.with.labor,.chemical,.and.environmental.control,.contributing.to.environmentally.sustainable.practices..With.such.great.importance,.there.are.now.many.examples.where.genetic.engineering.has.been.successfully.employed.to.obtain.flowers.with.longer.vase.life.and.plants.with.leaves.that.stay.green.

floral lonGevIty

The. plant. hormone. ethylene. negatively. affects. flower. longevity. in. many. orna-mentally. important. plant. species.64,65. This. gaseous. phytohormone. is. produced. in.response.to.pollination,.stress,.and.common.postharvest.handling.procedures.caus-ing.petal. in-rolling,.abscission,.and.senescence. in.many.species.of.monocots.and.dicots,.ultimately.eliminating.their.marketability..Van.Doorn.et.al.66.surveyed.over.300.species.of.flowering.plants.from.50.different.families.and.found.that.over.64%.of.these.were.highly.ethylene.sensitive..To.address.this.issue,.the.molecular.genetics.and.biochemistry.of.ethylene.synthesis.and.perception.has.been.the.focus.of.much.research. and. chemical. and. genetic. methods. for. altering. ethylene. responses. have.been.developed.(Table.3.3).

Flower.longevity.can.be.extended.through.the.use.of.chemicals.that.inhibit.ethyl-ene.biosynthesis.and.perception..Chemicals.such.as.aminoethoxyacetic.acid.(AOA).and.aminoethoxyvinylglycine. (AVG). significantly. reduce.ethylene.production. and.delay.petal. senescence.and.abscission.of.many.species.67–70.However,. the.concern.of. potential. toxic. effects. and. lack. of. control.of. effects. due. to. ethylene. generated.from.outside.sources.halted.their.commercial.use.67.Therefore,. inhibiting.ethylene.perception.is.more.desirable.for.preventing.effects.of.exogenous.ethylene.that.may.occur. during. storage. and. transportation.. Silver. thiosulfate,. Ag2S2O3. or. STS,. has.

Page 81:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

67Transgenic Ornamental Crops

become. widely. used. for. blocking. ethylene. effects. in. the. ornamental. industry. for.several.decades.67,71–73.Unfortunately,.STS.is.a.heavy.metal.pollutant,.and.in.recent.years.commercial.use.has.become.more.restricted.because.of.environmental.con-cerns..1-Methylcyclopropene.(1-MCP).is.a.more.recently.developed.chemical.found.to.block.ethylene.perception74.and.has.been.commercialized.and.is.effective.in.delay-ing.flower.senescence.in.many.ornamentals.(reviewed.by.Sisler.and.Serek75).

Altering Ethylene Responses Genetically by Inhibiting Ethylene BiosynthesisThe.biosynthetic.pathway.of.ethylene.has.been.elucidated76.and.ethylene.biosynthetic.genes.have.been.altered.in.transgenic.ornamental.plants.to.reduce.the.effects.of.eth-ylene..Ethylene.biosynthesis.is.a.two-step.process.beginning.with.the.conversion.of.S-adenosylmethionine.(SAM).to.1-aminocyclopropane-1-carboxylic.acid.(ACC).by.the.enzyme.ACC.synthase.(ACS)..ACC.is.then.converted.to.ethylene.by.ACC.oxi-dase.(ACO)..Reducing.expression.of.either.of.these.enzymes.through.RNAi.or.cosup-pression.technology.decreases.ethylene.production.and.extends.vase.life..Carnation.plants.with.silenced.ACS.or.ACO.expression.produce.less.ethylene.from.flowers.and.

TABLE 3.3Publications Documenting Extended Flower Life through Genetic Engineering Ethylene Biosynthesis or Signaling

PlantGenetic

Modification Effect References

Petunia.x.hybrida 35S::Atetr1-1 Flowers.lasted.∼4×.longer.than.controls

[87]

35S::sense.PhEIN2 Flowers.lasted.∼4×.longer.than.controls

[88]

RNAi.PhEIN2 Flowers.lasted.∼6×.longer.than.controls

[88]

Dianthus caryophyllus Antisense.ACO ∼1.7×.longer.vase.life [77]

Sense.ACO ∼2×.longer.vase.life [78]

Antisense.and.sense.suppression.of.ACS

∼2×.longer.vase.life [79]

PhFbp1::Atetr1-1 ∼2.7×.longer.vase.life [89]

35S::Atetr1-1 ∼2–3×.longer.vase.life [89]

Etr1::etr1-1 ∼2–2.4×.longer.vase.life [89]

DcCmb2::Atetr1-1 ∼2×.longer.vase.life [80]

Torenia fournieri Antisense.and.sense.suppression.of.ACO

Sense.flowers.lasted.0–3.5× longer.than.controls

[81]

Nemesia strumosa 35S::Cmetr1 Flowers.lasted.1–3.days.longer.than.controls

[90]

Campanula carpatica Phfbp1::Atetr1-1 Variable..Lines.ranging.between.0–6×.longer.than.control.flowers

[92]

Kalanchoe blossfeldiana Phfpb1::Atetr1-1 Variable..10×.longer.flower.retention.for.40%–50%.of.transgenic.flowers.in.two.lines

[93]

Page 82:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

68 Transgenic Horticultural Crops: Challenges and Opportunities

have.extended.vase.life.77–80.ACO.cosuppressed.carnation.plants.had.approximately.a. twofold. longer. vase. life. than. control. flowers.78. Suppression. of. ACO. in. Torenia fournieri.extended.flower.life.up.to.3.5-fold.longer.than.controls.81.While.these.flow-ers.produce.less.ethylene.and.have.longer.vase.life,.the.flowers.are.still.sensitive.to.exogenous.sources.of.ethylene..Thus,.much.of. the.focus.on.engineering-improved.flower.life.has.centered.on.manipulations.of.ethylene.receptor.and.signaling.proteins.

Inhibiting Ethylene Responses by Disrupting Ethylene Signal TransductionEthylene.is.perceived.by.plants.through.transmembrane.receptor.proteins,.which.are.encoded.by.the.ethylene resistant.(ETR).gene.family,.typically.consisting.of.five.or.more.genes.in.plants..The.receptors.have.been.identified.in.expressed.sequence.tag.(EST).collections.from.more.than.20.plant.species,.including.monocots,.dicots,.and.lower.vascular.plants.82.Binding.of.the.hormone.has.been.demonstrated.in.cyanobac-teria,.fungi,.green.alga,.lower.vascular.plants,.and.angiosperms.83,84.While.studies.of.receptor.function.at.the.molecular.level.have.not.been.carried.out.in.many.plant.spe-cies.outside.of.Arabidopsis.and.tomato,.the.proteins.are.highly.conserved.in.regions.that.are.functionally.important.82,84.It.is.therefore.likely.that.the.receptors.act.in.a.similar.fashion.in.plant.species.other.than.tomato.and.Arabidopsis,.that.is,.as.nega-tive.regulators.of.ethylene.responses..In.the.absence.of.ethylene,.ethylene.responses.are.repressed,.and,.in.the.presence.of.ethylene,.repression.of.ethylene.responses.is.lifted..Arabidopsis.plants.carrying.the.etr1-1.mutation.are.almost.completely.insen-sitive.to.ethylene.85.Another.central.component.of.the.pathway,.ethylene insensitive 2.(EIN2),.is.critical.for.ethylene.signaling..Arabidopsis.EIN2.loss-of-function.mutants.are.unable.to.respond.to.ethylene.86.Both.ETR.and.EIN2.are.critical.to.plant.ethylene.responses,.making.them.good.candidates.for.manipulating.ethylene.responses.at.the.molecular.level.

Floral.longevity.has.been.extended.in.transgenic.plants.with.altered.ethylene.sig-naling..Petunias.with.longer-lasting.flowers.have.been.attained.by.overexpression.of.the.mutant.ethylene.receptor.allele,.etr1-1,.from.Arabidopsis thaliana87.and.by.sup-pressing.expression.of.EIN2.by.RNAi.or.cosuppression.88.Petunia.corollas.expressing.the.Arabidopsis.etr1-1.gene.do.not.wilt.after.pollination.or.exposure.to.ethylene.and.often.stay.attached.to.the.receptacle.until.the.developing.fruit.detaches.the.corolla,.up.to.10.days.after.pollination.compared.to.2–3.days.for.control.flowers..EIN2.RNAi.and.EIN2.cosuppression.petunia.plants.also.display.delayed.corolla.senescence.after.pollination.or.exposure.to.exogenous.ethylene..These.flowers.do.not.exhibit.visual.signs.of. senescence.until.more. than.9–12.days. after.pollination.88.Similarly,.con-stitutive.expression.of. the.Arabidopsis.etr1-1. in.carnation.doubled.the.vase.life.of.carnation.flowers.80,89.Constitutive.expression.of.a.melon.etr1-1-like.mutant.receptor.in.Nemesia strumosa.resulted.in.flowers.that.lasted.1–3.days.longer.than.controls.90

Transgenic.plants.expressing.constitutive.ethylene.insensitivity.not.only.prove.the.concept.that.genetically.disrupting.ethylene.signaling.will.extend.flower.life.but.have.also.been.useful.as.a.tool.for.learning.about.the.myriad.of.processes.that.ethylene.is.involved.with.in.a.plant.life.cycle..For.example,.35S::etr1-1.petunias.are.unable.to.be.vegetatively. propagated. due. to. an. inability. to. form. adventitious. roots91. and. exhibit.higher.mortality.than.control.plants.88.Both.of.these.issues.are.huge.horticultural.limi-tations..The.problems.likely.can.be.overcome.through.the.use.of.promoters.that.restrict.

Page 83:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

69Transgenic Ornamental Crops

expression.to.floral.tissues..Use.of.flower-specific.promoters.to.drive.ethylene.insensi-tivity.has.been.demonstrated,.but.exhaustive.physiological.characterization.and.horti-cultural.examination.have.not.been.documented.for.these.transgenic.lines..For.example,.flower-specific.expression.of.the.Arabidopsis.etr1-1.in.carnation.with.the.petunia.fbp1.promoter.extended.flower.longevity.to.twice.that.of.control.flowers.89.Flower-specific.expression.of. the.Arabidopsis.etr1-1.gene.with. the.petunia. fbp1.promoter.extended.floral.display.in.Campanula carpatica.92.The.petunia.fbp1.promoter.was.also.used.to.drive.Arabidopsis.etr1-1. expression. in.Kalanchoe blossfeldiana.93.While. transgenic.Kalanchoe. plants. had. a. longer. flower. display,. expression. of. the. transgene. did. not.appear.to.be.entirely.flower.specific.with.some.expression.in.root.tissue..There.was.no.consistent,.obvious.difference.in.all. transgenic.ethylene-insensitive.Kalanchoe. lines.for.shoot.dry.weight,.leaf.area,.or.root.length;.however,.exhaustive.physiological.and.horticultural.characterization.was.not.performed..These.results.demonstrate.that.trans-genic.ethylene.insensitivity.can.be.engineered.in.specific.plant.tissues.

leaf lonGevIty

Leaf.senescence.is.a.highly.ordered,.deteriorative.process.where.cellular.components.are.broken.down.and.nutrients.are.remobilized.from.dying.tissue.to.other.parts.of.the.plant..Although.this.process.involves.macromolecular.breakdown,.synthesis.of.new.proteins,. from.genes.known.as.senescence.associated.genes.(SAGs),. is. required.94.The.initiation.of.the.senescence.process.is.known.to.involve.alteration.in.the.levels.of.the.phytohormone.cytokinin.(reviewed.by.Sakakibara95)..In.addition.to.their.role.in.senescence,.cytokinins.regulate.a.number.of.developmental.processes.in.plants..These. include. promoting. cell. division,. transducing. nutritional. signals,. promoting.shoot.initiation,.and.increasing.crop.productivity96.(reviewed.by.Sakakibara95)..The.first. cytokinin.biosynthetic.gene. identified. and.characterized.was. the. isopentenyl transferase.(ipt).gene.from.Agrobacterium tumefaciens.97.The.IPT.protein.catalyzes.synthesis.of.the.cytokinin.Δ2-isopentenyladenosine.monophospate.through.a.trans-ferase. reaction. between. dimethylallylpyrophosphate. (DMAPP). and. 5′AMP.. The.gene.encoding.IPT.is.located.on.the.Ti-plasmid.of.A. tumefaciens.and.is.integrated.into.the.host.genome.after.infection..The.enzyme.is.active.in.plants;.increased.cyto-kinin.production.is.observed.in.plants.expressing.ipt.98.Since.the.Agrobacterium ipt.was.cloned.and.characterized,.cytokinin.biosynthetic.genes.have.been.isolated.from.plants.99,100.Work.to.date.has.centered.on.heterologous.use.of.the.Agrobacterium ipt.gene.in.transgenic.plants.

Increasing.cytokinin. levels. in.plants. is.a.strategy.for.delaying.leaf.senescence,.but.most.early.attempts.resulted.in.plants.with.irregular.growth.patterns.101–103.These.reports.made.use.of.modified.constitutive.promoters,.Cu2+.inducible,.or.heat.shock.promoters. for. driving. expression. of. ipt.. Gan. and. Amasino104. designed. constructs.for.auto-regulated,.senescence-specific.expression.of.ipt.using.the.SAG12.promoter.from.Arabidopsis..With.this.construct,.expression.of.ipt.is.restricted.until.the.plant.initiates.senescence..Expression.of.ipt.is.self-attenuating.as.leaf.senescence.ceases.thereby.preventing.overproduction.of.cytokinins.and.eliminating.abnormal.growth..Tobacco.plants.expressing.SAG12::ipt.had.longer.lasting.leaves.and.plants.were.mor-phologically.normal.104

Page 84:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

70 Transgenic Horticultural Crops: Challenges and Opportunities

Petunia.has.been.used.as.a.model.for.engineering.delayed.leaf.senescence.using.different.SAG.promoters.and.the.ipt.gene..The.SAG12::ipt.construct.was.introduced.into. ‘V26’.petunia.and.over.20. lines.were. screened.by.drought. stress. for.delayed.leaf.senescence..Drought.stress. is.a.common.problem.encountered.in.commercial.and.home.garden.environments.and.induces.the.leaf.senescence.program,.but.does.not. induce. SAG12. expression.105. Two. lines. out. of. 20. SAG12::ipt. transgenic. lines.displayed.a.normal.growth.phenotype.and.had.delayed.leaf.senescence.2,106–108.The.numbers.of.chlorotic.basal.leaves.on.transgenic.SAG12::ipt.plants.were.about.14.times.less.that.of.control.plants.2,106

To.engineer.plants.for.extended.cold.storage.tolerance,.Khodakovskaya.et.al.109.utilized.cor15a,.a.cold-inducible.promoter.from.Arabidopsis,.to.drive.ipt.expression.in. petunia. and. chrysanthemum.. During. horticultural. propagation,. plant. parts. are.commonly. stored. in. cool,. dark. environments.. These. conditions. cause. leaf. senes-cence.and.ultimately.increase.mortality.when.plants.are.in.prolonged.storage..Plants.transformed.with.cor15a::ipt.had.morphologically.normal.growth.at.a.normal.tem-perature.(25°C),.similar.to.that.of.controls..When.a.propagation.environment.was.simulated. with. cold. storage,. the. transgenic. plants. resisted. senescence. exhibiting.greener. leaves. with. elevated. cytokinin. levels. and. leaves. with. normal. chlorophyll.levels.while.control.tissue.was.visibly.senescing.

Other.approaches.for.delaying.leaf.senescence.have.been.successful.and.have.resulted. in. interesting.phenotypes.useful. for.manipulation. in.ornamental.plants..The.SAG12.promoter.was.used.to.drive.expression.of. the.maize.Knotted1.gene..KN1.is.a.homeobox.protein.involved.in.meristem.formation,.cytokinin.synthesis,.and.repression.of.senescence..Another.SAG.promoter,.SAG13,.was.used.to.drive.ipt.expression.in.petunia..Plants.expressing.SAG12::KN1.or.SAG13::ipt.exhibited.delayed.leaf.senescence.after.drought.stress.107.Compared.to.controls,.SAG13::ipt.transgenic.plants.were.more.branched,.leaves.were.thicker.and.larger,.root.growth.was. reduced,. and. flowering. was. delayed.. These. phenotypes. were. ascribed. to.“leakier”. expression. of. the. ipt. transgene.107. Nutrient. stress. experiments. showed.that.source–sink.relationships.were.altered.in.SAG13::ipt.and.SAG12::KN1. lines.as. new. growth. after. nutrient. stress. was. chlorotic. and. necrotic.107. Interestingly,.SAG13::ipt.and.SAG12::KN1.plants.also.showed.enhanced.tolerance.to.pathogens..In.controlled.greenhouse.experiments.in.which.Cercospora.was.spray-inoculated.onto.plants,.control.plants.had.sixfold.more.senescing.leaves. than.SAG13::ipt.or.SAG12::Knotted1. plants,. with. transgenic. lines. exhibiting. local. hypersensitive.responses.to.infection.107.These.experiments.highlight.the.value.of.exhaustive.hor-ticultural.evaluations.of.multiple.lines.of.transgenic.plants..Selection.of.elite.culti-vars.will.be.required,.similar.to.conventional.breeding.

PLANT ARCHITECTURE

Plants. have. evolved. to. grow. a. fascinating. array. of. floral. and. vegetative. forms.that.are. influenced.by.genetic.and.environmental. factors..Plant.height,.branching,.flower.number,.and.floral.morphology.are.just.some.of.the.readily.apparent.forms.giving. individual. plants. their. unique. architectural. characteristics.. Understanding.how.a.plant.develops.its.architectural.attributes.is.of.economic.importance.to.both.

Page 85:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

71Transgenic Ornamental Crops

agronomic. and. ornamental. industries. since. creating. plants. with. more. desirable.architecture.can.increase.yield,.decrease.the.amount.of.input.in.growing.a.crop,.and.improve.the.overall.aesthetic.value.of.a.plant.

plant heIGht

Plant.height.is.routinely.regulated.during.greenhouse.crop.production.through.the.use.of.chemical.growth.regulators.that.control.the.synthesis.of.gibberellic.acid.(GA),.a.phytohormone.that.promotes.stem.elongation..Ideally,.plants.would.produce.inter-nal.growth.regulators.to.decrease.labor.and.chemical.costs.and.create.a.product.that.would.be.easier. to. ship. to. the.consumer. and.easier. to.maintain. in. the. landscape..Transgenic.control.of.plant.height.through.manipulation.of.gibberellin.synthesis.has.been.proven.as.a.successful.means.for.controlling.plant.height.

Plant.height.can.be.transgenically.controlled.by.altering.signaling.of.the.phyto-hormone.GA.or.lowering.the.levels.of.endogenous.GA.in.the.plant.through.inhibit-ing.GA.synthesis.or. increasing.GA.breakdown..GAs.are. chemically.diverse.with.more. than.120.different.GAs. identified;.many.are.precursors.or.breakdown.prod-ucts.and.only.a.handful.are.biologically.active.in.plants.(reviewed.by.Yamaguchi110)..GA-induced.cell.elongation.has.been.attenuated.in.Chrysanthemum morifolium.by.using. the. Arabidopsis. gibberellic insensitive. (gai). gene.. Transgenic. gai. chrysan-themum.plants.continually.repress.GA.responses,.exhibit.dwarfism.with.transgenic.plants. growing. to. about. 30%. as. tall. as. the. control. plants.111. Several. GA. oxidase.enzymes.that.hydroxylate.GA.precursors.to.form.inactive.GA.products.have.been.identified.in.Arabidopsis.112.Two.GA2-oxidases.(AtGAox7.and.AtGAox8).hydroxyl-ate.C20-GA.precursors,.but.not.active.C19-Gas.112.Based.on.work.by.Schomburg.et.al.,112.petunias.with. reduced.plant.height.were.produced.by.overexpressing.GA.oxidase.(35S::AtGAox7.and.AtGAox8),.thereby.reducing.endogenous.levels.of.GA..Transgenic.GA.oxidase.petunias.have.a.range.of.dwarf.phenotypes.2.The.dwarf.phe-notype. can. be. rescued. by. application. of. exogenous. C19-Gas,. a. feature. useful. to.commercial.growers.as.a.means.of.elongating.cuttings.for.vegetative.propagation.2

flower morpholoGy

Over. the. past. two. decades. genes. responsible. for. floral. organ. identity. have. been.identified.and.models. for.flower.development.are.rapidly.progressing..In.general,.floral. organ. identity. is. controlled.by. the. sole. and.combinatorial. activity. of. mul-tiple.classes.of.organ. identity.genes.encoding.A,.B,.C,.D,.and.E.class. transcrip-tion.factors..The.A class.transcription.factors.are.responsible.for.sepal.formation..Interaction.of.A and.B.class.factors.specifies.petals..B.and.C.class.together.specify.stamens,.while.the.C class.gives.rise.to.carpels.113.Ovule.development.requires.D.class. genes,. possibly. in. combination. with. C. class. genes. (reviewed. by. Angenent.and. Immink114).. The. E. class. functions. in. combination. with. A,. B,. and. C. factors.to.determine. identity.of.petals,.stamens,.and.carpels. (reviewed.by.Angenent.and.Immink114).. This. mechanism. of. flower. development,. known. as. the. ABC. model,.is.generally.conserved.among.flowering.plants..Mutants.with.ectopic.or.repressed.expression.of.these.genes.have.altered.floral.form..Loss.of.function.of.PMADS3,.

Page 86:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

72 Transgenic Horticultural Crops: Challenges and Opportunities

an.ortholog.of. the.Arabidopsis AGAMOUS.class.C.gene,. in.petunia.gives.rise.to.flowers.with.stamens.converted.into.petal-like.structures.115

Transgenic.manipulation.of.floral.organ.identity.genes.has.led.to.a.greater.under-standing.of.the.molecular.mechanisms.underlying.flower.development.in.diverse.spe-cies,.giving.us.the.required.knowledge.for.creating.morphologically.novel.flowers.with.the.tools.of.biotechnology..Mutation.screens.have.been.the.primary.means.for.identi-fying.lines.with.altered.floral.morphology.in.many.ornamental.crops..For.example,.a.transposon.insertion.into.Duplicated.(DP),.a.C.class.gene,.caused.a.double.flower.phe-notype.in.Japanese.morning.glory.116.Although.it.is.possible.to.obtain.altered.flower.morphology.mutants,.biotechnology.will.be.useful.in.developing.lines.with.novel.flo-ral.appearance.where.mutant.populations.are.difficult.to.generate.and.for.understand-ing. the. basic. molecular. mechanisms. underlying. flower. development.. Sepals. were.converted. into. purple. colored. petal-like. organs. when. green petal,. a. class  B. func-tion.gene,.was.overexpressed.in.petunia.117.Antisense.repression.of. the.chrysanthe-mum.AGAMOUS-like.gene.caused.conversion.of.pistils.to.petal.tissue.and.pistil-like..tissue.118.Interesting.changes.to.petal.floral.morphology,.such.as.changes.in.ray.floret.shape,.have.also.been.observed.when.expression.of.floral.homeotic.genes.is.altered.in.Gerbera.(e.g.,.Yu.et.al.119)..Altering.petal.position.and.number.through.manipulation.of.floral.organ.identity.genes.can.result.in.a.more.colorful,.showier.flower.and.flowers.with.new.morphology,.both.of.which.are.traits.of.interest.for.consumers.

fruIt and flower SIze

While. larger. flowers. are. often. selected. in. ornamental. breeding. programs,. only.recently.has.this.trait.been.modified.through.biotechnology..As.mentioned.in.Leaf.Longevity.section,.cytokinins.are.a.class.of.phytohormones.that.promote.cell.divi-sion;.therefore,.increasing.cytokinin.biosynthesis.is.a.strategy.toward.increasing.cell.numbers.in.target.tissues..This.was.achieved.by.using.the.Arabidopsis thaliana AP3.promoter.to.drive.flower-specific.expression.of.the.Agrobacterium tumefaciens ipt..cytokinin.biosynthetic.gene.in. transgenic.petunia.120.AP3. is.a.class.B.floral.organ.identity. gene. specifying. petal. and. stamen. identity.. The. AP3. promoter. restricts.expression.to.the.petals.and.stamens.in.Arabidopsis121.and.to.floral.organs.in.petu-nia.120.Five.independent.transgenic.AP3::ipt.petunia.lines.had.increased.flower.diam-eter.compared.to.control.flowers..Flowers.from.these.lines.had.a.20%–30%.increase.in.the.diameters.of.individual.floral.organs.due.to.radial.expansion..Transgenic.lines.had.flowers.with.over.90%.increase.in.fresh.weight.compared.to.controls..Some.lines.had.>60%.increase.in.overall.fruit.weight.while.others.had.fruit.weights.similar.to.those.of.controls.

AgrobActerium rhizogenes rol GeneS

The. rol. genes. from. Agrobacterium rhizogenes. have. been. useful. for. changing..multiple.aspects.of.plant.architecture.(reviewed.by.Casanova.et.al.122)..There.are.four.rol.genes.(rolA,.B,.C,.and.D),.with.rolC.(cytokinin-β-glucosidase).having.the.most.potential. for. transgenic. enhancement. of. ornamental. plants.. In. vivo. the. rol. genes.interfere.with.phytohormone.metabolism.and.modify.secondary.metabolism,.which.

Page 87:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

73Transgenic Ornamental Crops

is. phenotypically. manifested. as. a. dwarf. habit,. increased. rooting,. darker. leaves,.increased.lateral.shoots,.and.increased.flowering.(reviewed.by.Casanova.et.al.122)..The.rol.genes.have.been.transformed.into.Antirrhinum,123.Begonia,124.Rosa,125.Petunia,126.Dianthus,127.Osteospermum,128.Angelonia,129.Lilium,130.and.Pelargonium.131.In.some.instances,.transgenic.plants.had.smaller.flowers.and.reduced.fertility,.which.could.be.a.limitation.from.a.production.standpoint,.but.may.be.useful.in.addressing.environ-mental.concerns.since.transgene.flow.would.likely.be.more.restricted.

BIOTIC STRESS TOLERANCE

Engineering.plants.to.tolerate.biotic.stresses.has.the.potential.for.large.cost.savings.in.pesticide.chemicals. leading. to.more.environmentally. friendly.production.prac-tices.(reviewed.by.Redenbaugh.and.McHughen132)..Pesticide.use.data.collected.from.farmers.growing.insect.resistant.transgenic.corn.and.cotton.indicate.biotech.crops.have.decreased.pesticide.usage,.increased.yield,.higher.quality.crops,.and.decreased.labor.133.These.are. clear.benefits. that. are. currently.only. realized.by.producers.of.biotech.food.crops,.but.are.applicable.to.ornamental.crops..While.there.are.no.com-mercially.available.biotech.ornamentals.engineered.for.biotic.stress.tolerance,.this.trait. is. being.engineered. in. some.ornamentals. and. a. few.examples.will. be. high-lighted.here.

There.are.a.number.of.strategies.for.genetic.engineering.plants.to.be.more.resis-tant.to.insect.attack..Engineering.plants.to.produce.insect.toxins.has.been.the.most.successful.means.to.date.and.is.widely.used.today.in.corn.and.cotton.production..Genes.encoding. insect.control.proteins. from.Bacillus thuringiensis,.know.as.Cry.genes,.have.been.cloned.and.modified.for.efficient.production.in.plants134.(reviewed.by.Schuler.et.al.135)..These.proteins.bind.to.gut.receptors.in.lepidopteran,.dipteran,.and.coleopteran.insects.causing.disfunction.of.the.insect.gut.and.lysis.of.gut.epithe-lial.cells.leading.to.insect.death.(reviewed.by.Gill.et.al.136)..The.Bacillus cryIA(b).gene.has.been. introduced. into.chrysanthemum.causing.feeding. insects. to.die.and.significantly.less.consumption.of. leaf.area.137. Insects. feeding.on. transgenic.plants.consumed. less. than. 5%. of. the. leaf. area. while. 95%. or. more. of. control. leaf. area.was.consumed..Similarly,.transgenic.petunias.expressing.the.cryIA(c).gene.caused.significant.reduction.in.insect.fecundity.138.While.the.BT.toxins.have.proven.to.be.very. successful. for. insect. management,. other. biotech. insecticidal. strategies. have.been.developed.and.will.be.important.considerations.for.crop.management.to.avoid.insect.resistance.issues..As.discussed.in.“Plant.Volatiles”.section,.plants.can.be.engi-neered.to.produce.volatiles.that.modify.insect.behavior.or.attract.predatory.insects..Protease.inhibitors,.α-amylase.inhibitors,.lectins,.and.nonvolatile.secondary.metab-olites,.such.as.tryptamine,.are.also.means.for.engineering.insect.defense.in.plants.(reviewed.by.Llewellyn. and.Higgins139)..However,. examples.of. these.methods. for.engineering.insect.defense.in.ornamental.plants.are.few.

While.disease.resistance.in.ornamental.crops.has.largely.been.achieved.through.traditional. breeding,. this. trait. has. been. successfully. genetically. engineered. using.a. number. of. approaches.. Transgenic. expression. of. genes. commonly. induced. by.disease.infection.(pathogenesis-related.genes,.PR).confers.enhanced.disease.resis-tance..For.example,.chitinases.degrade.fungal.cell.walls. into.breakdown.products.

Page 88:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

74 Transgenic Horticultural Crops: Challenges and Opportunities

that. elicit. plant. defense. responses. and. are. often. induced. in. response. to. pathogen.attack.(reviewed.by.Stintzi.et.al.140)..Blackspot.is.a.common,.problematic.disease.in.Rosa hybrida. and. is.caused.by. the. fungus.Diplocarpon rosae..Transformation.of.rose.via.particle.bombardment.with.a. rice.basic.chitinase.gene.reduced.blackspot.severity. by. 13%–43%. with. lesion. size. reduced. by. up. to. half. of. those. of. control.blackspot. lesions.141.A.PR.gene.encoding.for.a.cysteine-rich.antimicrobial.protein.(AMP).confers.disease.resistance.in.plants..Enhanced.tolerance.to.powdery.mildew.was.observed.in.transgenic.rose.plants.constitutively.expressing.an.AMP.gene.from.onion.142.The.onion.AMP.was.also.introduced.into.Pelargonium.for.enhanced.resis-tance.to.Botrytis.143.In.leaf.disc.assays,.Botrytis.sporulation.was.slightly.reduced.in.transgenic.lines..Greater.disease.protection.is.observed.in.transgenic.plants.expressing.more.than.one.PR.gene.and.this.should.be.considered.in.development.of.transgenic.plants.with.enhanced.disease.resistance.144

CURRENT AND FUTURE ISSUES IN ORNAMENTAL BIOTECHNOLOGY

Despite. the. documented. technical. successes,. utility,. and. the. enormous. benefits.genetic. engineering. rewards,. there. are. only. a. limited. number. of. commercialized.transgenic. ornamental. plants. on. the. market.. Presently,. the. only. commercialized.ornamental.plants.on. the.market.are.carnations.engineered. for.blue-violet.color.145.This.is.in.stark.contrast.to.the.rapid.adoption.of.genetically.engineered.agronomic.crops.since.their.introduction.in.1996.with.transgenic.plants.accounting.for.well.over.50%–90%.of.planted.acreage.of.corn,.soybean,.and.cotton.in.2008.(http://www.ers.usda.gov/Data/BiotechCrops/)..The.lack.of.commercialized.transgenic.ornamentals.is.not.due.to.lack.of.potential.products,.but.is.impeded.by.regulatory.issues.concern-ing.safety,.consumer.acceptance,.intellectual.property,.postcommercialization.moni-toring.of.transgenic.crops,.and.the.diversity.of.germplasm.requiring.development.of.a.biotech.trait.2.While.ornamental.crops.are.grown.for.aesthetic.purposes.and.do.not.require.human.health.safety.testing,.they.are.subject.to.strict.handling.procedures,.field-testing,.tracking,.and.postcommercialization.stewardship..All.of.these.increase.the.costs.of.developing.a.biotech.crop.to.at.least.$1.million.for.one.transgenic.event.per.country,132.making.it.difficult.to.justify.use.of.biotechnology.in.the.ornamental.market.where.crop.values.are.significantly.lower.than.agronomic.crops..With.turn-over.of.new.varieties.in.ornamental.crops,.sales.are.not.high.enough.to.generate.a.profit.that.would.offset.the.costs.to.bring.a.transgenic.plant.to.market.

Regulatory.issues.pose.a.significant.obstacle.to.the.development.and.commercial-ization.of.genetically.engineered.crops..Any.organism.that.has.been.modified.through.genetic.manipulation.technology.is.subject.to.regulation.by.overseeing.agencies,.such.as.the.United.States.Department.of.Agriculture.(USDA),.Animal.and.Plant.Health.Inspection.Service.(APHIS),.Environmental.Protection.Agency.(EPA),.and.Food.and.Drug.Administration.(FDA).in.the.United.States,.which.oversees.introduction,.trans-port,.risks.to.human.health,.and.environmental.risk.assessment.of.the.genetically.or.living.modified.organism.(GMO.or.LMO,.respectively)..The.regulations.and.proce-dures.vary.by.country,.creating.additional.complications.in.releasing.a.GMO.interna-tionally.(reviewed.by.Chandler.and.Tanaka16),.but.the.goals.of.regulating.GMOs.are.

Page 89:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

75Transgenic Ornamental Crops

unified.in.that.negative.environmental.and.health.effects.want.to.be.avoided..A.cen-tralized,.international.resource,.known.as.the.Cartagena.Protocol.on.Biosafety.(CPB),.has.been.developed.for.promoting.the.safe.handling.and.use.of.GMOs.internationally.(http://www.cbd.int/biosafety/).. However,. the. protocol. is. still. being. developed. and.ratified.by.many.countries.and.countries.such.as.the.United.States.and.Australia.are.not.yet.contributing.to.the.development.of.this.centralized.protocol.

Continued.consumer.education,.outreach,.and.perception.assessment.are.impor-tant.avenues.to.continue.pursuit.of.making.commercialization.of.ornamental.GMOs.worthwhile..Reports.indicate.that.consumer.perception.of.GMOs.is.mixed,.but.most.surveys.are.conducted.with.regard.to.the.presence.of.GMOs.in.food.and.not.ornamen-tal.plants..A.survey.of.master.gardeners.revealed.that.∼73%.of.survey.respondents.expressed. interest. in.purchasing.a. GM. plant.product. for. the.garden.146. This. said,.there.were.also.clear.opinions.regarding.how.different.sources.of.transgenes.affected.acceptability.of.the.GMO,.with.plant-derived.transgenes.being.more.acceptable.than.those.derived.from.bacteria,.fungus,.virus.or.animal.sources..Respondents.were.also.neutral. about. the. effect. of. landscape. GMOs.. This. latter. point. should. be. empha-sized. in.education.programs.since.many.applications.of.biotechnology.will. result.in.decreased.water.use,.decreased.fossil.fuel.use,.and.decreased.chemical.use,.all.of.which.would.have.positive.effects.on.our.environment..For.example,.Redenbaugh.and.McHughen132.cite.data.showing.declining.pesticide.sales.with.increased.sales.of.biotech-based.varieties.of.plants.

Ornamental.biotechnology.will.clearly.benefit.from.the.evolution.of.newly.devel-oping.DNA.sequencing.technologies..New.sequencing. technologies.including.454.sequencing. and. real. time. single. molecule. long. read. sequencing. soon. to. be. com-mercialized,147.will.make.it.possible.to.quickly.have.genome.data.for.most.species.of. interest. at. very. low.costs..The. limitation.will.no. longer.be.on. sequence.avail-ability.but.rather.on.data.management.and.data.mining..The.availability.of.genome.data.will.facilitate.discovery.of.regulatory.elements.that.will.be.useful.for.delivering.more.precise.transgene.expression.patterns.in.plants,.rapidly.progress.the.discovery.of.enzymes.involved.in.important.biotechnological.applications,.and.make.develop-ment.of.transgenic.ornamental.plants.more.economically.feasible.

ACKNOWLEDGMENTS

The.authors.thank.Dr..Thomas.A..Colquhoun.for.critical.reading.of.the.manuscript.and.Dr..Bart.Schutzman.for.assistance.with.figure.preparation.

REFERENCES

. 1.. Jerardo,. A.,. Floriculture and Nursery Crops Handbook,. USDA. ERS. Report.September.2007.

. 2.. Clark,.D.G.,.Applications.of.plant.biotechnology.to.ornamental.crops,.in.Handbook of Plant Biotechnology,.Vol..II,.Cristou,.P..and.Klee,.H.,.Eds.,.John.Wiley.&.Sons,.Ltd.,.West.Sussex,.U.K.,.2004,.pp..863–879.

. 3.. Shibuya,. K.. and. Clark,. D.G.,. Ethylene:. Current. status. and. future. directions. using.transgenic.plants. to. improve.flower. longevity.of.ornamental.crops,.J. Crop Improv..18,.391,.2006.

Page 90:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

76 Transgenic Horticultural Crops: Challenges and Opportunities

. 4.. Grotewold,.E.,.The.genetics.and.biochemistry.of.floral.pigments,.Annu. Rev. Plant Biol.,.57,.761,.2006.

. 5.. Tanaka,.Y.,.Sasaki,.N.,.and.Ohmiya,.Y.,.Biosynthesis.of.plant.pigments:.Anthocyanins,.betalains.and.carotenoids,.Plant J.,.54,.733,.2008.

. 6.. Napoli,.C.,.Lemieux,.C.,.and.Jorgensen,.R.,.Introduction.of.a.chimeric.chalcone.syn-thase. gene. into. petunia. results. in. reversible. co-suppression. of. homologous. genes. in.trans,.Plant Cell,.2,.279,.1990.

. 7.. van.der.Krol,.A.R..et.al.,.Flavonoid.genes.in.petunia:.Addition.of.a.limited.number.of.gene.copies.may.lead.to.a.suppression.of.gene.expression,.Plant Cell,.2,.291,.1990.

. 8.. Deroles,.S.C..et.al.,.An.antisense.chalcone.synthase.cDNA.leads.to.novel.color.patterns.in.lisianthus.(Eustoma grandiflorum).flowers,.Mol. Breed,.4,.59,.1998.

. 9.. Elomaa,. P.. et. al.,. Agrobacterium-mediated. transfer. of. antisense. chalcone. synthase.cDNA.to.Gerbera hybrida.inhibits.flower.pigmentation,.Biotechnology,.11,.508,.1993.

. 10.. Courtney-Gutterson,.N..et.al.,.Modification.of.flower.color.in.Florist’s.Chrysanthemum:.Production.of.a.white-flowering.variety. through.molecular.genetics,.Biotechnology,.12,.268,.1994.

. 11.. Welle,. R.. and. Grisebach,. H.,. Isolation. of. a. novel. NADPH-dependent. reductase. which.coacts.with.chalcone.synthase.in.the.biosynthesis.of.6′-deoxychalcone,.FEBS Lett.,.236,.221,.1988.

. 12.. Davies,.K.M..et.al.,.Production.of.yellow.colour. in.flowers:.Redirection.of.flavonoid.biosynthesis.in.Petunia,.Plant J.,.13,.259,.1998.

. 13.. Lunau,.K.,.Wacht,.S.,.and.Chittka,.L.,.Colour.choices.of.naïve.bumble.bees.and.their.implications.for.colour.perception,.J. Comp. Physiol.,.A178,.477,.1996.

. 14.. Ono,.E..et.al.,.Yellow.flowers.generated.by.expression.of.the.aurone.biosynthetic.path-way,.Proc. Natl. Acad. Sci. USA,.103,.11075,.2006.

. 15.. Okuhara,.H..et.al.,.Molecular.cloning.and.functional.expression.of. tetrahydroxychal-cone.2′-glucosyl-transferase.genes,.Plant Cell Physiol.,.45,.S133,.2004.

. 16.. Chandler,.S..and.Tanaka,.Y.,.Genetic.modification.in.floriculture,.Crit. Rev. Plant Sci.,.26,.169,.2007.

. 17.. Fukui,.Y..et.al.,.A.rationale.for.the.shift.in.colour.towards.blue.in.transgenic.carnation.flowers.expressing.the.flavonoid.3′5′-hydroxylase.gene,.Phytochemistry,.63,.15,.2003.

. 18.. Shiono,.M.,.Matsugaki,.N.,.and.Takeda,.K.,.Structure.of.the.blue.cornflower.pigment,.Nature,.436,.791,.2005.

. 19.. Meyer,.P..et.al.,.A.new.petunia.flower.color.generated.by. transformation.of.a.mutant.with.a.maize.gene,.Nature,.330,.677,.1987.

. 20.. Meyer,.P.,.Heidmann,.I.,.and.Niedenhof,.I.,.Differences.in.DNA-methylation.are.associ-ated.with.a.paramutation.phenomenon.in.transgenic.petunia,.Plant J.,.4,.89,.1993.

. 21.. Oud,.J.S.N..et.al.,.Breeding.of.transgenic.orange.Petunia hybrida.varieties,.Euphytica,.84,.175,.1995.

. 22.. Lu,.S..and.Li,.L.,.Carotenoid.metabolism:.The.biosynthesis,.regulation,.and.beyond,.J. Int. Plant Biol.,.50,.778,.2008.

. 23.. Hirschberg,. J.,. Carotenoid. biosynthesis. in. flowering. plants,. Curr. Opin. Plant Biol.,.4, 210,.2001.

. 24.. Lewinsohn,.E..et.al.,.Carotenoid.pigmentation.affects.the.volatile.composition.of.tomato.and.watermelon.fruits,.as.revealed.by.comparative.genetic.analyses,.J. Agric. Food Chem.,.53,.3142,.2005.

. 25.. Fray,.R.G..and.Grierson,.D.,.Identification.and.genetic.analysis.of.normal.and.mutant.phytoene.synthase.genes.of.tomato.by.sequencing,.complementation.and.co-suppression,.Plant Mol. Biol.,.22,.589,.1993.

. 26.. Ronen,.G..et.al.,.Regulation.of.carotenoid.biosynthesis.during.tomato.fruit.development:.Expression.of.the.gene.for.lycopene.epsilon-cyclase.is.down-regulated.during.ripening.and.is.elevated.in.the.mutant.delta,.Plant J.,.17,.341,.1999.

Page 91:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

77Transgenic Ornamental Crops

. 27.. Ye,.X..et.al.,.Engineering.the.provitamin.A.(beta-carotene).biosynthetic.pathway.into.(carotenoid-free).rice.endosperm,.Science,.287,.303,.2000.

. 28.. Paine,.J.A..et.al.,.Improving.the.nutritional.value.of.Golden.Rice.through.increased.pro-vitamin.A.content,.Nat. Biotechnol.,.23,.482,.2005.

. 29.. Suzuki,.S..et.al.,.Flower.color.alteration.in.Lotus japonicus.by.modification.of.the.carot-enoid.biosynthetic.pathway,.Plant Cell Rep.,.26,.951,.2007.

. 30.. Auldridge,.M.E.,.McCarty,.D.R.,.and.Klee,.H.J.,.Plant.carotenoid.cleavage.oxygenases.and.their.apocarotenoid.products,.Curr. Opin. Plant Biol.,.9,.315,.2006.

. 31.. Auldridge,.M.E..et.al.,.Characterization.of.three.members.of.the.Arabidopsis.carotenoid.cleavage. dioxygenase. family. demonstrates. the. divergent. roles. of. this. multifunctional.enzyme.family,.Plant J.,.45,.982,.2006.

. 32.. Ohmiya,.A..et.al.,.Carotenoid.cleavage.dioxygenase.(CmCCD4a).contributes.to.white.color.formation.in.chrysanthemum.petals,.Plant Physiol.,.142,.1193,.2006.

. 33.. Simkin,.A.J.. et. al.,. Circadian. regulation. of. the. PhCCD1. carotenoid. cleavage. dioxy-genase.controls.emission.of.beta-ionone,.a.fragrance.volatile.of.petunia.flowers,.Plant Physiol.,.136,.3504,.2004.

. 34.. Vogel,.J.T..et.al.,.The.carotenoid.cleavage.dioxygenase.1.enzyme.has.broad.substrate.specificity,.cleaving.multiple.carotenoids.at.two.different.bond.positions,.J. Biol. Chem.,.283,.11364,.2008.

. 35.. Dudareva,.N..and.Pichersky,.E.,.Metabolic.engineering.of.plant.volatiles,.Curr. Opin. Biotechnol.,.19,.181,.2008.

. 36.. Pichersky,.E.,.Noel,. J.P.,. and. Dudareva,.N.,.Biosynthesis. of. plant. volatiles:. Nature’s.diversity.and.ingenuity,.Science,.311,.808,.2006.

. 37.. Diego,.M.A..et.al.,.Aromatherapy.positively.affects.mood:.EEG.patterns.of.alertness.and.math.computations,.Int. J. Neurosci.,.96,.217,.1998.

. 38.. Lehrner,.J..et.al.,.Ambient.odor.of.orange.in.a.dental.office.reduces.anxiety.and.improves.mood.in.female.patients,.Physiol. Behav.,.71,.83,.2000.

. 39.. Komiya,.M.,.Takeuchib,.T.,.and.Harada,.E.,.Lemon.oil.vapor.causes.an.anti-stress.effect. via. modulating. the. 5-HT. and. DA. activities. in. mice,. Behav. Brain Res.,.172, 240,.2006.

. 40.. Halloran,. J.. M.. and. Kuehnle,.A.R.,. What. do.Anthurium. buyers. want. in. their. flow-ers?  Results. of. a. market. survey,. CTAHR. Economic. Fact. Sheet,. EFS-27,. September.1998.

. 41.. Knudsen,.J.T.,.Tollsten,.L.,.and.Bergstrom,.L.G.,.Review.article.number.76:.Floral.scents:.A.checklist.of.volatile.compounds.isolated.by.head-space.techniques,.Phytochemistry,.33,.253,.1993.

. 42.. Kolosova,.N..et.al.,.Regulation.of.circadian.methyl.benzoate.emission.in.diurnally.and.nocturnally.emitting.plants,.Plant Cell,.13, 2333,.2001.

. 43.. Verdonk,.J.C..et.al.,.Regulation.of.floral.scent.production.in.petunia.revealed.by.targeted.metabolomics,.Phytochemistry,.62,.997,.2003.

. 44.. Bergougnoux,.V..et.al.,.Both.the.adaxial.and.abaxial.epidermal.layers.of.the.rose.petal.emit.volatile.scent.compounds,.Planta,.226,.853,.2007.

. 45.. Clark,.D..et.al.,.Benzenoids.dominate.the.fragrance.of.Petunia.flowers,.in.Petunia,.Gerats,.T..and.Strommer,.J..Eds.,.Springer.Publishing.Company,.New.York,.2009,.Chap..3.

. 46.. Underwood,.B.A..and.Clark,.D.G.,.unpublished.data,.2008.

. 47.. Verdonk,.J.C..et.al.,.ODORANT1.regulates.fragrance.biosynthesis.in.petunia.flowers,.Plant Cell,.17,.1612,.2005.

. 48.. Baldwin,. E.A.. et. al.,. Flavor. trivia. and. tomato. aroma:. Biochemistry. and. possible.mechanisms. for. control. of. important. aroma. components,. HortScience,. 35,. 1013,.2000.

. 49.. Dexter,.R..et.al.,.Characterization.of.a.petunia.acetyltransferase.involved.in.the.biosyn-thesis.of.the.floral.volatile.isoeugenol,.Plant J.,.49,.265,.2007.

Page 92:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

78 Transgenic Horticultural Crops: Challenges and Opportunities

. 50.. Kaminaga,.Y..et.al.,.Plant.phenylacetaldehyde.synthase.is.a.bifunctional.homotetrameric.enzyme. that. catalyzes. phenylalanine. decarboxylation. and. oxidation,. J. Biol. Chem.,.281,.23357,.2006.

. 51.. Dexter,. R.J.. et. al.,. Tissue-specific. PhBPBT. expression. is. differentially. regulated. in.response.to.endogenous.ethylene,.J. Exp. Bot.,.59,.609,.2008.

. 52.. Orlova,.I..et.al.,.Murphy,.A.S.,.Rhodes,.D.,.Pichersky,.E.,.and.Dudareva,.N.,.Reduction.of.benzenoid.synthesis.in.petunia.flowers.reveals.multiple.pathways.to..benzoic.acid.and.enhancement.in.auxin.transport,.Plant Cell,.18,.3458,.2006.

. 53.. Underwood,.B.A..et.al.,.Ethylene-regulated.floral.volatile.synthesis.in.petunia.corollas,.Plant Physiol.,.138,.255,.2005.

. 54.. Tieman,.D.M..et.al.,.Tomato.phenylacetaldehyde.reductases.catalyze.the.last.step.in.the.synthesis.of.the.aroma.volatile.2-phenylethanol,.Phytochemistry,.68,.2660,.2007.

. 55.. Beekwilder,. J.. et. al.,. Functional. characterization. of. enzymes. forming. volatile. esters.from.strawberry.and.banana,.Plant Physiol.,.135,.1865,.2004.

. 56.. Lücker,.J..et.al.,.Expression.of.Clarkia.S-linalool.synthase.in.transgenic.petunia.plants.results.in.the.accumulation.of.S-linalyl-beta-D-glucopyranoside,.Plant J.,.27,.315,.2001.

. 57.. Lavy,.M..et.al.,.Linalool.and.linalool.oxide.production.in.transgenic.carnation.flowers.expressing.the.Clarkia breweri.linalool.synthase.gene,.Mol. Breed.,.9,.103,.2005.

. 58.. Zucker,.A..et.al.,.Modification.of.flower.color.and.fragrance.by.antisense.suppression.of.the.flavanone.3-hydroxlase.gene,.Mol. Breed.,.9,.33,.2002.

. 59.. Hoballah,.M.E..et.al.,.Single.gene-mediated.shift.in.pollinator.attraction.in.Petunia,.Plant Cell,.19,.779,.2007.

. 60.. Ben.Zvi,.M.M..et.al.,.Interlinking.showy.traits:.Co-engineering.of.scent.and.colour.bio-synthesis.in.flowers,.Plant Biotechnol. J.,.6,.403,.2008.

. 61.. Beale,.M.H..et.al.,.Prosser,.I.M.,.Shewry,.P.R.,.Smart,.L.E.,.Wadhams,.L.J.,.Woodcock,.C.M.,. and. Zhang,.Y.,.Aphid. alarm. pheromone. produced. by. transgenic. plants. affects.aphid.and.parasitoid.behavior,.Proc. Natl. Acad. Sci. USA,.103,.10509,.2006.

. 62.. Aharoni,.A..et.al.,.Terpenoid.metabolism.in.wild-type.and.transgenic.Arabidopsis.plants,.Plant Cell,.15,.2866,.2003.

. 63.. Kappers,.I.F..et.al.,.Genetic.engineering.of.terpenoid.metabolism.attracts.bodyguards.to.Arabidopsis,.Science,.309,.2070,.2005.

. 64.. Woltering,. E.J.. and. van. Doorn,. W.G.,. Role. of. ethylene. in. senescence. of. petals—Morphological.and.taxonomical.relationships,.J. Exp. Bot.,.39,.1605,.1988.

. 65.. van.Doorn,.W.G.,.Effect.of.ethylene.on.flower.abscission:.A.survey,.Ann. Bot.,.89,.689,.2002.

. 66.. van.Doorn,.W.G.,.Categories.of.petal.senescence.and.abscission:.A.re-evaluation,.Ann. Bot.,.87,.447,.2001.

. 67.. Abeles,.F.B.,.Morgan,.P.W.,. and.Saltveit,.M.E.,.Ethylene in Plant Biology,. 2nd.edn.,.Academic.Press,.San.Diego,.CA,.1992.

. 68.. Baker,.J.E..et.al.,.Delay.of.senescence.in.carnation.by.rhizobitoxin.analog.and.sodium.benzoate,.HortScience,.12,.38,.1977.

. 69.. Wang,.C.J..et.al.,.Effects.of.2.analogs.of.rhizobitoxine.and.sodium.benzoate.on.senes-cence.of.snapdragons,.J. Am. Soc. Hort. Sci.,.102,.517,.1977.

. 70.. Wang,.C.J..and.Baker,.J.E.,.Vase.life.of.cut.flowers.treated.with.rhizobitoxine.analogs,.sodium.benzoate,.and.isopentenyl.adenosine,.HortScience,.14,.59,.1979.

. 71.. Mor,.Y.,. Reid,. M.S.,. and. Kofranek,. A.M.,. Pulse. treatments. with. silver. sulfate. and.sucrose.improve.the.vase.life.of.sweet.peas,.J. Am. Soc. Hort. Sci.,.109,.866,.1984.

. 72.. Veen,.H..and.van.de.Geijn,.S.C.,.Mobility.and.ionic.form.of.silver.as.related.to.longevity.of.cut.carnations,.Planta,.140,.93,.1978.

. 73.. Reid,.M.S..et.al.,.Pulse.treatments.with.the.silver.thiosulfate.complex.extend.the.vase.life.of.cut.carnations,.J. Am. Soc. Hort. Sci.,.105,.25,.1980.

. 74.. Serek,. M.. et. al.,. Inhibition. of. ethylene-induced. cellular. senescence. symptoms. by.1-.methylcyclopropene,.a.new.inhibitor.of.ethylene.action,.Physiol. Plant.,.94,.229,.1995.

Page 93:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

79Transgenic Ornamental Crops

. 75.. Sisler,.E.C..and.Serek,.M.,.Compounds.interacting.with.the.ethylene.receptor.in.plants,.Plant Biol.,.5,.473,.2003.

. 76.. Yang,.S.F..and.Hoffman,.N.E.,.Ethylene.biosynthesis.and.its.regulation.in.higher.plants,.Annu. Rev. Plant Physiol.,.35,.155,.1984.

. 77.. Savin,. K.W.. et. al.,.Antisense.ACC. oxidase. RNA. delays. carnation. petal. senescence,.HortScience,.30,.970,.1995.

. 78.. Kosugi,.Y..et.al.,.Expression.of.genes.responsible.for.ethylene.production.and.wilting.are  differently. regulated. in. carnation. (Dianthus caryophyllus. L.). petals,. Plant Sci.,.158, 139,.2000.

. 79.. Iwazaki,.Y..et.al.,.Generation.and.ethylene.production.of.transgenic.carnations.harboring.ACC.synthase.cDNA.in.sense.or.antisense.orientation,.J. Appl. Hort.,.6,.67,.2004.

. 80.. Chandler,.S.,.Practical.lessons.in.the.commercialization.of.genetically.modified.plants—Long.vase-life.carnation,.Acta Hort.,.764,.71,.2007.

. 81.. Aida,.R..et.al.,.Extension.of.flower..longevity.in.transgenic.torenia.plants.incorporating.ACC.oxidase.transgene,.Plant Sci.,.138,.91,.1998.

. 82.. Mount,.S.M..and.Chang,.C.,.Evidence. for.a.plastid.origin.of.plant.ethylene. receptor.genes,.Plant Physiol.,.130,.10,.2002.

. 83.. Chen,.Y.F.,.Etheridge,.N.,.and.Schaller,.G.E.,.Ethylene.signal. transduction,.Ann. Bot. (Lond.),.95,.901,.2005.

. 84.. Wang,.W..et.al.,.Identification.of.important.regions.for.ethylene.binding.and.signaling.in.the.transmembrane.domain.of.the.ETR1.ethylene.receptor.of.Arabidopsis,.Plant Cell,.18,.3429,.2006.

. 85.. Chang,.C..et.al.,.Arabidopsis. ethylene-response.gene.ETR1:.Similarity.of.product. to.two-component.regulators,.Science,.262, 539,.1993.

. 86.. Roman,.G..et.al.,.Genetic.analysis.of.ethylene.signal.transduction.in.Arabidopsis thali-ana:.Five.novel.mutant. loci. integrated. into.a.stress. response.pathway,.Genetics,.139,.1393,.1995.

. 87.. Wilkinson,.J.Q..et.al.,.A.dominant.mutant.receptor. from.Arabidopsis.confers.ethylene.insensitivity.in.heterologous.plants,.Nat. Biotechnol.,.15,.444,.1997.

. 88.. Shibuya,.K..et.al.,.The.central.role.of.PhEIN2.in.ethylene.responses.throughout.plant.development.in.petunia,.Plant Physiol.,.136, 2900,.2004.

. 89.. Bovy,.A.G..et.al.,.Heterologous.expression.of.the.Arabidopsis.etr1-1.allele.inhibits.the.senescence.of.carnation.flowers,.Mol. Breed.,.5,.301,.1999.

. 90.. Cui,. M.-L.,.Takada,. K.,. Ma,. B.,. and. Ezura,. H.,. Overexpression. of. a. mutated. melon.ethylene.receptor.gene.Cm-ETR1/H69A.confers.reduced.ethylene.sensitivity.in.a.heter-ologous.plant,.Nemesia strumosa,.Plant Sci.,.167,.253,.2004.

. 91.. Clark,.D.G..et.al.,.Root.formation.in.ethylene-insensitive.plants,.Plant Physiol.,.121,.53,.1999.

. 92.. Sriskandarajah,.S.,.Mibus,.H.,.and.Serek,.M.,.Transgenic.Campanula carpatica.plants.with.reduced.ethylene.sensitivity,.Plant Cell Rep.,.26,.805,.2007.

. 93.. Sanikhani,.M..et.al.,.Kalanchoe blossfeldiana.plants.expressing.the.Arabidopsis.etr1-1.allele.show.reduced.ethylene.sensitivity,.Plant Cell Rep.,.27,.729,.2008.

. 94.. Gan,. S.,. Mitotic. and. postmitotic. senescence. in. plants,. Sci. Aging Knowl. Environ.,.38, RE7,.2003.

. 95.. Sakakibara,.H.,.Cytokinins:.Activity,.biosynthesis.and.translocation,.Annu. Rev. Plant Biol.,.57,.431,.2006.

. 96.. Mok,.D.W.S..and.Mok,.M.C.,.Cytokinins: Chemistry,.Activity and Function,.CRC.Press,.Boca.Raton,.FL,.1994.

. 97.. Akiyoshi,.D..et.al.,.T-DNA.of.Agrobacterium.tumefaciens.encodes.an.enzyme.of.cyto-kinin.biosynthesis,.Proc. Natl. Acad. Sci. USA,.81,.5994,.1984.

. 98.. Medford,.J.I..et.al.,.Alterations.of.endogenous.cytokinins.in.transgenic.plants.using.a.chimeric.isopentenyl.transferase.gene,.Plant Cell,.1,.403,.1989.

Page 94:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

80 Transgenic Horticultural Crops: Challenges and Opportunities

. 99.. Takei,.K.,.Sakakibara,.H.,.and.Sugiyama,.T.,.Identification.of.genes.encoding.adenyl-ate. isopentenyltransferase,.a.cytokinin.biosynthesis.enzyme,. in.Arabidopsis thaliana,.J. Biol. Chem.,.276,.26405,.2001.

.100.. Zubko,.E..et.al.,.Activation.tagging.identifies.a.gene.from.Petunia hybrida.responsible.for.the.production.of.active.cytokinins.in.plants,.Plant J.,.29,.797,.2002.

.101.. Faiss,.M..et.al.,.Conditional.transgenic.expression.of.the.ipt.gene.indicates.a.function.for.cytokinins.in.paracrine.signaling.in.whole.tobacco.plants,.Plant J.,.12,.401,.1997.

.102.. McKenzie,.M.J.,.Mett,.V.,.Reynolds,.P.H.S.,.and.Jameson,.P.E.,.Controlled.cytokinin.produc-tion.in.transgenic.tobacco.using.a.copper-inducible.promoter,.Plant Physiol.,.116,.969,.1998.

.103.. Smart,.C.M..et.al.,.Delayed.leaf.senescence.in.tobacco.plants.transformed.with.tmr,.a.gene.for.cytokinin.production.in.Agrobacterium,.Plant Cell,.3,.647,.1991.

.104.. Gan,.S..and.Amasino,.R.M.,.Inhibition.of.leaf.senescence.by.autoregulated.production.of.cytokinin,.Science,.270,.1986,.1995.

.105.. Weaver,.L.M.. et. al.,.A. comparison. of. the. expression.patterns. of. several. senescence-associated.genes.in.response.to.stress.and.hormone.treatment,.Plant Mol. Biol.,.37,.455,.1998.

.106.. Dervinis,.C.,.Genetic.transformation.of.Petunia.x.hybrida.for.delayed.leaf.senescence.using.PSAG12IPT,.MS.thesis,.University.of.Florida,.Gainesville,.FL,.1999.

.107.. Jandrew,.J.,.Nutritional.and.fungal.stress.responses.of.transgenic.petunias.with.delayed.leaf.senescence,.MS.thesis,.University.of.Florida,.Gainesville,.FL,.2002.

.108.. Chang,. H.. et. al.,. Overproduction. of. cytokinins. in. petunia. flowers. transformed. with.PSAG12-IPT. delays. corolla. senescence. and. decreases. sensitivity. to. ethylene,. Plant Physiol.,.132,.2174,.2003.

.109.. Khodakovskaya,.M..et.al.,.Effects.of.cor15a-IPT.gene.expression.on.leaf.senescence.in.transgenic.Petunia.x.hybrida.and.Dendranthema.x.grandiflorum,.J. Exp. Bot.,.56,.1165,.2005.

.110.. Yamaguchi,. S.,. Gibberellin. metabolism. and. its. regulation,. Annu. Rev. Plant Biol.,.59, 225,.2008.

.111.. Petty,. L.M.. et. al.,. Manipulating. the. gibberellin. response. to. reduce. plant. height. in.Chrysanthemum morifolium,.Acta Hort.,.560,.87,.2001.

.112.. Schomburg,. F.M.. et. al.,. Overexpression. of. a. novel. class. of. gibberellin. 2-oxidases.decreases.gibberellin.levels.and.creates.dwarf.plants,.Plant Cell,.15,.151,.2003.

.113.. Coen,.E.S..and.Meyerowitz,.E.M.,.The.war.of.the.whorls:.Genetic.interactions.control-ling.flower.development,.Nature,.353,.31,.1991.

.114.. Angenent,. G.C.. and. Immink,. R.G.H.,. Combinatorial. action. of. petunia. MADS. box.genes.and.their.protein.products,.in.Petunia,.Gerats,.T..and.Strommer,.J.,.Eds.,.Springer.Publishing.Company,.New.York,.2009,.Chap..11.

.115.. Kapoor,.M..et.al.,.Role.of.petunia.pMADS3.in.determination.of.floral.organ.and.meri-stem.identity,.as.revealed.by.its.loss.of.function,.Plant J.,.32,.115,.2002.

.116.. Nitasaka,.E.,.Insertion.of.an.En/Spm-related.transposable.element.into.a.floral.homeotic.gene.DUPLICATED.causes.a.double.flower.phenotype.in.the.Japanese.morning.glory,.Plant J.,.36,.522,.2003.

.117.. Halfter,.U..et.al.,.Ectopic.expression.of.a.single.homeotic.gene,.the.Petunia.gene.green.petal,.is.sufficient.to.convert.sepals.to.petaloid.organs,.EMBO J.,.13,.1443,.1994.

.118.. Aida,.R..et.al.,.Chrysanthemum.flower.shape.modification.by.suppression.of.chrysan-themum-AGAMOUS.gene,.Plant Biotechnol.,.25,.55,.2008.

.119.. Yu,.D.,.Kotilainen,.M.,.Pöllänen,.E.,.Mehto,.M.,.Elomaa,.P.,.Helariutta,.Y.,.Albert,.V.A.,.and.Teeri,.T.H.,.Organ.identity.genes.and.modified.patterns.of.flower.development.in.Gerbera hybrida.(Asteraceae),.Plant J.,.17,.51,.1999.

.120.. Verdonk,.J.C..et.al.,.Flower-specific.expression.of.the.Agrobacterium tumefaciens.iso-pentenyltransferase.gene.results.in.radial.expansion.of.floral.organs.in.Petunia hybrida,.Plant Biotechnol. J.,.6,.694,.2008.

Page 95:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

81Transgenic Ornamental Crops

.121.. Tilly,.J.J.,.Allen,.D.W.,.and.Jack,.T.,.The.CArG.boxes.in.the.promoter.of.the.Arabidopsis.floral.organ.identity.gene.APETALA3.mediate.diverse.regulatory.effects,.Development,.125,.1647,.1998.

.122.. Casanova,.E..et.al.,.Influence.of.rol.genes.in.floriculture,.Biotechnol. Adv.,.23,.3,.2005.

.123.. Handa,.T.,.Genetic.transformation.of.Antirrhinum majus.L..and.inheritance.altered.phe-notype.induced.by.Ri.T-DNA,.Plant Sci.,.81,.199,.1992.

.124.. Kiyokawa,.S..et.al.,.Genetic.transformation.of.Begonia tuberhybrida.by.Ri.rol.genes,.Plant Cell Rep.,.15,.606,.1996.

.125.. van.der.Salm,.T.P.M..et.al.,.Stimulation.of.scion.bud.release.by.rol.gene.transformed.rootstocks.of.Rosa hybrida.L.,.J. Exp. Bot.,.49,.847,.1998.

.126.. Winefield,.C..et.al.,.Alterations.of.Petunia.plant.form.through.the.introduction.of. the.rolC.gene.from.Agrobacterium rhizogenes,.Mol. Breed.,.5,.543,.1999.

.127.. Ovadis,.M..et.al.,.Generation.of.transgenic.carnation.plants.with.novel.characteristics.by.combining.microprojectile.bombardment.with.Agrobacterium tumefaciens.transfor-mation,.in.Plant Biotechnology and In Vitro Biology in the 21st Century,.Altman,.A.,.Izhar, S.,.and.Ziv,.M.,.Eds.,.Kluwer.Academic.Publishers,.Dordrecht,.the.Netherlands,.1992,.pp..189–192.

.128.. Giovannini,.A.,.Mascarello,.C.,.and.Allavena,.A.,.Effects.of.rol.genes.on.flowering.in.Osteospermum ecklonis,.Flower. Newsl.,.28,.49,.1998.

.129.. Koike,.Y..et.al.,.Horticultural.characterization.of.Angelonia salicariifolia.plants.trans-formed.with.wild-type.strains.of.Agrobacterium rhizogenes,.Plant Cell Rep.,.21,.981,.2003.

.130.. Mercuri,.A.. et. al.,.Agrobacterium-mediated. transformation.with. rol.genes.of.Lilium longiflorum.Thunb.,.Acta Hort.,.612,.129,.2003.

.131.. Boase,. M.R.. et. al.,. Transgenic. regal. pelargoniums. that. express. the. rolC. gene. from.Agrobacterium rhizogenes.exhibit.a.dwarf.floral.and.vegetative.phenotype,.In Vitro Cell Dev. Biol.,.40,.46,.2004.

.132.. Redenbaugh,. K.. and. McHughen,.A.,. Regulatory. challenges. reduce. opportunities. for.horticultural.biotechnology,.Calif. Agric.,.58,.106,.2004.

.133.. Fernando-Cornejo,.J..and.Caswell,.M.,.The.first.decade.of.genetically.engineered.crops.in.the.United.States,.Economic.Information.Bulletin.Number.11,.April.2006.

.134.. Perlak,.F.J.. et. al.,.Modification.of. the. coding. sequence.enhances.plant. expression.of.insect.control.protein.genes,.Proc. Natl. Acad. Sci. USA,.88,.3324,.1991.

.135.. Schuler,.T.H..et.al.,.Insect-resistant.transgenic.plants,.Trends Biotechnol.,.16,.168,.1998.

.136.. Gill,.S.S.,.Cowles,.E.A.,.and.Pietrantonio,.P.V.,.The.mode.of.action.of.Bacillus thuringi-ensis.endotoxins,.Annu. Rev. Entomol.,.37,.615,.1992.

.137.. Shinoyama,. H.. and. Mochizuki,. A.,. Insect. resistant. transgenic. chrysanthemum.[Dendranthema.x.grandiflorum.(Ramat.).Kitamura],.Acta Hort.,.714,.177,.2006.

.138.. Omer,.A.D..et.al.,.Effects.of.transgenic.petunia.expressing.Bacillus thuringiensis.toxin.on.selected.lepidopteran.pests,.Biocontrol Sci. Technol.,.7,.437,.1997.

.139.. Llewellyn,.D.J..and.Higgins,.T.J.V.,.Transgenic.crop.plants.with.increased.tolerance.to.insect.pests,.in.Plant Biotechnology and Transgenic Plants,.Oksman-Caldentey,.K.-M..and.Barz,.W.,.Eds.,.CRC.Press,.Boca.Raton,.FL,.2002.

.140.. Stintzi,.A..et.al.,.Plant.‘pathogenesis-related’.proteins.and.their.role.in.defense.against.pathogens,.Biochimie,.75,.687,.1993.

.141.. Marchant,.R..et.al.,.Expression.of.a.chitinase.transgene.in.rose.(Rosa hybrida.L.).reduces.development.of.blackspot.disease.(Diplocarpon rosae.Wolf),.Mol. Breed.,.4,.187,.1998.

.142.. Li,.X..et.al.,.Transgenic.rose.lines.harboring.an.antimicrobial.protein.gene,.Ace-AMP1,.demonstrate.enhanced.resistance.to.powdery.mildew.(Sphaerotheca pannosa),.Planta,.218,.226,.2003.

.143.. Bi,.Y.-M..et.al.,.Resistance.to.Botrytis cinerea.in.scented.geranium.transformed.with.a.gene.encoding.the.antimicrobial.protein.Ace-AMP1,.Plant Cell Rep.,.18,.835,.1999.

Page 96:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

82 Transgenic Horticultural Crops: Challenges and Opportunities

.144.. Zhu,.Q..et.al.,.Enhanced.protection.against.fungal.attack.by.constitutive.co-expression.of.chitinase.and.glucanase.genes.in.transgenic.tobacco,.Biotechnology,.12,.807,.1994.

.145.. Lu,.C..et.al.,.Florigene.flowers:.From.laboratory.to.market,.in.Plant Biotechnology 2002 and Beyond,.Vasil,.I.K.,.Ed.,.Kluwer.Academic.Publishers,.Dordrecht,.the.Netherlands,.2003.

.146.. Klingeman,. W.,. Hall,. C.,. and. Babbit,. B.,. Master. gardener. perception. of. genetically.modified.ornamental.plants.provides.strategies.for.promoting.research.products.through.outreach.and.marketing,.HortScience,.41,.1263,.2006.

.147.. Eid,.J..et.al.,.Real-time.DNA.sequencing. from.single.polymerase.molecules,.Science,.323,.133,.2009.

.148.. van.der.Krol,.A.R..et.al.,.An.anti-sense.chalcone.synthase.gene.in.transgenic.plants.inhibits.flower.pigmentation,.Nature,.333,.866,.1988.

.149.. Gutterson,. N.,.Anthocyanin. biosynthetic. genes. and. their. application. to. flower. color.modification.through.sense.suppression,.HortScience,.30,.955,.1995.

.150.. Katsumoto,.Y..et.al.,.Engineering.of.the.rose.flavonoid.biosynthetic.pathway.success-fully.generated.blue-hued.flowers.accumulating.delphinidin,.Plant Cell Physiol.,.48,.1589,.2007.

.151.. Suzuki,.K..et.al.,.Flower.color.modifications.of.Torenia hybrida.by.cosuppression.of.anthocyanin.biosynthesis.genes,.Mol. Breeding,.6,.239,.2000.

.152.. Ueyama,.Y.. et. al.,. Molecular. and. biochemical. characterization. of. torenia. flavonoid.3′-hydroxylase.and.flavone.synthase.II.and.modification.of.flower.color.by.modulating.the.expression.of.these.genes,.Plant Sci.,.163,.253,.2002.

.153.. Lücker,.J..et.al.,.Metabolic.engineering.of.monoterpene.biosynthesis:.Two-step.produc-tion.of.(+)-trans-isopiperitenol.by.tobacco,.Plant J.,.39,.135,.2004.

.154.. Guterman,.I..et.al.,.Generation.of.phenylpropanoid.pathway-derived.volatiles.in.trans-genic.plants:.Rose.alcohol.acetyltransferase.produces.phenylethyl.acetate.and.benzyl.acetate.in.petunia.flowers,.Plant Mol. Biol.,.60,.555,.2006.

.155.. Aranovich,.D.,.Lewinsohn,.E.,.and.Zaccai,.M.,.Post-harvest.enhancement.of.aroma.in.transgenic.lisianthus.(Eustoma grandiflorum).using.the.Clarkia breweri.benzyl.alcohol.acetyltransferase.(BEAT).gene,.Postharvest Biol. Technol.,.43,.255,.2007.

Page 97:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

83

4 Expression and Manufacture of Pharmaceutical Proteins in Genetically Engineered Horticultural Plants

Qiang Chen

CONTENTS

A.Brief.History.........................................................................................................84Plants.Provide.a.New.Manufacturing.Technology.for.Pharmaceutical.Proteins......... 85Protein.Pharmaceutical.Production.Using.Plant.Systems.........................................88

Monoclonal.Antibodies........................................................................................ 89Vaccines...............................................................................................................92

Glycosylation.of.Plant-Made.Pharmaceuticals......................................................... 95Downstream.Processing.of.Plant-Derived.Protein.Pharmaceuticals........................96

Column.Chromatography.....................................................................................97Nonchromatographic.Separations...................................................................... 101

Plant.Species.Used.for.PMP.Production................................................................. 103Leafy.Crops........................................................................................................ 104Seed.Crops......................................................................................................... 105Fruit.and.Tuber.Crops........................................................................................ 106Aquatic.Plants.................................................................................................... 107Plant.Suspension.Cell.Cultures.and.Single-Cell.Cultures.of.Algae................... 107

Regulatory.Concerns.and.Public.Acceptance......................................................... 108Better.Stewardship.of.the.PMP.Community...................................................... 109Alternative.PMP.Production.Technology.and.Risk.Control.............................. 109

Nonbiological.Containment.......................................................................... 109Biological.Containment................................................................................. 110

Regulatory.Policies.regarding.PMP................................................................... 112Conclusion.............................................................................................................. 112References............................................................................................................... 113

Page 98:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

84 Transgenic Horticultural Crops: Challenges and Opportunities

A BRIEF HISTORY

Humans.have.been.using.plants.as.a.natural.factory.of.pharmaceutical.molecules.for.many.centuries..Many.secondary.metabolites.of.plants.exhibit. a.diversity.of.therapeutic.effects.including.anti-inflammatory,.wound-healing,.and.antimicrobial.properties..These.natural.plant.medicines.were.widely.used.around.the.world.by.early.civilizations.to.protect.and.maintain.human.and.animal.health..Even.today,.with.our.highly.sophisticated.pharmaceutical.technologies,.more.than.one-quarter.of. .prescription.pharmaceutics. are. still. derived. from.plants.1,2.These.plant-based.natural.pharmaceuticals.include.single-molecule.drugs.such.as.the.painkiller.mor-phine.from.the.opium.poppy.and.botanicals.that.are.a.mixture.of.active.plant.mol-ecules.acting.synergistically.in.the.treatment.of.specific.conditions..Traditionally,.these.plant.molecules.are.extracted.from.either.wild.or.cultivated.species..Large-scale.production,.however,.is.usually.relying.on.modern.advancement.of.plant.tissue.culture.since.the.medicinal.plants.are.sometimes.rare.in.nature.or.are.difficult.to.cultivate..Therefore,.plants.and.plant.tissue.cultures.have.been.serving.as.impor-tant. bioproduction. systems. for. traditional. pharmaceutical. bulk. substances. for. a.long. time..With. the. advancement.of.modern. molecular. biology. and.biotechnol-ogy,.it.became.possible.to.alter.the.plant.genome.by.inserting.expression.cassettes.including. the. target. transgene. and. associated. regulatory. genetic. elements.. This.technological.breakthrough.allowed.the.creation.of.transgenic.plants.that.carry.the.transgene.and.produce.recombinant.proteins.3.The.first.recombinant.pharmaceuti-cal.protein.of.plant.origin.was.a.human.growth.hormone.produced.in.transgenic.tobacco.in.1986.4.Three.years.later,.the.success.of.expressing.monoclonal.antibod-ies.(mAbs).in.transgenic.tobacco.plants.was.published,.demonstrating.the.ability.of.plant.cells. in.expressing.and.assembling.of.complex. functional.multi-subunit.proteins.5.Our. research. group.directed.by.Dr..Charles.Arntzen. led. the. effort. in.plant-made.vaccines.and.published.our.first.finding.in.1992..We.demonstrated.that.transgenic. tobacco.could. successfully.produce.hepatitis.B.virus. surface. antigen.(HBsAg).with.similar.biochemical.properties.and.antigenicity.to.that.produced.in.human.serum.or.recombinant.yeast.6.Soon.after,.research.from.our.group.showed.that.E. coli.heat-labile.enteroxin.(LT-B).derived.from.transgenic.tobacco.or.potato.had. equivalent. functionality. to. E. coli–derived. LT-B. and. was. orally. immuno-genic.in.mice,.which.provided.the.first.proof.of.principle.for.plant-derived.edible.vaccines.7.The.successes.of.these.researches.opened.up.a.completely.new.applica-tion.area.for.plants.as.factories.for.human.and.animal.pharmaceutical.production..In.the.last.two.decades,.a.broad.range.of.functionally.active.vaccines.and.thera-peutic. proteins. have. been. produced. in. an. increasingly. diverse. species. of. crops.with.a.variety.of.different.plant.expression.systems..Recent.improvements.in.plant.expression.vectors.have.allowed.for.significant.strides.in.a.variety.of.new.plant-based.expression.systems.and.their.broad.application..Meanwhile,.the.importance.of. the. downstream. processing. for. extraction. and. purification. of. pharmaceutical.proteins.from.plant.materials.has.been.realized,.and.increasing.efforts.have.been.applied.to.address.this.critical.issue..The.public.opinion.and.regulatory.landscape.have.been.evolving.to.a.more.welcoming.climate.where.scientists.and.regulatory.agencies.can.work.together.to.develop.regulations.and.guidelines.for.plant-made.

Page 99:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

85Expression and Manufacture of Pharmaceutical Proteins

recombinant.pharmaceutical. proteins..At.present. stage,. plants.provide. a. serious.viable..alternative.to.the.traditional.mammalian.or.microbial.cell.culture.technolo-gies,.allowing.for.cost-effective,.highly.scalable,.and.safe.production.of.pharma-ceutical.proteins.

PLANTS PROVIDE A NEW MANUFACTURING TECHNOLOGY FOR PHARMACEUTICAL PROTEINS

The.majority.of.pharmaceutical.proteins.are.currently.produced.in.mammalian.cell.cultures,.with.a.few.exceptions.produced.in.Escherichia coli,.yeast,.or.insect.cells.8.As.one.of.the.fundamental.technological.revolutions.in.the.pharmaceutical.indus-try,.the.development.and.optimization.of.mammalian.cell.culture.allow.for.uniform.production.of.pharmaceutical.proteins.with.high.efficacy..However,.mammalian.and.other. cell. culture-based.production. systems. rely.on. the. fermentation.of.cells. sus-pended.in.bioreactors,.which.requires.a.large.initial.capital.investment.and,.there-fore,. severely. constrains. their. economic. effectiveness. and. scalability.. Application.of.such.technologies.in.the.developing.world.will.not.only.face.intellectual.property.challenges,.but.undoubtedly.will.also.encounter.further.financial.and.logistical.bar-riers.that.are.difficult.to.overcome..Meanwhile,.the.worldwide.demand.for.protein-based.pharmaceuticals.has.greatly.increased.for.the.last.two.decades..If.the.demand.for.such.products.cannot.be.met.or.if.they.are.too.costly.to.produce.for.health.care.systems,. all. of. the. advances. in. recombinant. pharmaceutical. protein. creation. and.optimization,.as.well.as.the.vast.therapeutic.potential.of.these.agents,.are.made.irrel-evant..This.urgent.situation.calls.for.the.development.of.new.production.platforms.that.are.cost-effective,.scalable,.and.safe.

Plant-based.protein.production.technology.combines.the.innovations.in.medicine.and.plant.biology.and.has.a.great.potential. to.produce. affordable.pharmaceutical.proteins. at. a. large. scale..Plants. can.produce. large.volumes.of.proteins. efficiently.and.sustainably,.and,.under.certain.conditions,.with.significantly.lower.manufactur-ing.costs.than.mammalian.cell.cultures.9–13.Plants.are.also.far.less.likely.to.intro-duce.human.or.animal.pathogens.to.humans.compared.to.mammalian.cells.or.whole.transgenic.animal.systems..Unlike.bacterial.and.other.prokaryotic.systems,.plants.share.a. similar.endomembrane. system.and.secretory.pathway.with.human.cells.14.Therefore,.plant.cells.are.able.to.efficiently.assemble.multiple.subunit.proteins.and.perform. necessary. posttranslational. modifications. on. transgenic. pharmaceutical.proteins..The.low-cost,.high-scalability,.and.safety.characteristics.of.plant.produc-tion.system.offer.an.attractive.alternative.technology.platform.for.both.commercial.pharmaceutical.production.and.for.manufacturing.products.for.the.developing.world..In.fact,.an.increasing.number.of.academic.and.industrial.laboratories.are.investing.in.plant-made.protein.pharmaceuticals.(PMPs)..While.much.research.is.still.required.to.optimize.plant.production.of.pharmaceuticals.and.to.validate.them.in.large-scale.clinical. trials,. the. results. to.date.show.a.promising. technology. that. justifies.com-mercial.development.

Currently,.three.strategies.are.primarily.employed.for.the.expression.of.pharma-ceutical.proteins.in.plants.including.the.stable.transformation.of.the.nuclear.genome,.

Page 100:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

86 Transgenic Horticultural Crops: Challenges and Opportunities

the. stable. transformation. of. the. chloroplast. genome,. and. transient. transformation.(Figure.4.1)..In.the.first.two.strategies,.an.expression.cassette.harboring.the.gene.of.interest.is.used.to.transform.plant.cells.to.enable.the.insertion.of.transgene.into.the.nuclear.or.chloroplast.genomes..The.stable.integration.of.the.cassette.into.either.the.nuclear.or.plastid.genome.allows.the.Mendelian. inheritance.of. the. transgene.over.generations.and,.in.turn,.the.stable.expression.of.transgenic.proteins..The.resulting.transgenic.lines.can.be.propagated.to.establish.a.master.seed.bank.for.future.large-scale. production. of. pharmaceutical. proteins.. For. most. plant. species,. exogenous.transgene.cassette.can.be.delivered.into.their.genome.by.using.Agrobacterium tume-faciens,.which.inserts.DNA.into.the.plant.genome.in.a.somewhat.random.fashion..Alternatively,.ballistic.methods.with.DNA-coated.microprojectiles.can.be.used. to.bombard.plant.cells..The.ballistic.“gene.gun”.is.especially.useful.for.plant.species.that.are.difficult.to.transform.efficiently.by.Agrobacterium.15.Up.to.today,.the.bal-listic.method.with.tungsten.or.gold.particles.remains.to.be.the.only.efficient.way.for.the.transformation.of.the.chloroplast.genome.

In. the. third.plant.expression.strategy,. transgenes.are.not. integrated.into.one.of.the.plant.genomes,.but.instead.they.are.present.in.the.plant.nucleus.transiently.while.being.transcribed,.and.later.the.transcripts.are.transported.into.the.cytoplasm.and.the.transgenic.proteins.are.translated..While.transient.expression.can.be.carried.out.with.both.nonviral.and.viral.vectors,. the. latter.are.more.widely.used.due. to. their.robustness. in. replication,. transcription,. and. translation.16. Plant. viral. vectors. have.been.used.in.several.major.formats.to.transiently.express.PMPs..For.example,.many.vaccine.epitopes.have.been.fused.to.the.viral.coat.protein.so.that.they.will.be.dis-played.of.on. the.surface.of. the.virus.17,18.PMP.genes.can.also.be. inserted. into.an.

Pharmaceutical protein gene

Clone into planttransformation

vector

Transient expression:infect plant to initiate

viral replication

Stable expression:transgene

integrates intochloroplast genome

Stable expression:transgene

integrates intonuclear genome

Stable expression:regulated release ofviral replicon from a

viral genome integratedinto plant genome

Stable expression:integrate into nuclear

genome, high-levelprotein expression

Transient expression:high-level protein

expression withoutforming infectious viral

particles

Incorporate intodeconstructed viralsequences as partof Agrobacterium

transformationvector

Integrate into aviral coding sequence

for expression as a“by product” ofviral replication

FIGURE 4.1 Strategies.for. the.expression.of.pharmaceutical.proteins.in.plants..(Adapted.from.Chen,.Q.,.Biol. Eng.,.1,.291,.2008..With.permission.)

Page 101:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

87Expression and Manufacture of Pharmaceutical Proteins

expression.cassette,.and.the.target.protein-coding.sequences.will.be.expressed.as.a.by-product.of.the.viral.genome.replication.cycle.under.the.control.of.subviral.pro-moters.19,20.In.a.variation,.recombinant.viral.genomes.can.be.integrated.into.plant.chromosomes.via. transformation..The.subsequent. transcription.of.viral.RNA.will.initiate.vial.replication.and,.in.turn,.drive.the.expression.of.the.target.pharmaceutical.protein.21.Overall,.the.robust.transcription.and.amplified.translation.of.the.plant.viral.components.allow.the.transient.expression.systems.to.yield.high-level.accumulation.of.recombinant.proteins.

Viral. “deconstruction”. is. a. recent. application.of. using.viral. genomes. to. cre-ate.transient.transgene.expression.22,23.This.newly.deconstructed.viral.vector.sys-tem.is.based.on.in planta.assembly.of.replication-competent.tobacco.mosaic.virus.(TMV).and.potato.virus.X.(PVX).genomes.from.separate.provector.modules.23,24.Agrobacterium tumefaciens. is.used. to.deliver.DNA.modules.along.with.a. sepa-rate.construct. that.produces.a. recombination. integrase..Upon. its.expression,. the.integrase.assembles.separate.DNA.modules.into.a.replication-competent.TMV.or.PVX.genome.under.the.control.of.a.plant.promoter..This.assembled.DNA.construct.is. then. transcribed.and. spliced. to. generate. a. functional. infective. replicon.. This.“Maginfection”.system.combines.the.advantages.of. three.biological.systems.22,24.First,.the.laborious.in.vitro.process.of.generating.RNA-based.vectors.is.eliminated.due.to.the.use.of.Agrobacterium.as.viral.vector.delivery.tool..Second,.the.deletion.of.viral.coat.protein.genes.in.this.system.allows.the.speed.and.high.protein.yield.of.a.viral.system.without.the.threat.of.creating.functional.infectious.particles..In.addition,. “Maginfection”. integrates. the. posttranslational. processing. capacity. of.eukaryotic.plant.cells.for.producing.complex.proteins..Peaks.of.PMP.accumula-tion.are.usually.detected.between.7.and.14.days.after.vector.delivery.24.This.system.thus.gains.the.flexibility.of.nuclear.gene.expression.with.the.speed.and.expression.amplification.of.viral.vectors.

All.three.plant.expression.strategies.are.likely.to.have.their.place.in.the.com-mercial. realm. of. producing. pharmaceutical. proteins.. Expression. systems. using.stably. transformed.plants. represent.an.inexpensive.and.permanent.genetic.prop-agation. source. for. pharmaceutical. protein. production.25. However,. this. develop-ment.of.technology.has.been.hindered.by.several.scientific.and.regulatory.issues..First,.it.requires.a.relatively.long.time.frame.to.create.and.select.the.initial.stable.transgenic.plants..In.addition,.the.expression.level.of.the.transgene.product.can.be.fluctuated.wildly.or.unstable.not.only.between.individual.plants.but.also.between.different.generations.of.the.same.plant.line..These.uncertainties.are.often.caused.by.the.randomness.of.transgene.insertion.into.the.plant.nuclear.genome.(the.“posi-tion.effect”).and.by.the.phenomenon.of.posttranscriptional.or.siRNA-dependent.gene.silencing..The.latter.may.be.triggered.by.the.presence.of.a.particular.mRNA.in.high.concentration,.leading.to.both.immediate.and.potential.permanent.produc-tion.instability.26–31.The.potential.risk.of.unwanted.transgene.outflow.from.fields.with.genetically.modified.(GM).plants. to.neighboring.fields.with.non-GM.crops.or.their.wild.relatives.has.also.raised.regulatory.and.public.acceptance.issues.for.this.technology..These.scientific.and.regulatory.hurtles.have.been.addressed.by.a.growing.number.of.academic.and.industrial.laboratories..For.example,.in.response.to.regular.concerns.for.potential.transgene.escape.through.outcrossing,.transgenic.

Page 102:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

88 Transgenic Horticultural Crops: Challenges and Opportunities

plants.are.increasingly.being.grown.in.containment.or.in.areas.with.natural.geographic.barrier.to.isolate.transgenic.plants.from.their.agricultural.or.wild.relatives..Once.the.transgenic.plant.lines.are.selected.and.the.“master.seed.banks”.are.established,.however,.stable.transgenic.plants.will.provide.the.most.scalable.technology.when.large.amounts.of.pharmaceutical.protein.are.required.for.commercial.production..Since.there.are.thousands.of.chloroplasts.in.each.cell,.the.copies.of.transgene.per.cell.in.transplastomic.plants.are.significantly.higher.than.that.of.nuclear.transfor-mation,. which,. in. turn,. drive. higher. level. of. transgenic. protein. production.32–34.The.prokaryotic.origin.of.chloroplasts.also.supports.facile.homologous.recombina-tion.and.polycistronic.transcript.production..These.features.allow.the.production.of. multiple. transgenic. proteins. from. one. polycistronic. mRNA. as. well. as. better.transgene.targeting.in.chloroplast.genome.to.avoid.the.“position.effect”.and.trans-gene. silencing,. which. cause. inconsistent. level. of. transgenic. protein. production..Chloroplasts.are.maternally.transmitted.in.most.crops,.which.exclude.chloroplast.transgene.escape.from.pollen.transmission..Therefore,.transplastomic.expression.of.transgene.is.considered.a.superb.alternative.for.regulatory.compliance.in.ensur-ing.transgene.containment.and.improving.the.biosafety.of.transgenic.plants.35.Due.to.lack.of.posttranslational.machineries.in.chloroplasts,.however,.plant.lines.with.stably.transformed.chloroplast.genomes.will.mostly.be.applicable.to.produce.pro-teins,.which.do.not.require.posttranslational.modifications.for.their.function.or.pro-teins.for.diagnostic.purposes.36.The.transient,.viral-based.expression.systems21,23.are.focused.on.production.speed,.and. therefore,. the.most.convenient. technology.for.obtaining. the. initial. research.material. (mg–g. level).used. in.preclinical. stud-ies..These. transient. expression. systems. rely. on.Agrobacteria’s. ability. to. deliver.the.“deconstructed”.viral.genome.to.majority.of.plant.cells,.therefore,.eliminating.the.need.for.viral.systemic.spreading.function..This.characteristic.not.only.elimi-nates.the.concern.of.transgene.loss.during.systemic.spreading.but.also.allows.the.application.of. this. technology. to.a.diversity.of.plant. species.beyond. the.natural.virus.hosts..Since.nontransgenic.plant.materials.are.used.for.viral.vector.delivery,.they.can.be.readily.stocked.up.for.semi-large-scale.productions..Overall,.a.rapid.evaluation.of.pharmaceutical.candidates.and.transition.to.a.large-scale.commercial.production.platform.can.be.accomplished.by.employing.the.combination.of.both.transient.and.stable.transgenic.plant.technologies.

PROTEIN PHARMACEUTICAL PRODUCTION USING PLANT SYSTEMS

Unlike. mammalian. cell. cultures. or. bacterial. fermentation. systems,. which. require.capital-demanding. bioreactors. and. expensive. tissue. culture. media. and. operations,.pharmaceutical. protein. production. by. transient.or. stable. transgenic.plants. is.more.economical.in.both.initial.setup.and.subsequent.scale-up..This.is.due.to.decrease.in.large.hardware. investment.and.expensive.culture.media. regardless.of.whether. it. is.produced.in.the.field.or.greenhouses..As.a.result,.a.variety.of.pharmaceutical.proteins.have.been.expressed.and.characterized.in.plant.systems..Here,.we.will.focus.on.the.production.of.the.two.most.important.classes.of.pharmaceuticals:.mAbs.and.vaccines.

Page 103:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

89Expression and Manufacture of Pharmaceutical Proteins

monoclonal antIbodIeS

Monoclonal. antibodies. (mAbs). have. a. wide. range. of. important. pharmaceutical.applications.. MAb.market. was.projected. to. reach.$16.7.billion.by. 2010,. account-ing.for.over.a.quarter.of.the.total.protein.therapeutics.market.37,38.As.a.result,.new.expression. systems.have. to.demonstrate. their.effectiveness. in.producing.mAbs. in.order.to.be.considered.seriously.as.contenders.for.commercial.production.of.pharma-ceutical.proteins..MAbs.are.extremely.expensive.to.produce.in.mammalian.culture.system.and,.therefore,.are.costly.to.patients.and.health.care.systems..Development.of. new. production. platforms. is. indeed. necessary. to. reduce. the. cost. and. increase.the. scalability. of. mAb. manufacture.. MAbs. have. been. successfully. expressed. in.stable.transgenic.plants.since.the.early.stage.of.PMP.development,.despite.they.are.complex.heterotetrameric.glycoproteins.5.Since. then,.a.variety.of.mAbs.and. their.derivatives,.such.as.secretory.IgAs,.single-domain.fragments,.single-chain.variable.fragment.(scFv),.and.diabodies.and,.more.recently,.recombinant.immune.complexes.(RICs),.have.been.successfully.produced.in.many.host.plant.species,.with.increas-ing.number.and.type.of.mAb.being.produced.each.year.(Table.4.1).39–62.Our.group.recently.published.the.first.report.that.demonstrated.the.efficacy.of.a.plant-produced.mAb.against.a.potentially.lethal.infection.several.days.after.exposure.in.an.animal.challenge.model.58.Several.mAbs.have.been.selected.for.clinical.evaluation.with.two.having.reached.Phase.II.clinical.studies.(Table.4.2).63,64.For.example,.a.TMV-based.vector.was.demonstrated.to.be.an.efficient.vector.to.express.a.human.scFv.for.the.treatment.of.non-Hodgkin’s. lymphoma.(NHL).in.tobacco.plants.65,66.The.tobacco-produced. scFv. is. an. effective. anti-idiotype. vaccine. candidate. in. a. murine. NHL.tumor. challenge.model. and. has.been. further. evaluated. in.human.clinical. trials.67.This.patient-specific.anti-idiotype.vaccine.requires.a.speedy.system.for.rapid.pro-duction. and.patient. treatment. evaluation.. In. contrast. to.mammalian. cell. cultures,.the.TMV-based.plant.expression.system.has.successfully.provided.such.speedy.and.versatile.production.platform.

Similar.to.stable.transgenic.plants,.transient.expression.systems.have.been.very.successful.in.producing.single.subunit.therapeutics.such.as.scFvs.68,69.However,.until.recently,.viral.vector-based.transient.expression.systems.are.incapable.of.producing.full-length.mAbs.or.any.other.heterooligomeric.proteins.efficiently..This.is.due.to.the.fact.that.viral.vectors.built.on.the.same.virus.backbone.are.typically.“competing”.with.each.other,.resulting.in.early.segregation.and.subsequent.preferential.amplifica-tion.of.one.of.the.vectors.in.one.cell.23,70–72.The.MagnICON™.system.composed.of.two.sets.of.noncompeting.vectors.(TMV.and.PVX).has.successfully.resolved.this.problem.22,73.TMV.and.PVX.do.not.compete.with,.nor.dominate.over,.each.other,.because.they.interact.with.different.host.factors.for.their.movement.and.replication..As.a.result,.the.efficient.co-expression.of.light.chain.and.heavy.chain.of.mAb.in.the.same.cells.occurs.when.two.vectors.harboring.the.two.mAb.genes.are.co-delivered.into. plants.23. Extensive. studies. have. shown. that. this. transient. system. can. rapidly.(within.10.days.of.vector.delivery).produce. fully.assembled.mAbs. in.high. levels,.reaching.up.to.0.8.g.mAb/kg.of.fresh.tissue.weight.(FW).23,58.Therefore,.MagnICON.system.provides.a.potential.large-scale.production.platform.for.rapid.manufacturing.of.mAbs.and.other.oligomeric.proteins.

Page 104:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

90 Transgenic Horticultural Crops: Challenges and Opportunities

TABLE 4.1Representative Antibodies, Antibody-Fragments, and Antibody Fusions Produced in Plants

AntigenAntibody

TypePharmaceutical

Target Crop References

Streptococcal.surface.antigen.SA I/II

Secretory.IgA/G

Tooth.decay N. tobacum [43]

Herpes.simplex.virus 2

IgG Microbicide.for.genital.herpes

G. max [59]

glycoprotein.B O. sativa

Tobacco.mosaic.virus.coat.proteins

Bispecific-scFv

Model.bispecific-scFv.molecule

N. tobacum [242]

Human.creatine.kinase-MM

Fab Neurone.and.rheumatic.diseases

A. thaliana [44]

Human.carcinoembryonic.antigen.(CEA)

Diabody Tumor.imaging.for.colorectal,.lung,.breast,.and.pancreatic.carcinomas

N. tobacum [60]

Human.rhesus.D IgG1 Alloimmunization,.haemolytic.disease.of.new.born

A. thaliana [61]

Human.chorionic.gonadotropin.(HCG)

scFv,.diabody.and.IgG1

Diagnostic.and.therapeutic.for.HCG-expressing.cancers.or.as.contraceptive

N. tobacum [69]

Tumor.surface.antigen

scFv Therapeutic.vaccine.for.NHL

N. benthamiana [66,67]

Rabies.virus IgG Rabies.virus N. tobacum [45]

Herpes.simplex.virus.glycoprotein.D

LSC.(IgA.type)

Genital.herpes.diagnostics

C. reinhardtii [248]

Human.epidermal.growth.factor.receptor

IgG Therapeutics.for.refractory.colorectal.cancer

Z. mays.(corn.seeds)

[46]

Hepatitis.B.surface.antigen

IgG Hepatitis.B.virus.infections

N. tobacum.BY2 cells

[62]

Protective.antigen.(PA).of.Bacillus anthracis

IgG Therapeutics.for.anthrax.exposure,.antiterrorism.agent

N. benthamiana [72]

Lipopolysaccharide.(LPS).of.S. enterica.Paratyphi.B

scFv Salmonella enterica.diagnostic.and.therapeutic

N. tobacum [48]

Tumor-associate.antigen.GA733

IgG Colorectal.carinomas N. tobacum [40]

Page 105:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

91Expression and Manufacture of Pharmaceutical Proteins

TABLE 4.1 (continued)Representative Antibodies, Antibody-Fragments, and Antibody Fusions Produced in Plants

AntigenAntibody

TypePharmaceutical

Target Crop References

Human.epidermal.growth.factor.receptor.HER2

scFv Diagnostic.for.breast,.ovary,.prostate.and.lung.cancer

N. tobacum [49]

Tetanus.toxin.C.fragment

RIC Vaccine.for.tetanus.toxin

N. tobacum [186]

Botulinum.toxin.A scFv Antidote.for.botulinum.toxin.A,.anti-bioterrorism.agent

N. tobacum [50]

Tumor-associated.antigen.oligosaccharide.Lewis.Y

IgG2a Breast.and.colorectal.cancer

N. tobacum [55]

HIV.p24 p24-IgA.Hc.fusion

HIV.vaccine N. tobacum [185]

CD30 IgG Immunotherapy.for.Hodgkin.lymphoma.(HL).and.anaplastic.large.cell.lymphoma

Lemna.minor [136]

TGEV Minibody,.Full.IgA

Therapeutic.for.TGEV

N. clevelandii [51]

Hepatitis.A.virus scFv-Fc Hepatitis.A.virus.infection

A. thaliana [54]

Human.epidermal.growth.factor.receptor.HER1

scFv Targeting.agent.for.breast,.ovary,.prostate.and.lung.cancer

N. tobacum [52]

P. aeruginosa.serotype.O6ad.PS.O.side.chain

IgG P. aeruginosa infection

N. tobacum [39]

HIV.gp.41 IgG HIV.infection N. tobacum.and.BY2.cell.culture,.Z. mays

[42,143]

HIV.gp.120 IgG HIV.infection N. benthamiana,.Z. mays,.A. thaliana

[53,64,134,135]

Ebola.GP1 IgG,.RIC Therapeutic.for.Ebola N. benthamiana [21,263]

West.Nile.Virus.E.DIII

IgG Therapeutic.for.WNV.infection

N. benthamiana [58]

Source:. Adapted.from.Chen,.Q.,.Biol. Eng.,.1,.291,.2008..With.permission.Note:. scFv,.single-chain.variable.fragment;.RIC,.recombinant.immune.complex;.LSC,.large.single.chain.

antibody;.NHL,.non-Hodgkin’s.lymphoma.

Page 106:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

92 Transgenic Horticultural Crops: Challenges and Opportunities

Some.heterooligomeric.pharmaceutical.targets.such.as.secretory.IgA,.IgM,.and.certain.viral-like.particle.(VLPs).vaccine.candidates.contain.more.than.two.hetero-subunits.74,75. High-level. co-expression. and. assembly. of. these. types. of. proteins. in.plant.systems.have.not.been.reported.as.of.today..A.Gemini.virus-based.expression.system. developed. recently. by. our. group. and. a. system. based. on. a. disabled. cow-pea.mosaic.virus.RNA-2,.however,.may.provide.the.potential.for.expressing.these.heterooligomeric.proteins.21,76.Successful.production.of.mAbs.by.both.transient.and.stable.transgenic.plants.clearly.indicates.that.a.plant.production.system.is.a.viable.alternative.technology.in.producing.pharmaceutical.proteins.

vaccIneS

The. World. Health. Organization. estimates. that. approximately. 30. million. children.are.born.each.year.without.adequate.immunization,.contributing.to.the.majority.of.deaths..One.cost-effective.strategy.for.this.incredible.health.concern.is.to.expand.the.

TABLE 4.2Plant-Derived Human Pharmaceuticals That Have Reached Clinical Trial Stage

Organization ProductPharmaceutical

Target CropClinical

Trial Stage

Arizona.State.University

E. coli.heat-liable.toxin Traveler’s.diseases Potato Phase.I

Hepatitis.B.virus.surface.antigen

Hepatitis.B Tobacco Phase.I

Norwalk.virus.capsid.protein

Norwalk.virus Potato.and.tobacco

Phase.I

Biolex.Therapeutics Alpha.Interferon.(Locteron)

Hepatitis.C Duckweeds Phase.II

Large.Scale.Biology.Corporation

scFvs NHL Tobacco Phase.I

Meristem.Therapeutics Gastric.lipase Cystic.fibrosis Corn Phase.II

Lactoferrin Gastrointestinal.diseases

Corn Phase.I

Planet.Biotechnology sIgA.(CaroRx) Tooth.decay Tobacco Phase.II

Protalix.Biotherapeutics Glucocerebrosidase.GCD

Gaucher’s.disease Carrot.cell.culture

Phase.III

SemBiosys Acetylcholinestrase Nerve.agents Carrot.cell.culture

Phase.I

Insulin Diabetes Safflower Phases.I/II

Thomas.Jefferson.University

Hepatitis.B.virus.surface.antigen

Hepatitis.B Lettuce Phase.I

Rabies.glycoprotein Rabies.virus Spinach Phase.I

Source:. Adapted. from.Chen,.Q..et. al.,.Subunit.vaccines.produced.using.plant.biotechnology,. in.New Generation Vaccines,.Levine,.M.M..Ed.,.4th.edn.,. Informa.Healthcare.USA,. Inc.,.New.York,.2009,.p..77..Copyright.2009..With.permission.from.Informa.Healthcare.USA,.Inc.

Page 107:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

93Expression and Manufacture of Pharmaceutical Proteins

utilization.of.available.and.emerging.vaccine.manufacturing.technologies..Therefore,.there.is.a.tremendous.need.for.affordable.vaccines.in.the.world,.especially.in.devel-oping.countries..An.ideal.vaccination.program.should.thus.not.only.contain.the.vac-cine. components. that. can. generate. a. neutralizing. antibody. response,. a. long-term.memory.B.cells.stimulation,.and.a.T.cell-mediated.immunity,.but.should.also.include.a.cost-effective.production.technology.that.can.produce.large.quantities.of.vaccines.affordable.to.people.in.all.parts.of.the.world..Plants.offer.unique.advantages.for.the.production.of.subunit.vaccines.in.terms.of.scale,.speed,.costs,.yield,.and.safety..Our.first. work. in. 1992,. describing. the. expression. of. the. hepatitis. B. surface. antigen. in.transgenic. tobacco,.marked. the.beginning.of.developing. low-cost.strategies. for. the.production. and.delivery. of. vaccines. in. plants.6.Since. then,.more. than.80.vaccine.candidates.have.been.expressed.in.a.variety.of.plant.hosts.and.vector.systems.13,77.For.example,.plant-produced.vaccines.for.an.Influenza.A.M2E.epitope,78.a.human.immu-nodeficiency.virus.1.(HIV-1).epitope,79,80.HBsAg,81,82.and.the.S.protein.of.transmis-sible.gastroenteritis.coronavirus. (TGEV)83,84.have. successfully.demonstrated. their.immunogenicity.. Immunization.with.heat. labile.enterotoxin.B. (LTB),85,86. the.FP1.epitope.of.foot.and.mouth.disease.virus.(FMDV),87,88.and.P. aeruginosa.epitopes89,90.yielded.successful.challenge.trials..In.addition,.vaccine.candidates.for.the.respira-tory.syncytial.virus.(RSV).G.and.F.proteins,91.the.VP6.protein.of.rotavirus,92,93.the.measles.virus.(MV),.hemagglutinin.(H).protein,94,95.an.epitope.from.the.major.sur-face.antigen.of.Plasmodium falciparum. (PfMSP1),96,97. the.VP7.protein.of. rotavi-rus,98. F1. and. V. antigen. of. Yersinia peptis,99,100. E. Domain. III. of. dengue. virus,101.ESAT6—Ag85B.antigens.of.Mycobacterium tuberculosis,102.E7.protein.of.human.papilloma.virus,103.pB5.antigenic.domain.of.smallpox,103.and.PA.and.LF.domains.of.Bacillus anthracis,105,106.have.also.been.successfully.expressed.in.plants..These.data.collectively.demonstrated.that.(1).plants.are.capable.to.express.a.broad.portfolio.of.diverse.vaccines.and.(2).plant-derived.antigens.were.able.to.induce.active.protective.humoral.and.cell-mediated.immune.responses.

For.current.licensed.vaccines,.they.are.the.products.of.complicated.and.expen-sive.downstream.purification.and.their.transport. to.final.point.of.use.and.storage.require.continuous.refrigeration.“the.cold-chain.”.Both.of.these.requirements.add.significant. cost. to. the. immunization. program. and. are. especially. detrimental. to.developing.countries..Fresh.or.dried.plant.parts.containing.subunit.vaccines.may.present.an.ambient.temperature-stable.product.similar.to.the.storage.and.transport.of.fresh.fruits.or.dehydrated.food.products,.thereby.providing.a.possible.solution..This.motivation.and.advances.in.our.understanding.of.mucosal.immunity.and.toler-ance.have.facilitated.further.exploration.of.edible.vaccines.107–112.Studies.have.found.that.when.oral.or.other.mucosal.surfaces.such.as.nasal,.intestinal,.rectal,.and.vagi-nal.mucosal.surface.are.exposed.to.vaccines,.a.strong.mucosal.(sIgA).as.well.as.sys-temic.(IgG).immune.response.could.be.elicited.113–115.Therefore,.at.least.in.theory,.oral.immunization.can.be.achieved.by.simply.eating.edible.parts.of.plants.contain-ing.the.expressed.subunit.vaccines.(Figure.4.2)..The.edible.vaccine.strategy.is.very.appealing.because.it.allows.plants.to.not.only.serve.as.a.low-cost.expression.system.but.also.as.a.novel.delivery.vehicle.for.vaccines..It.will.eliminate.or.reduce.the.need.for.downstream.processing.and,.in.turn,.further.reduce.the.overall.vaccine.produc-tion.cost..In.addition,.the.needle-free.delivery.method.and.natural.preservation.of.

Page 108:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

94 Transgenic Horticultural Crops: Challenges and Opportunities

vaccines. in. plant. tissue. will. circumvent. major. infrastructural. challenges. in. vac-cine. storage,. distribution,. and.delivery. and.allow. the. realistic. implementation.of.an.immunization.program.in.countries.where.the.“cold-chain”.and.other.medical.supplies. are. limited.116.The.optimal.candidates. for.oral. subunit. vaccine.develop-ment. in. plants. are. aggregated. pathogen. protein. complexes. as. they. are. naturally.recognized.at.mucosal.sites..For.example,.viral.surface.proteins.that.assemble.into.VLPs. spontaneously. and.bacterial. toxins. that.naturally.aggregate. to. form.multi-meric.complexes.have.been.explored.as.plant-derived.oral.vaccine.candidates.117–119.These.natural.mucosally.targeted.protein.complexes.have.also.been.studied.as.car-riers.for.developing.other.plant-derived.oral.vaccines.as.they.can.be.linked.to.other.antigens.by.protein.fusion.technologies.99,120,121.So.far,.moderate.success.has.been.achieved. in. the. development. of. plant. oral. vaccines. as. many. vaccine. candidates.have.been.expressed.in.edible.plant.parts,.and.five.human.clinical.trials.have.been.performed.with.orally.delivered.plant-produced.vaccines.(Table.4.2).122–125.Results.from.clinical. trials. indicated. that. serum.antibodies. and,. in. some.cases,.mucosal.antibodies.can.be.successfully.stimulated.by.plant-derived.oral.vaccines..Although.

FIGURE 4.2 (See color insert.).Human.volunteers.ate.transgenic.potatoes.in.a.clinical.trial. study. by. Tacket. et. al.238. Transgenic. potatoes. expressing. LTB. antigen. were. peeled,.diced,.and.consumed.by.human.volunteers..Non-transgenic.potatoes.were.used.as.negative.controls.

Page 109:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

95Expression and Manufacture of Pharmaceutical Proteins

protective.efficacy.in.humans.has.yet.to.be.determined.for.a.plant-derived.vaccine,.challenge.studies.have.yielded.promising.results.in.animal.models.

Commercial.success.of.this.strategy,.however,.has.not.been.achieved.due.to.chal-lenges.including.the.possible.degradation.of.vaccines.by.the.digestion.system,.poor.rec-ognition.of.certain.antigen.at.mucosal.immune.effector.sites,.and.persistent.concerns.about.whether.edible.vaccines.would.cause.inappropriate.antigenic.tolerance..Technical.difficulties.also.contributed.to.the.lack.of.commercial.success..For.example,.challenges.in.controlling.the.fluctuation.of.antigen.content.among.individual.plants.or.plant.tissue.often.cause.inconsistent.vaccine.protein.content.per.unit.of.plant.tissue..This,.in.turn,.complicates.the.dosage.control.process.and.ultimately.hinders.the.commercial.applica-tion.of.this.strategy.115.This.particular.problem,.however,.is.being.resolved.as.progress.in.genetic.element.manipulations.has.allowed.more.precise.control.of.vaccine.expres-sion.in.plants.126.While.oral.vaccines.still.offer.an.attractive.option.for.vaccine.delivery.in.developing.countries,.the.application.of.this.strategy.in.the.United.States.will.face.regulatory.obstacles,.since.a.vaccine.without.a.strictly.controlled.dose.would.have.tre-mendous.difficulty.in.getting.approval.by.the.Food.and.Drug.Administration.(FDA)..As.a.result,.increasing.efforts.have.been.shifted.to.downstream.processing.to.identify.innovative.and.low-cost.ways.to.purify.or.partially.purify.vaccines.from.plant.tissue.(see.below)..Purified.vaccines.can.be.formulated.with.adjuvants.and.delivered.through.different.immunization.routes.including.oral.and.other.mucosal.surfaces..Thus,. this.new.strategy.is.driven.not.only.by.the.necessity.to.develop.PMP.vaccines.with.defined.dosage.content.but.also.to.address.the.needs.of.a.creative.formulation.with.adjuvants.to.enhance.potency.as.well.as.creating.multivalent.and.multicomponent.vaccines.77,127–129.On.going.research.by.our.group.has.allowed.us.to.establish.downstream.processing.standard.operating.procedures.(SOPs).for.extracting.and.purifying.Norwalk.virus.cap-sid.protein.(NVCP).from.N. benthamiana.plants.under.stringent.federal.current.Good.Manufacturing.Practices.(cGMP).guidelines.13.We.anticipate.that.our.NVCP.material.produced.under.the.cGMP.regulation.will.be.used.in.a.human.clinical.trial.as.a.vaccine.candidate.for.sexually.transmitted.infections.later.in.2011.130

Due.to.its.advantages.in.speed,.scale,.and.cost.for.subunit.vaccine.production,.the.application.of.plant.expression.systems.has.recently.been.expanded.to.develop.and.produce.vaccines.for.emerging.and.re-emerging.diseases,.cancers.as.well.as.agents.of. biological. warfare.. For. example,. vaccines. for. smallpox,104. anthrax,106. dengue.virus,101.avian.influenza.A.virus,131.and.a.personalized.cancer.vaccine.for.follicular.B-cell.lymphoma67.are.some.of.these.new.vaccine.candidates.produced.in.plants.

GLYCOSYLATION OF PLANT-MADE PHARMACEUTICALS

As. with. recombinant. proteins. produced. in. other. systems,. glycosylation. of. plant-derived.pharmaceutical. proteins. is. a. critical. issue..Glycosylation. is.depending.on.a.series.of.posttranslational.modification.steps.by.host.cells,.and.the.outcome.can.seriously.impact.pharmacokinetics,.antigen/receptor.binding,.stability,.effector.func-tions,  and. efficacy. of. the. mAbs. and. other. PMPs.. As. such,. recombinant. proteins.produced.by.heterologous.systems.may.have.appreciable.structural.and.functional.dif-ferences.from.the.native.molecules.and.could.be.immunogenic.in.humans..In.general,.the.glycosylation.of.proteins.in.plants.is.similar.to.that.of.mammalian.cells..However,.

Page 110:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

96 Transgenic Horticultural Crops: Challenges and Opportunities

plants.do.have.unique.plant-specific.β-1,2-xylose.and.core.α-1,3-fucose.residues.on.complex.N-linked.glycans.and.lack.terminal.β1,4-Gal.and.N-acetylneuraminic.acid.(Neu5Ac).residues.57.Extensive.studies.have.shown.that.variations.in.glycosylation.patterns.do.not.always.lead.to.loss.of.in.vitro.or.in.vivo.function.or.cause.side.effects.in.humans.132.Despite.this.fact,.a.variety.of.strategies.have.been.developed.to.circum-vent.the.potential.problems.associated.with.the.difference.between.plant.and.human.glycosylation. patterns.. For. example,. glycoengineering,. involving. sophisticated.genetic.and.metabolic.engineering.of.plant.with.mammalian.glycosylation.enzymes,.has.recently.emerged.as.the.most.promising.approach.to.“humanized”.glycosylation.in. plants.133. In. one. of. these. studies,. a. “humanized. knockout”. Arabidopsis thali-ana.plant.line.has.been.generated.to.express.a.mAb.134.Similar.transgenic.tobacco.(N. benthamiana). lines. with. humanized. glycans. were. generated. later.135. In. these.plants,. enzymes. for. the.biosynthesis.of.plant-specific.glycans.are. inactivated,.and.results.have.shown.that.the.mAb.was.glycosylated.with.a.mammalian-like.pattern.and.was.structurally.equivalent.to.the.same.mAb.derived.from.mammalian.cells.

In.the.last.few.years,. the.feasibility.of.glycoengineering.at.a.biomanufacturing.scale. was. demonstrated.136. For. example,. an. RNA. interference. (RNAi). strat-egy. was. employed. to. suppress. the. expression. of. endogenous. enzymes. (α-1,.3-fucosyltransferase.and.β-1,2-xylosyltransferase).for.plant-specific.glycans..Results.showed.that.mAbs.produced.in.plant. lines.with.mutated.α-1,3-fucosyltransferase.and.β-1,2-xylosyltransferase.had.no.detectable.plant-specific.N-glycans..More.sig-nificantly,.the.plant-produced.mAb.contained.only.a.single.major.N-glycan.species.and.showed.improved.antibody-dependent.cell-mediated.cytotoxicity.(ADCC).and.effector.cell-binding.activities. in.comparison.with. the.equivalent.mAb.produced.in.mammalian. cells.135.For. certain. class.of. therapeutic.proteins,. the. presence.of.the. terminal. Neu5Ac. residues. is. required. for. their. biological. activities. and. sta-bility..Adding. the. terminal.Neu5Ac. residues. to.plant-derived.proteins. is. the. last.remaining.challenge. for. the. full.humanization.of.plant.N-glycosylation.pathway..Recently,.attempts.were.made.to.express.the.three.key.enzymes.of.the.mammalian.Neu5Ac. biosynthesis. pathway,. namely,. UDP-N-acetylglucosamine. 2-epimerase/.N-acetylmannosamine. kinase,. N-acetylneuraminic. acid. phosphate. synthase,. and.CMP-N-acetylneuraminic.acid. synthetase,. in.plants..Results.showed. that. signifi-cant.amounts.of.Neu5Ac.were.generated.when.the.three.enzymes.are.simultane-ously.expressed.in.plants.137,138.Plant.glycoengineering.has.demonstrated.its.ability.in.producing.mAbs.with.better.glycoform.uniformity.and.enhanced.functionality.than.mammalian.cell.cultures,.therefore.demonstrating.its.potential.in.producing.pharmaceutical.proteins.with.fully.humanized.glycans.

DOWNSTREAM PROCESSING OF PLANT-DERIVED PROTEIN PHARMACEUTICALS

In.the.last.decade,.significant.progress.has.been.realized.in.boosting.PMP.expression.levels.through.the.enhancement.of.genetic.elements.for.stable.transgenic.expression.and.the.development.of.viral-based.transient.expression.systems..As.a.result,.PMP.field. has. increasingly. shifted. its. attention. to. developing. technologies. for. efficient.PMP.recovery.and.delivery..While.“immunization-by-eating”.still.presents.a.viable.

Page 111:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

97Expression and Manufacture of Pharmaceutical Proteins

opportunity.to.deliver.plant-derived.vaccines.in.the.developing.world,.considerations.of.licensure.and.regulatory.issues.have.pointed.to.necessity.of.developing.process-ing.technologies.to.produce.vaccines.and.therapeutics.with.defined.unit.dosage.139.Developing.new.technologies.to.minimize.cost.associated.with.downstream.pro-cessing. is. crucial. for. the. full. realization.of.economic.effectiveness.of.PMP. tech-nology,.since.it.can.account.for.up.to.80%.of.the.total.cost.in.a.therapeutic.protein.production.140.A.well-developed. downstream.process.will. increase.manufacturing.productivity,.reduce.cost.of.goods,.enhance.scalability,.and.ensure.the.compliance.of.the.manufacturing.procedures.with.FDA’s.cGMP.regulations.

Similar.to.other.production.systems,.the.goal.of.PMP.downstream.processing.is.to.recover.the.maximal.amount.of.highly.purified.target.protein.with.minimal.number.of.steps.including.tissue.harvesting,.protein.extraction,.purification,.and.product.formula-tion.(Figure.4.3)..The.unique.properties.of.plant.tissues,.however,.present.both.specific.challenges.and.opportunities.for.each.of.the.processing.steps..Column.chromatogra-phy.has.been.extensively.employed.in.PMP.purification,.while.nonchromatographic.methods.are.being.explored.aiming.to.provide.alternatives.for.large-scale.manufacture.

column chromatoGraphy

Chromatography.has.been. the.method.of.choice.for.PMP.purification.due. to. its.resolving. power.. As. a. result,. many.PMPs. have. been. successfully. purified. from.a. diversity. of. host. plants. with. a. variety. of. chromatographic. techniques. tai-lored. for. each. individual. PMP. protein. based. on. its. solubility,. size,. pI,. charge,.

Workingcell bank

Mastercell bank

–80

1 2 3

Agrobacterium productionMedia

Inoculumpreparation Fermentation

(A)(B)

(C)

Seedbank

FIGURE 4.3 (See color insert.).General.large-scale.production.steps.for.plant-made.pharma-ceuticals.from.green.leafy.materials.using.deconstructed.viral.vector.transient.expression.strat-egy..(A).Plant.cultivation..(B).Infiltration.and.growth..(C).Downstream.processing..(Adapted.from.Chen,.Q..et.al.,.Subunit.vaccines.produced.using.plant.biotechnology,.in.New Generation Vaccines,.Levine,.M.M..Ed.,.4th.edn.,.Informa.Healthcare.USA,.Inc.,.New.York,.2009,.p..77..Copyright.2009..With.permission.from.Informa.Healthcare.USA,.Inc.)

Page 112:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

98 Transgenic Horticultural Crops: Challenges and Opportunities

hydrophobicity,.and.affinity.to.specific.ligands.and.the.parallel.characteristics.of.plant.host.proteins.13,64,141–143

For.mAb-based.PMPs,.Protein.A.or.G.affinity.chromatography.provides.a.superb.purification. step144. and.has. allowed. successful.purification. of. many. plant-derived.mAbs. and. their. derivatives.21,23,64,145. Usually,. a. two-column. purification. scheme.including.a.protein.A.capture.step.and.an.anion.exchange.polish.step.is.sufficient.to.achieve.high.purity.58,146.However,.direct.loading.of.plant.extracts.onto.Protein.A.(or.G).columns.often.causes.resin.fouling.and.poor.binding.of.target.protein.due.to.the.fact. that.plants.produce.much.more.solid.debris.than.other.organisms.and.are.rich. in.phenolics.and.alkaloids.142,147,148.For.example,.clarified. tobacco.extract.was.found.to.foul.Protein.A.Sepharose.and.reduce.the.resin.capacity.147.Ion.exchange,.gel. filtration. chromatography,. and. ultrafiltration. methods. have. been. employed. to.remove. the. interfering. molecules,. but. with. very. little. success.147. The. solution. for.this.problem.came.from.a.nonchromatographic.method.called.aqueous. two-phase.partitioning.system.(ATPS)..It.was.found.that.ATPS.could.effectively.remove.phe-nolics,.toxic.alkaloids.and.other.plant.compounds.from.tobacco.extract..This.extract.could.then.be.directly.loaded.to.a.Protein.A.column.without.causing.resin.fouling,.which.allowed.efficient.separation.of. target.mAbs.(anti-HIV.mAb.2F5.and.2G12).from.tobacco.host.proteins.149.ATPS.has.also.been.shown.to.be.effective.in.removing.interfering.plant.molecules.from.extracts.of.other.plant.species.150–152

Protein.A.is.an.expensive.resin.and.requires.extreme.low.pH.(2.0–2.5).in.the.elu-tion.step..In.large-scale.productions,.the.resins.are.routinely.recycled.up.to.50.times.to.maintain.a.reasonable.cost.153.This.practice,.however,.often.leads.to.additional.cost.in.cleaning.and.revalidation.of.the.resins,.which.is.necessary.to.prevent.leaching.of.degraded. ligands. into.products.145,149.Extensive.researches.have.been.conducted. to.identify.alternative.resins.with.equivalent.or.better.affinity.to.antibodies.or.cheaper.ways.to.produce.protein.A.resin.

One.alternative.is.to.create.a.single-use.protein.A-related.resin.with.low.produc-tion.cost..For.example,.an.attempt.has.been.made.to.produce.transgenic.protein.A.or.its.fragments.in.plants.to.take.advantage.of.the.inexpensive.nature.of.plant.expression.systems.145.Low-cost.Protein.A.alternatives.have.also.been.developed.in.the.form.of.fusion.proteins..For.instance,.Protein.A.or.its.affinity.components.were.genetically.fused.to.molecules. that.are.capable.of.polymerizing.or.binding.to.high.molecular.weight. structures.. Antibodies. that. bound. to. these. Protein. A-decorated. large. par-ticles. can. then. be. separated. from. plant. host. proteins. by. simple. centrifugation.or.ultrafiltration.(see.discussion.of.“affinity.precipitation”.on.page.102)..Examples.of. this. strategy. include. fusion. proteins. of. Protein. A. with. self-polymerizing. bac-teriophage. capsid. proteins,154,155. high. molecular. weight. bacterial. S-layer. proteins,.cellulose-binding. proteins,. and. starch-binding. domains.156–160. Oleosins,. a. class. of.plant.seed.oil-body-associated.small.proteins,.have.also.been.explored.as.Protein.A.fusion.partners.161–163.This.technology.has.been.developed.and.matured.to.the.com-mercially.ready.stage.by.a.Canadian.Biotechnology.company.Sembiosys,.in.which.the.oleosin–Protein.A.fusion-mAbs.complex.can.be.purified.by.extracting.with.oil.bodies.(www.sembiosys.com)..The.yield.of.oleosin–Protein.A.fusion.molecules.in.safflower.plants.is.relatively.low.and.needs.further.improvement.145.An.immunoab-sorbent.nanoparticle. technology.based.on.a. tobamovirus,. displaying.a.133-amino.

Page 113:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

99Expression and Manufacture of Pharmaceutical Proteins

acid.protein.A.fragment,.has.also.been.developed.recently..These.nanoparticles.can.be.produced.at.high.levels.in.plants,.and.the.density.of.the.Protein.A.fragment.on.the.nanoparticle.is.high,.satisfying.the.matrices.of.high.mAb-binding.capacity.and.low-cost.economics.required.for.a.successful.processing.technology..A.simple.mAb.puri-fication.process.can.be.performed.with.these.plant-derived.nanoparticles.to.achieve.>90%.product.purity.145

In.addition.to.protein.A,.many.conventional.chromatographic. resins.have.been.investigated.for.mAb.purification..These.resins.are.less.expensive,.easier.to.scale.up,.and.more.resistant.to.chemical.and.biological.degradations.and,.therefore,.are.more.suitable.for.industrial.manufacturing..It.was.showed.that.a.simple.S-Sepharose.FF.cation.exchange.chromatography.followed.by.immobilized.metal.affinity.chro-matography.(IMAC).on.Zn-iminodiacetic.acid.(IDA)-agarose.can.efficiently.purify.an.anti-HIV.mAB.(2G12).from.corn.seeds.with.90%.purity.64.Histamine.Sepharose.was.also.used.as.an.affinity.resin.in.purifying.mAbs.from.plant.extracts.143.A.>95%.purity.of.a.mAb.can.be.achieved.by.this.resin.in.a.single.purification.step.when.used.with.a.maize.seed.extract..When.the.same.resin.was.used.to.purity.the.mAb.from.tobacco.leaf.extracts,.however,.the.binding.capacity.and.the.purification.efficiency.were. slightly. reduced. due. to. the. interference. of. tobacco-specific. phenolics,. alka-loids,.and.host.proteins.143

“Pseudobiospecific. ligands”. represent. another. class. of. non-Protein. A. resins.for. mAb. purification.. They. include. biologically. engineered. peptides. and. protein.domains.as.well.as.synthetic.mimetics.exhibiting.different.degree.affinity.to.anti-bodies..Comparative.studies.showed.that.the.mAb.affinity.of.these.ligands.(includ-ing.hydrophobic,.thiophilic,.hydroxyapatite,.chelating.metal.ions,.and.mixed.mode.affinity.ligands).is.generally.lower.than.that.of.Protein.A,.but.high.enough.for.mAb.selectivity.164.Overall,.under.optimized.conditions,.the.mAb-binding.specificity.and.capacity.of.these.resins.are.comparable.to.those.of.the.Protein.A,.but.vary.depend-ing.on.the.source.and.the.isotype.of.mAbs.165–167.Advantages.of.pseudobiospecific.ligands.include.reduced.cost.of.production,.mild.elution.condition,.facile.steriliza-tion. and.validation,. resistance. to. chemical. and.biological.degradation,. and. lower.toxicity,.all.of.which.makes.them.favorable.as.large-scale.mAb.purification.alterna-tives..Furthermore,.chemical.modifications.allow.these.affinity.ligands.to.acquire.new.affinities.to.mAb-derivatives.that.traditional.Protein.A.lacks,.therefore.broad-ening.the.range.of.application..For.example,.artificial.PpL.is.able.to.purify.a.Fab.to. >90%. purity. with. 77%. recovery.168. MEP. Hypercel,. IDA-Ni,. epitope. peptides,.Mabsorbent,.affibodies,.and.artificial.Protein.A.are.some.examples.of.pseudobio-specifc.ligands.146.Not.all.artificial.affinity.ligands.have.been.tested.for.plant-derived.mAb.purification..However,.there.is.no.doubt.that.they.will.contribute.substantially.to.the.development.of.economical.Protein.A.alternatives.for.large-scale.manufactur-ing.of.plant-derived.mAbs.

For. purification. of. non-mAb-based. vaccines. and. therapeutics,. there. are. no.platforms. based. on. a. universal. affinity. resin. equivalent. to. Protein. A.. Usually,.the.purification.is.carried.out.by.multiple.steps.of.conventional.chromatographic.methods.and.has.to.be.developed.individually.based.on.the.properties.such.as.the.pI,. size,. hydrophobicity,. and. stability. of. the. target. protein. and. the. contaminat-ing.host.molecules.142.This.time-consuming.and.challenging.process.calls.for.the.

Page 114:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

100 Transgenic Horticultural Crops: Challenges and Opportunities

need.to.develop.more.“universal”.or.versatile.purification.methods..Technologies.employing. on. affinity. tags. provide. possibilities. for. such. more. universal. solu-tion.169–173. In. this. strategy,. instead. of. attempting. to. identify. a. specific. ligand. to.the.target.protein,.a.highly.selective.affinity.tag.with.known.ligand.is.fused.to.the.target.protein.by.genetic.engineering..Successful.examples.of.this.strategy.include.pharmaceutical. proteins. tagged. with. biotin,. histidine,. glutathione. S-transferase.(GST),. and. c-Myc.174–179. In. addition,. tags. developed. for. mAb. purification. (see.antibody. purification. discussed. above). such. as. bacteriophage. capsid. proteins,.S-layer. proteins,. cellulose-binding. domains,. starch-binding. domains,. oleosins,.and.tobamovirus.nanoparticle.have.also.been.successfully.used.to.purify.vaccines.and.other.transgenic.proteins.156,162,180–183.The.high.affinity.of.the.Fc.fragment.of.immunoglobulin.to.Protein.A.provides.an.excellent.tag.for.PMP.purification..As.a.result,.many.antigen.proteins.have.been.fused.to.the.heavy.chain.of.antibodies.and.purified.by.Protein.A.affinity.chromatography.184,185. In. fact,.genetic. fusions.of.antigens.to.mAbs.against.them.have.created.a.new.class.of.highly.potent.vac-cines.called.RICs.186.The.mAb.component.in.RICs.allows.not.only.facile.purifi-cation. but. also. enable. them. to. induce. significantly. stronger. immune. responses.in.host.animals.without. the.help.of.adjuvants..In.addition.to.providing.a.conve-nient.purification.tool,.affinity.tag.often.adds.several.other.benefits.to.the.target.protein. such. as. enhancing. its. yield,. solubility,. stability,. and. promoting. its. cor-rect.folding.184,187.However,.no.individual.affinity.tag.alone.is.ideal.in.delivering.all.and.every.possible.benefit..Consequently,.the.tandem.affinity.tag.purification.(TAP).or.combinatorial.tagging.strategy.was.developed.to.deliver.the.maximum.possible.benefit.175,188–193.For.example,.a.dual.affinity.His6-MBP.affinity.tag.vec-tor.was.developed,. in.which. the. MBP. moiety. improves. the. yield. and.enhances.the. solubility.of. the. recombinant.protein.while. the.His. tag. facilitates. its.purifi-cation.194,195.Since. all. tags.have. the.potential. to. interfere.with. the. structure. and.biological.activity.of.the.target.recombinant.protein,.for.certain.applications,.they.have.to.be.removed.from.the.purified.protein.by.site-specific.protease..Challenges.still. remain. in. identifying.proteases.with.both.high.efficiency.and.precision. for.tag.removal.196,197.Some.endoproteases.such.as. thrombin,.TEV.protease,.and.3C.protease.often.leave.one.or.two.extra.amino.acid.residues.at.their.cleavage.sites.and.produce.unnatural.N-terminus.on.the.target.protein.198.In.contrast,.proteases.like.enterokinase.and.factor.Xa.have.better.precision.and.leave.target.proteins.with.their.native.N-termini.197.However,. these.enzymes.have.relatively.low.efficiency.and. routinely. require. high. enzyme. concentrations. and. long. incubation. time,197.which.often. lead. to. nonspecific. cleavage. at. cryptic. sites..Regardless,. the. inclu-sion.of.proteases.in.the.manufacturing.process.should.be.avoided.whenever.it.is.possible.as.it.would.require.extra.step(s).to.eliminate.the.protease.from.the.final.product..This.additional.step(s).would,.in.turn,.increase.the.overall.processing.cost.and.raise.additional.regulatory.concerns.196,197.Consequently,.nonenzymatic.affin-ity.tag.removal.techniques.have.been.explored.to.avoid.such.problems.200–202.For.example,.intein,.a.self-splicing.protein.element,.has.been.used.as.a.fusion.partner.of.affinity.tags.to.replace.protease.cleavage.sites.202.The.preliminary.results.of.this.strategy. are. promising.. However,. further. testing. in. high-throughput. settings. is.necessary.before.it.can.be.applied.for.large-scale.PMP.manufacturing.

Page 115:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

101Expression and Manufacture of Pharmaceutical Proteins

One.of.the.most.critical.strategies.for.PMP.purification.is.to.take.early.measures.to.prevent.undesirable.host.proteins,.microorganisms,.and.other.contaminants.from.entering.purification.feed.streams..For.example,.bioburden,.environmental.contami-nants,.and.certain.plant.host.proteins.should.be.reduced.as.early.as.possible.prior.to.the.chromatographic.purification.steps..These.early.measures.are.not.only.important.in.simplifying.the.subsequent.purification.process,.but.are.also.essential.in.ensuring.the.regulatory.compliance.of.the.final.product..For.example,.whole.leaf.homogeniza-tion.should.be.avoided.for.isolating.apoplast-targeted.proteins.with.molecular.weight.<50.kDa..Instead,.they.should.be.extracted.directly.into.the.extraction.buffer.by.a.specialized.centrifugation.technique.203.Since.this.technique.allows.the.extraction.of.target.protein.without.breaking.plant.cells,.the.purification.process.is.greatly.simpli-fied.as.a.result.of.a.reduction.in.host.protein.contaminants..The.carbon.assimilation.enzyme. ribulose-1,5-bisphosphate. carboxylase-oxygenase. (RuBisCo). is. the. major.contaminating.protein. in.plant. leaves,. and. it. should.be. removed. from. the. extract.by.centrifugation.under.low-pH.buffer.conditions.(∼pH.5.3).prior.to.the.chromato-graphic.steps.117.Phenolics,.alkaloids,.and.other.plant.specific.molecules.should.also.be.eliminated.by.nonchromatographic.separation.methods.(see.below).prior.to.col-umn.chromatography.to.prevent.resin.fouling.149.Ongoing.research.by.our.group.has.established.a.purification.process.for.vaccine.candidate.NVCP.based.on.low-pH.precipitation.and.conventional.chromatographic.steps.130.SOPs.based.on.this.purifi-cation.scheme.have.been.established.and.used.in.a.cGMP.production.of.NVCP.for.human.clinical.trials.

nonchromatoGraphIc SeparatIonS

The.promise.of.PMP.production.on.an. agricultural. scale.demands. a.downstream.processing.platform.with.extraordinarily.large-scale.capabilities..Despite.the.wide-spread.use.of.chromatographic.separations.in.PMP.purification,.there.are.growing.concerns.that. this.approach.cannot.be.scaled.up.sufficiently.for.very.large-scale.production..As.a.result,.alternative.technologies.have.been.explored.for.very.large-scale. downstream. processing. of. PMPs,. aiming. to. not. only. enhance. manufacture.scalability,.but.also.to.provide.separation.power.similar.or.better.than.that.of.column.chromatography,.while.reducing.separation.steps.and.the.manufacture.cost..These.technologies.include.ATPS,.precipitation,.and.membrane.chromatography.204

ATPS.has. tremendous.scalability.potential.and.is.able. to.handle.large.biomass.load.compared.to.other.separation.methods.205,206.It.relies.on.the.incompatibility.of.certain.polymer.mixtures. in. forming.homogeneous.solutions,.but. instead.forming.two.immiscible.phases.under.specific.concentrations.207.As.discussed.earlier,.ATPS.is.an.effective.method.in.eliminating.phenolics,.toxic.alkaloids,.pigments,.and.other.compounds.from.plant.extracts.149,150.ATPS.has.been.successfully.used.in.purifying.tobacco-derived.anti-HIV.mAbs.and.protein.subunit.vaccine.candidates.as.well.as.nanoparticles.including.VLPs.149,208–210.ATPS.offers.high.separation.rates.and,.there-fore,.minimizes.the.contact.time.between.PMP.protein.and.deleterious.plant.extract..Inclusion.of.this.system.in.downstream.processing.will.facilitate.plant.extract.clari-fication,.removal.of.phenolics,.alkaloids.and.other.harmful.compounds,.and.partial.purification.of.target.proteins..Overall,.the.advantages.in.low-cost,.scalability,.high.

Page 116:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

102 Transgenic Horticultural Crops: Challenges and Opportunities

biocompatibility,.and.ability.for.continuous.processing.qualify.this.system.as.an.ini-tial.fractionation.strategy.for.large-scale.processing.

Precipitation.is.a.simple.and.robust.method.to.separate.a.precipitable.protein.from.other.soluble.protein.contaminants..One.of. the.strategies.to.make.a.target.protein.precipitable.is.to.fuse.it.to.a.stimulus-responsive.polymer..Since.this.type.of.polymer.can.transit.reversibly.between.water-soluble.and.water-insoluble.state.depending.on.temperature,.pH,.or.other.environmental.conditions,.the.target.protein.can.be.easily.separated.from.host.proteins.by.a.simple.centrifugation.or.filtration.step.while.the.polymer.is.in.a.water-insoluble.state.211.Both.centrifugation.and.filtration.work.well.in. separating.precipitated.proteins. from.soluble. ones;. the. latter,. however,. has. the.advantage.of. the.possibility.of.being.operated. in. a.continuous.process.212.Several.PMPs.including.human.interleukin-4,.10,213.scFv214.and.anti-HIV.mAbs215.have.been.purified.by.precipitation.using.an.elastinlike.peptide.(ELP)..A.temperature-induced.“inverse.transition.cycling”.allowed.ELP-fusion.proteins.to.transition.to.an.insoluble.state..As.a.result,.the.fusion.proteins.were.easily.purified.by.centrifugation.216

Affinity. precipitation. is. a. special. case. of. precipitation. methods. and. has. been.suggested.as.one.of.the.most.promising.nonchromatographic.techniques.for.large-scale.processing.146.The.power.of.affinity.precipitation.is.derived.from.the.unique.combination. of. the. specificity. and. selectivity. of. biorecognition. with. the. simplic-ity,. robustness,. and. high. concentration. factors. associated. with. precipitation.. This.method. does. not. require. the. fusion. between. target. protein. and. the. precipitation.carrier..Instead,.an.affinity. ligand. is.covalently. linked. to.a.stimulus-responsive.polymer. or. other. molecules. capable.of. forming.high.molecular.weight.particles..Since.there.is.no.fusion.between.the.PMP.and.the.precipitation.carrier,.structural.and.functional. integrity.of. the. target.protein.is.better.preserved,.and.the.need.for.proteases.to.remove.fused.precipitation.carriers.is.eliminated..Affinity.precipitation.has.been.extensively.tested.with.plant-derived.mAbs..As.discussed.earlier,.protein.A.or.its.affinity.components.have.been.fused.to.bacteriophage.capsid.proteins,.bacte-rial.S-layer.proteins,.oleosins,.cellulose,.and.starch-binding.domains,.and.recently.to.tobamovirus.nanoparticles..Binding.of.mAbs.to.these.Protein.A-precipitation.carrier.fusions.has.allowed.efficient.purification.of.a.variety.of.mAbs.from.plants.with.com-parable.purity.and.recovery.as.mAbs.purified.by.Protein.A.chromatography,.but.with.much.superior.cost.effectiveness.and.scalability.145.Similarly,.other.affinity.ligands.have.also.been.successfully.used. to.create.agents. for.affinity.precipitation.of.affin-ity-tagged. vaccines. and. non-mAb. therapeutics.162,183. Another. variation. of. affinity.precipitation.is.magnetic.separation,.in.which.magnetic.nanoparticles.are.decorated.with.affinity.ligands,.and.nanoparticle-bound.target-protein.can.be.then.separated.from.other.soluble.proteins.by.using.magnets.217,218.Plant-derived.mAbs.have.been.successfully.purified.by.such.method.24.In.addition.to.using.magnetic.crystals,.mag-netic.particles.can.also.be.produced.by.certain.bacteria,.which.can.be.engineered.to.display.Protein.A.or.other.affinity.ligands.on.their.surface.219,220

Another. attractive. alternative. to. column. chromatography. is. membrane. separa-tion  or. membrane. chromatography.. The. effectiveness. of. these. membrane-based.separation. techniques.has. been. successfully. demonstrated. in.purifying. mAbs.and.other.therapeutic.proteins.221,222.For.example,.an.anion-exchange.membrane.efficiently.removed.impurities.from.the.feed.stream.when.used.in.a.flow-through.mode.223,224.

Page 117:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

103Expression and Manufacture of Pharmaceutical Proteins

The.binding.capacity.of. this.membrane.is.much.higher. than.that.of. the.equivalent.anion-exchange.resins..One.of.the.attractive.features.of.membranes.is.that.they.espe-cially.have.higher.binding.capacity.for.large-size.impurities,.which.are.abundant.in.feed.streams.and.a.major.cause.for.column.clotting.225.Since.plant.feed.streams.have.unusually. abundant. high-molecular-weight. impurities,. membrane. separation. may.provide.a.promising.noncolumn.chromatographic.solution.for.problems.associated.with.large.chromatographic.columns,.such.as.low.flow.rate.and.expensive.operations.in.column.packing,.cleaning,.and.validation..In.fact,.preliminary.tests.have.shown.that. this. technique. can. be. successfully. applied. in. purifying. PMPs.. For. example,.separations.with.a.combination.of.cation-exchange.and.protein.A.membranes.have.successfully.purified.a.tobacco-derived.antipseudomonas.human.mAb.(06ad).226.The.high.binding.capacity.and.scalability.of. this. technique.make. it.highly. suitable. for.very.large-scale.manufacturing.operations..Many.speculated.that.membrane.separa-tion. is. likely. to. be. the. first. nonchromatographic. method. used. in. production-scale.processing.of.biopharmaceuticals.164

Regardless.of.the.purification.method.used.or.the.nature.of.a.specific.target.pro-tein,.the.overall.extraction.and.purification.design.has.to.be.robust,.scalable,.cost-effective,.and.compliant.to.cGMP.regulations..An.ideal.purification.scheme.should.have.no.more.than.three.processing.steps.in.order.to.achieve.high.product.purify.while.maintaining.a.practical.recovery.rate..In.addition,.the.PMP.purification.and.manu-facturing.process.must.be.governed.by.an.independent.quality.management.system.(QMS).similar. to.regulations.used.by.other.expression.systems.227,228.Accordingly,.materials.and.processes.widely.accepted.by.the.pharmaceutical.industry.should.be.considered.first.during.process-development.to.minimize.future.regulatory.expendi-ture..Furthermore,.in.spite.of.the.lack.of.animal.viruses.and.other.infectious.agents.in.plants,.it.must.be.validated.that.the.purification.process.is.adequate.in.removing.endotoxin,. phenolics,. and. alkaloids. as. well. as. potential. herbicide. and. insecticide.contaminations.from.the.final.product.

PLANT SPECIES USED FOR PMP PRODUCTION

A.diversity.of.plant.species.and.expression.systems.has.been.used.to.express.phar-maceutical.proteins..The.choice.of.a.system.for.a.particular.transgenic.protein.pro-duction.depends.not.only.on.specific.biological.properties.of.the.target.protein/host.plant. species. but. also. on. economical,. regulatory,. and. social. factors.. The. optimal.plant.expression.system.for.a.target.pharmaceutical.protein.must.have.(1).one.or.more.expression.cassettes.with.genetic.elements.that.can.drive.the.high-level.expression.of.the.transgene,.(2).the.ability.to.target.the.transgenic.protein.to.a.cellular.compart-ment.where.it.is.stable,.and.(3).technologies.to.isolate.and.purify.the.target.protein.from.host.plants..The.optimal.plant.species.coupled.to.the.optimal.expression.system.must.also.(1).produce.high-yield.biomass,.(2).have.facile.scalability,.(3).have.suffi-cient.biomass.stability.during.the.required.storage.period,.and.(4).have.a.reasonable.land.and. labor. requirement. for.plant.growth.and.harvesting..Other.economic. fac-tors.may.include,.for.example,.the.value.of.the.protein.product,.which.will.dictate.the.affordability.of. investment. in.new.equipment.and. labor.as.well.as. in.convert-ing. existing. farming. and. food. processing. infrastructure. for. molecular. pharming..

Page 118:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

104 Transgenic Horticultural Crops: Challenges and Opportunities

Other  factors  such  as  the. distance. between. sites. of. biomass. production. and. pro-cessing.will.determine.the.required.period.for.biomass.storage,.which,.in.turn,.will.determine.the.choice.between.leafy.and.seed.production.system..In.addition,.consid-erations.have.to.be.in.place.in.choosing.an.expression.system/species.to.address.regu-latory.compliance.and.public.concerns.on.issues.of.transgene.containment,.product.biosafety,.and.others.related.to.GM.plants.in.general.

leafy cropS

Tobacco.and.its.related.Nicotiana.species.have.been.one.of.the.earliest.crop.systems.for.successful.transgenic.plant.pharmaceutical.expression,.in.which.target.proteins.can.be.extracted.directly.from.harvested.leaves..Tobacco.is.one.of.the.easiest.plants.to.transform,.and,.therefore,.the.molecular.tools.for.transgene.expression.in.this.spe-cies. are. well. established.. Biomass. yield. for. tobacco. is. higher. than. most. of. other.leafy.crops..Tobacco.is.also.a.prolific.seed.producer.allowing.rapid.scalability..The.existence. of. large-scale. processing. infrastructures. in. traditional. tobacco. industry.provides.the.advantage.of.quick.adaptation.for.processing.pharmaceutical-containing.biomass.. Since. tobacco. is. a. nonfood,. nonfeed. crop,. the. risk. of. contamination. of.human.food.chain.or.animal.feed.chain.by.transgenic.tobacco.is.relatively.low..All.these.advantages.of.tobacco.make.it.one.of.the.most.advanced.candidates.for.molec-ular.farming.in.commercial.production.of.pharmaceutical.proteins.

Other.green. leaf.expression.systems.also. include.alfalfa,.soybean,.Arabidopsis thaliana,.lettuce,.and.spinach..They.share.many.common.advantages.with.tobacco.including.easy.to.engineer.and.high.biomass.yield..One.of.the.most.advantageous.properties.of. the. leaf.expression.systems. is. that. it.allows. the.flexibility. to.choose.from.all.three.plant.expression.technology.platforms.including.stable.nuclear,.chlo-roplast.transformation,.and.viral.vector-based.transient.expressions..This.flexibility.increases.the.chance.of.success.for.many.target.proteins,.since.multiple.options.are.available. to. identify.an.optimal. expression.platform.based.on. the.property.of. the.target.protein.or.the.nature.of.the.particular.project.

Alfalfa. and. soybean. are. legumes. and,. therefore,. can. obtain. organic. nitrogen.through.nitrogen.fixation..This.may.provide.some.advantages. in. reducing. the.con-sumption.of.nitrogen-containing.chemicals..Alfalfa.also.can.be.harvested.up.to.nine.times.a.year,.adding.to.a.higher.biomass.yield..Arabidopsis thaliana.has.been.a.model.plant.for.plant.molecular.genetics.and.molecular.biology.research..It.has.been.used.to.produce.a.variety.of.pharmaceutical.proteins..However,.the.small.size.of.this.plant.will.limit.its.scalability..Lettuce.and.spinach.are.palatable.without.cooking.and,.there-fore,.have.been.particularly. targeted.to.produce.edible.vaccines. for.oral.delivery.124.Because.they.are.food.crops,.the.biosafety.and.containment.of.the.transgene.are.major.concerns.for.their.commercial.application..One.of.the.drawbacks.for.leaf.expression.systems.is.the.potential.interference.of.expressed.transgenic.proteins.on.plant.growth.and.development..For.this.type.of.proteins,.inducible.promoters.may.be.advantageous.as. transgenic. proteins. are. not. expressed. during. plant. growth. under. the. control. of.such.promoters.but.will.only.be.produced.upon.application.of.specific.inducer.agent.post-biomass.harvest.229.Leaves. also. tend. to. contain.more.pigments,. alkaloids,.and.polyphenols,. which. sometimes. may. be. difficult. to. remove. from. the. target. protein..

Page 119:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

105Expression and Manufacture of Pharmaceutical Proteins

The.amount.of.these.compounds.varies.between.plant.species..Tobacco.and.related.Nicotiana.plant.leaves.generally.contain.high.levels.of.phenolics.and.toxic.alkaloids..However,.tobacco.cultivars.with.low-alkaloid.and.other.toxic.metabolites.have.been.developed. for. pharmaceutical. protein. production.230. Protein. stability. is. one. of. the.major.issues.for.leafy.crops..Transgenic.proteins.expressed.in.leaves.accumulate.in.a.more.aqueous.environment.and.thus.tend.to.be.unstable..This.translates.into.a.short.target.protein.shelf.life.in.harvested.green.biomass.due.to.proteolysis..They,.therefore,.must.be.quickly.transported.to.a.processing.facility.at.a.controlled.temperature.to.be.extracted.for.target.protein.or.to.be.processed.by.freezing,.drying,.or.other.means.for.short-term.storage..In.contrast,.pharmaceutical.proteins.produced.in.cereal.seeds.can.remain.stable.for.a.long.period.at.ambient.temperature.(see.below)..Regulatory.con-cerns.for.nonfood,.nonfeed.pharmaceutical.producing.leafy.crops.include.the.potential.leaching.of.recombinant.products.into.the.environment.and.the.exposure.of.herbivores.to.transgenic.proteins..Again,.this.type.of.risks.can.be.reduced.by.using.inducible.pro-moters.to.drive.the.expression.of.the.transgene.so.that.transgenic.proteins.can.only.be.synthesized.in.a.controlled.environment.post.biomass.harvest.229,231

Seed cropS

Expression.of.pharmaceutical.protein.has.been.explored. in.seeds.of.several.crops.including.maize,.rice,.wheat,.barley,.tobacco,.oilseed.rape,.and.a.variety.of.beans.232–234.For. certain. transgenic.proteins. that. required. long-term. storage. in. biomass.before.processing,.expression.in.seeds.driven.by.seed-specific.promoters.is.preferred.over.leafy.expression.systems..In.contrast.to.the.“watery”.leaves,.seeds.are.natural.desic-cators,.which.preserve.functional.proteins.by.a.drying.process.during.their.matura-tion. and,. therefore,. allow. long-term.protein. stability.during. storage..Studies.have.shown.that.mAbs.produced.in.corn.seeds.remain.stable.after.3.years.of.storage.at.room.temperature.and.retain.their.biological.activities.235.Phenolic.and.alkaloid.com-pounds.are.not.present.in.cereal.crop.seeds,.thus.simplifying.downstream.purifica-tion.process.and.reducing.the.overall.production.cost.accordingly..Cereal.seeds.do.contain.higher.levels.of.lectins.that.could.be.difficult.to.remove.from.the.final.prod-uct.especially.if. the.target.proteins.are.glycosylated..Legumes.and.other.oil.crops.such.as.oilseed.rape.are.useful.alternative.systems.for.pharmaceutical.production,.because.their.oil.bodies.can.be.exploited.to.facilitate.target.protein.purification..For.example,.SemBioSys.Genetics.has.developed.an.oleosin-fusion.technology.to.target.pharmaceutical.proteins.to.oil.bodies..As.a.result,.these.proteins.can.be.purified.by.a. simple.extraction.process.236.The. level.of.expression.of. recombinant.proteins. in.seeds.is.generally.lower.than.that.in.tobacco.leaves..This.is.mostly.due.to.the.fact.that.many.of.the.seed.expression.systems.are.still.at.early.developing.stage.and.have.ample.rooms.for.further.optimization.234.An.inherent.disadvantage.of.producing.pro-tein.in.seeds.is.that.it.can.only.be.evaluated.until.seeds.are.produced.after.a.long.growth.cycle..Within.the.three.expression.platforms,.only.nuclear.stable.transforma-tion.is.feasible.for.seed.expression..Transient.expression.techniques.for.seed.expres-sion.have.not.been. well. established,. therefore,. hindering. the.quick. assessment.of.expression.feasibility.for.a.given.product..Seed.crops.offer.both.biosafety.advantages.and.drawbacks.for.expression.of.recombinant.proteins..On.one.hand,.it.reduces.the.

Page 120:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

106 Transgenic Horticultural Crops: Challenges and Opportunities

risk.of.product.exposure.to.herbivores.and.other.nontarget.organisms..On.the.other.hand,.however,.the.necessity.of.pollination.for.seed.formation.presents.a.new.risk.for.potential.transgene.escape.into.the.environment.

Maize.was.one.of.the.first.seed.crops.used.for.recombinant.protein.production.237.Compared.with.other.cereal.plants,.it.has.several.advantages.including.high.biomass.yield,.ease.of.transformation,.and.the.availability.of.large-scale.processing.technol-ogy..Since.maize.has.been.a.model.plant.for.genetic.studies,.there.is.a.vast.genetic.and. molecular. knowledge. base. available. for. its. genetic. manipulation.. Maize. has.been.a.successful.seed.crop.for.producing.a.variety.of.recombinant.proteins.includ-ing.mAbs,.biotech.reagents,.even.commercial.grade.b-glucuronidase.and.avidin.10.For.example,.mAb.(2G12),.a.promising.anti-HIV.microbicide.candidate,.was.produced.in.transgenic.maize.64.This.research.showed.that.maize-produced.mAb.neutralized.HIV.as.effectively.as.the.same.antibody.produced.in.Chinese.hamster.ovary.(CHO).cells.. Despite. these. advantages,. disastrous. transgene. outflow. incidents. happened.in.this.crop.have.raised.serious.regulatory.and.public.concerns.on.using.maize.or.other.food.crops.for.recombinant.protein.production.(see.“Regulatory.Concerns.and.Public.Acceptance”.section.of.this.chapter)..A.comparative.study.was.conducted.to.examine.the.yield.of.a.scFv.in.different.seed.and.leafy.crops.including.wheat,.rice,.pea,.and.tobacco..Results.showed.that.the.target.protein.yield.per.unit.of.biomass.was.in.the.order.of.rice.seeds.>.tobacco.leaf.>.wheat.seeds.=.pea.seeds.234.The.highest.yield.per.unit.of.land,.however,.belongs.to.tobacco.plants.because.of.its.high.biomass.production..Since.different.promoters.were.used.for.seed.and. leaf.expression,. the.results.have.to.be.evaluated.with.caution.and.need.further.validation..This.study.did.demonstrate.that.choosing.a.optimal.production.crop.was.relying.on.multiple.factors.such.as.target.protein.yield.per.unit.biomass.and.biomass.yield.per.acre.and.can.be.only.determined.on.a.protein-by-protein.basis.

fruIt and tuber cropS

Pharmaceutical.protein.production.in.fruit.and.tuber.crops.provides.the.opportunity.for.a.novel.approach.of.pharmaceutical.delivery.through.oral.route.by.ingesting.palatable.crop.organs..This.unique.advantage.makes.them.ideal.hosts.for.the.production.of.oral.vaccines.or.topical.therapeutics..For.example,.potato.plants.have.been.explored.as.one.of.the.earliest.plant.systems.for.expression.of.a.diversity.of.vaccines.81,238,239.Our.group.and.others.also.conducted.at.least.three.clinical.trials.by.administering.uncooked.trans-genic.potato.tubers.expressing.exterotoxic.E. coli.LT-B.or.VLPs.of.NVCP.to.human.volunteers..Fruits.such.as.tomatoes.and.strawberries.are.more.edible.than.raw.potatoes.and.thus.are.more.feasible.for.edible.vaccine.development..Tomatoes.have.been.used.for.both.vaccine.and.therapeutic.mAb.expression.due.to.its.high.biomass.yield.and.ease.of.production.in.greenhouses.for.transgene.containment.240.Bananas.have.been.envi-sioned.for.a.long.time.as.hosts.for.edible.vaccine.production.and.delivery.especially.in.Africa.where.vaccination.for.infectious.diseases.is.urgently.needed..However,.difficul-ties.in.generating.transgenic.banana.plants.and.the.long.time.frame.needed.to.grow.fruit-bearing.crops.still.present.hurdles.for.its.practical.application..Since.fruits.and.edible.tubers.are.food.crops,.one.of.the.biggest.obstacles.for.their.commercialization.is.the.regulatory.and.public.concern.for.biosafety.and.transgene.containment.

Page 121:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

107Expression and Manufacture of Pharmaceutical Proteins

aQuatIc plantS

One.of.the.most.innovative.and.the.simplest.whole-plant. transgenic.expression.systems.may.be.that.of.employing.the.common.duckweed,.Lemna..Largely.devel-oped.by.Biolex.Therapeutics.(Pittsboro,.NC),.Lemna-based.LEX.Systems.expres-sion. technology. allows. rapid. pharmaceutical. product. development. and. potential.seamless. transition. to. large-scale.manufacture.under.GMP.conditions..This. tech-nology. is. enabled. by. several. advantages. of. the. duckweed. plants. including. small.genome.for.facile.molecular.manipulation,.ease.of.transformation.and.regeneration,.rapid.clonal.propagation,.and.biomass.growth.requiring.only.water.and. inorganic.nutrients..Furthermore,.smaller.pharmaceutical.proteins.produced.in.duckweed.can.be. directly. secreted. into. the. culture. medium.. This. would. eliminate. the. need. for.homogenization.of.plant.tissue.and.significantly.simplify.target.protein.purification.and,.in.turn,.reduce.the.overall.processing.cost..Since.Lemna.plants.produce.neither.pollen.nor.seeds,.but.are.propagated.vegetatively.in.simple.containers,. the.system.also.offers.high.degree.of.containment..The.clonal.nature.of.Lemna.plants.and.the.feasibility.of.growing.them.in.a.controlled.environment.also.allow.better.batch-to-batch.product.reproducibility..Like.any.other.bioreactor.or.container-based.pro-duction.systems,.the.scalability.of.the.duckweed.system.could.be.limited.compared.with. those. of. other. crops.. Biolex. Therapeutics. has. produced. 35. proteins. with.their. LEX  Systems. and. their. leading.drug.candidate,.Locteron®,.an.α-interferon.for.the.treatment.of.hepatitis.C,.is.being.examined.in.a.Phase.2b.human.clinical.trial.in.Europe.(http://www.biolex.com,.2011)..Duckweeds.have.also.been.shown.as.an.excellent.host.system.for.therapeutic.mAb.production..Because.of.its.small.genome,.its.glycosylation.pathway.can.be.manipulated.with.relative.ease..This.added.advan-tage.allows.Lemna-derived.mAbs.to.have.uniform.and.“humanized”.glycans.136.It.was.shown.that.Lemna-produced.CD30.mAb.contained.only.a.single.major.N-glycan.species.and.showed.more.superior.ADCC.and.effector.cell-binding.activities. than.those.of.equivalent.mAb.produced.in.mammalian.cells..In.addition.to.Lemna minor.used.by.Biolex,.other.species.in.the.Lemnaceae.family.such.as.Pirodela oligorhiza.and. several. Wolffia. are. also. being. exploited. as. a. source. for. recombinant. protein.production.241

plant SuSpenSIon cell cultureS and SInGle-cell cultureS of alGae

Plant. suspension. cells. are. liquid. culture. of. cells. or. cell. aggregates. derived. from.callus.tissue..Transgenic.plant.cell.cultures.can.be.established.by.transforming.sus-pension. cells. with. Agrobacterium. or. by. using. stable. transgenic. plant. to. produce.the.callus. tissue..Since. these.suspension-cultured.plant.cell. lines.can.be.grown.in.a.controlled.environment,.they.allow.better.product.reproducibility,.a.high.level.of.containment,.and.the.potential.to.manufacture.protein.under.cGMP.similar.to.mam-malian.cell.culture.practices..Even.though.these.culture.systems.share.similar.limita-tions.in.scalability.with.current.bacterial,.yeast,.and.mammalian.cell.cultures,.they.still.provide.useful.alternatives.in.producing.pharmaceutical.proteins.owing.to.the.fact. that. plant. cell. lines. require. less. expensive. culture. media. to. grow.. Moreover,.pharmaceutical.proteins.smaller.than.20.kDa.can.be.directly.secreted.into.the.culture.

Page 122:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

108 Transgenic Horticultural Crops: Challenges and Opportunities

medium.readily.for.purification..As.a.result,.many.pharmaceutical.proteins.includ-ing.mAbs,.scFv,.and.their.fusion.proteins.have.been.produced. in.tobacco.or. rice-cell-suspension.cultures.242.In.fact,.the.first.plant-made.pharmaceutical.approved.by.the.FDA.was.a.poultry.vaccine.against.Newcastle.disease.produced.in.tobacco.suspension.cells.243.In.addition.to.tobacco.cells,.rice.and.carrot.cells.are.also.being.developed.for.pharmaceutical.production..For.example,.carrot.cells.are.being.used.by. Protalix. Biotherapeutics,. a. biotechnology. company. in. Israel,. to. produce. the.enzyme.glucocerebrosidase.(GCD).as.an.enzyme.replacement.therapy.agent.to.treat.the.Gaucher.disease..They.have.shown.that.GCD.produced.in.cultured.carrot.cells.has.several.advantages.over.GCD.derived.from.CHO.cells,.including.increased.gly-can.efficacy.and.consistency.and.longer.product.half-life.in.blood.serum.244

Single-cell. cultures.of.algae. such.as.chlorella. and.chlamydomonas. offer. short.generation. time,. fast. vegetative. biomass. growth,. and. require. inexpensive. cultiva-tion.in.water.and.inorganic.nutrients.with.sunlight..The.biased.alga-specific.genetic.codon.usage.has.been.problematic.for.expressing.human.or.animal.genes.in.these.algae,.but.has.been. resolved.by.using. alga-codon.optimized.synthetic.genes.245. It.was.initially.proposed.that.the.algae-based.protein.expression.systems.could.be.eas-ily.maintained.in.ponds.or.larger.water.bodies.for.large-scale.biomass.production..However,.biosafety.and.environmental.concerns.have.limited.the.use.of.these.cul-tures.in.controlled.simple.containers.or.more.sophisticated.flow-through.transparent.“reactors.”.The.green.alga.Chlamydomonas reinhardtii.has.been.a.successful.model.alga.in.expressing.several.pharmaceutical.proteins.including.foot-and-mouth.disease.virus.VP1-CTB.fusion.protein.and.a.scFv.for.herpes.simplex.virus.glycoprotein.D.with.transgenes. transformed. into.either. its.nuclear.or.chloroplast.genomes.246–247.Other.algae. species. such.as.Chlorella ellipsoidea. and.Dunaliella salina.have.also.been.explored.for.PMP.production.246,249

REGULATORY CONCERNS AND PUBLIC ACCEPTANCE

PMP.is.a.potentially.revolutionary.technology.for.providing.vast.affordable.pharmaceu-tical.proteins.to.the.world..However,.as.other.transformative.technological.develop-ments,.PMP.is.also.plagued.with.controversy.and.has.stimulated.significant.public.debate..One.of.the.major.issues.confronting.commercial.PMP.production.is.the.pub-lic.perception.that.the.bioproduction.of.pharmaceuticals.with.food.or.feed.crops.could.potentially.contaminate.the.human.or.animal.food.chains..Some.in.the.agriculture.and.food.industry.also.share.such.concerns.for.reasons.that.any.potential.contamina-tion.could.negatively.impact.their.businesses.250.Many.of.these.concerns.are.caused.by.several.contamination.incidents.that.have.special.resonance.for.the.PMP.field.251.

The.most.publicized.episode.was.the.one.involving.a.Texas-based.biotech.company,.ProdiGene.Corp..In.2002,.corn.and.soybean.harvested.in.Nebraska.and.Iowa.were.found. contaminated. with. ProdiGene’s. transgenic. corn. seeds. intend. to. express. a.transgene. of. TGEV. for. a. candidate. pig. diarrhea. vaccine.. As. a. result. of. the. con-tamination,.more.than.12,000.tons.of.soybeans.have.to.be.destroyed,.and.ProdiGene.was.penalized.by.the.U.S..government.with.a.fine.of.$250,000.251.In.addition.to.the.potential.contamination.of.human.food.supplies,.other.concerns.among.the.general.public.and.scientists.include.the.potential.escape.of.transgene.into.the.environment.

Page 123:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

109Expression and Manufacture of Pharmaceutical Proteins

through.outcrossing.with.conventional.crops.or.their.related.wild.species,.exposure.of microorganisms.and.insects.or.other.herbivores.to.transgene.and.transgenic.prod-ucts,.and.possible.immunological.tolerance.caused.by.edible.vaccines.

To.ultimately.address.these.public.concerns,.it.requires.the.diligent.stewardship.by. the.PMP.community,.scientific.and.technical.advancement. in.PMP.production.platforms,.and.a.close.collaboration.between.different.regulatory.agencies.to.estab-lish.clear.and.effective.policies.and.guidelines.for.transgenic.crops.and.PMPs.

better StewardShIp of the pmp communIty

One.of.the.embarrassing.lessons.learned.from.the.ProdiGene.incident.by.the.PMP.community.was.the.need.to.improve.their.stewardship.on.PMPs..Practices.without.consideration.and.common.sense.caused.several.incidents.and.controversies,.which.are.unnecessary.and.avoidable..For.example,.when.Ventria.Bioscience.planned.to.test. their.PMP.carrying. transgenic. rice. in.field.plots,. instead.of.growing. them. in.containment.or.in.a.location.far.away.from.areas.of.major.food.rice.production,.it.proposed.to.grow.them.in.California.Central.Valley.where.rice.production.for.human.food.is.a.major.industry.250.This.proposal.angered.some.local.farmers,.and.the.con-troversy.forced.Ventria.to.abandon.its.original.plan.and.moved.its.testing.plots. to.Kansas..The.ProdiGene.and.Ventria.controversies.have.alarmed.PMP.community.to. develop. stricter. self-disciplinary. guidelines. on. PMP. containment.. As. a. result,.the. Biotechnology. Industry. Organization. established. a. “Reference. Document. for.Confinement.and.Development.of.Plant-Made.Pharmaceuticals.in.the.United.States”.to.express.their.commitments. in.ensuring.the.safety.of.PMPs.during.all.stages.of.development. and. production,. including. full. compliance. with. all. applicable. laws,.regulations.and.guidance,.and.the.regulatory.framework.from.regulatory.agencies.that.oversee.the.PMPs.250.This.document.also.provided.guidelines.for.practical.mea-sures. in.preventing.inadvertent.human.exposure.to. the.transgenic.plants.and. their.expression.product(s). through. food.and. feed.and. in.minimizing.occupational. and.environmental.exposure..This.has.led.the.PMP.community.to.reconsider.the.risks.associated.with.using.food.crops.as.PMP.hosts.and.to.develop.new.expression.plat-forms.to.reduce.such.risks.

alternatIve pmp productIon technoloGy and rISk control

Nonbiological ContainmentTo.prevent.human.and.environmental.exposure.of.transgene.or.PMP.products,.the.simplest. form. of. containment. would. be. having. a. physical. barrier. between. PMP.host.plants.and.their.surroundings..The.barrier.can.be.green.houses.or.geographic.distances..For.example,.SemBioSys,. a.Canadian.PMP.company,.has. adopted. this.approach.and.decided.to.grow.its.insulin-producing.transgenic.safflower.in.an.iso-lated.geographical.area.of.Chile.far.away.from.any.food.or.feed.safflower.crops.250.

Crops.such.as.tomato,.which.is.routinely.grown.in.large-scale.greenhouses.for.food.production,. are. being. explored. as. expression. platforms. for. PMPs. as. they. can. be.easily.adapted.for.PMP.production.in.containment.240.Other.physical.measures.can.

Page 124:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

110 Transgenic Horticultural Crops: Challenges and Opportunities

also.be.used.to.prevent.the.exposure.of.environment.to.the.transgene.and.transgenic.products..For.example,.PMP.tobacco.plants.are.routinely.harvested.through.mowing.before.reproductive.organs.are.formed,.and.transgenic.corn.is.detasseled.mechani-cally.to.prevent.transgene.flow.to.the.environment.through.pollen.outcrossing.252.In.addition.to.meeting.the.traditional.requirements.such.as.high.PMP.yield.and.easy.scalability,. many. new. expression. systems. were. developed. with. the. added. advan-tage. for. containment..For. example,. since.duckweeds.produce.no.pollen.or. seeds,.but.propagate.vegetatively.and.can.grow.in.closed.containers,.the.duckweeds-based.LEX.Systems.offers.a.higher.degree.of.containment.than.other.systems..Similarly,.plant.suspension.cultures.are.also.grown.in.controlled.containers,. allowing.better.biosafety.control..Furthermore,.the.feasibility.of.growing.aquatic.plant.and.plant.cell.culture.in.a.controlled.environment.also.allows.better.batch-to-batch.product.repro-ducibility.and.the.ability.of.protein.production.under.cGMP..In.fact,.these.advantages.have.enabled.them.to.be.operated.similarly.to.conventional.bacterial.or.mammalian.cell.cultures.and.to.achieve.considerable.commercial.success.ahead.of.other.PMP.systems..These. successes. include. that. tobacco.suspension.cells.produced. the.first.FDA-approved.plant-made.poultry.vaccine.and.that.PMPs.produced.by.Lemna.or.carrot.cell.cultures.are.being.examined.in.Phase.2.or.Phase.3.human.clinical.trials.(http://www.biolex.com,.2011).

The.transient.expression.technology.based.on.“deconstructed”.viral.vectors.also.provides.advantages. in.biosafety.and.containment.because. it.does.not. involve. the.production.of.transgenic.plants..Since.high.level.of.PMP.product.can.be.obtained.easily.with.this.system,.the.amount.of.biomass.required.for.the.production.of.a.given.quantity.of.PMP.is.reduced,.which.provides.the.possibility.of.performing.the.pro-cesses.in.contained.facilities..This,.in.turn,.will.eliminate.the.need.for.field-grown.plants,.and.the.environmental.concerns.for.the.use.of.“deconstructed”.viral.vectors..Furthermore,.this.system.does.not.require.fermenters.or.containers.to.grow.biomass,.giving.it.an.easier.scalability.than.fermenter-based.duckweed.or.plant.tissue.cultures..This.transient.expression.technology,.therefore,.represents.one.of.the.most.promising.PMP.platforms.for.commercialization.

Biological ContainmentIt.is.necessary.in.certain.circumstances.to.use.biological.containment,.which.is.less.dependent.on.human.oversight.than.physical.containment.as.an.additional.measure.to.ensure.the.biosafety.of.PMP.production..Biological.containment.usually.employs.molecular.or.genetic. techniques. to.either.create.a.biological.barrier.against. trans-gene.flow.into.other.plants.or.organisms.or.to.prevent.the.production.of.transgenic.products.before.host.plants.being.harvested.or.moved.into.a.controlled.environment.

Transgenes.can.flow.from.PMP.transgenic.plants.in.two.major.forms—pollen.and. seeds. carried. by. various. vectors.. Correspondingly,. molecular. genetic. strat-egies. for. containing. transgene. outflow. have. been. focused. on. the. areas. of. male.sterility,.maternal.inheritance,.transgene.mitigation,.and.seed.sterility.(also.called.“terminator”.technology).253.Male.sterility.is.one.of.the.early.strategies.of.biologi-cal.containment.and.is.the.only.strategy.that.has.been.applied.to.commercial.trans-genic.plant.(rape.seeds).production.(Plant.Genetic.systems,.Ghent,.Belgium)..Male.sterile. plants. are. unable. to. produce. mature,. viable. pollen,. therefore. preventing.

Page 125:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

111Expression and Manufacture of Pharmaceutical Proteins

transgene. flow. via. pollen.254. Examples. of. such. systems. include. pollen. sterility.in. tobacco. and. oilseed. rape. with. a. barnase. gene. driven. by. a. tapetum-specific.promoter255. and. male. sterility. in. tobacco. with. constitutive. expression. of. the.Agrobacterium rhizogenes.rolC.sterility.gene.256.These.systems.have.been.shown.to. be. successful. in. preventing. transgene. spread. from. GM. flowering. plants. into.other. related.species.254.Since.most.crop.chloroplasts.genes.are. inherited.mater-nally,.transgenes.inserted.into.the.plastid.genomes.are.unlikely.to.be.transmitted.by. pollen. transmission.35. As. discussed. earlier,. transplastomic. plants. have. been.extensively. used. for. PMP. expression. partially. due. to. their. advantage. in. ensur-ing.transgene.containment..To.further.reduce.the.risk.of. transgene.flow-through.pollination,.a.double.fail-safe.strategy.was.developed.using.combinations.of.both.male. sterility. and. transplastomic.genomes.257.One.of. the.handicaps.of. the.male.sterile.or.transplastomic.plants.is.that.they.can.still.be.pollinated.by.nontransgenic.varieties,.and.the.resulting.hybrids.can.serve.as.pollen.donors.to.spread.transgene.into. the. environment.. Transgene. mitigation. is. a. strategy. to. address. the. leakage.and.unidirectionality.handicap.of.male.sterility.and.maternal.inheritance..In.this.technology,.a.mitigation.gene,.which.encodes.a.trait.detrimental.to.wild.plants,.is.genetically.linked.to.the.transgene.258.If.the.transgene.is.escaped.and.transmitted.to.an.unintended.host.plant,.the.mitigation.gene.will.co-escape.with.the.transgene,.and.its.expression.would.prevent.the.hybrid.from.competing.with.wild.plants.and.setting.seed..For.example,.this.strategy.based.on.the.Arabidopsis.gibberellic.acid.insensitive. gene. (Δgai). was. able. to. induce. dwarfism. in. tobacco. plants.. When.Δgai.transgenic.plants.or.hybrids.are.grown.together.with.wild-type.tobacco,.the.dwarf.transgenic.or.hybrid.plants.cannot.compete.effectively.for.sunlight.with.the.taller.wild-type.plants.for.photosynthesis.and.rarely.survive.to.set.seed,.therefore,.preventing.the.establishment.of.transgene.in.the.population.258.Furthermore,.Δgai.gene.also.causes.male.sterility.in.tobacco.plants..The.combination.of.male.sterility.and.mitigation.effect.of.Δgai.makes.it.a.superb.gene.for.preventing.transgene.outflow.and.for.mitigating.the.flow.if.sterility.containment.failure.or.reverse.gene.influx.occurred.254. In.addition. to.pollens,.seeds.are.also.major. routes.of. transgene.and.transgenic. product. spreading. by. human. errors. or. animal. activities.. To. resolve. this.problem,.several.“genetic.use.restriction.technologies”.(GURT).including.the.“ter-minator”. (US.patent.5,723,765).and. its.alternatives.have.been.developed. to.pro-duce. “conditional-sterilized”. seeds.259. Seeds. from. plants. engineered. with. these.“terminator”-like.genes.are.usually.nonviable,.unless.the.plants.are.intentionally.exposed.to.specific.activating.molecules.or.environmental.stimulus..These.chemi-cal. or. environmental. conditions. will. induce. the. expression. of. a. repressor. gene,.which,.in.turn,.will.inactivate.the.terminator.gene..Several.such.technologies.have.been.shown.to.be.effective.260,261.For.example,.transgenic.plants.carrying.the.bar-nase.gene. routinely.produce.non-viable.seeds,.but.can.become.viable.only.after.an.exposure. to.a.heat. treatment.at.40°C.261.Such.seed.sterility. technologies.will.allow.effective.blocking.of.transgene.flowthrough.volunteer.seeds.and.will.prevent.recurrence.of.incidents.similar.to.the.ones.caused.by.ProdiGene..Inducible.expres-sion. systems. have. been. developed. to. prevent. human,. animal,. and. environmen-tal.exposure.to.plant.transgenic.protein.products..In.these.systems,.transgene.are.driven.by.an.inducible.promoter.instead.of.a.constitutive.one..As.a.result,.transgene.

Page 126:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

112 Transgenic Horticultural Crops: Challenges and Opportunities

transcription.and.translation.remain.being.switched.off.during.plant.growth.until.upon.the.application.of.the.specific.inducer.molecules.or.stimulus..Therefore,.no.transgenic.products.are.produced.in.the.field,.and.they.are.only.made.after.being.harvested.and.transported.into.a.controlled.environment..Such.inducible.systems.have.been.applied.to.both.nuclear.and.chloroplast.transgenic.plants.229,231.It.is.impor-tant.to.note.that.none.of.the.above.biological.containment.is.absolute.or.is.working.in. all. circumstances.. Novel. containment. strategies. with. high. level.of. reliability.and.simplicity.are.still.highly.desired.for.PMP.plants.

reGulatory polIcIeS reGardInG pmp

In.the.United.States,.the.regulatory.responsibilities.of.PMPs.are.distributed.among.three.relevant.agencies:.the.US.Department.of.Agriculture.(USDA),.the.Food.and.Drug.Administration.(FDA),.and.the.Environmental.Protection.Agency.(EPA).

The.regulatory.environment.has.evolved.tremendously.since.the.infancy.of. the.PMP.development.227,262.At.the.beginning,.the.novelty.and.complexity.of.this.tech-nology.caused.confusions.on.which.regulatory.agencies.should.regulate.it.or.where.the.PMP.would.fit.into.the.regulatory.agencies’.structured.framework.for.biotech-nology.pharmaceuticals..This.uncertain.regulatory.environment.contributed.to.the.inertia.of.large.pharmaceutical.companies.toward.PMPs.and.other.new.production.systems..With.the.great.stride.of.PMP.field.in.the.last.few.years,.however,.the.regula-tory.environment.has.also.evolved.from.a.chaotic.situation.in.which.the.regulatory.bodies.could.not.coordinate.with.each.other.to.a.more.welcoming.climate.where.the.regulatory. agencies. have. a. more. defined. role. in. regulating. PMPs. and. coordinate.with.each.other.and.begin.to.work.with.scientists.to.establish.more.clear.policies.and.guidelines.specifically.for.PMPs.262,264

CONCLUSION

Enormous.strides.have.been.made.in.the.past.decade.with.respect.to.PMP.expression.and.optimization..A.wide.spectrum.of.pharmaceutical.proteins.has.been.success-fully.produced.with.active.functionality.in.a.variety.of.crop.and.noncrop.plant.sys-tems..Plant.expression.strategies.based.on.the.combination.of.viral.vector.transient.expression.and.stable.transgenic.plants.have.the.greatest.potential.to.provide.a.tech-nology.with.the.speed.and.scalability.required.for.producing.affordable.high-quality.pharmaceutical.proteins.to.meet.the.increasing.global.demand..New.technologies.for.downstream.processing.have.received.increasing.attention.and.are.being.developed.to.realize.the.full.potential.of.the.PMP.platform..However,.like.any.biotechnology.innovation,. the.ultimate.commercial.success.of. this. technology.cannot.solely.rely.on. its. scientific. and. technical. merits.. Before. reaching. its. full. commercial. poten-tial,. extensive. work. has. to. be. done. to. overcome. challenges. in. areas. of. its. social.acceptance.and.in.attracting.the.interest.of.capital.investment.and.big.pharmaceuti-cal.companies..Ultimately.with.technical.optimization.and.careful.implementation.under.regulatory.guidelines,.plant.expression.technology.will.support.the.production.of.pharmaceutical.proteins.with.scalability,.speed,.efficiency,.cost-effectiveness,.and.safety.at.a.commercial.scale.

Page 127:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

113Expression and Manufacture of Pharmaceutical Proteins

REFERENCES

. 1.. Farnsworth,.N.R..et.al.,.Medicinal.plants.in.therapy,.Bull World Health Organ,.63,.965,.1985.

. 2.. Duke,.J.,.Medicinal.plants.and.the.pharmaceutical.industry,.in.New crops,.Janick,.J..and..Simon,.J..Eds.,.Wiley,.New.York,.1993,.664.

. 3.. Ma,. J.,. Drake,. P.,. and. Christou,. P.,. The. production. of. recombinant. pharmaceutical.proteins.in.plants,.Nat Rev Genet,.4,.794,.2003.

. 4.. Barta,.A.. et. al.,.The.expression.of. a. nopaline. synthase—Human.growth.hormone.chimaeric.gene.in.transformed.tobacco.and.sunflower.callus.tissue,.Plant Mol Biol,.6,.347,.1986.

. 5.. Hiatt,.A.,.Cafferkey,.R.,.and.Bowdish,.K.,.Production.of.antibodies.in.transgenic.plants,.Nature,.342,.76,.1989.

. 6.. Mason,.H.S.,.Lam,.D.M.,.and.Arntzen,.C.J.,.Expression.of.hepatitis.B.surface.antigen.in.transgenic.plants,.Proc Natl Acad Sci USA,.89,.11745,.1992.

. 7.. Haq,.T.A..et.al.,.Oral.immunization.with.a.recombinant.bacterial.antigen.produced.in.transgenic.plants,.Science,.268,.714,.1995.

. 8.. Yin,.J..et.al.,.Select.what.you.need:.A.comparative.evaluation.of.the.advantages.and.limita-tions.of.frequently.used.expression.systems.for.foreign.genes,.J Biotechnol,.127,.335,.2007.

. 9.. Kostandini,. G.,. Mills,. B.F.,. and. Norton,. G.W.,.The. potential. impact. of. tobacco. bio-pharming:.The.case.of.human.serum.albumin,.Am J Agr Econ,.88,.671,.2006.

. 10.. Hood,.E.E.,.Woodard,.S.L.,. and.Horn,. M.E.,.Monoclonal. antibody.manufacturing. in.transgenic.plants—Myths.and.realities,.Curr Opin Biotechnol,.13,.630,.2002.

. 11.. Giddings,.G.,.Transgenic.plants.as.protein.factories,.Curr Opin Biotechnol,.12,.450,.2001.

. 12.. Nandi,.S..et.al.,.Process.development.and.economic.evaluation.of.recombinant.human.lactoferrin.expressed.in.rice.grain,.Transgenic Res,.14,.237,.2005.

. 13.. Chen,.Q.,.Expression.and.purification.of.pharmaceutical.proteins.in.plants..Biol Eng,.1,.291,.2008.

. 14.. Vitale,. A.. and. Pedrazzini,. E.,. Recombinant. pharmaceuticals. from. plants:. The. plant.endomembrane.system.as.bioreactor,.Mol Interv,.5,.216,.2005.

. 15.. Hansen,.G..and.Wright,.M.S.,.Recent.advances.in.the.transformation.of.plants,.Trends Plant Sci,.4,.226,.1999.

. 16.. Lico,.C.,.Chen,.Q.,.and.Santi,.L.,.Viral.vectors.for.production.of.recombinant.proteins.in.plants,.J Cell Physiol,.216,.366,.2008.

. 17.. Porta,.C..et.al.,.Cowpea.mosaic.virus-based.chimaeras..Effects.of.inserted.peptides.on.the.phenotype,.host.range,.and.transmissibility.of.the.modified.viruses,.Virology,.310,.50,.2003.

. 18.. Lico,.C..et.al.,.Peptide.display.on.Potato.virus.X:.Molecular.features.of.the.coat.protein-fused.peptide.affecting.cell-to-cell.and.phloem.movement.of.chimeric.virus.particles,.J Gen Virol,.87,.3103,.2006.

. 19.. Scholthof,. H.B.,.Morris,.T.J.,. and. Jackson,.A.O.,.The. capsid. protein. gene.of. tomato.bushy.stunt.virus.is.dispensable.for.systemic.movement.and.can.be.replaced.for.local-ized.expression.of.foreign.genes,.Mol Plant–Microbe Interact,.6,.309,.1993.

. 20.. Musiychuk,.K..et.al.,.A.launch.vector.for.the.production.of.vaccine.antigens.in.plants,.Influenza,.1,.19,.2007.

. 21.. Huang,.Z..et.al.,.High-level.rapid.production.of.full-size.monoclonal.antibodies.in.plants.by.a.single-vector.DNA.replicon.system,.Biotechnol Bioeng,.106,.9,.2010.

. 22.. Gleba,.Y.,.Klimyuk,.V.,.and.Marillonnet,.S.,.Magnifection—A.new.platform.for.expressing.recombinant.vaccines.in.plants,.Vaccine,.23,.2042,.2005.

. 23.. Giritch,.A..et.al.,.Rapid.high-yield.expression.of.full-size.IgG.antibodies.in.plants.coinfected.with.noncompeting.viral.vectors,.Proc Natl Acad Sci USA,.103,.14701,.2006.

. 24.. Marillonnet,.S..et.al.,.In.planta.engineering.of.viral.RNA.replicons:.Efficient.assembly.by. recombination.of.DNA.modules.delivered.by.Agrobacterium,.Proc Natl Acad Sci USA,.101,.6852,.2004.

Page 128:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

114 Transgenic Horticultural Crops: Challenges and Opportunities

. 25.. McCarthy,. A.A.,. Biolex,. Inc.:. Pharmaceutical. production. in. plants,. Chem Biol,.12, 141,.2005.

. 26.. Baulcombe,.D.,.Overview.of.RNA.interference.and.related.processes,.Curr Protoc Mol Biol,.26,.1,.2003.

. 27.. Baulcombe,.D.,.RNA.silencing.in.plants,.Nature,.431,.356,.2004.

. 28.. Baulcombe,.D.,.RNA.silencing,.Trends Biochem Sci,.30,.290,.2005.

. 29.. Baulcombe,.D.C.,.Short.silencing.RNA:.The.dark.matter.of.genetics?.Cold Spring Harb Symp Quant Biol,.71,.13,.2006.

. 30.. Baulcombe,.D.C.,.Molecular.biology:.Amplified.silencing,.Science,.315,.199,.2007.

. 31.. Baulcombe,.D.C..and.Molnar,.A.,.Crystal.structure.of.p19—a.universal.suppressor.of.RNA.silencing,.Trends Biochem Sci,.29,.279,.2004.

. 32.. Daniell,.H.,.Chloroplast.genetic.engineering,.Biotechnol J,.1,.31,.2006.

. 33.. Daniell,.H.,.Production.of.biopharmaceuticals.and.vaccines.in.plants.via.the.chloroplast.genome,.Biotechnol J,.1,.1071,.2006.

. 34.. Daniell,.H..et.al.,.Chloroplast-derived.vaccine.antigens.and.other.therapeutic.proteins,.Vaccine,.23,.1779,.2005.

. 35.. Ruf,. S.,. Karcher,. D.,. and. Bock,. R.,. Determining. the. transgene. containment. level.provided.by.chloroplast.transformation,.Proc Natl Acad Sci USA,.104,.6998,.2007.

. 36.. Daniell,.H.,.Khan,.M.,.and.Allison,.L.,.Milestones.in.chloroplast.genetic.engineering:.An.environmentally.friendly.era.in.biotechnology,.Trends Plant Sci,.7,.84,.2002.

. 37.. Pavlou,.A.K..and.Belsey,.M.J.,.The.therapeutic.antibodies.market.to.2008,.Eur J Pharm Biopharm,.59,.389,.2005.

. 38.. Monocolonal Antibodies 2007: Competitive Landscape & Pipeline Insight.. Market.Research.Report,.January.2007,.158.pp...Arrowhead.Publishers,.Minneapolis,.MN.

. 39.. Mclean,.M.D..et.al.,.A.human.anti-Pseudomonas aeruginosa.serotype.O6ad.immuno-globulin.G1.expressed. in. transgenic. tobacco. is. capable.of. recruiting. immune.system.effector.function.in.vitro,.Antimicrob Agents Chemother,.51,.3322,.2007.

. 40.. Ko,.K..et.al.,.Inhibition.of.tumor.growth.by.plant-derived.mAb,.Proc Natl Acad Sci USA,.102,.7026,.2005.

. 41.. Kelley,.B.,.Very.large.scale.monoclonal.antibody.purification:.The.case.for.conventional.unit.operations,.Biotechnol Prog,.23,.995,.2007.

. 42.. Sack,.M..et.al.,.Functional.analysis.of.the.broadly.neutralizing.human.anti-HIV-1.antibody.2F5.produced.in.transgenic.BY-2.suspension.cultures,.FASEB J,.21,.1655,.2007.

. 43.. Ma,. J.. et. al.,.Generation.and.assembly.of. secretory.antibodies. in.plants,.Science,.268,.716,.1995.

. 44.. Peeters,.K.,.De.Wilde,.C.,.and.Depicker,.A.,.Highly.efficient.targeting.and.accumulation.of.a.Fab.fragment.within.the.secretory.pathway.and.apoplast.of.Arabidopsis thaliana,.Eur J Biochem,.268,.4251,.2001.

. 45.. Ko,.K..et.al.,.Function.and.glycosylation.of.plant-derived.antiviral.monoclonal.antibody,.Proc Natl Acad Sci USA,.100,.8013,.2003.

. 46.. Ludwig,.D..et.al.,.Conservation.of.receptor.antagonist.anti-tumor.activity.by.epidermal.growth.factor.receptor.antibody.expressed.in.transgenic.corn.seed,.Human Antibodies,.13,.81,.2004.

. 47.. Hull,.A.K..et.al.,.Human-derived,.plant-produced.monoclonal.antibody.for.the.treatment.of.anthrax,.Vaccine,.23,.2082,.2005.

. 48.. Makvandi-Nejad,.S..et.al.,.Transgenic.tobacco.plants.expressing.a.dimeric.single-chain.variable. fragment. (scFv). antibody. against.Salmonella enterica. serotype.paratyphi.B,.Transgenic Res,.14,.785,.2005.

. 49.. Galeffi,.P..et.al.,.Expression.of.single-chain.antibodies.in.transgenic.plants,.Vaccine,.23,.1823,.2005.

. 50.. Almquist,.K.C..et.al.,.Expression.of.an.anti-botulinum.toxin.A.neutralizing.single-chain.Fv.recombinant.antibody.in.transgenic.tobacco,.Vaccine,.24,.2079,.2006.

Page 129:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

115Expression and Manufacture of Pharmaceutical Proteins

. 51.. Alamillo,. J.M..et. al.,.Use.of.virus.vectors. for. the.expression. in.plants.of.active. full-length.and.single.chain.anti-coronavirus.antibodies,.Biotechnol J,.1,.1103,.2006.

. 52.. Semenyuk,. E.G.. et. al.,. Expression. of. single-chain. antibody-barstar. fusion. in. plants,.Biochimie,.89,.31,.2007.

. 53.. Jin,.C..et.al.,.A.plant.derived.human.monoclonal.antibody.induces.an.anti-carbohydrate.immune.response.in.rabbits,.Glycobiology,.18,.235,.2008.

. 54.. Van.Droogenbroeck,.B..et.al.,.Aberrant.localization.and.underglycosylation.of.highly.accumulating.single-chain.Fv-Fc.antibodies.in.transgenic.Arabidopsis.seeds,.Proc Natl Acad Sci USA,.104,.1430,.2007.

. 55.. Brodzik,.R..et.al.,.Plant-derived.anti-Lewis.Y.mAb.exhibits.biological.activities.for.efficient.immunotherapy.against.human.cancer.cells,.Proc Natl Acad Sci USA,.103,.8804,.2006.

. 56.. Pujol,. M.. et. al.,. Fighting. cancer. with. plant-expressed. pharmaceuticals,. Trends Biotechnol,.25,.455,.2007.

. 57.. Gomord,.V.. et. al.,.Production. and.glycosylation.of.plant-made.pharmaceuticals:.The.antibodies.as.a.challenge,.Plant Biotechnol J,.2,.83,.2004.

. 58.. Lai,.H..et.al.,.Monoclonal.antibody.produced.in.plants.efficiently.treats.West.Nile.virus.infection.in.mice,.Proc Natl Acad Sci USA,.107,.2419,.2010.

. 59.. Zeitlin,.L..et.al.,.Comparison.of.an.anti-HSV-2.monoclonal.IgG.and.its.IgA.switch.variant. for. topical. immunoprotection. of. the. mouse. vagina,. J Reprod Immunol,.40, 93,.1998.

. 60.. Vaquero,.C..et.al.,.A.carcinoembryonic.antigen-specific.diabody.produced.in.tobacco,.FASEB J,.16,.408,.2002.

. 61.. Bouquin,.T..et.al.,.Human.anti-rhesus.D.IgG1.antibody.produced.in.transgenic.plants,.Transgenic Res,.11,.115,.2002.

. 62.. Yano,.A.,.Maeda,.M.,.and.Takekoshi,.M.,.Transgenic.tobacco.cells.producing.the.human.monoclonal.antibody.to.hepatitis.B.virus.surface.antigen,.J Med Virol,.73,.208,.2004.

. 63.. Fischer,.R.,.Twyman,.R.M.,.and.Schillberg,.S.,.Production.of.antibodies.in.plants.and.their.use.for.global.health,.Vaccine,.21,.820,.2003.

. 64.. Ramessar,.K..et.al.,.Cost-effective.production.of.a.vaginal.protein.microbicide.to.pre-vent.HIV.transmission,.Proc Natl Acad Sci USA,.105,.3727,.2008.

. 65.. Mccormick,.A.A..et.al.,.Rapid.production.of.specific.vaccines.for.lymphoma.by.expres-sion.of.the.tumor-derived.single-chain.Fv.epitopes.in.tobacco.plants,.Proc Natl Acad Sci USA,.96,.703,.1999.

. 66.. Mccormick,. A.A.. et. al.,. Individualized. human. scFv. vaccines. produced. in. plants:.Humoral.anti-idiotype.responses.in.vaccinated.mice.confirm.relevance.to.the.tumor.Ig,.J Immunol Methods,.278,.95,.2003.

. 67.. Mccormick,.A.A.. et. al.,. Plant-produced. idiotype. vaccines. for. the. treatment. of. non-Hodgkin’s.lymphoma:.Safety.and.immunogenicity.in.a.phase.I.clinical.study,.Proc Natl Acad Sci USA,.105,.10131,.2008.

. 68.. Vaquero,.C..et.al.,.Transient.expression.of.a.tumor-specific.single-chain.fragment.and.a.chimeric.antibody.in.tobacco.leaves,.Proc Natl Acad Sci USA,.96,.11128,.1999.

. 69.. Kathuria,. S.. et. al.,. Efficacy. of. plant-produced. recombinant. antibodies. against. HCG,.Hum Reprod,.17,.2054,.2002.

. 70.. Dietrich,.C..and.Maiss,.E.,.Fluorescent. labelling.reveals.spatial.separation.of.potyvirus.populations.in.mixed.infected.Nicotiana.benthamiana.plants,.J Gen Virol,.84,.2871,.2003.

. 71.. Diveki,.Z.,.Salanki,.K.,.and.Balazs,.E.,.Limited.utility.of.blue.fluorescent.protein.(BFP).in.monitoring.plant.virus.movement,.Biochimie,.84,.997,.2002.

. 72.. Hull,.R..and.Plaskitt,.A.,.Electron.microscopy.on.the.behavior.of.two.strains.of.alfalfa.mosaic.virus.in.mixed.infections,.Virology,.42,.773,.1970.

. 73.. Marillonnet,.S..et.al.,.Systemic.Agrobacterium.tumefaciens-mediated.transfection.of.viral. replicons. for. efficient. transient. expression. in.plants,. Nat Biotechnol,. 23,. 718,.2005.

Page 130:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

116 Transgenic Horticultural Crops: Challenges and Opportunities

. 74.. Latham,.T..and.Galarza,.J.M.,.Formation.of.wild-type.and.chimeric.influenza.virus-like.particles.following.simultaneous.expression.of.only.four.structural.proteins,.J Virol,.75,.6154,.2001.

. 75.. Pushko,.P..et.al.,.Evaluation.of.influenza.virus-like.particles.and.Novasome.adjuvant.as.candidate.vaccine.for.avian.influenza,.Vaccine,.25,.4283,.2007.

. 76.. Sainsbury,.F..and.Lomonossoff,.G.P.,.Extremely.high-level.and.rapid.transient.protein.production. in. plants. without. the. use. of.viral. replication,.Plant Physiol,. 148,.1212,.2008.

. 77.. Chen,.Q..et.al.,.Subunit.vaccines.produced.using.plant.biotechnology,.in.New Generation Vaccines,.Levine,.M.M..Ed.,.4th.edn..Informa.Healthcare.USA,.Inc.,.New.York,.2009,.p..306.

. 78.. Denis,.J..et.al.,.Development.of.a.universal.influenza.A.vaccine.based.on.the.M2e.peptide. fused. to. the. papaya. mosaic. virus. (PapMV). vaccine. platform,. Vaccine,.26, 3395,.2008.

. 79.. Yusibov,.V..et.al.,.Antigens.produced.in.plants.by.infection.with.chimeric.plant.viruses.immunize.against.rabies.virus.and.HIV-1,.Proc Natl Acad Sci USA,.94,.5784,.1997.

. 80.. Marusic,.C..et.al.,.Chimeric.plant.virus.particles.as.immunogens.for.inducing.murine.and.human.immune.responses.against.human.immunodeficiency.virus.type.1,.J Virol,.75,.8434,.2001.

. 81.. Richter,.L.J..et.al.,.Production.of.hepatitis.B.surface.antigen.in.transgenic.plants.for.oral.immunization,.Nat Biotechnol,.18,.1167,.2000.

. 82.. Gao,.Y..et.al.,.gd.T.cells.provide.an.early.source.of.IFN-g.in.tumor.immunity,.J Exp Med,.198,.433,.2003.

. 83.. Gomez,.N..et.al.,.Oral.immunogenicity.of.the.plant.derived.spike.protein.from.swine-transmissible.gastroenteritis.coronavirus,.Arch Virol,.145,.1725,.2000.

. 84.. Tuboly,.T.. et. al.,. Immunogenicity.of.porcine. transmissible.gastroenteritis.virus. spike.protein.expressed.in.plants,.Vaccine,.18,.2023,.2000.

. 85.. Chikwamba,.R..et.al.,.A.functional.antigen.in.a.practical.crop:.Maize.synthesizes.LT-B.protects.mice.against.Escherichia coli.heat.labile.enterotoxin.(LT).and.cholera.toxin.(CT),.Transgenic Res,.11,.479,.2002.

. 86.. Streatfield,.S.J..et.al.,.Development.of.an.edible.subunit.vaccine.in.corn.against.entero-toxigenic.strains.of.Escherichia coli,.In Vitro Cell Dev Biol Plant,.38,.11,.2002.

. 87.. Carrillo,.C..et.al.,.Induction.of.a.virus-specific.antibody.response.to.foot.and.mouth.dis-ease.virus.using.the.structural.protein.VP1.expressed.in.transgenic.potato.plants,.Viral Immunol,.14,.49,.2001.

. 88.. Dus.Santos,.M.J..et.al.,.Development.of.transgenic.alfalfa.plants.containing.the.foot.and.mouth.disease.virus.structural.polyprotein.gene.P1.and.its.utilization.as.an.experimental.immunogen,.Vaccine,.23,.1838,.2005.

. 89.. Gilleland,.H.E..et.al.,.Chimeric.animal.and.plant.viruses.expressing.epitopes.of.outer.membrane.protein.F.as.a.combined.vaccine.against.Pseudomonas.aeruginosa.lung.infec-tion,.FEMS Immunol Med Microbiol,.27,.291,.2000.

. 90.. Staczek,. J.. et. al.,. Immunization. with. a. chimeric. tobacco.mosaic.virus. containing. an.epitope.of.outer.membrane.protein.F.of.Pseudomonas aeruginosa.provides.protection.against.challenge.with.P. aeruginosa,.Vaccine,.18,.2266,.2000.

. 91.. Yusibov,.V..et.al.,.Peptide-based.candidate.vaccine.against.respiratory.syncytial.virus,.Vaccine,.23,.2261,.2005.

. 92.. Saldana,. S.. et. al.,. Production. of. rotavirus-like. particles. in. tomato. (Lycopersicon esculentum.L.).fruit.by.expression.of.capsid.proteins.VP2.and.VP6.and.immunological.studies,.Viral Immunol,.19,.42,.2006.

. 93.. Matsumura,.T.,. Itchoda,. N.,. and. Tsunemitsu,. H.,. Production. of. immunogenic.VP6.protein.of.bovine.group.A.rotavirus.in.transgenic.potato.plants,.Arch Virol,.147,.1263,.2002.

Page 131:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

117Expression and Manufacture of Pharmaceutical Proteins

. 94.. Webster,.D.E..et.al.,.Measles.virus.hemagglutinin.protein.expressed.in.transgenic.let-tuce. induces.neutralising.antibodies. in.mice. following.mucosal.vaccination,.Vaccine,.24,.3538,.2006.

. 95.. Webster,.D.E..et.al.,.The.development.of.a.plant-based.vaccine.for.measles,.Vaccine,.23,.1859,.2005.

. 96.. Ghosh,.S..et.al.,.Expression.of.Plasmodium.falciparum.C-terminal.region.of.merozoite.surface.protein.(PfMSP119),.a.potential.malaria.vaccine.candidate,. in. tobacco,.Plant Sci,.162,.335,.2002.

. 97.. Wang,.L..et.al.,. Immunogenicity.of.Plasmodium.yoelii.merozoite.surface.protein.4/5.produced.in.transgenic.plants,.Int J Parasitol,.38,.103,.2008.

. 98.. Li,. J.-T.. et. al.,. Immunogenicity. of. a. plant-derived. edible. rotavirus. subunit. vaccine.transformed.over.fifty.generations,.Virology,.356,.171,.2006.

. 99.. Santi,.L..et.al.,.Protection.conferred.by.recombinant.Yersinia.pestis.antigens.produced.by.a. rapid.and.highly.scalable.plant.expression.system,.Proc Natl Acad Sci USA,.103,.861,.2006.

.100.. Mett,.V..et.al.,.A.plant-produced.plague.vaccine.candidate.confers.protection.to.mon-keys,.Vaccine,.25,.3014,.2007.

.101.. Saejung,.W..et.al.,.Production.of.dengue.2.envelope.domain.III. in.plant.using.TMV-based.vector.system,.Vaccine,.25,.6646,.2007.

.102.. Dorokhov,. Y.L.. et. al.,. Superexpression. of. tuberculosis. antigens. in. plant. leaves,.Tuberculosis,.87,.218,.2007.

.103.. Massa,.S..et.al.,.Anti-cancer.activity.of.plant-produced.HPV16.E7.vaccine,.Vaccine,.25,.3018,.2007.

.104.. Golovkin,.M..et.al.,.Smallpox.subunit.vaccine.produced.in.Planta.confers.protection.in.mice,.Proc Natl Acad Sci USA,.104,.6864,.2007.

.105.. Phelps,. J.P.,. Dang,. N.,. and. Rasochova,. L.,. Inactivation. and. purification. of. cowpea.mosaic.virus-like.particles.displaying.peptide.antigens.from.Bacillus anthracis,.J Virol Methods,.141,.146,.2007.

.106.. Chichester,.J.A..et.al.,.Immunogenicity.of.a.subunit.vaccine.against.Bacillus.anthracis,.Vaccine,.25,.3111,.2007.

.107.. Mor,.T.S.,.Gomez-Lim,.M.A.,.and.Palmer,.K.E.,.Perspective:.Edible.vaccines—A.concept.coming.of.age,.Trends Microbiol,.6,.449,.1998.

.108.. Ogra,.P.L.,.Faden,.H.,.and.Welliver,.R.C.,.Vaccination.strategies.for.mucosal.immune.responses,.Clin Microbiol Rev,.14,.430,.2001.

.109.. Czerkinsky,.C..et.al.,.Mucosal.immunity.and.tolerance:.Relevance.to.vaccine.develop-ment,.Immunol Rev,.170,.197,.1999.

.110.. Mestecky,.J..et.al.,.Routes.of. immunization.and.antigen.delivery.systems.for.optimal.mucosal.immune.responses.in.humans,.Behring Inst Mitt,.98,.33,.1997.

.111.. Zivny,.J.H..et.al.,.Mechanisms.of.immune.tolerance.to.food.antigens.in.humans,.Clin Immunol,.101,.158,.2001.

.112.. Hathaway,.L.J..and.Kraehenbuhl,.J.P.,.The.role.of.M.cells.in.mucosal.immunity,.Cell Mol Life Sci,.57,.323,.2000.

.113.. De.Magistris,.M.T.,.Mucosal.delivery.of.vaccine.antigens.and.its.advantages.in.pediat-rics,.Adv Drug Delivery Rev,.58,.52,.2006.

.114.. Eriksson,.K.. and.Holmgren,. J.,.Recent. advances. in.mucosal.vaccines.and.adjuvants,.Curr Opin Immunol,.14,.666,.2002.

.115.. Streatfield,.S.J.,.Mucosal. immunization.using. recombinant.plant-based.oral.vaccines,.Methods,.38,.150,.2006.

.116.. Nochi,.T..et.al.,.From.the.cover:.Rice-based.mucosal.vaccine.as.a.global.strategy.for.cold-chain-.and.needle-free.vaccination,.Proc Natl Acad Sci USA,.104,.10986,.2007.

.117.. Santi,.L..et.al.,.An.efficient.plant.viral.expression.system.generating.orally.immunogenic.Norwalk.virus-like.particles,.Vaccine,.26,.1846,.2008.

Page 132:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

118 Transgenic Horticultural Crops: Challenges and Opportunities

.118.. Moravec,.T.. et. al.,. Production. of.Escherichia coli. heat. labile. toxin. (LT).B. subunit.in. soybean. seed. and. analysis. of. its. immunogenicity. as. an. oral. vaccine,. Vaccine,.25, 1647,.2007.

.119.. Dong,. J.-L.. et. al.,. Oral. immunization. with. pBsVP6-transgenic. alfalfa. protects. mice.against.rotavirus.infection,.Virology,.339,.153,.2005.

.120.. Choi,.N.-W.,.Estes,.M.K.,.and.Langridge,.W.H.R.,.Mucosal.immunization.with.a.ricin.toxin.B.subunit-rotavirus.NSP4.fusion.protein.stimulates.a.Th1.lymphocyte.response,.J Biotechnol,.121,.272,.2006.

.121.. Shin,.E.-A..et.al.,.Synthesis.and.assembly.of.an.adjuvanted.Porphyromonas gingivalis.fimbrial.antigen.fusion.protein.in.plants,.Protein Expr Purif,.47,.99,.2006.

.122.. Walmsley,.A.M.,.Krik,.D.D.,.and.Mason,.H.S.,.Passive.immunization.of.mice.pups.through.oral.immunization.of.dams.with.a.plant-derived.vaccine,.Immunology,.86,.71,.2003.

.123.. Tacket,.C.O..et.al.,.Immunogenicity.of.recombinant.LT-B.delivered.orally.to.humans.in.transgenic.corn,.Vaccine,.22,.4385,.2004.

.124.. Kapusta,.J..et.al.,.A.plant-derived.edible.vaccine.against.hepatitis.B.vaccine,.FASEB J,.13,.1796,.1999.

.125.. Yusibov,. V.. et. al.,. Expression. in. plants. and. immunogenicity. of. plant. virus-based.experimental.rabies.vaccine,.Vaccine,.20,.3155,.2002.

.126.. Streatfield,.S.J.,.Approaches. to.achieve.high-level.heterologous.protein.production. in.plants,.Plant Biotechnol J,.5,.2,.2007.

.127.. Takagi,.H..et.al.,.From.the.cover:.A.rice-based.edible.vaccine.expressing.multiple.T.cell.epitopes.induces.oral.tolerance.for.inhibition.of.Th2-mediated.IgE.responses,.Proc Natl Acad Sci USA,.102,.17525,.2005.

.128.. Takaiwa,.F.,.A.rice-based.edible.vaccine.expressing.multiple.T-cell.epitopes.to.induce.oral.tolerance.and.inhibit.allergy,.Immunol Allergy Clin North Am,.27,.129,.2007.

.129.. Yu,.J..and.Langridge,.W.H.,.A.plant-based.multicomponent.vaccine.protects.mice.from.enteric.diseases,.Nat Biotechnol,.19,.548,.2001.

.130.. Herbst-Kralovetz,.M.,.Mason,.H.S.,.and.Chen,.Q.,.Norwalk.virus-like.particles.as.vaccines,.Expert Rev Vaccines.9,.299,.2010.

.131.. Nemchinov,.L.G..and.Natilla,.A.,.Transient.expression.of.the.ectodomain.of.matrix.protein.2.(M2e).of.avian.influenza.A.virus.in.plants,.Protein Expr Purif,.56,.153–159,.2007.

.132.. Chargelegue,.D..et. al.,.A.murine.monoclonal.antibody.produced. in. transgenic.plants.with.plant-specific.glycans.is.not.immunogenic.in.mice,.Transgenic Res,.9,.187,.2000.

.133.. Saint-Jore-Dupas,.C.,.Faye,.L.,.and.Gomord,.V.,.From.planta.to.pharma.with.glycosyl-ation.in.the.toolbox,.Trends Biotech,.25,.317,.2007.

.134.. Schahs,. M.. et. al.,. Production. of. a. monoclonal. antibody. in. plants. with. a. humanized.N-glycosylation.pattern,.Plant Biotechnol J,.5,.657,.2007.

.135.. Strasser,.R..et.al.,.Generation.of.glyco-engineered.Nicotiana.benthamiana.for.the.pro-duction.of.monoclonal.antibodies.with.a.homogeneous.human-like.N-glycan.structure,.Plant Biotechnol J,.6,.392,.2008.

.136.. Cox,.K.M..et.al.,.Glycan.optimization.of.a.human.monoclonal.antibody.in.the.aquatic.plant.Lemna.minor,.Nat Biotechnol,.24,.1591,.2006.

.137.. Castilho,.A..et.al.,.Construction.of.a.functional.CMP-sialic.acid.biosynthesis.pathway.in.Arabidopsis,.Plant Physiol,.147,.331,.2008.

.138.. Castilho,.A..et.al.,.In.planta.protein.sialylation.through.overexpression.of.the.respective.mammalian.pathway,.J Bio Chem,.285,.15923,.2010.

.139.. Kaiser,.J.,.Is.the.drought.over.for.pharming?.Science,.320,.473,.2008.

.140.. Roque,.A.C.A.,.Lowe,.C.R.,.and.Taipa,.M.A.,.Antibodies.and.genetically.engineered.related.molecules:.Production.and.purification,.Biotechnol Prog,.20,.639,.2004.

.141.. Nikolov,.Z.L..and.Woodard,.S.L.,.Downstream.processing.of.recombinant.proteins.from.transgenic.feedstock,.Curr Opin Biotechnol,.15,.479,.2004.

Page 133:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

119Expression and Manufacture of Pharmaceutical Proteins

.142.. Menkhaus,.T.J..et.al.,.Considerations.for.the.recovery.of.recombinant.proteins.from.plants,.Biotechnol Prog,.20,.1001,.2004.

.143.. Platis,.D..and.Labrou,.N.E.,.Affinity.chromatography.for.the.purification.of.therapeu-tic.proteins.from.transgenic.maize.using.immobilized.histamine,.J Sep Sci,.31,.636,.2008.

.144.. Langone,.J.J.,.Protein.A.of.Staphylococcus aureus.and.related.immunoglobulin.receptors.produced.by.streptococci.and.pneumonococci,.Adv Immunol,.32,.157,.1982.

.145.. Werner,.S..et.al.,. Immunoabsorbent.nanoparticles.based.on.a. tobamovirus.displaying.protein.A,.Proc Natl Acad Sci USA,.103,.17678,.2006.

.146.. Low,.D.,.O’leary,.R.,.and.Pujar,.N.S.,.Future.of.antibody.purification,.J Chromatogr B,.848,.48,.2007.

.147.. Valdes,.R..et.al.,.Large-scale.purification.of.an.antibody.directed.against.hepatitis.B.surface.antigen.from.transgenic.tobacco.plants,.Biochem Biophys Res Commun,.308,.94,.2003.

.148.. Bai,.Y..and.Glatz,.C.E.,.Bioprocess.considerations.for.expanded-bed.chromatography.of.crude.canola.extract:.Sample.preparation.and.adsorbent.reuse,.Biotechnol Bioeng,.81,.775,.2003.

.149.. Platis,.D..and.Labrou,.N.E.,.Development.of.an.aqueous.two-phase.partitioning.system.for.fractionating.therapeutic.proteins.from.tobacco.extract,.J Chromatogr A,.1128,.114,.2006.

.150.. Balasubramaniam,.D..et.al.,.Tobacco.protein.separation.by.aqueous.two-phase.extraction,.J Chromatogr A,.989,.119,.2003.

.151.. Vilter,. H.,.Aqueous. two-phase. extraction. of. plant. enzymes. from. sources. containing.large.amounts.of.tannins.and.anionic.mucilages,.Bioseparation,.1,.283,.1990.

.152.. Miller,. K.,. Gao,. J.,. and. Hooker,. B.S.,. Initial. clarification. by. aqueous. two-phase.partitioning.of.leaf.extracts.from.Solanum tuberosum.plants.expressing.recombinant.therapeutic.proteins,.Bioprocessing J,.47,.2004.

.153.. Hahn,. R.. et. al.,. Comparison. of. protein.A. affinity. sorbents. III—Life. time. study,.J Chromatogr A,.1102,.224,.2006.

.154.. Kushwaha,.A..et.al.,.Construction.and.characterization.of.M13.bacteriophages.display-ing.functional.IgG-binding.domains.of.Staphylococcal.protein.A,.Gene,.151,.45,.1994.

.155.. Djojonegoro,.B.M.,.Benedik,.M.J.,.and.Willson,.R.C.,.Bacteriophage.surface.display.of.an.immunoglobulin-binding.domain.of.Staphylococcus.aureus.protein.A,.Biotechnology,.12,.169,.1994.

.156.. Moll,.D..et.al.,.S-layer-streptavidin.fusion.proteins.as.template.for.nanopatterned.molec-ular.arrays,.Proc Natl Acad Sci USA,.99,.14646,.2002.

.157.. Vollenkle,.C..et.al.,.Construction.of.a.functional.S-layer.fusion.protein.comprising.an.immunoglobulin.G-binding.domain.for.development.of.specific.adsorbents.for.extracor-poreal.blood.purification,.Appl Environ Microbiol,.70,.1514,.2004.

.158.. Ramirez,.C..et.al.,.A.bifunctional.affinity.linker.to.couple.antibodies.to.cellulose,.Nat Biotech,.11,.1570,.1993.

.159.. Shpigel,.E..et.al.,.Expression,.purification.and.applications.of.staphylococcal.protein.A.fused.to.cellulose-binding.domain,.Biotechnol Appl Biochem,.31.197,.2000.

.160.. Ji,.Q..et.al.,.Microbial.starch-binding.domains.as.a.tool.for.targeting.proteins.to.granules.during.starch.biosynthesis,.Plant Mol Biol,.51,.789,.2003.

.161.. Van.Rooijen,.G.,.and.Moloney,.M.M.,.Plant.seed.oil-bodies.as.carriers.for.foreign.proteins,.Nat Biotechnol,.13,.72,.1995.

.162.. Capuano,.F..et.al.,.Properties.and.exploitation.of.oleosins,.Biotechnol Adv,.25,.203,.2007.

.163.. Ling,.H.,.Oleosin.fusion.expression.systems.for.the.production.of.recombinant.proteins,.Biologia,.62,.119,.2007.

.164.. Roque,.A.C.A.,. Silva,. C.S.O.,. and. Taipa,. M.Â.,.Affinity-based. methodologies. and.ligands. for. antibody. purification:. Advances. and. perspectives,. J Chromatogr A,.1160, 44,.2007.

Page 134:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

120 Transgenic Horticultural Crops: Challenges and Opportunities

.165.. Schwartz,.W..et.al.,.Comparison.of.hydrophobic.charge.induction.chromatography.with.affinity. chromatography. on. protein. A. for. harvest. and. purification. of. antibodies,.J Chromatogr A,.908,.251,.2001.

.166.. Ghose,.S.,.Hubbard,.B.,.and.Cramer,.S.M.,.Evaluation.and.comparison.of.alternatives.to. protein.A.chromatography:.Mimetic. and.hydrophobic. charge. induction.chromato-graphic.stationary.phases,.J Chromatogr A,.1122,.144,.2006.

.167.. Ghose,.S..et.al.,.Antibody.variable.region.interactions.with.Protein.A:.Implications.for.the.development.of.generic.purification.processes,.Biotech Bioeng,.92,.665,.2005.

.168.. Roque,.A.C.A.,.Taipa,.M.Â.,.and.Lowe,.C.R.,.An.artificial.protein.L.for.the.purification.of.immunoglobulins.and.Fab.fragments.by.affinity.chromatography,.J Chromatogr A,.1064,.157,.2005.

.169.. Arnau,.J..et.al.,.Current.strategies.for. the.use.of.affinity. tags.and.tag.removal.for.the.purification.of.recombinant.proteins,.Protein Expr Purif,.48,.1,.2006.

.170.. Lichty,.J.J..et.al.,.Comparison.of.affinity.tags.for.protein.purification,.Protein Expr Purif,.41,.98,.2005.

.171.. Tagwerker,.C..et.al.,.A.tandem.affinity.tag.for.two-step.purification.under.fully.dena-turing.conditions:.Application.in.ubiquitin.profiling.and.protein.complex.identification.combined.with.in.vivocross-linking,.Mol Cell Proteomics,.5,.737,.2006.

.172.. Lawrence,.S.,.Novak,.N.,.and.Slack,.J.,.Epitope.tagging:.A.monoclonal.antibody.specific.for.recombinant.fusion.proteins.in.plants,.Biotechniques,.35,.488,.2003.

.173.. Terpe,.K.,.Overview.of.tag.protein.fusions:.From.molecular.and.biochemical.fundamen-tals.to.commercial.systems,.Appl Microbiol Biotechnol,.60,.523,.2003.

.174.. Kwon,.S..et.al.,.Isolation.of.the.Arabidopsis.phosphoproteome.using.a.biotin-tagging.approach,.Mol Cells,.24,.268,.2007.

.175.. Witte,. C.-P.. et. al.,. Rapid. one-step. protein. purification. from. plant. material. using. the.eight-amino.acid.StrepII.epitope,.Plant Mol Biol,.55,.135,.2004.

.176.. Maxim,.G..et.al.,.Smallpox. subunit.vaccine.produced. in.planta.confers.protection. in.mice,.Proc Natl Acad Sci USA,.104,.6864,.2007.

.177.. Pérez.Filgueira,.D.M..et.al.,.Passive.protection.to.bovine.rotavirus.(BRV).infection.induced.by.a.BRV.VP8.produced.in.plants.using.a.TMV-based.vector,.Arch Virol,.149,.2337,.2004.

.178.. Spiegel,.H..et.al.,.Accumulation.of.antibody.fusion.proteins.in.the.cytoplasm.and.ER.of.plant.cells,.Plant Sci,.149,.63,.1999.

.179.. Peschen,.D..et.al.,.Fusion.proteins.comprising.a.Fusarium-specific.antibody.linked.to.anti-fungal.peptides.protect.plants.against.a.fungal.pathogen,.Nat Biotechnol,.22,.732,.2004.

.180.. Shpigel,.E..et.al.,.Production.and.purification.of.a.recombinant.human.hsp60.epitope.using.the.cellulose-binding.domain.in.Escherichia coli,.Protein Expr Purif,.14,.185,.1998.

.181.. Shpigel,.E..et.al.,.Immobilization.of.recombinant.heparinase.I.fused.to.cellulose-binding.domain,.Biotechnol Bioeng,.65,.17,.1999.

.182.. Shani,.Z..and.Shoseyov,.O.,.Process.of.expressing.and.isolating.recombinant.proteins.and.recombinant.protein.products. from.plants,.plant.derived. tissues.or.cultured.plant.cells,.U.S..Patent,.6,.331,.416,.2001.

.183.. Smith,.M.L..et.al.,.Modified.tobacco.mosaic.virus.particles.as.scaffolds.for.display.of.protein.antigens.for.vaccine.applications,.Virology,.348,.475,.2006.

.184.. Schriebl,.K..et.al.,.Biochemical.characterization.of.rhEpo-Fc.fusion.protein.expressed.in.CHO.cells,.Protein Expr Purif,.49,.265,.2006.

.185.. Obregon,. P.. et. al.,. HIV-1. p24-immunoglobulin. fusion. molecule:.A. new. strategy. for.plant-based.protein.production,.Plant Biotechnol J,.4,.195,.2006.

.186.. Chargelegue,.D..et.al.,.Highly.immunogenic.and.protective.recombinant.vaccine.candi-date.expressed.in.transgenic.plants,.Infect Immun,.73,.5915,.2005.

.187.. Waugh,.D.S.,.Making.the.most.of.affinity.tags,.Trends Biotechnol,.23,.316,.2005.

.188.. Puig,.O..et.al.,.The.tandem.affinity.purification.(TAP).method:.A.general.procedure.of.protein.complex.purification,.Methods,.24,.218,.2001.

Page 135:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

121Expression and Manufacture of Pharmaceutical Proteins

.189.. Rohila,.J.S..et.al.,.Improved.tandem.affinity.purification.tag.and.methods.for.isolation.of.protein.heterocomplexes.from.plants,.Plant J,.38,.172,.2004.

.190.. Van.Leene,.J..et.al.,.A.tandem.affinity.purification-based.technology.platform.to.study.the.cell.cycle.interactome.in.Arabidopsis.thaliana,.Mol Cell Proteomics,.6,.1226,.2007.

.191.. Rohila,. J.. et. al.,. Protein–protein. interactions. of. tandem. affinity. purification-tagged.protein.kinases.in.rice,.Plant J,.46,.1,.2006.

.192.. Rubio,.V..et.al.,.An.alternative.tandem.affinity.purification.strategy.applied.to.Arabidopsis.protein.complex.isolation,.Plant J,.41,.767,.2005.

.193.. Abe,.M..et.al.,.Identification.of.dynamin.as.an.interactor.of.rice.GIGANTEA.by.tandem.affinity.purification,.Plant Cell Physiol,.49,.420,.2008.

.194.. Nallamsetty,. S.. et. al.,.Gateway. vectors. for. the. production. of. combinatorially-tagged.His6-MBP.fusion.proteins.in.the.cytoplasm.and.periplasm.of.Escherichia coli,.Protein Sci,.14,.2964,.2005.

.195.. Donnelly,. M.I.. et. al.,.An. expression. vector. tailored. for. large-scale,. high-throughput.purification.of.recombinant.proteins,.Protein Expr Purif,.47,.446,.2006.

.196.. Kenig,.M..et.al.,.Influence.of.the.protein.oligomericity.on.final.yield.after.affinity.tag.removal.in.purification.of.recombinant.proteins,.J Chromatogr A,.1101,.293,.2006.

.197.. Arnau,.J.,.Lauritzen,.C.,.and.Pedersen,.J.,.Cloning.strategy,.production.and.purification.of.proteins.with.exopeptidase-cleavable.His-tags,.Nat Protoc,.1,.2326,.2006.

.198.. Pedersen,.J..et.al.,.Removal.of.N-terminal.polyhistidine.tags.from.recombinant.proteins.using.engineered.aminopeptidases,.Protein Expr Purif,.15,.389,.1999.

.199.. Feeney,. B.. et. al.,. Novel. protein. purification. system. utilizing. an. N-terminal. fusion.protein.and.a.caspase-3.cleavable.linker,.Protein Expr Purif,.47,.311,.2006.

.200.. Rais-Beghdadi,.C..et.al.,.Purification.of.recombinant.proteins.by.chemical.removal.of.the.affinity.tag,.Appl Biochem Biotechnol,.74,.95,.1998.

.201.. Wood,.D.W..et.al.,.A.genetic.system.yields.self-cleaving.inteins.for.bioseparations,.Nat Biotechnol,.17,.889,.1999.

.202.. Wood,.D.W..et.al.,.Optimized.single-step.affinity.purification.with.a.self-cleaving.intein.applied.to.human.acidic.fibroblast.growth.factor,.Biotechnol Prog,.16,.1055,.2000.

.203.. Lohaus,.G..et.al.,.Is.the.infiltration-centrifugation.technique.appropriate.for.the.isolation.of.apoplastic.fluid?.A.critical.evaluation.with.different.plant.species,.Physiol Plantarum,.111,.457,.2001.

.204.. Thommes,. J.. and. Etzel,. M.,.Alternatives. to. chromatographic. separations,. Biotechnol Prog,.23,.42,.2007.

.205.. Albertsson,.P.-Å..et.al.,.Partition.of.cell.particles.and.macromolecules.in.polymer.two-phase.dystems,.Adv Protein Chem,.24,.309,.1970.

.206.. Kula,.M.R..et.al.,.Technical.aspects.of.extractive.enzyme.purification,.Ann NY Acad Sci,.369,.341,.1981.

.207.. Albertsson,.P.-Å.,.Partition.between.polymer.phases,.J Chromatogr A,.159,.111,.1978.

.208.. Zhang,.C..et.al.,.Purification.and.stabilization.of.ricin.B.from.tobacco.hairy.root.culture.medium.by.aqueous.two-phase.extraction,.J Biotechnol,.117,.39,.2005.

.209.. Benavides,.J..et.al.,.Rotavirus-like.particles.primary.recovery.from.insect.cells.in.aque-ous.two-phase.systems,.J Chromatogr B,.842,.48,.2006.

.210.. Negrete,. A.,. Ling,. T.C.,. and. Lyddiatt,. A.,. Aqueous. two-phase. recovery. of. bio-nanoparticles:. A. miniaturization. study. for. the. recovery. of. bacteriophage. T4,.J Chromatogr B,.854,.13,.2007.

.211.. Kim,.J.Y..et.al.,.Genetically.engineered.elastin-protein.A.fusion.as.a.universal.platform.for.homogeneous,.phase-separation.immunoassay,.Anal Chem,.77,.2318,.2005.

.212.. Ge,.X..et.al.,.Purification.of.an.elastin-like.fusion.protein.by.microfiltration,.Biotech Bioeng,.95,.424,.2006.

.213.. Patel,.J..et.al.,.Elastin-like.polypeptide.fusions.enhance.the.accumulation.of.recombi-nant.proteins.in.tobacco.leaves,.Transgenic Res,.16,.239,.2007.

Page 136:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

122 Transgenic Horticultural Crops: Challenges and Opportunities

.214.. Scheller,.J.,.Leps,.M.,.and.Conrad,.U.,.Forcing.single-chain.variable.fragment.pro-duction.in.tobacco.seeds.by.fusion.to.elastin-like.polypeptides,.Plant Biotechnol J,.4,.243,.2006.

.215.. Floss,.D.M..et.al.,.Biochemical.and.functional.characterization.of.anti-HIV.antibody-ELP.fusion.proteins.from.transgenic.plants,.Plant Biotechnol J,.6,.379,.2008.

.216.. Lin,.M..et.al.,.Functional.expression.of.a.biologically.active.fragment.of.soluble.gp130.as.an.ELP-fusion.protein.in.transgenic.plants:.Purification.via.inverse.transition.cycling,.Biochem J,.398,.577,.2006.

.217.. Franzreb,.M..et.al.,.Protein.purification.using.magnetic.adsorbent.particles,.Appl Microbiol Biotechnol,.70,.505,.2006.

.218.. Safarik,.I..and.Safarikova,.M.,.Magnetic.techniques.for.the.isolation.and.purification.of.proteins.and.peptides,.Biomagn Res Technol,.2,.7,.2004.

.219.. Lang,. C.,. Schüler,. D.,. and. Faivre,. D.,. Synthesis. of. magnetite. nanoparticles. for. bio-.and.nanotechnology:.Genetic.engineering.and.biomimetics.of.bacterial.magnetosomes,.Macromol Biosci,.7,.144,.2007.

.220.. Yoshino,.T..and.Matsunaga,.T.,.Efficient.and.stable.display.of. functional.proteins.on.bacterial.magnetic.particles.using.Mms13.as. a.novel.anchor.molecule,.Appl Environ Microbiol,.72,.465,.2006.

.221.. Boi,.C.,.Membrane.adsorbers.as.purification.tools.for.monoclonal.antibody.purification,.J Chromatogr B,.848,.19,.2007.

.222.. Zhou,.J.X..and.Tressel,.T.,.Basic.concepts.in.Q.membrane.chromatography.for.large-scale.antibody.production,.Biotechnol Prog,.22,.341,.2006.

.223.. Knudsen,. H.L.. et. al.,. Membrane. ion-exchange. chromatography. for. process-scale.antibody.purification,.J Chromatogr A,.907,.145,.2001.

.224.. Zhou,.X..et.al.,.Viral.clearance.using.disposable.systems.in.monoclonal.antibody.com-mercial.downstream.processing,.Biotech Bioeng,.100,.488,.2008.

.225.. Etzel,.M..and.Riordan,.W.,.Membrane.chromatography:.Analysis.of.breakthrough.curves.and.viral.clearance,.in.Process Scale Bioseparations for the Biopharmaceutical Industry,.Shukla,.A.,.Etzel,.M.,.Gadam,.S..Eds.,.Taylor.&.Francis,.Boca.Raton,.FL,.2006,.p..277.

.226.. Yu,.D..et.al.,.Purification.of.a.human.immunoglobulin.G1.monoclonal.antibody.from.trans-genic.tobacco.using.membrane.chromatographic.processes,.J Chromatogr A,.1187,.128,.2008.

.227.. Mchughen,.H..and.Smyth,.S.,.US.regulatory.system.for.genetically.modified.organism,.rDNA.or.transgenic.crop.cultivars,.Plant Biotechnol J,.6,.2,.2008.

.228.. Crosby,.L.,.Commercial.production.of.transgenic.crops.genetically.engineered.to.pro-duce. pharmaceuticals:. Agriculture. technology. already. exists. to. address. most. GMP.issues,.Biopharm Int,.16,.60,.2003.

.229.. Lossl,. A.. et. al.,. Inducible. trans-activation. of. plastid. transgenes:. Expression. of. the.R. eutropha.phb.operon.in.transplastomic.tobacco,.Plant Cell Physiol,.46,.1462,.2005.

.230.. Menassa,.R..et.al.,.A.self-contained.system.for.the.field.production.of.plant.recombinant.interleukin-10,.Mol Breeding,.8,.177,.2001.

.231.. Martinez,. A.. et. al.,. Ecdysone. agonist. inducible. transcription. in. transgenic. tobacco.plants,.Plant J,.19,.97,.1999.

.232.. Lamphear,.B.J..et.al.,.A.corn-based.delivery.system.for.animal.vaccines:.An.oral.transmissible.gastroenteritis.virus.vaccine.boosts.lactogenic.immunity.in.swine,.Vaccine,.22,.2420,.2004.

.233.. Lamphear,.B.J..et.al.,.Delivery.of.subunit.vaccines.in.maize.seed,.J Control Release,.85,.169,.2002.

.234.. Stoger,.E..et.al.,.Practical.considerations.for.pharmaceutical.antibody.production.in.dif-ferent.crop.systems,.Mol Breed,.9,.149,.2002.

.235.. Stoger,.E..et.al.,.Cereal.crops.as.viable.production.and.storage.systems.for.pharmaceuti-cal.scFv.antibodies,.Plant Mol Biol,.42,.583,.2000.

.236.. Moloney,. M.M.,. Oil. bodies. and. associated. proteins. as. affinity. matrices,. U.S.. Patent.6924363,.2003.

Page 137:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

123Expression and Manufacture of Pharmaceutical Proteins

.237.. Ramessar,.K..et.al.,.Maize.plants:.An.ideal.production.platform.for.effective.and.safe.molecular.pharming,.Plant Sci,.174,.409,.2008.

.238.. Tacket,.C.O..et.al.,.Immunogenicity.in.humans.of.a.recombinant.bacterial.antigen.delivered.in.a.transgenic.potato,.Nat Med,.4,.607,.1998.

.239.. Tacket,.C.O..et.al.,.Human.immune.responses.to.a.novel.Norwalk.virus.vaccine.delivered.in.transgenic.potatoes,.J Infect Dis,.182,.302,.2000.

.240.. Mcgarvey,.P.B..et.al.,.Expression.of.the.rabies.virus.glycoprotein.in.transgenic.tomatoes,.Nat Biotechnol,.13,.1484,.1995.

.241.. Kruse,.C..et.al.,.Transient.transformation.of.Wolffia columbiana.by.particle.bombard-ment,.Aquat Bot,.72,.175,.2002.

.242.. Fischer,.R..et.al.,.Towards.molecular.farming.in.the.future:.Using.plant-cell-suspension.cultures.as.bioreactors,.Biotechnol Appl Biochem,.30,.109,.1999.

.243.. Vermij,.P..and.Waltz,.E.,.USDA.approves.the.first.plant-based.vaccine,.Nature.24,.233,.2006.

.244.. Shaaltiel,.Y.. et. al.,. Production. of. glucocerebrosidase. with. terminal. mannose. glycans.for.enzyme.replacement.therapy.of.Gaucher’s.disease.using.a.plant.cell.system,.Plant Biotechnol J,.5,.579,.2007.

.245.. Fuhrmann,.M..and.Hegemann,.W.,.A.synthetic.gene.coding.for.the.green.fluorescent.pro-tein.(GFP).is.a.versatile.reporter.in.Chlamydomonas reinhardtii,.Plant J,.19,.353,.1999.

.246.. Sun,.M..et.al.,.Foot-and-mouth.disease.virus.VP1.protein.fused.with.cholera.toxin.B.subunit.expressed.in.Chlamydomonas reinhardtii.chloroplast,.Biotechnol Lett,.25,.1087,.2003.

.247.. Griesbeck,.C.,.Kobl,.I.,.and.Heitzer,.M.,.Chlamydomonas reinhardtii,.Mol Biotechnol,.34,.213,.2006.

.248.. Mayfield,.S.P.,.Franklin,. S.E.,. and.Lerner,. R.A.,.Expression. and. assembly.of. a. fully.active.antibody.in.algae,.Proc Natl Acad Sci USA,.100,.438,.2003.

.249.. Kim,.D.-H..et.al.,.Stable.integration.and.functional.expression.of.flounder.growth.hor-mone. gene. in. transformed. microalga,. Chlorella ellipsoidea,. Mar Biotechnol,. 4,. 63,.2002.

.250.. Murphy,.D.J.,.Improving.containment.strategies.in.biopharming,.Plant Biotechnol J,.5,.555,.2007.

.251.. Fox,.J.L.,.Puzzling.industry.response.to.ProdiGene.fiasco,.Nat Biotechnol,.21,.3,.2003.

.252.. Stevens,.W.E..et.al.,.Optimizing.pollen.confinement.in.maize.grown.for.regulated.prod-ucts,.Crop Sci,.44,.2146,.2004.

.253.. Rotteveel,.T.,.Al-Ahmad,.H.,.and.Gressel,.J.,.Assessing.risks.and.containing.or.mitigating.gene.flow.of.transgenic.and.non-transgenic.phytoremediating.plants,.in.Phytoremediation Rhizoremediation,. Mackova,. Martina;.Dowling,. David;.Macek,.Tomas,. Eds.,.Springer,.Dordrecht,.the.Netherlands,.2006,.p..259.

.254.. Al-Ahmad,.H..and.Gressel,.J.,.Transgene.containment.using.cytokinin-reversible.male.sterility.in.constitutive,.gibberellic.acid–insensitive.(Δgai).transgenic.tobacco,.J Plant Growth Regul,.24,.19,.2005.

.255.. Mariani,.C..et.al.,.Induction.of.male-sterility.in.plants.by.a.chimeric.ribonuclease.gene,.Nature,.347,.737,.1990.

.256.. Schmülling,.T..et.al.,.Restoration.of.fertility.by.antisense.RNA.in.genetically.engineered.male.sterile.tobacco.plants,.Mol Gen Genet,.237,.385,.1993.

.257.. Wang,.T..et.al.,.Low.frequency.transmission.of.a.plastid-encoded.trait.in.Setaria italica,.Theor Appl Genet,.108,.315,.2004.

.258.. Al-Ahmad,.H.,.S..Galili,.and.Gressel,.J.,.Tandem.constructs.to.mitigate.transgene.per-sistence:.tobacco.as.a.model,.Mol Ecol,.13,.697,.2004.

.259.. Oliver,. M.. et. al.,. Seed-based. strategies. for. transgene. containment,. in. Proceedings 8th International Symposium on the Biosafety of Genetically Modified Organisms,.Montpellier,.France,.p..154,.2004.

.260.. Kuvshinov,.V.,.Anissimov,.A.,.and.Yahya,.B.M.,.Barnase.gene.inserted.in.the.intron.of.GUS-a.model.for.controlling.transgene.flow.in.host.plants,.Plant Sci,.167,.173,.2004.

Page 138:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

124 Transgenic Horticultural Crops: Challenges and Opportunities

.261.. Kuvshinov,.V..et.al.,.Molecular.control.of.transgene.escape.from.genetically.modified.plants,.Plant Sci,.160,.517,.2001.

.262.. Spök,.A..et.al.,.Evolution.of.a.regulatory.framework.for.pharmaceuticals.derived.from.genetically.modified.plants,.Trends Biotechnol,.26,.506,.2008.

.263.. Phoolcharoen,. W.. et. al.,. Expression. of. an. immunogenic. Ebola. immune. complex. in.Nicotiana benthamiana, Plant Biotechnol J,.In.press,.2011.

.264.. Chen,.Q..et.al.,.Geminiviral.vector.based.on.bean.yellow.dwarf.virus.for.production.of.vaccine.antigens.and.monoclonal.antibodies.in.plants..Human Vaccines,.7,.3,.2011.

Page 139:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

125

5 Transgenic Fruit Crops in Europe

Henryk Flachowsky and Magda-Viola Hanke

IMPORTANCE OF FRUIT CROPS IN EUROPE

The.popular.adage.“an.apple.a.day.keeps.the.doctor.away”.is.only.one.example.that.illustrates.the.importance.of.fruits.for.human’s.diet..A.grain.of.truth.is.behind.the.adage.because.it.is.a.matter.of.common.knowledge.that.a.diet.rich.in.fruits.and.vegetables.and.low.in.saturated.fats.protects.against.a.number.of.diseases,.such.as.cardiovascular.dis-eases.and.certain.cancers.1–3.The.World.Health.Organization.(WHO).therefore.recom-mends.an.intake.of.more.than.400.g.of.vegetables.and.fruits.per.capita.per.day.(http://faostat.fao.org)..The.mean.daily.consumption.of.one.person.in.Europe.is.561.g.of.fruits.and.vegetables,.which.is.more.than.recommended.(http://faostat.fao.org)..However,.the.daily.intake.ranges.from.about.350.g.in.Slowakia.to.more.than.1100.g.in.Greece..In.southern.Europe.(Greece,.Italy,.Portugal,.Albania,.and.Spain),.more.fruits.and.veg-etables.are.consumed.(∼700–1100.g.per.capita.per.day).than.in.middle.and.northern.countries.(Finland,.Iceland,.Belarus,.Latvia,.Ukraine,.the.Czech.Republic,.Poland,.and.the.Russian.Federation).with.about.400–450.g.per.person.per.day.

CONTENTS

Importance.of.Fruit.Crops.in.Europe...................................................................... 125Field.Trials.with.GM.Fruit.Crops.in.Europe........................................................... 127

Apple.................................................................................................................. 127Citrus.................................................................................................................. 131Cherry................................................................................................................. 132Grapevine........................................................................................................... 133Kiwifruit............................................................................................................. 134Pear..................................................................................................................... 135Plum................................................................................................................... 135Raspberry........................................................................................................... 136Strawberry.......................................................................................................... 137

Focus.of.Research.on.GM.Fruit.Crops.in.Europe................................................... 137Improvement.of.Agronomically.Important.Traits.............................................. 137Use.of.Early.Flowering.GM.Plants.to.Accelerate.Breeding.Cycles.................. 137Development.of.a.Rapid.Assay.for.Gene.Function.Analysis............................. 138Development.of.New.Systems.for.GM.Fruit.Crop.Production.......................... 139

References............................................................................................................... 142

Page 140:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

126 Transgenic Horticultural Crops: Challenges and Opportunities

Fruit.crop.production.is.of.particular.economic.importance.in.Europe..In.2007,.a.total.of.77.5.million.metric.tons.of.fruit.crops.were.produced.in.Europe.on.approxi-mately.8.7.million.hectares.of.land.(http://faostat.fao.org)..Italy,.Spain,.and.France.are.the.main.producers.with.more.than.60%.of.the.overall.production..The.entire.spectrum.of.fruit.crops.produced.in.Europe.consists.of.more.than.30.different.fruit.species.with.grapes,.apples,.and.oranges.as.the.three.most.important..An.overview.of.the.cultivated.fruit.crops.is.given.in.Table.5.1.

TABLE 5.1European Fruit Crop Production in 2007

Fruit CropProduction Quantitya

Area Harvestedb

Number of Countries Leading Countriesc

Grapes 29 4140 28 IT.FR.SP.DE.PT.GR

Apples 14 1319 37 RU.IT.FR.PL.DE.UK.SP

Oranges 6.2 295 11 SP.IT.GR.PT

Watermelons 5.1 310 20 RU.SP.RO.GR.IT.UK

Peaches,.nectarines 4.3 301 24 IT.SP.GR.FR

Pears 3.1 209 35 IT.SP.NE.FR.BE.AU.PT

Tangerines,.mandarins,.clementines

3 177 9 SP.IT.GR

Plums,.sloes 2.5 580 35 SE.FR.RO.SP.IT.UK.BO.RU

Other.melons 2.3 110 14 SP.IT.FR.GR.U

Lemons,.limes 1.5 88 8 SP.IT.GR

Strawberries 1.5 177 36 RU.SP.PL.DE

Currants 0.9 144 27 RU.PL.UK

Cherries 0.8 191 34 IT.BE.FR.SP.RU.UK.GR

Apricots 0.8 118 23 IT.FR.GR.SP.RU.HU.UK

Sour.cherries 0.8 201 21 PL.RU.UK.SE.HU

Kiwifruit 0.6 35 8 IT.FR.GR

Bananas 0.4 12 4 SP.PT

Carobs 0.14 83 5 SP

Figs 0.12 130 12 SP.GR.IT.PT

Gooseberries 0.12 22 15 RU.PL.UK

Avocados 0.1 22 4 SP.PT

Quinces 0.08 11 22 SP.SE.RU.RO

Grapefruit 0.06 3 6 SP.PT.GR.IT

Persimmons 0.05 3 2 IT.SL

Dates 0.013 1 2 AL.SP

Pineapples 0.003 0.3 1 PT

Source:. http://faostat.fao.orga. Production.quantity.in.million.metric.tones.b. Area.harvested.in.thousand.hectaresc. AL—Albania,. AU—Austria,. BE—Belgium,. BO—Bosnia,. FR—France,. DE—Germany,. GR—

Greece,.HU—Hungary,.IT—Italy,.NE—the.Netherlands,.PL—Poland,.PT—Portugal,.RO—Romania,.RU—Russian.Federation,.SE—Serbia,.SL—Slovenia,.SP—Spain,.UK—Ukraine.

Page 141:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

127Transgenic Fruit Crops in Europe

The.high.level.of.demand.for.fruit.and.fruit.products.requires.the.availability.of.highly.productive.cultivars.to.satisfy.such.a.demand..Therefore,.breeders.are.always.anxious.to.develop.new.cultivars.with.improved.traits..The.breeding.of.new.cultivars.of.woody.plants.is.time.consuming.and.very.expensive.4.Genetic.engineering.offers.an.exciting.tool.today.to.overcome.several.of.the.existing.problems..On.this.account,.many.European.scientists.have.started.to.develop.and.to.establish.methods.for.the.development.of.trans-,.intra-,.or.cisgenic.fruit.crops..Most.of.these.studies.have.been.performed.under.laboratory.or.glasshouse.conditions..Only.a.few.studies,.which.will.be.reviewed.here,.have.been.performed.in.the.open.field.

FIELD TRIALS WITH GM FRUIT CROPS IN EUROPE

In. Europe,. deliberate. releases. of. genetically. modified. (GM). plants. into. the. envi-ronment.require.notification.according.to.Directive.2001/18/EC.(http://gmoinfo.jrc.ec.europa.eu)..Directive.2001/18/EC.regulates.the.release.of.GM.plants.for.the.per-formance.of.field.trials.as.well.as.for.introduction.into.the.market..A.petition.for.a.deliberate.release.of.GM.plants.into.the.field.must.be.submitted.for.approval.by.the.national.authorities.of.the.member.state.in.which.the.release.will.be.conducted..At.that.time,.the.other.European.Union.(EU).member.states.are.informed.by.sending.them.a.SNIF.(summary.notification.information.format)..All.SNIFs.that.have.been.submitted.to.the.national.authorities.of.the.individual.EU.member.states.since.2001.are.available.at.the.European.Web.site,.http://gmoinfo.jrc.ec.europa.eu/..This.Web.site.is.managed.by.the.Joint.Research.Centre.of.the.European.Commission.on.behalf.of.the.Directorate.General.for.the.Environment.

However,.GM.fruit.crops.are.still.quite.far.away.from.commercial.use.in.Europe..In.recent.years,.a.total.of.44.SNIFs.for.a.deliberate.release.of.GM.fruit.crops.into.the.field.have.been.submitted..In.several.countries,.GM.plants.of.apple,.citrus,.pear,.plum,.strawberry,.grapevine,.raspberry,.and.kiwifruit.should.have.been.planted.in.the.field,.but.in.the.end,.only.a.few.field.trials.have.been.initiated.

apple

For. apple,. a. total. of. nine. summary. notifications. can. be. found:. four. from. the.Netherlands,. two. from. Belgium,. two. from. Sweden,. and. one. from. Germany.(Table 5.2)..All.notifications.had.the.goal.to.release.GM.plants.for.scientific.inves-tigations..The.intended.field.trials.were.focused.on.transgenic.plants.of.different.apple.scion.and.rootstock.cultivars.with.improved.resistance.to.fungal.or.bacte-rial.diseases.or.on.plants.with.a.better.rooting.ability.(Table.5.2)..Only.two.field.trials.with.GM.apples.have.been.performed.in.Europe.until.now..The others.were.refused.by.the.national.authorities.or.by.the.regional.minister.or.they.could.not.be.started.because.of.the.lack.of.consent.given.by.the.competent.authority.

One.field.trial.has.been.performed.in. the.Netherlands.(notification.numbers.B/NL/02/03,. B/NL/04/02).. This. field. trial. has. a. long. history. as. it. was. far. from.easy.to.obtain.the.planting.approval..The.field.trial.proposal.was.first.submitted.in.the Netherlands..After.rejection.of.the.notification.by.the.Dutch.minister.in.2001,.it.

Page 142:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

128 Transgenic Horticultural Crops: Challenges and Opportunities

TABLE 5.2Summary Notifications for the Deliberate Release of GM Fruit Crops in Europe

SpeciesLeading

CountriesNotification

Number Species/Cultivar Improved Trait

Apple NL B/NL/98/06 Gala,.Elstar Fungal,.bacterial.resistance

NL B/NL/00/04 Paradise.apple Fungal,.bacterial.resistance

NL B/NL/02/03 Gala,.Elstar Fungal,.bacterial.resistance

NL B/NL/04/02 Gala,.Elstar Fungal,.bacterial.resistance

BE B/BE/02/V1 Gala,.Elstar Fungal,.bacterial.resistance

BE B/BE/03/V1 Elstar Self-fertility

SW B/SE/99/1644 M26,.M9 Rooting.ability

SW B/SE/04/1227 M26,.M9 Rooting.ability

DE B/DE/03/140 Pinova,.Pilot,.Reka,.Remo,.Elstar,.Royal.Gala,.AU.56-83

Fungal,.bacterial.resistance

Carrizo.citrange

SP B/ES/06/43 C. sinensis.×.P. trifoliata Plant.architecture

SP B/ES/08/03 Carrizo.citrange Plant.architecture

SP B/ES/08/21 Carrizo.citrange Early.flowering

Cherry IT B/IT/98/27 P. avium Root.formation

IT B/IT/98/28 P. avium Root.formation

IT B/IT/98/29 P. avium Root.formation

Grapevine FR B/FR/99/03/10 V..×.berlandieri Virus.resistance

FR B/FR/96/03/14 V. vinifera Virus.resistance

FR B/FR/94/11/04-CON V. berlandieri.×.riparia,.V. berlandieri.×.rupestris

Virus.resistance

V. vinifera.×.berlandieri

FR B/FR/04/05/01 V. vinifera.×.berlandieri.41B Virus.resistance

IT B/IT/99/26 Thompson.seedless.(Sultana) Parthenocarpic.fruits

DE B/DE/98/100 Dornfelder,.Seyval,.Riesling Fungal.resistance,.gene.flow

Kiwifruit IT B/IT/98/24 A. deliciosa Root.formation

IT B/IT/98/25 A. deliciosa Root.formation

IT B/IT/98/26 A. deliciosa Fungal.resistance

Lemon IT B/IT/04/03 Citrus sp. Fungal.resistance

Pear SW B/SE/04/1227 BP10030 Rooting.ability

Plum SP B/ES/96/16 Stanley.C5 Virus.resistance

SP B/ES/05/14 Stanley.C5 Virus.resistance

CZ B/CZ/06/03 Stanley.C5 Virus.resistance

RO B/RO/07/04 Stanley.C5 Virus.resistance

PL DOPgmo.4301/02-4/2002

Stanley.C5 Virus.resistance

Page 143:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

129Transgenic Fruit Crops in Europe

was.decided.to.try.to.obtain.the.permit.for.a.field.trial.in.Belgium..The.government.bodies.and.advisory.boards.to.the.Belgian.king.advised.in.favor.of.approving.the.permit,.but.the.Flemish.Minister.for.the.Environment.used.its.veto.right.to.refuse.the. trial.. Subsequently,. the. scientists. went. back. to. the. Netherlands. submitting. a.modified. version. of. the. notification,. and. after. a. change. of. government. the. new.minister.granted.the.permit..The.field.trial.(notification.number.B/NL/02/03).was.planted.in.2003,.but.the.permit.was.challenged.by.Greenpeace.and.revoked,.and,.subsequently,.a.temporary.permit.was.issued.by.the.minister..This.permit.was.later.replaced.by.a.new.permit.(B/NL/04/02)..The.new.permit.was.challenged.again,.but.remained.in.force.and.was.confirmed.by.the.High.Court.in.2005..This.field.trial.was.performed.with.GM.plants.of.the.apple.cultivars.‘Gala’.and.‘Elstar’.overexpress-ing.the.hth.gene.of.barley..The.hth.gene.encodes.for.a.type.1.alpha-hordothionin.and.the.GM.plants.were.tested.in.the.field.(Figure.5.1).for.their.resistance.to.apple.scab.(Venturia inaequalis),.powdery.mildew.(Podosphaera leucotricha),.and.fire.blight.(Erwinia amylovora)..This.field.trial.ended.in.2008.(Frans.Krens,.personal.communication).

TABLE 5.2 (continued)Summary Notifications for the Deliberate Release of GM Fruit Crops in Europe

SpeciesLeading

CountriesNotification

Number Species/Cultivar Improved Trait

Raspberry IT B/IT/99/25 R. idaeus Fruit.ripening

Strawberry IT B/IT/98/32 F..×.ananassa Fungal.resistance

IT B/IT/98/33 F..×.ananassa Root.formation

IT B/IT/99/23 F..×.ananassa Development

IT B/IT/99/24 F. vesca Fruit.ripening

IT B/IT/02/11 F..×.ananassa Parthenocarpic.fruits

SP B/ES/98/06 Fresa Fruit.development,.fruit.quality

SP B/ES/98/10 Andalucía Pollen.flow,.out-crossing

GB B/GB/95/R23/2 F. virginiana.×.chiloensis Insect.resistance

Sweet.orange

SP B/ES/96/15 Orange.cv..‘Pineapple’,.lime cv..‘Mexicana’,.citrange.cv..‘Carrizo’

Pollen.flow,.transgene.stability

SP B/ES/08/02 Navelina Modified.fruit.aroma

SP B/ES/08/04 Pineapple Resistance.to.Phytophthora

SP B/ES/08/05 Pineapple Flowering.time

Note:. NL—the.Netherlands,.BE—Belgium,.SW—Sweden,.DE—Germany,.IT—Italy,.FR—France,.CZ—Czech.Republic,.RO—Romania,.PL—Poland,.SP—Spain,.GB—United.Kingdom.

Page 144:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

130 Transgenic Horticultural Crops: Challenges and Opportunities

Another. field. trial. has. been. carried. out. in. Sweden. (notification. numbers.B/SE/99/1644. and. B/SE/04/1227).. This. field. trial. was. performed. with. GM.plants.of. the.apple.rootstocks.M26.and.M9/29. transformed.with. the.rolB.gene.of.Agrobacterium rhizogenes.to.improve.rooting.ability..The.GM.rootstocks.were.char-acterized,5–8.planted. into. the.field. in.2001,.and.budded.with.different.apple.culti-vars.including.‘Aroma’,.‘Jonagold’,.‘Elstar’,.‘Discovery’,.and.‘Elise’.in.2002.9.The.transformed.rootstocks.were.compared.to.non-GM.rootstocks.for.traits.such.as.tree.growth,. tree.anchorage,. tree. size,.branching,. leaf. form.flowering,. fruit. set,. fruit.quality,.transgene.stability,.and.systemic.transport.of.transgene.products.9,10

In.order.to.accelerate.classical.breeding,.molecular.techniques.can.be.applied.to.enrich.existing.commercial.apple.cultivars.with. functional.alleles. from.sexu-ally.compatible.plants,.preventing.genetic.drag.and.keeping. the.genetic.makeup.of. the. commercial. cultivar.. This. concept. is. termed. ‘cisgenesis’.11. Cisgenesis. is.defined.as.the.genetic.modification.of.a.recipient.plant.with.natural.gene(s).from.a.sexually.compatible.plant.12,13.In.cisgenesis,.no.foreign.genes.are.allowed.in.the.

FIGURE 5.1 (See color insert.).Dutch.field.trial.with.GM.apples.overexpressing.the.hth.gene.from.barley..GM.apple.plants.of.the.cultivars.‘Gala’.and.‘Elstar’.were.tested.for.their.resistance.to.apple.scab,.fire.blight,.and.powdery.mildew..The.field.trial.was.finished.in.2008..The.maximum.area.of.the.site.was.3850.m2..(The.figure.was.kindly.provided.by.Frans.Krens.from.PRI.Wageningen,.the.Netherlands.)

Page 145:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

131Transgenic Fruit Crops in Europe

final.product..If.no.novel.traits.are.introduced.compared.to.classical.breeding,.it.can.be.argued.that.such.plants.are.as.safe.as.plants.from.classical.breeding,.and.should. be. exempted. from. the. GMO. regulations.12–15. In. the. near. future,. several.releases.of.cisgenic.apple.plants.are.expected.in.Europe..Scientific.groups.in.the.Netherlands,. Italy,. and.Switzerland.are.working.on. the.development.of. cisgenic.apple.plants.with.improved.resistance.to.apple.scab.using.the.HcrVf2.scab.resis-tance.gene.originating.from.the.crab-apple.Malus floribunda.821..The.HcrVf2.is.one.of.four.genes.clustered.at.the.Vf-region.in.the.M. floribunda.821.genome..All.four.genes.encode.for.receptor-like.proteins.with.similarity.to.the.Cladosporium fulvum.resistance.gene.family.of.tomato.and.were.therefore.named.HcrVfs.(homo-logues.of.C. fulvum.resistance.genes.of.the.Vf-region).16.Later.Barbieri.et.al.17.and.Belfanti.et.al.18.confirmed.that.the.HcrVf2.gene.induces.scab.resistance.in.trans-genic. plants. of. susceptible. apple. cultivars. (for. review. see. Gessler. et. al.19).. This.gene.has.become.one.of.the.most.promising.genes.for.biotechnological.approaches.on. apple. in. the. world.. As. cisgenesis. allows. stacking. of. desired. genes,. multiple.traits.can.be.brought.together..The.HcrVf2.gene.is.race.specific,.and.there.is.much.interest.for.stacking.with.other.scab.resistance.genes,.providing.resistance.to.other.isolates.of.the.pathogen..There.are.also.several.new.resistance.genes.for.apple.scab.that.are.nearly.isolated.and.functionally.analyzed,.like.Vr2.and.Vm..By.stacking.these.genes,.a.broad.spectrum.of.resistance.to.apple.scab.can.be.realized.leading.to.an.increase.in.durability.of.resistance.11

The.Plant.Research.International.(PRI).in.Wageningen,.the.Netherlands,.the.pri-vate.fruit.breeding.company.Inova.Fruit.BV,.and.two.other.partners.have.set.their.joint.goal.to.release.the.first.cisgenic.scab-resistant.apple.cultivar.in.Europe.in.2012.20

Further.objectives.of.ongoing.projects.are.the.development.of.low.allergenic.GM.apple. cultivars.by. silencing. the.major. apple. allergen. Mal d121. and. cisgenic. apple.cultivars.with.an.increased.amount.of.health-promoting.compounds.by.overexpress-ing.the.recently.identified.MYB.transcription.factors.(MdMYB1.and/or.MdMYB10),.which.are.known.to.upregulate.genes.of.the.flavonoid.biosynthesis.22–24

cItruS

Eight. summary. notifications. can. be. found. for. the. release. of. GM. citrus. plants. in.Europe. (Table. 5.2):. four. for. sweet. orange. (B/ES/96/15,. B/ES/08/02,. B/ES/08/04,.B/ES/08/05),.three.for.citrange.(B/ES/06/43,.B/ES/08/03,.B/ES/08/21),.and.one.for.lemon.(B/IT/04/03)..All.summary.notifications.for.GM.citrus.plants.have.been.sub-mitted.in.Spain,.except.for.lemon.which.was.submitted.in.Italy.

The. first. field. trial. with. GM. citrus. plants. in. Europe. (notification. number.B/ES/96/15). was. planted. in. 1997.. This. field. trial. was. notified. by. the. Instituto.Valenciano. de. Investigaciones. Agrarias. (IVIA). in. Spain. and. spanned. an. area. of.1638.m2..A.total.of.48.GM.trees,.16.orange.(cv..‘Pineapple’),.16.lime.(cv..‘Mexicana’),.and.16.citrange.(cv..‘Carrizo’),.containing.the.nptII.and.the.uidA.gene.were.planted..These.plants.were.used.to.study.transgene.stability,.the.inheritance.of.the.transgenic.traits,.and.the.rate.of.gene.flow.over.a.number.of.years.

The.second.field.trial.with.GM.citrus.plants. in.Europe.(notification.number.B/ES/06/43).was.initiated.3.years.ago.by.the.same.notifier..A.semidwarf.transgenic.

Page 146:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

132 Transgenic Horticultural Crops: Challenges and Opportunities

citrange.rootstock.expressing.a.GA20.oxidase.gene.from.citrange.in.antisense.orien-tation.was.planted..The.notifiers.are.investigating.the.effect.of.GM.rootstock.plants.on.nontransgenic.scions..The.main.question.is.whether.the.roostock.confers.compact.size.to.the.non-GM.scion.without.negative.effects.on.yield.and.fruit.quality.

In.2008,.IVIA.submitted.five.additional.summary.notifications.for.the.release.of.GM.citrus.plants..These.field.trials.will.be.performed.in.a.1.ha.area.at.the.experi-mental.fields.of.IVIA.in.the.STA.of.Villareal.(Castellón,.Spain).with.a.total.of.more.than.800.plants..The.first.notification.(B/ES/08/02).was.submitted.for.a.field.trial.with.GM.sweet.orange.plants.of.the.cultivar.‘Navelina’.expressing.a.limonene.syn-thase.gene. from.citrus. in.sense.and.antisense.orientation..The.GM.plants.will.be.tested.for.the.effect.of.the.altered.endogenous.content.of.limonene.on.fruit.aroma,.on.phenological. and.morphological.characteristics.of. the. transgenic. trees,.and.on.possible. new. interactions. of. transgenic. fruits. with. herbivore. insects,. as. Ceratitis capitata,. and. predators. of. herbivores.. Furthermore,. a. new. field. trial. (notification.number.B/ES/08/03).for.GM.citrange.plants.expressing.a.GA20.oxidase.gene.from.citrange.in.antisense.orientation.was.initiated..This.field.trial.has.the.same.goals.as.the.second.(notification.number.B/ES/06/43).described.above..Another.notification.(B/ES/08/04).was.submitted.for.GM.sweet.orange.plants.of.the.cultivar.‘Pineapple’..The.GM.plants.overexpress.the.PR P23.gene.of.tomato..The.PR P23.gene.encodes.for.an.osmotin-like.protein,.which.led.to.a.higher.tolerance.to.Phytophthora citroph-thora..The. last. two.field. trials. (notification.numbers.B/ES/08/05.and.B/ES/08/21).were.initiated.for.sweet.orange.and.citrange.plants.overexpressing.the.flowering.genes.apetala1.(AP1),.suppressor of overexpression of constans 1.(SOC1),.and.flowering locus t. (FT).. The. plants. will. be. evaluated. for. early. flowering,. as. shown. for. AP1.plants.in.Figure.5.2,.and.for.effects.on.tree.growth,.flower.and.fruit.development,.and.fruit.quality.characteristics..The.notifiers.are.currently.planting.the.five.notified.new.field.trials.(Leandro.Pena,.personal.communication).

In.Italy,.one.summary.notification.has.been.submitted.for.GM.lemon.plants.of.the.commercial.cultivar.‘Femminello.siracusano’.(B/IT/04/03)..This.notification.is.still.in.progress.25.The.GM.lemon.plants.were.transformed.with.the.chit42.gene.(encod-ing. for. an. endochitinase). of. the. microparasite. Trichoderma harzianum. CECT  2413..The transgenic.clones.overexpressing.the.chit42.gene.showed.an.increased.resistance.to.the.phytopathogenic.fungi.Phoma tracheiphila.and.Botrytis cinerea.25.This.proj-ect.is.promising.because.the.cultivar.‘Femminello.siracusano’.is.the.most.important.lemon.cultivar. in.Italy,.and. the.transgenic.clones.could.theoretically.be.cultivated.after.the.field.evaluation..However,.whether.GM.lemon.plants.will.be.cultivated.in.Europe.within.the.next.few.years.or.not.cannot.be.stated.at.the.moment.due.to.strict.GMO.regulations.and.low.consumer.acceptance.

cherry

There.are.three.summary.notifications.for.the.release.of.GM.cherries.in.Italy.(Table.5.2)..The.GM.plants.of. the.cherry. rootstock. ‘Colt’. carrying. the. transferred.DNA.(T-DNA).of.Agrobacterium rhizogenes.were.planted.in.1999.26.The.aim.of.this.study.was.to.improve.the.rooting.ability.of.the.rootstock..However,.GM.cherries.are.still.quite.a.long.way.from.commercial.use.in.Europe.

Page 147:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

133Transgenic Fruit Crops in Europe

GrapevIne

A. total. of. six. summary. notifications. (B/FR/94/11/04-CON,. B/FR/96/03/14,.B/FR/99/03/10,. B/FR/04/05/01,. B/IT/99/26,. B/DE/98/100). can. be. found. for. the.deliberate.release.of.GM.grapevine.plants.in.Europe..Petitions.for.the.release.of.GM.grapevine.plants.were.submitted.in.France,.Italy,.and.Germany.(Table.5.2)..However,.GM.grapevine.plants.are.still.quite.a.long.way.from.commercial.use.in.Europe.

The.first.field.trial.with.GM.grapevine.plants.(notification.number.B/FR/94/11/04-CON).was.carried.out.in.a.vineyard.in.the.Champagne.region.of.France..Plants.of.18. transgenic.grapevine. lines.of. the. rootstocks.41B. (V. vinifera.×.V. berlandieri).and.SO4.(V. berlandieri.×.V. riparia).overexpressing. the.coat.protein.gene.of. the.Grapevine fanleaf virus.(GFLV).were.established.in.spring.2006.27.Nontransformed.scions.of.V. vinifera cv..Chardonnay.were.subsequently.grafted.onto.these.rootstocks.and.tested.for.GFLV-type.symptoms.for.several.years..Furthermore,.the.plants.were.used.to.study.the.occurrence.of.recombination.events.between.viral.transgene.tran-scripts.and.ribonucleic.acids.(RNAs).from.indigenous.virus.populations..The.study.published.by.Vigne.et.al.27.provides.evidence.that.the.transgenic.grapevines.did.not.promote.the.emergence.of.viable.GFLV.recombinants.

Another. grapevine. field. trial. (notification. number. B/IT/99/24). has. been. per-formed.in.Italy.(Figure.5.3)..Transgenic.plants.of.the.grapevine.cultivars.‘Thompson.Seedless’. and. ‘Silorca’. overexpressing. the. chimeric. gene. construct. DefH9-iaaM.were.established.in.the.field.at.the.Experimental.Farm.of.the.Marche.Polytechnic.University. in. Agugliano. in. March. 2001.28. These. plants. were. evaluated. for. the.

FIGURE 5.2 (See color insert.).Juvenile.control.(left).and.overexpressing.APETALA1.juve-nile.Carrizo.citrange.plants.showing.flowering.8.months.after.transferring.to.the.greenhouse..The.juvenile.period.of.this.genotype.is.usually.5–7.years..(The.figure.was.kindly.provided.by.Leandro.Pena.from.the.Department.of.Plant.Protection.and.Biotechnology.at.the.Instituto.Valenciano.de.Investigaciones.Agrarias.[IVIA].in.Spain.)

Page 148:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

134 Transgenic Horticultural Crops: Challenges and Opportunities

effects.of.DefH9-iaaM.on.plant.vegetative.development,.fecundity,.and.fruit.nutri-tional.quality.from.the.third.to.the.fifth.production.cycles.(2004,.2005,.and.2006)..Costantini.et.al.28.found.that.the.expression.of.DefH9-iaaM.in.grapevine.resulted.in.enhanced.fecundity..The.berry.number.per.bunch.was.increased.in.both.transgenic.cultivars.whereas.the.quality.and.the.nutritional.value.of.the.GM.berries.were.com-parable.to.non-GM.control.fruits.

In. Germany,. one. field. trial. (notification. number. B/DE/98/100). has. been. per-formed.at.the.Institute.for.Grapevine.Breeding.Geilweilerhof.of.the.Federal.Research.Centre.for.Cultivated.Plants.in.Siebeldingen..GM.grapevine.plants.of.the.cultivars.‘Dornfelder’,.‘Seyval’,.and.‘Riesling’.overexpressing.glucanase,.chitinase,.or.ribo-somal. inactivating. protein. encoding. genes. were. planted. in. the. field. and. used. to.investigate.the.distance.of.pollen.(gene).flow.

kIwIfruIt

A. total. of. three. summary. notifications. (B/IT/98/24,. B/IT/98/25,. and. B/IT/98/26).can.be.found.for.GM.kiwifruit.plants.(Table.5.2)..These.notifications.were.submit-ted.by.the.Università.degli.Studi.della.Tuscia.Dipartimento.di.Produzione.Vegetale.in.Italy.for.a.period.from.April.1998.to.April.2007..The.field.trials.were.performed.in.the.province.Viterbo.on.areas.of.650.m2.(B/IT/98/24),.150.m2.(B/IT/98/25),.and.

FIGURE 5.3 (See color insert.).DefH9-iaaM.transgenic.grapevines.grown.in.a.field.trial. at. the. Experimental. Farm. of. the. Marche. Polytechnic. University. in. Agugliano.(Italy).. The. GM. grapevine. plants. were. planted. in. March. 2001. and. tested. for. plant.vegetative. development,. fecundity,. and. fruit. nutritional. quality. from. 2003. to  2005..(The  figure. was. kindly. provided. by. Bruno. Mezzetti. from. the. Marche. Polytechnic.University Ancona,.Italy.)

Page 149:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

135Transgenic Fruit Crops in Europe

900.m2. (B/IT/98/26).. The. GM. kiwifruit. plants. expressed. either. the. rol. genes. of.Agrobacterium rhizogenes.or.an.osmotin.gene.expected.to.confer.resistance.to.fun-gal. pathogens.. The. field. trials. were. focused. on. the. effect. of. transferred. genes. to.fungal.diseases’.resistance.or.to.the.rooting.ability.of.the.transformed.plants..The.commercial.use.of.GM.kiwifruits.in.Europe.is.not.to.be.expected.in.the.near.future.

pear

In. Europe,. only. one. summary. notification. was. found. for. a. pear. rootstock.. The.intended.field.trial.(B/SE/04/1227).was.carried.out.in.Sweden..The.GM.plants.con-taining.the.rolB.gene.of.Agrobacterium rhizogenes.were.planted.at.the.same.place.as.the.transgenic.apples.

The.GM.pear.plants.have.an.improved.rooting.ability..The.purposes.of.the.field.trial.were.the.evaluation.of.the.effects.of.the.transgenic.rootstocks.on.growth,.flower-ing,.fruit.set.and.fruit.quality.of.grafted.cultivars,.the.stability.of.the.modified.trait.(rooting.ability),.and.the.rooting.ability.of.the.transgenic.rootstocks.themselves.by.stooling..GM.pears.are.still.quite.a.long.way.from.commercial.use.

plum

The.most.important.agronomic.trait.in.plum.is.virus.resistance,.especially.to.Plum pox virus.(PPV),.the.etiological.agent.of.sharka.disease,.which.is.one.of.the.most.devastating. pathogens.. Sharka. disease. can. cause. extensive. economic. losses.29,30.Furthermore,.the.virus.has.quarantine.status.in.many.countries.31.In.Europe,.there.are.about.100.million.stone.fruit.trees.currently.infected.with.the.virus.32.Breeders.are.always.anxious.to.develop.resistant.cultivars,.but.breeding.of.sharka-resistant.plums.is.difficult..PPV.resistance.is.often.polygenic.and.in.addition.may.be.strain.specific..The.long.juvenile.period.of.seedlings.hampers.the.success.of. traditional.breeding. programs. considerably.. Genetic. engineering. offers. an. exciting. tool. to.overcome. some.of. the. existing.problems..Several. recent. studies.have. focused. on.overexpression. of. coat. proteins. of. the. PPV.33,34. The. transgenic. line. C5. (named.‘HoneySweet’).was.selected.because.of.its.high.level.of.resistance..This.line.con-tains.a.multicopy.insert.of.the.cpPPV.gene.that.acts.as.a.single.locus..The.expres-sion.level.of.this.gene.is.reduced.in.HoneySweet,.a.result.of.posttranscriptional.gene.silencing.(PTGS).(reviewed. in.Scorza.and.Ravelonandro31)..Based.on. inoculation.studies,.it.was.found.that.HoneySweet.is.highly.resistant.to.the.major.serotypes.of.PPV..The.stability.and.durability.of.the.PTGS-based.PPV.resistance.of.HoneySweet.was.tested.in.field.trials.in.different.countries.for.a.number.of.years.35–37.Since.the.early.1990s,.field.trials.with.HoneySweet.have.been.performed.in.Europe.and.the.United. States.. In. Europe,. a. total. of. five. summary. notifications. can. be. found. for.GM. plums. (http://bgmo.jrc.ec.europa.eu/deliberate/dbplants.asp).. Field. trials. with.HoneySweet.were.performed.in.Spain.(two),.in.Poland.(one),.in.the.Czech.Republic.(one),.and.in.Romania.(one).

Based. on. the. results. obtained. with. HoneySweet,. a. petition. for. deregulation.was.approved.in.the.United.States.in.June.2007.38.The.Animal.and.Plant.Health.Inspection. Service. (APHIS). of. the. U.S.. Department. of. Agriculture. (USDA).

Page 150:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

136 Transgenic Horticultural Crops: Challenges and Opportunities

excluded.the.GM.plum.line.C5.HoneySweet.from.the.regulations.at.7.CFR.part.340.(http://www.isb.vt.edu/cfdocs/fieldtests1.cfm).. It. has. also. been. cleared. by. the.U.S..Food.and.Drug.Administration.(FDA)..Approval.by.the.U.S..Environmental.Protection. Agency. was. granted. in. 2010,. and. subsequent. commercialization. of.HoneySweet.in.the.United.States.is.expected.within.the.next.few.years..However,.GM.plums.are.still.quite.a.long.way.from.commercial.use.in.Europe,.although.the.results.obtained.on.HoneySweet.are.quite.promising.

raSpberry

Only. one. summary. notification. (B/IT/99/23). can. be. found. for. the. release.of. GM. raspberry. plants. in. Europe.. The. field. trial. has. been. performed. at. the.Experimental. Farm. of. the. Marche. Polytechnic. University. in. Agugliano,. Italy.(Figure.5.4)..Forty.transgenic.plants.expressing.the.chimeric.DefH9-iaaM.gene.construct.and.40.control.plants.were.planted.in.four.plots.and.evaluated.for.dif-ferent.fruit. traits.34.The. transgenic.plants.showed.a.significant. increase.in. fruit.number,.fruit.size,.and.total.yield..Furthermore,.they.had.more.flowers.per.inflo-rescence. and. an. increased.number.of. inflorescences.per.plant.. It. is. interesting.to.note.that.the.DefH9-iaaM.gene.construct.has.led.to.parthenocarpic.fruits.on.emasculated.flowers.34

FIGURE 5.4 (See color insert.).DefH9-iaaM.transgenic.raspberry.plants.grown.in.a.field.trial.at. the.Experimental.Farm.of.the.Marche.Polytechnic.University. in.Agugliano.(Italy)..The.GM.raspberry.plants.were.planted.in.2001.and.tested.on.different.fruit.parameters.in.the.field.for.two.consecutive.years.(2002.and.2003)..(The.figure.was.kindly.provided.by.Bruno.Mezzetti.from.the.Marche.Polytechnic.University.Ancona,.Italy.)

Page 151:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

137Transgenic Fruit Crops in Europe

Strawberry

Eight.summary.notifications.can.be.found.for.GM.strawberries..Field.trials.with.GM.strawberry.plants.have.been.performed.in.Spain,.Great.Britain,.and.Italy.(Table.5.2)..In.Great.Britain,.transgenic.plants.with.improved.resistance.to.insects.were.planted.whereas.the.GM.plants.planted.in.Spain.were.evaluated.on.fruit.development,.fruit.quality,. pollen. flow,. and. out-crossing.. Unfortunately,. information. on. the. results.of. these. studies. is. scarce..More. information. is.available. for. the. Italian.field. trial..This.field.trial.was.performed.at.the.Experimental.Farm.of.the.Marche.Polytechnic.University. in. Agugliano.. Transgenic. plants. of. Fragaria vesca. cv.. ‘Alpina. W..Original’.and.Fragaria.×.ananassa.breeding.selection.AN93.231.53.expressing.the.chimeric.DefH9-iaaM.gene.construct.and.nontransgenic.control.plants.of.each.were.planted. in. the.field.and.evaluated. for. fruit. traits.34.The. results.obtained.on.straw-berry.were.nearly.identical.to.that.of.DefH9iaaM.transgenic.raspberries..Transgenic.plants.showed.a.significant.increase.in.fruit.number,.fruit.size,.and.yield..They.had.more.flowers.per.inflorescence,.an.increased.number.of.inflorescences.per.plant,.and.parthenocarpic.fruits.on.emasculated.flowers.39.However,.GM.strawberries.are.still.quite.a.long.way.from.commercial.use.in.Europe.

FOCUS OF RESEARCH ON GM FRUIT CROPS IN EUROPE

Improvement of aGronomIcally Important traItS

In.recent.times,.the.European.focus.of.research.on.GM.plants.has.switched.from.the.development.of.efficient.regeneration.and.transformation.protocols,.including.the.selection.of.suitable.marker.genes.to.the.improvement.of.selected.agronomi-cally.important. traits..Whereas.earlier.studies.were.mostly.aimed.at. the.method.of.gene.transfer.itself,.newer.studies.are.focused.on.the.development.of.products.with. improved. traits. for. introduction. into. the.market..For. apple. and.pear,. traits.like.resistance.to.insects,.bacterial.(fire.blight.caused.by.Erwinia amylovora.is.the.main.disease.in.Europe).and.fungal.diseases.(scab.and.mildew),.stress. tolerance.(cold,.heat),.precocity,.color.and.health.properties,.and.reduced.allergenic.potential.are.of.particular.importance..For.Prunus.species.the.improvement.of.resistance.to.the.PPV,.the.most.dangerous.pathogen.in.Europe,.is.the.primary.goal..The.studies.on.small.fruits.like.strawberry.are.mainly.aimed.at.the.improvement.of.resistance.to.insects,.viruses,.and.fungal.diseases.(e.g.,.Verticillium dahliae,.Botrytis cinerea,.and. Colletotrichum acutatum).. Other. traits. such. as. salt. or. freezing. tolerance,.reduced.softening,.sugar.content,.fruit.color,.flavor,.ripening,.and.yield.are.also.of.importance.

uSe of early flowerInG Gm plantS to accelerate breedInG cycleS

Recently,.a.study.was.published.by.a.German.group.which.describes. the.use.of.transgenic.apple.plants.with.a. reduced. juvenile.phase. for.applied.breeding..The.transgenic.plants.were.used.to.accelerate.the.breeding.process.because.fruit.tree.breeding. is. time. consuming,. requires. substantial. space,. and. is. therefore. very.

Page 152:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

138 Transgenic Horticultural Crops: Challenges and Opportunities

expensive.4.The.production.of.a.new.apple.cultivar.takes.at.least.15–20.years.and.can.cost.in.the.range.of.€400,000.(Ken.Tobutt,.personal.communication.cited.in.Fenning.and.Gershenzon40)..The.breeding.effort.is.mostly.hampered.by.the.long.juvenile.phase.in.which.plants.are.not.able.to.flower.and.fruit..In.contrast.to.annual.plants.which.flower.within.a.few.months,.juvenility.in.tree.species.can.last.5–40.or.more.years.4.A.full.evaluation.of.a.progeny,.the.selection.of.the.best.seedlings.and.therefore.all.further.breeding.activities.must.wait.until.the.plants.complete.the.juvenile. phase..Therefore,. shortening. the. juvenile.phase. is. always. an. important.breeding.objective.for.fruit.crops..In.recent.years.much.effort.has.been.made.using.biotechnological.methods..Leandro.Pena.and.coworkers.were.the.first.to.describe.the.successful.induction.of.early.flowering.in.a.fruit.tree.species.after.overexpres-sion.of.the.flower.inducing.genes.LFY.and.AP1.from.Arabidopsis thaliana.41.Since.that.time.several.studies.on.different.fruit.crop.species.using.different.genes.have.been. published. which. were. focused. on. the. reduction. of. the. juvenile. phase. (for.review.see.Hanke.et.al.42)..However,.recently.Flachowsky.et.al.4.were.the.first.to.report.that.transgenic.early.flowering.apple.plants.were.successfully.used.for.prac-tical.breeding.(Figure.5.5).

Transgenic.apple.plants.overexpressing.the.BpMADS4.gene.of.silver.birch43.were.pollinated. with. pollen. of. the. apple. wild. species. M. fusca.. Transgenic. seedlings.flowered.within. the.first.season.(Figure.5.6)..They.were.pollinated.with.pollen.of.the.apple.cultivar.‘Topaz’.and.the.first.fruits.were.harvested.in.the.end.of.the.first.growing.season.4.This.work.demonstrated.that.one.crossbred.generation.per.year.is.feasible.and.represents.a.dream.come.true.for.breeders..Several.scientific.groups.in.Europe.are.currently.evaluating.this.system..However,.the.GM.apple.plants.used.in.this.study.were.not.optimal..The.transgenic.plants.constitutively.overexpressing.the.BpMADS4.gene.are.often.malformed.and.the.fruit.yield.and.seed.set.is.very.low.4.Therefore,.new.plants.expressing.the.gene.driven.by.an.inducible.promoter.are.under.development.

development of a rapId aSSay for Gene functIon analySIS

Functional.genome.analysis. in. fruit.crops,.especially. for.genes.expressed. in. the.fruit,. is. often. very. laborious.. Genes. to. be. characterized. must. either. be. overex-pressed. or. silenced. in. transgenic. plants.. The. production. of. stably. transformed.plants.is.time.consuming.and.expensive..A.full.evaluation.of.the.effects.coming.from.the.transgene.is.not.possible.before.the.plant.enters.the.adult.phase,.and.this.can. sometimes. take. up. several. years.. Much. more. complicated. is. the. character-ization. of. genes,. which. are. members. of. a. multigene. family.. Several. transgenic.lines. for.each.gene.are.necessary..This. requires. time,. space,.and. the.associated.expenses..Recently.an.ingenious.method.was.described.by.Hoffmann.et.al.44.on.strawberry,. which. is. based. on. transient. gene. silencing. through. the. infiltration.of. Agrobacterium tumefaciens. carrying. an. engineered. plasmid. into. ripening.fruits..Young.fruits,.which.were.still.attached.to.the.plants,.were.injected.with.an.Agrobacterium.suspension.by.using.a.sterile.1.mL.hypodermic.syringe..The.bac-teria.containing.a.hairpin.gene.construct.were.evenly.distributed.throughout. the.entire.fruit..Using.this.method.it.was.possible.to.silence.the.FaCHS.gene.in.nearly.

Page 153:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

139Transgenic Fruit Crops in Europe

the. entire. fruit. (Figure. 5.7)..The. functionality.of. the.Agrobacterium. infiltration.silencing.method.was.confirmed.by.Griesser.et.al.,45.who.silenced.a.glycosyltrans-ferase.encoding.gene.(FaGT1).in.strawberry.fruits.in.the.same.way..The.method.published.by.Thomas.Hoffmann.and.colleagues.provides.a.powerful.tool.for.func-tional.gene.analysis.in.strawberry..The.knowledge.obtained.from.strawberry.can.then.be.easily.transferred.to.other.Rosaceae.crops,.so.that.strawberry.can.be.used.as.a.model.species.in.the.future.

development of new SyStemS for Gm fruIt crop productIon

The.development.of.GM.fruit.crops.in.Europe.is.primarily.based.on.Agrobacterium tumefaciens. mediated. transformation.. Different. tissues,. such. as. leaf. blades,.stem internodes,.axillary.shoot-meristems,.cotyledons,.hypocotyl.slices,.or.shoot.

t

F1

t

P ×

goi

BCx́

goi

t+goi

t goi t+goi

×

FIGURE 5.5 (See color insert.).Schema.of.the.breeding.program.using.BpMADS4.trans-genic.early.flowering.apple.plants.(in.accordance. to.Flachowsky.et.al.4).. t—transgene.(red.mark),.induces.early.flowering;.goi—gene.of.interest.(yellow.mark),.for.example,.resistance.gene. for. scab.or.fire. blight. resistance,. green.color—number.of.positive. traits. is.high. (top.cultivar,.e.g.,.‘Pinova’,.‘Elstar’,.‘Gala’);.brown.color—number.of.negative.unwanted.traits.is.high.(apple.wild.species.used.as.resistance.donor,.e.g.,.Malus.×.robusta.5.for.fire.blight.resis-tance);. blue. arrow—genotype. useful. for. further. breeding. steps,. white. arrow—genetically.improved,. but. nontransgenic. (transgene.and.gene.of. interested.must. be. unlinked. to.obtain.such. genotypes);. P—parental. generation;. F1—first. filial. generation,. seedlings. contain. 50%.genome.(genes/alleles).of.each.parent;.BC′x—generation.after.numerous.pseudo-backcrosses.of.‘t+goi’.genotypes.by.high-quality.cultivars,. the.percentage.of.wild.species.genome.was.reduced.by.backcross.breeding.

Page 154:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

140 Transgenic Horticultural Crops: Challenges and Opportunities

apices.have.been.tested.to.determine.the.best.starting.material.for.each.species..However,.the.most.effective.and.reproducible.method.for.plant.regeneration.has.remained. through. adventitious. shoot. formation. and. in.most. cases. leaves. from.in.vitro.shoots.are.used.for.transformation..The.selection.of.transgenic.regener-ants.was.and.is.still.done.by.using.selectable.marker.genes.conferring.resistance.to.selective.chemical.agents,.such.as.antibiotics.or.herbicides..The.presence.of.marker.gene.sequences.in.GM.crops.has.been.critically.discussed.in.recent.years..Public.opinion. in.Europe.demands. that.genetically. engineered.plants. released.into.the.environment.be.marker-free.or.at.least.with.marker.genes.not.conferring.resistance.to.antibiotics.used.for.medical.or.veterinary.purposes..This.and.other.demands.are.considered.in.the.2001.passed.European.Union.directive.2001/18/EC..The.directive.2001/18/EC.forbids.the.release.of.GM.crops.containing.antibiotic.marker.genes.“which.may.have.adverse.effects.on.human.health.and. the.envi-ronment”. beginning. in. December. 2008.. Although. the. European. Food. Safety.Authority. (EFSA). stated. in.2004.and.again. in.2007. that. “the.use.of. the.nptII.gene.as.selectable.marker.in.GM.plants.does.not.pose.a.risk.to.human.or.animal.

FIGURE 5.6 (See color insert.).BpMADS4. transgenic.apple.seedling..First.flowers.were.obtained.approximately.4.months.after.seed.planting..The.seedling.was.obtained.after.cross-ing.a.F1.plant.of.the.cross.T1190.(BpMADS4.transgenic.line.of.the.apple.cv..‘Pinova’,.pub-lished.by.Flachowsky.et.al.43).by.M. fusca.(fire.blight-resistant.apple.wild.species).and.the.scab-resistant.apple.cv..‘Topaz’.

Page 155:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

141Transgenic Fruit Crops in Europe

health. or. to. the. environment,”. there. remains. a. reluctance. to. use. this. impor-tant. tool. for.GM.plant. selection..Therefore,. it. is.considered.essential.by.many.research.groups.to.establish.methods.which.allow.the.production.of.marker-free.plants..Clean.vector.technologies.are.the.most.promising.strategy.because.other.methods,. which. are. based. on. sexual. outcrossing. of. the. marker. gene,. are. not.usable. for. fruit. crops.. Self-incompatibility. and. a. high. degree. of. heterozygoz-ity. make. such. methods. often. unsuitable.. The. first. successes. in. the. establish-ment.of.clean.vector.technologies.have.recently.been.reported.for.apple,46.sweet.oranges,47. strawberry,48. and. apricot.49,50. However,. the. development. of. highly.effective. strategies. for. the. production. of. marker-free. plants. is. still. one. of. the.most.important.goals.in.many.countries..For.apple,.there.is.a.large.program.in.progress.at.the.moment..Scientists.of.several.countries.have.joined.into.Working.Group.4.“Biotechnological.Approaches.for.Pome.Fruit.Trees”.of.the.European.COST-Action. 864. “PomeFruitHealth.”. They. evaluate. various. vector. systems.(an. example. is. shown. in. Figure. 5.8). to. find. the. most. usable. system. for. apple.transformation.

Other.technologies.such.as.transformation.without.the.use.of.marker.genes.have.also.been.tested.on.apple.12,13.While.the.results.are.promising,.no.molecular.evidence.exists.to.date.confirming.these.results.

All.of.these.technologies.offer.the.possibility.to.transfer.a.gene.of.interest.from.one.to.another.genotype.from.the.same.or.a.crossable.species.without.DNA.from.noncrossable.organisms..In.Europe.the.first.commercial.GM.plant.will.likely.contain.

ihp- CHS-RNAi Control

FIGURE 5.7 (See color insert.).Transient.silencing.of.the.chalcone.synthase.(CHS).gene.in.strawberry.fruits.(left).after.agroinfiltration.using.the.ihp-CHS-RNAi.gene.construct.(accord-ing.to.Hoffmann.et.al.44)..(The.figure.was.kindly.provided.by.Wilfried.Schwab,.Technical.University.Munich,.Biomolecular.Food.Technology,.Germany.)

Page 156:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

142 Transgenic Horticultural Crops: Challenges and Opportunities

a. gene. transferred. from. a. crossable. species. with. its. native. introns. and. flanking.regions,.such.as.native.promoter.and.terminator.in.a.sense.orientation..Such.“cisgenic”.plants11.will.probably.be.sooner.accepted.than.GM.plants.containing.marker.genes.and.genes.of.noncrossable.species.

REFERENCES

. 1.. Block,. G.,. Patterson,. B.,. and. Subar,.A.,. Fruit,. vegetables. and. cancer. prevention:.A review.of.the.epidemiological.literature..Nutrition and Cancer,.18,.1,.1992.

. 2.. Ferro-Luzzi,.A..et.al.,.The.Mediterranean.diet.revisted:.Focus.on.fruit.and.vegetables..International Journal of Food Science and Nutrition,.45,.291,.1994.

. 3.. Morris,. D.M.,. Kritchevsky,. S.B.,. and. Davis,. C.E.,. Serum. carotenoids. and. coronary.heart.disease:.The.lipid.research.clinics.coronary.primary.prevention.trial.and.follow-up.study..The Journal of the American Medical Association,.274,.1439,.1994.

. 4.. Flachowsky,. H.. et. al.,.A. review. on. transgenic. approaches. to. accelerate. breeding. of.woody.plants..Plant Breeding,.128,.217,.2009.

FIGURE 5.8 (See color insert.).Heat.stress.induced.removal.of.the.nptII.marker.gene.on.apple..Transgenic.apple.plants.containing.the.nptII.marker.gene.and.an.Flp.recombinase.gene.between. two.FRT.recombination.sites.were.produced..The.expression.of. the.Flp. recombi-nase.is.controlled.by.a.heat-stress.inducible.promoter..Both.genes.(nptII.and.Flp).are.located.between.the.CaMV.35S.promoter.and.the.uidA.marker.gene..In.transgenic.plants.containing.nptII.and.Flp.no.GUS.gene.expression.is.possible.(left),.because.the.CaMV.35S::uidA.reading.frame.is.interrupted..The.reading.frame.is.restored.by.excision.of.nptII.and.Flp..GUS.expres-sion.is.only.possible.in.cells.in.which.both.genes.have.successfully.been.removed.(right)..(The.figure.was.kindly.provided.by.Katja.Herzog,.Julius.Kühn-Institut,.Federal.Research.Centre.for.Cultivated.Plants.(JKI),.Institute.for.Breeding.Research.on.Horticultural.and.Fruit.Crops.Dresden,.Germany;.unpublished.)

Page 157:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

143Transgenic Fruit Crops in Europe

. 5.. Zhu,. L.H.. and. Welander,. M.,.Adventitious. shoot. regeneration. of. two. dwarfing. pear.rootstocks.and.the.development.of.a.transformation.protocol..Journal of Horticultural Science & Biotechnology,.75,.745,.2000.

. 6.. Zhu,.L.H..et.al.,.Transformation.of.the.apple.rootstock.M.9/29.with.the.rolB.gene.and.its.influence.on.rooting.and.growth..Plant Science,.160,.433,.2000.

. 7.. Zhu,.L.H.,.Ahlman,.A.,.Li,.X.Y.,.and.Welander,.M.,.Integration.of.the.rolA.gene.into.the.genome.of.the.vigorous.apple.rootstock.A2.reduced.plant.height.and.shortened.inter-nodes..Journal of Horticultural Science & Biotechnology,.76,.758,.2001.

. 8.. Zhu,.L.H..et.al.,.Detection.of.transgenes.in.apple.rootstocks.using.anchored.PCR..Acta Horticulturae,.625,.331,.2003.

. 9.. Welander,.M.,.Zhu,.L.H.,.and.Li,.X.Y.,.Transformation.of.dwarfing.apple.and.pear.root-stocks.with.the.rolB.gene.and.its.influence.on.rooting.and.growth..Acta Horticulturae,.663,.437,.2004.

. 10.. Zhu,.L.H..et.al.,.Improvement.of.rooting.and.reduction.in.plant.height.in.apple.and.pear.through.gene.transfer..Acta Horticulturae,.738,.353,.2007.

. 11.. Joshi,. S.. et. al.,. Approaches. for. development. of. cisgenic. apples.. Transgenic Plant Journal, 3,.40,.2009.

. 12.. Schouten,.H.J.,.Krens,.F.A.,.and.Jacobsen,.E.,.Cisgenic.plants.are.similar.to.traditionally.bred.plants..EMBO Reports,.7,.750,.2006.

. 13.. Schouten,.H.J.,.Krens,.F.A.,.and.Jacobsen,.E.,.Do.cisgenic.plants.warrant.less.stringent.oversight?.Nature Biotechnology,.24,.753,.2006.

. 14.. Jacobsen,.E..and.Schouten,.H.J.,.Cisgenesis.strongly.improves.introgression.breeding.and.induced.translocation.breeding.of.plants..Trends in Biotechnology,.25,.219,.2007.

. 15.. Schouten,.H.J..et.al.,.Cisgenesis.is.a.promising.approach.for.fast,.acceptable.and.safe.breeding.of.pip.fruit..Acta Horticulturae,.814,.199,.2009.

. 16.. Vinatzer,.B.A..et.al.,.Apple.contains.receptor-like.genes.homologous.to.the.Cladosporium fulvum.resistance.gene.family.of.tomato.with.a.cluster.of.genes.cosegregating.with.Vf.apple.scab.resistance..Molecular Plant–Microbe Interactions,.14,.508,.2001.

. 17.. Barbieri,.M..et.al.,.Progress.of.map-based.cloning.of.the.Vf-resistance.gene.and.func-tional. verification:. Preliminary. results. from. expression. studies. in. transformed. apple..Hortscience,.38,.329,.2003.

. 18.. Belfanti,.E..et.al.,.The.HcrVf2.gene.from.a.wild.apple.confers.scab.resistance.to.a.trans-genic.cultivated.variety..Proceedings of the National Academy of Sciences of the United States of America,.101,.886,.2004.

. 19.. Gessler,. C.. et. al.,.Venturia. inaequalis. resistance. in. apple.. Critical Reviews in Plant Sciences,.25,.473,.2006.

. 20.. Bethge,.P.,.Verbotene.Frucht..Der Spiegel,.50,.164,.2008.

. 21.. Gilissen,.L.J.W.J..et.al.,.Silencing.the.major.apple.allergen.Mal d 1.by.using.the.RNA.interference.approach..Journal of Allergy and Clinical Immunology,.115,.364,.2005.

. 22.. Allan,.A.C.,.Hellens,.R.P.,.and.Laing,.W.A.,.MYB.transcription.factors.that.colour.our.fruit..Trends Plant Science,.13,.99,.2008.

. 23.. Espley,.R.V..et.al.,.Red.colouration.in.apple.fruit.is.due.to.the.activity.of.the.MYB.tran-scription.factor,.MdMYB10. Plant Journal,.49,.414,.2006.

. 24.. Takos,.A.M..et.al.,.Light. induced.expression.of.a.MYB.gene.regulates.anthocyanin.biosynthesis.in.red.apples..Plant Physiology,.142,.1216,.2006.

. 25.. Gentile,.A..et.al.,.Enhanced.resistance. to.Phoma tracheiphila.and.Botrytis cinerea. in.transgenic. lemon. plants. expressing. a. Trichoderma harzianum. chitinase. gene.. Plant Breeding,.126,.146,.2007.

. 26.. Rugini,.E..and.Guiterrez-Presce,.P.,.Transgenic.Prunus.fruit.species.(almond,.apricot,.cherry.rootstocks,.sour.and.sweet.cherry,.peach.and.plum),. in:.Biotechnology in Agriculture and Forestry,.Bajaj,.Y.P.S..(Ed.),.Springer,.Berlin,.Germany,.vol..44,.p..245,.1999,.chap..Transgenic.trees.

Page 158:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

144 Transgenic Horticultural Crops: Challenges and Opportunities

. 27.. Vigne,. E.,. Komar,. V.,. and. Fuchs,. M.,. Field. safety. assessment. of. recombination. in.transgenic. grapevines,. expressing. the. coat. protein. gene. of. Grapevine fanleaf virus. Transgenic Research,.13,.165,.2004.

. 28.. Costantini,. E.. et. al.,. Auxin. synthesis-encoding. transgene. enhances. grape. fecundity..Plant Physiology,.143,.1689,.2007.

. 29.. Németh,. M.,. History. and. importance. of. plum pox. in. stone-fruit. production.. OEPP/EPPO Bulletin,.24,.525,.1994.

. 30.. Roy,.A.S.. and. Smith,. I.M.,. Plum pox. situation. in. Europe.. OEPP/EPPO Bulletin,.24, 515,.1994.

. 31.. Scorza,.R..and.Ravelonandro,.M.,.Control.of.Plum pox virus.through.the.use.of.geneti-cally.modified.plants..OEPP/EPPO Bulletin,.36,.337,.2006.

. 32.. Kegler,.H..and.Hartmann,.W.,.Present.status.of.controlling.conventional.strains.of.plum pox virus,.in:.Plant Virus Disease Control..Hadidi,.A.,.Khetarpal,.R.K.,.and.Koganezawa,.H..(Eds.),.APS.Press,.St..Paul,.MN,.pp..616–628,.1998.

. 33.. Laimer. da. Câmara. Machado,. M.. et. al.,. Regeneration. of. transgenic. plants. of.Prunus armeniaca. containing. the. coat. protein. gene. of. Plum Pox Virus.. Plant Cell Reports,.11, 25,.1992.

. 34.. Scorza,.R..et.al.,.Transgenic.plums.(Prunus domestica.L.).express.the.plum pox.coat.protein.gene..Plant Cell Reports,.14,.18,.1994.

. 35.. Fuchs,.M..et.al.,.Safety.assessment.of.transgenic.plums.and.grapevines.expressing.viral.coat. protein. genes:. New. insights. into. real. environmental. impact. of. perennial. plants.engineered.for.virus.resistance..Journal of Plant Pathology,.89,.5,.2007.

. 36.. Hily,.J.M..et.al.,.Stability.of.gene.silencing-based.resistance. to.Plum pox virus. in.transgenic.plum.(Prunus domestica.L.).under.field.conditions..Transgenic Research,.13,.427,.2004.

. 37.. Malinowski,.T..et.al.,.Field.trials.of.plum.clones.transformed.with.the.Plum pox virus.coat.protein.(PPV-CP).gene..Plant Disease,.90,.1012,.2006.

. 38.. Scorza,.R..et.al.,.Deregulation.of.plum.pox.resistant.transgenic.plum.‘Honey.Sweet’..Acta Horticulturae,.738,.669,.2007.

. 39.. Mezzetti,. B.. et. al.,. The. defH9-iaaM. auxin-synthesizing. gene. increases. plant. fecun-dity. and. fruit. production. in. strawberry. and. raspberry.. BMC Biotechnology,. 4:4.doi:10.1186/1472-6750-4-4,.2004.

. 40.. Fenning,.T.M..and.Gershenzon,.J.,.Where.will.the.wood.come.from?.Plantation.forests.and.the.role.of.biotechnology..Trends in Biotechnology,.20,.291,.2002.

. 41.. Peña,.L..et.al.,.Constitutive.expression.of.Arabidopsis.LEAFY.or.APETALA1.genes.in.citrus.reduces.their.generation.time..Nature Biotechnology,.19,.263,.2001.

. 42.. Hanke,.M.V..et.al.,.No.flower.no.fruit—Genetic.potentials.to.trigger.flowering.in.fruit.trees..Genes,.Genomes and Genomics,.1,.1,.2007.

. 43.. Flachowsky,.H..et.al.,.Overexpression.of.BpMADS4.from.silver.birch.(Betula pendula.Roth.). induces.early.flowering. in.apple. (Malus x domestica.Borkh.)..Plant Breeding,.126,.137,.2007.

. 44.. Hoffmann,.T.,.Kalinowski,.G.,.and.Schwab,.W.,.RNAi-induced.silencing.of.gene.expres-sion.in.strawberry.fruit.(Fragaria.×.ananassa).by.agroinfiltration:.A.rapid.assay.for.gene.function.analysis..Plant Journal,.48,.818,.2006.

. 45.. Griesser,.M..et.al.,.Redirection.of.flavonoid.biosynthesis.through.the.down-regulation.of.an.anthocyanidin.glucosyltransferase.in.ripening.strawberry.fruit..Plant Physiology,.146,.1528,.2008.

. 46.. Krens,.F.A..et.al.,.Clean.vector.technology.for.marker-free.transgenic.fruit.crops..Acta Horticulturae,.663,.431,.2004.

Page 159:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

145Transgenic Fruit Crops in Europe

. 47.. Ballester,.A.,.Cervera,.M.,.and.Pena,.L.,.Efficient.production.of.transgenic.citrus.plants.using.isopentenyl.transferase.positive.selection.and.removal.of.the.marker.gene.by.site-specific.recombination..Plant Cell Reports,.26,.39,.2007.

. 48.. Schaart,. J.G.. et. al.,. Effective. production. of. marker-free. transgenic. strawberry. plants.using.inducible.site-specific.recombination.and.a.bifunctional.selectable.marker.gene..Plant Biotechnology Journal,.2,.233,.2004.

. 49.. López-Noguera,. S.,. Petri,. C.,. and. Burgos,. L.,. Production. of. marker-free. transgenic.plants.after.transformation.of.apricot.cultivars..Acta Horticulturae,.717,.225,.2006.

. 50.. López-Noguera,. S.,. Petri,.C.,. and. Burgos,. L.,. Using.MAT. vector. system. to. produce.marker-free.transformed.apricot.plants..Acta Horticulturae,.738,.607,.2007.

Page 160:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,
Page 161:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

147

6 Transgenic Horticultural Crops on the African Continent

Idah Sithole-Niang

INTRODUCTION

Globally,.the.area.planted.to.genetically.modified.crops.has.continued.to.increase..In.2008,.the.area.planted.to.genetically.modified.organisms.(GMOs).was.125.mil-lion. hectares,. representing. 13.3  million. farmers. in. 25. countries. made. up. of. 15.developing.countries.and.10.developed.countries.1.Of. these.countries,.only. three.African.countries.have.commercialized.GMOs,.namely,.South.Africa,.Egypt,.and.Burkina. Faso,. with. the. latter. two. being. in. their. first. year. of. commercialization..South.Africa.first.commercialized.Bacillus thuringiensis.(Bt).cotton.in.1997,.and.in.subsequent.years,.six.other.crop/trait.combinations.would.be.commercialized:.Bt.maize.in.1998,.round-up.ready.(RR).soybean.in.2000,.RR.cotton.also.in.2000,.herbicide.tolerant.(HT).maize.in.2002,.the.stacked.traits.HT.and.Bt.cotton.in.2005,.

CONTENTS

Introduction............................................................................................................. 147South.Africa............................................................................................................ 149

Bt.Potato............................................................................................................. 149Fruits.................................................................................................................. 150

Egypt....................................................................................................................... 150Squash,.Melon,.Watermelon,.and.Cucumber..................................................... 150

Kenya...................................................................................................................... 150Sweet.Potato....................................................................................................... 150

Uganda.................................................................................................................... 151Transgenic.Banana............................................................................................. 151

Ongoing.Projects..................................................................................................... 151Status.of.Biosafety.Regulation.in.Selected.African.Countries............................... 152Expected.Economic.Effects.of.Introducing.Transgenic Horticultural.Crops.in Ghana.................................................................................................................. 152Way.Forward:.Synergies.and.Lessons.Learned...................................................... 153References............................................................................................................... 153

Page 162:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

148 Transgenic Horticultural Crops: Challenges and Opportunities

and.HT.and.Bt.maize.in.2007.2.Three countries.are.still.a.small.number.of.coun-tries.in.Africa.but.nevertheless.a.welcome.improvement.on.previous.years,.as.the.spread.now.covers.all.regional.blocks.on.the.continent. that.could.result.in.viable.synergies..For.the.first.time,.each.block.has.a.regional.lead.country,.Egypt.to.the.north,.Burkina.Faso.to.the.west,.and.South.Africa.to.the.east.and.south..The.signing.into.law.of.the.draft.Biosafety.bill.in.Kenya.in.January.2009.as.well.as.the.fact.that.Kenya.already.has.a.number.of.GM.crops.in.the.pipeline.clearly.places.Kenya.in.the.driving.seat.to.take.the.lead.in.the.east.

In.2004,. the. International.Food.Policy. Research. Institute. (IFPRI).published. a.study.on.the.development.of.transgenic.crop.varieties.in.Africa.3.The.study.showed.that.there.were.37.events.being.developed.on.the.continent,.half.of.which.were.virus.and.insect.resistance.and.the.rest.representing.agronomic.performance,.fungal.resis-tance,.product.quality,.herbicide. tolerance,.and.bacterial. resistance.4.South.Africa.had.the.widest.diversity.of.crops.under.study,.and.the.events.spanned.seven.traits..Twenty-one.out.of.the.28.events.had.been.developed.independent.of.public.private.partnerships.using.local.germplasm..Up.until.2007,.South.Africa.was.the.only.coun-try.to.have.commercialized.GM.crops.on.the.continent.5.These.were.seven.in.all,.maize.with. insect. resistance,.both.white.and.yellow,.HT.soybean,. insect. resistant.cotton,.and.cotton.with.stacked.gene.traits,.made.up.of.insect.resistance.and herbi-cide.tolerance..To.date,.both.Egypt.and.Burkina.Faso.have.commercialized.Bt.maize.and.Bt.cotton,.respectively.1

Globally,. the. transgenic. horticultural. crops. commercialized. to. date. include.tomato,. sweet. corn,. potato,. squash,. papaya,. sweet. pepper,. and. biotech. carnation,.with.the.United.States.and.China.leading.in.research.and.development.(R&D).6.In.Africa,.while.having.a.wide.range.of.horticultural.crops.(vegetable,.fruits,.nuts,.and.ornamentals),. there.are.a. few. transgenic.horticultural.crops. that.have.been.devel-oped,.and. these. include.squash,.melon,.watermelon,.grapes,.apples,.potato,. sweet.potato,.groundnut,.and.banana..These.crops.are.limited.to.four.countries.only:.South.Africa,.Egypt,.Kenya,.and.Uganda.(Table.6.1).

Some.of.the.opportunities.for.developing.transgenic.horticultural.products.desired.by.consumers.and.producers.include7

•. Novel.genetic.methods.for.disease.and.insect.protection•. Weed.control•. Longer-lived.flowers•. Slower-growing.grass

In.terms.of.transgenic.horticultural.crops,.the.limited.market.distribution.and.R&D.efforts.are.not.unique.to.Africa..The.first.transgenic.horticultural.crop,.Flavr.Savr,.developed.to.have.an.extended.shelf.life,.and.another.version.with.higher.viscosity.intended.for.easier.processing.was.commercialized.in.1994.in.the.United.States.but.has. since. been. withdrawn.. Subsequently,. sweet. corn,. potato,. squash,. and. papaya.varieties.made.to.resist.viruses.were.also.developed.but.failed.to.garner.a.significant.market. share..To.date,.only. the.virus-resistant.papaya.enjoys.a. significant.market.share.with.70%.of.the.Hawaiian.crop.shipped.to.mainland.United.States.annually.being.from.this.product.7

Page 163:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

149Transgenic Horticultural Crops on the African Continent

The.major.challenges,.on.the.other.hand,.have.been.summarized.by.Bradford.and.Alson7.as.encompassing.technical,.economic,.regulatory,.and.market-related.factors.

While. a. number. of. products. have. been. developed. and. tested,. unfortunately.they.have.not. reached.commercialization.8.Consequently,. there.has.been.a.drastic.decrease.in.R&D.efforts.going.into.horticultural.products.with.investors.choosing.to.invest.in.breeding.and.the.use.of.molecular.markers.9,10

SOUTH AFRICA

bt potato

The.case.studies.on.Bt.potato.in.both.Egypt11.and.South.Africa.have.been.extensively.covered12.and.will.not.be.described.in.detail.here..South.Africa.has.had.11.years.of.experience.working.with.Bt.potato,.and.five.of.those.years.have.been.spent.on.con-fined.field.trials.(CFTs)..The.Agricultural.Research.Council.(ARC).has.now.applied.for.approval.of.larger-scale.field.trials.in.a.number.of.selected.areas.and.that.approval.is.still.awaited..Just.as.was.found.in.Egypt,.the.Bt.technology.for.resistance.to.potato.tuber.moth.works.extremely.well..The.outstanding.safety.concerns.have.to.do.with.stewardship.issues,.seeing.that.South.Africa’s.neighbors,.except.for.Zimbabwe,.do.not.have.functioning.biosafety.regulations.in.place.to.safeguard.the.transboundary.movement.of.potato,.a.vegetatively.propagated.crop.

TABLE 6.1Transgenic Horticultural Crops and Traits under Commercialization and Status of NBFs in Four African Countries

Country Transgenic Hort Crops and Traits Biosafety Law CPB Commercialization

Egypt Watermelon-VR Yes ✓ Bt.maize.2008

Squash-VR

Melon-VR

Cucumber-VR

Potato-IR

Kenya Sweet.potato-VR 2009 ✓ None

South.Africa Grapes-FRPotato-IRSweet.potato-VRStrawberries-RR

1997,.2003 ✓ Bt.maize-yellowBt.maize-whiteBt.cottonRR-soybean

Stacked.gene.traits

Uganda Banana-FR Draft.bill ✓ None

Banana-AP

Banana-BR

Banana-NE

Note:. AP,. agronomic.performance;.BR,.bacterial. resistance;.CPB,.Cartagena.Protocol.on.Biosafety;.FR,.fungal.resistance;.IR,.insect.resistance;.NE,.nutritional.enhancement;.RR,.round-up.ready;.and.VR,.virus.resistance;.NBFs,.national.biosafety.frameworks.

Page 164:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

150 Transgenic Horticultural Crops: Challenges and Opportunities

fruItS

The.ARC-Infruitec.has.requested.approval.for.a.CFT.of.fungal.resistant.grapes.to.see.if.the.reporter.gene.works.well..Similarly,.transgenic.apples.have.undergone.CFTs.for.the.last.5–7.years.to.see.if.the.novel.genes.are.expressed..The.first.GM.straw-berry.with.tolerance.to.glyphosate.was.developed.locally.and.tested.in.a.field.trial.in.the.early.1990s..The.RR.gene.worked.well,.but.the.project.did.not.go.commercial..Meanwhile,.the.landscape.for.transgenic.horticultural.crops.might.still.change.given.that.Monsanto.Company.acquired.Seminis.(a.seed.company),.a.year.ago.

EGYPT

SQuaSh, melon, watermelon, and cucumber

Egypt. produces. an. estimated. 46,000. hectares. (ha). of. watermelon,. 28,000.ha. of.squash,.pumpkin.and.gourds,.20,000.ha.cantaloupes.and.other.melons,.and.18,000.ha.of.cucumber.annually..Production.constraints. are.due. to.both.biotic. (viruses).and.abiotic. (drought. and. salinity). stresses.. The. most. economically. important. viruses.being.zucchini.yellow.mosaic.virus.(ZYMV),.watermelon.mosaic.virus.(WMV),.the.watermelon.strain.of.papaya.ringspot.virus.(PRSV-W),.and.cucumber.mosaic.virus.(CMV)..The.ZYMV.coat.protein.gene.was.cloned.and.sequenced.at.Michigan.State.University.and.used.to.develop.transgenic.cucurbits..In.collaboration.with.Egyptian.scientists.at.the.Agricultural.Genetic.Engineering.Research.Institute.(AGERI),.trans-genic.cucurbits/melon.and.squash.were.produced..The.transformation.technology.for.melon.together.with.the.coat.protein.gene.were.transferred.to.AGERI.and.used.to.produce.local.transgenic.melons.and.squash..The.technology.also.resulted.in.local.scientists.developing.transformation.and.regeneration.protocols.for.local.varieties.of.both.melon.and.watermelon.11

While.all. these.efforts.have.worked.well,. the.actual.challenge.for.Egypt. is. the.limited.biosafety.data.that.are.available.to.support.commercialization.of.these.prod-ucts..Furthermore,.the.Egyptian.government.might.have.been.reluctant.to.tackle.the.anti-GM.activism.that.surrounded.the.Bt.potato,.although.it.is.interesting.to.note.that.in.2008,.Egypt.did.indeed.commercialize.Bt.maize,.a.food.crop.1

KENYA

Sweet potato

The.average.yield.of.sweet.potato.in.Kenya.is.6.ton/ha,.whereas.in.China.it.is.18.ton/ha..While.sweet.potato.is.widely.grown.in.Kenya,.the.yields.continue.to.decline.due. to. nematode. and. viral. diseases. with. the. sweet. potato. feathery. mottle. virus.(SPFMV).being.the.major.virus..Transgenic.sweet.potato.carrying.the.coat.protein.gene.from.SPFMV.was.developed.by.Kenyan.and.Monsanto.scientists.using.mate-rials. from. Kenya.. When. technical. problems. developed. with. this. material,. the.material.from.Papua.New.Guinea.was.used.instead..When.transgenic.sweet.potatoes.were.field.tested.in.Kenya,.the.resistance.broke.down.and.a.whole.negative.publicity.ensued.13.The.development. of. virus-resistant. sweet.potato. still. continues. and. this.

Page 165:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

151Transgenic Horticultural Crops on the African Continent

time.in.collaboration.with.scientists.at.the.Vegetable.and.Ornamental.Plant.Institute.of.the.Agricultural.Research.Council.(VOPI-ARC).in.South.Africa..While.negative.publicity.surrounded.the.Kenyan.VR-sweet.potato,.a.lot.of.the.effort.in.developing.a.biosafety.regulatory.framework.in.Kenya.came.as.result.of.this.project..It.was.used.at.every.step.to.fine.tune.and.streamline.the.process..The.fact.that.certain.experiments.fail.is.precisely.the.reason.why.field.trials.are.required.to.see.whether.the.material.holds. up.under.field. conditions. and. that.practice.must. be. encouraged.. It.must. be.encouraged.as.long.as.the.right.questions.are.asked.at.the.right.stage.of.development,.that.is,.not.asking.for.food.safety.data.when.all.an.application.is.seeking.to.address.is.a.performance.under.field.conditions..In.January.2009,.President.Kibaki.signed.the.Biosafety.Bill.into.law..This.heralds.a.new.era.for.Kenya,.which.already.boosts.a.number.of.GM-products.in.the.pipeline.and.two.crops.under.CFTs,.Bt.cotton,.and.VR-cassava.

UGANDA

tranSGenIc banana

Bananas. are. a.major. staple. food. in. the.Great.Lakes. regions.with.per. capita. con-sumption.estimated.at.450.kg/year..Major.production.constraints.are.due.to.weevils.(Cosmopilities sordidud),. nematodes. (Pratylenchus. sp.,. and. Helicotylenchus. sp.).and.the.fungal.(Black.Sigatoka,.fusarium.wilt),.viral.(Banana.buchy-top.virus.and.Banana.streak.virus),.and.bacterial.(banana.bacterial.wilt).diseases.14.The.national.banana.research.program.has.designed.both.short-.(germplasm.evaluation.for.resis-tance,.importation.of.hybrids,.and.propagation.of.clean.planting.materials).and.long-term. (development. of. transgenic. materials). strategies. to. address. these. problems..Through. an. Agricultural. Biotechnology. Support. Project. II. (ABSPII). partnership.with,.the.Catholic.University.of.Leuven.(KUL),.the.University.of.Leeds,.the.United.Kingdom,.and.the.Ugandan.National.Agricultural.Research.Organization.(NARO).transgenic.banana.carrying.the.rice.antifungal.chitinase.resistance.gene,.RCG3,.to.control.Black.Sigatoka,.and.a.maize.cystatin.gene.and.other.nematicidal.genes.have.also.been.developed.and.are.being.evaluated..To.date,.a.CFT.for.banana.with.fun-gal. resistance. to. Black. Sigatoka. is. being.conducted. at. the. Kawanda. Agricultural.Research.Institute,.National.Agricultural.Research.Laboratory.(NARL)..The.NARL.also.has.other.transgenic.bananas.in.the.pipeline,.namely,.banana.biofortified.with.provitamin. A,. zinc,. and. iron,. banana. with. a. cell. cycle. regulatory. gene. for. rapid.growth,.and.banana.with.bacterial.wilt-.or.weevil-resistance.

ONGOING PROJECTS

The. ABSPII. located. at. Cornell. University,. United. States,. in. collaboration. with.Malian.scientists.engineered.a.gene.for.resistance.to.potyviruses.from.pepper.(Pvr1).into.tomato.(http://www.absp2.cornell.edu/projects)..Furthermore,.they.are.breeding.tomato.with.resistance.to.the.tomato.yellow.leaf.curl.virus.(TYLCV),.with.the.goal.of.backcrossing. the. resistance.genes. into. locally.preferred.varieties.with. the.final.product.containing.both.conventionally.bred.resistance.to.TYLCV.and.genetically.engineered.resistance.to.the.potyvirus.

Page 166:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

152 Transgenic Horticultural Crops: Challenges and Opportunities

The.African.Agricultural.Technology.Foundation.(AATF).has.acquired.a.royalty-free.technology.license.agreement.with.Academia.Sinica.of.Taiwan.for.their.plant.ferredoxin-like.protein.(pflp).from.sweet.peppers.for.use.in.conferring.bacterial.wilt.resistance.in.banana..The.AATF.has.in.turn.granted.a.sublicense.to.the.International.Institute.of.Tropical.Agriculture.(IITA).for.this.purpose..The.pflp.gene.has.already.been.used.successfully.in.rice,.tobacco,.potato,.tomato,.and.orchids..Current.efforts.on. transgenic. banana. have. already. gone. beyond. the. proof-of-concept. stage. and.shown.to.be.resistant.when.tested.against.inoculum.of.Xanthomonas campestris.pv.musacearum.

The.International.Crops.Research.Institute.for.the.Semi-Arid.Tropics.(ICRISAT).in. India.has.developed.groundnuts. resistant. to.groundnut. rosette.virus,. and. these.plants.are.currently.being.evaluated.in.South.Africa..A.gene.for.enhanced.proline.production. to. confer.drought. tolerance.was. incorporated. into.groundnut. in.South.Africa.and.is.currently.being.evaluated.

STATUS OF BIOSAFETY REGULATION IN SELECTED AFRICAN COUNTRIES

To.date,.there.are.11.African.countries.with.fully.developed.national.biosafety.frame-works.(NBFs)..Some.laws.are.explicit,.such.as.the.ones.in.South.Africa.and.Zimbabwe,.whereas.others.such.as.those.for.Egypt.and.Tanzania.are.implicit.and.embedded.in.other.national.laws..There.are.13.countries.with.Interim.NBFs,.15.that.are.described.as.a.work.in.progress,.and.16.that.have.no.NBFs..Of.these.countries,.only.three.have.commercialized. transgenic.crops:.South.Africa,.Egypt,.and.Burkina.Faso..Uganda.launched.two.Bt.cotton.CFTs.in.2009:.one.at.Serere.and.the.other.at.Kasese..Kenya.has.conducted.a.number.of.CFTs.while.Nigeria.has.given.approval.for.two.CFTs.on.Bt-cowpea.and.VR-cassava.

EXPECTED ECONOMIC EFFECTS OF INTRODUCING TRANSGENIC HORTICULTURAL CROPS IN GHANA

In.2007,.IFPRI15–18.conducted.an.economic.impact.assessment.study.on.the.potential.of.introducing.transgenic.tomato,.cabbage,.garden.egg,.and.cassava.in.Ghana..The.study.looked.at.the.feasibility,.cost-effectiveness,.and.long-term.impact.on.produc-tivity.and.yield.stability..The.study.showed.that.the.benefits.of.using.these.transgenic.crops.would.accrue. to.both. the. individual.as.well.as. the.entire.Ghanaian.society..Since.the.cost.of.pesticides.for.use.on.tomato,.cassava,.and.garden.egg.is.minimal,.the.investments.in.pesticides.as.a.percentage.of.total.production.costs.would.be.low;.however,. in.the.case.of.cabbage,.the.costs.would.be.significant.and.were.likely.to.influence.adoption..In.the.long.term,.any.technology.that.was.likely.to.reduce.yield.variability.was.also. likely. to.contribute.positively. to.poverty. reduction..Since. the.export.levels.to.Europe,.of.the.crops.under.study,.are.low,.the.benefits.at.the.farm.level.were.likely.to.be.higher.than.the.potential.losses.in.trade.

These.findings.have.policy.implications.and.highlight.the.role.that.government,.the.public,. and.private. sectors. could.play. if. the. farmers. are. to. realize. maximum.

Page 167:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

153Transgenic Horticultural Crops on the African Continent

benefits.from.the.technology..The.public.sector.could.be.involved.in.the.development.of.the.GM.varieties,.and.those.varieties.should.meet.both.consumer.and.producer.demand.and.preference..The.private.sector.could. lead.in.developing.a.viable.veg-etable.seed.multiplication.and.distribution.sector,.while.the.government.could.play.a.role.in.the.provision.of.an.effective.agricultural.extension.service.

WAY FORWARD: SYNERGIES AND LESSONS LEARNED

Biosafety. regulatory. frameworks. are. still. highly. fragmented.. Even. the. CPB. has.not.managed.to.get.countries. to.work.around.the.regional.economic.communities.(RECs)..Approaches.are.not.aligned.regionally.nor.are.the.limited.skills.ever.shared.giving.rise.to.even.more.stringent.regulations.2.Because.some.multinational.compa-nies.have.set.such.a.high.regulatory.bar,.it.will.be.difficult.for.African.countries,.most.of.them.having.limited.investments.in.the.area.to.fulfill.such.a.regulatory.package.

The.first.Bt. cotton. that.was.developed.by. China. is. already.being.marketed. in.India..This.is.an.interesting.case.of.south–south.collaboration.that.African.countries.could.emulate..The.notion.that.biotechnology.is.not.for.the.small-scale.farmer.is.far.from.the.truth..Indian.farmers.are.already.reaping.massive.welfare.benefits.from.the.technology.1.Meanwhile,.African.countries.still.operate.under.fear.of.losing.markets.even. when. the. evidence. points. to. a. nonexistent. threat.. The. Common. Market. for.Eastern.and.Southern.Africa.(COMESA).commissioned.a.study.that.analyzed.the.value.and.volume.of.agricultural.food.and.feed.exports.by.six.African.countries.to.various.regions.of.the.world.including.the.EU..Of.the.countries.under.study,.espe-cially.for.Kenya.and.Uganda.only.1.1%.and.6.5%.of.total.export.value.was.at.risk.of.being.rejected,.respectively.19.Meanwhile,.the.emergence.of.an.enabling.environment.such.as.the.Open.Forum.on.Agricultural.Biotechnology.(OFAB).represents.a.pub-lic.platform.that.is.fast.gaining.political.mileage..Under.the.auspices.of.the.AATF.and.with.patronage.of.the.Kenyan.Minister.for.Science.and.Technology,.OFAB.was.formed.in.2006.to.provide.a.monthly.platform.for.the.exchange.of.factual.informa-tion.amongst.stakeholders.in.agricultural.biotechnology..The.Uganda.chapter,.which.is.equally.active,.was.formed.in.2008,.while.the.Nigerian.chapter.was.launched.in.April.2009,.and.the.Tanzanian.chapter.was.launched.in.May.2009.20.With.six.coun-tries.outside.South.Africa.that.have.conducted.CFTs.for.a.number.of.crops,.perhaps,.the.time.has.come.when.African.countries.can.do.away.with.ambivalence.toward.the.technology.and.begin.to.reap.the.benefits.

REFERENCES

. 1.. James,.C.,.Global Status of Commercialized Biotech /GM Crops: 2008,.ISAAA.Brief.No..39,.ISAAA:.Ithaca,.NY,.2008.

. 2.. Van.der.Walt,.W.,.Final.report.on.the.collaborative.RABSAC-IFPRI-FANRPAN-PBS.II.project.report.for.SADC.with.focus.on.Malawi,.Mauritius.and.South.Africa,.Report.to.FANRPAN,.2009.

. 3.. Sithole-Niang,. I.,. Cohen,. J.,. and. Zambrano,. P.,. Putting. GMO. technologies. to. work:.Public.research.pipelines.in.selected.African.countries,.African Journal of Biotechnology,.3.(11),.564,.2004.

Page 168:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

154 Transgenic Horticultural Crops: Challenges and Opportunities

. 4.. Glover,.D.,.Agricultural.biotechnology.in.sub-Saharan.Africa:.Facts.and.figures,.SciDev.Net.. June. 5,. 2007,. http://rssww.scidev.net/en/features/agri-biotech-in-sub-saharan-africa-facts-and-figur.html,.January.17,.2010.

. 5.. Gain.Report,.Republic.of.South.Africa,.Biotechnology.Annual.Report,.2007.

. 6.. Huang,.J..and.Rozelle,.S.,.China.aggressively.pursuing.horticultural.and.plant.biotech-nology,.California Agriculture,.58.(2),.112,.2004.

. 7.. Bradford,.K.J..and.Alston,.J.M.,.Diversity.of.horticultural.biotech.crops.contributes.to.market.hurdles,.California Agriculture,.58.(2),.84,.2004.

. 8.. Fuchs,.M..and.Gonsalves,.D.,.Safety.of.virus-resistant. transgenic.plants. two.decades.after. their. introduction:. Lessons. from. realistic. field. assessment,. Annual Review of Phytopathology,.45,.173,.2008.

. 9.. Morris,.M.,.Edmeades,.G.,.and.Pehu,.E.,.The.global.need.for.plant.breeding.capacity:.What.roles.for.the.public.and.private.sectors?.HortScience,.41(1),.31,.2006.

. 10.. Pehu,. E.. and. Ragasa,. C.,.Agricultural. biotechnology:.Transgenics. in. agriculture. and.their.implication.for.developing.countries,.Background.paper.to.the.World.Development.Report,.2007.

. 11.. Brenner,. C.,. Telling Transgenic Technology Tales: Lessons from the Agricultural Biotechnology Support Project (ABSP) Experience,. ISAAA. Briefs. No.. 31,. ISAAA,.Ithaca,.NY,.2004.

. 12.. Eicher,.C..K.,.Maredia,.K.,.and.Sithole-Niang,.I.,.Crop.biotechnology.and.the.African.farmer,.Food Policy,.31,.504,.2006.

. 13.. Odame,.H.,.Kameri-Mbote,.P.,.and.Wafula,.D.,.Innovations.and.policy.process:.Case.of.transgenic.sweet.potato.in.Kenya,.Economic and Political Weekly,.July.6,.2002,.pp. 2770–2777.

. 14.. deVilliers,. S.. and. Ferguson,. M.,. Inventory. of. agricultural. biotechnology. in. southern.Africa,.Prepared.by.IITA.for.USAID-RCSA,.2004.

. 15.. Horna,.D.,.Smale,.M.,.and.Falck-Zepeda,.J.,.Assessing.the.economic.impact.of.geneti-cally.modified.crops.in.Ghana:.A.methodological.framework,.IFPRI.Policy.Brief,.1.of.5,.2007.

. 16.. Horna,.D.,.Smale,.M.,.and.Falck-Zepeda,.J.,.Assessing.the.economic.impact.of.geneti-cally.modified.crops.in.Ghana:.Virus.resistant.tomato,.IFPRI.Policy.Brief,.2.of.5,.2007.

. 17.. Horna,.D.,.Smale,.M.,.and.Falck-Zepeda,.J.,.Assessing.the.economic.impact.of.genetically.modified.crops.in.Ghana:.Insect.resistant.cabbage,.IFPRI.Policy.Brief,.3.of.5,.2007.

. 18.. Horna,.D.,.Smale,.M.,.and.Falck-Zepeda,.J.,.Assessing.the.economic.impact.of.genetically.modified.crops.in.Ghana:.Insect.resistant.garden.egg,.IFPRI.Policy.Brief,.4.of.5,.2007.

. 19.. Wafula,.D.,.Persley,.G.,.and.Karembu,.M.,.GMOs.and.Exports:.Demystifying.concerns.in.Africa,.Biosafety Policy Brief,.June.2008.

. 20.. Partnerships:.A.quarterly.newsletter.of.the.African.Agricultural.Technology.Foundation.2009,.vol..3.

Page 169:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

155

7 Transgenic Horticultural Crops in Asia

Desiree M. Hautea, Von Mark Cruz, Randy A. Hautea, and Vijay Vijayaraghavan

INTRODUCTION

Asia.is.home.to.more.than.half.of.the.world’s.population.and.many.of.the.countries.situated. in. the. region.are.developing.countries..According. to. the.United.Nations,.the.world’s.population.reached.6.82.billion.in.2009.with.the.population.in.Asia.at.approximately. 4.12. billion.. By. the. year. 2050,. this. is. projected. to. increase. to.6.01.billion,.which.is.about.54%.of.the.projected.world.total.of.11.03.billion.1.The.Asian.population.growth.coupled.with. increases. in.per.capita. incomes. caused.by.economic.growth.and.urbanization.has.rapidly.expanded.the.demand.for.food.and.other.resources.2.Most.notably,.the.change.in.consumption.patterns.and.diet.due.to.increasing.incomes.in.Asia.can.be.seen.as.a.shift.from.basic.staples.to.a.more.diver-sified.diet.of.meat,.vegetables,.fruits,.and.processed.foods.3.On.the.other.hand,.Asia.continues.to.have.the.highest.absolute.incidence.of.hunger,.accounting.for.about.two-thirds.of.the.world’s.hungry.people.4

The.large.food.market.and.demand.in.Asia.create.challenges.on.ways.to.ensure.increased. and. sustainable. food.production.. In. the.past,. the.Green.Revolution. has.helped.avert.widespread. food. shortages. in. the. region,.most.notably. in. the. Indian.subcontinent.and.countries.in.Southeast.Asia.5,6.The.continuing.challenge.to.provide.

CONTENTS

Introduction............................................................................................................. 155Horticulture.Crop.Supply.and.Demand.in.Asia...................................................... 156Overview.of.Current.Adoption.of.Transgenic.Crops.in.Asia.................................. 159Public.Acceptance.and.Perception.of.Biotech.Crops.in.Asia................................. 161Transgenic.Horticultural.Crops.in.the.Pipeline.in.Asia.......................................... 162Development.and.Delivery.of.Transgenic.Horticultural.Crops:.Experiences.and.Lessons.Learned.from.South.and.Southeast.Asia............................................ 165

Development.of.Transgenic.PRSV-Resistant.Papaya.for.Southeast.Asia.......... 166Development.and.Commercialization.of.Fruit.and.Shoot.Borer–Resistant.Eggplant.in.South.and.Southeast.Asia............................................................... 168

Conclusion.............................................................................................................. 170Acknowledgments................................................................................................... 171References............................................................................................................... 171

Page 170:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

156 Transgenic Horticultural Crops: Challenges and Opportunities

adequate.and.affordable.food.in.Asia.is.daunting.as.the.key.production.resources.of. available. arable. land. and. water. are. more. constrained. today. than. in. the. past..National. and. regional. research. and. development. programs. for. crop. improvement.and.management.remain.essential.to.meet.the.demands.for.staples.and.horticultural.products.such.as.vegetables.and.fruits..The.food.price.hikes.of.2008.provided.addi-tional.impetus.not.just.on.ensuring.food.security.but.also.food.self-sufficiency.

Numerous.published.studies.and.experiences.have.asserted.that.biotechnology.applications,.specifically.genetic.engineering.and.transgenesis,.could.make.a.sig-nificant.contribution.in.helping.conventional.systems.increase.yields.while.provid-ing. more. efficient. use. of. resources. and. products. that. benefit. human. health. and.the.environment.7.Studies.have.also.suggested.that.increasing.crop.yields.through.applications.of.agricultural.biotechnology.is.essential. to. increasing.food.produc-tion. to.meet. future.needs.8.Since.biotech.crops.were.first.commercialized,. there.has.been.a.steady. increase.in.adoption.of. the.four.major. transgenic.crops. in.the.market. with. around. 134. million. ha. planted. in. 25. countries. in. 2009.9. However,.from.the.time.the.first.transgenic.vegetable.(the.Flavr.Savr.tomato).was.put.out.to.market.in.1994,.there.has.been.only.a.handful.of.transgenic.horticultural.crops.that.followed.10.Among.these.are.the.virus.resistant.squash.and.papaya.in.the.United.States.and.the.virus-resistant.sweet.pepper.and.papaya.in.China..Several.reasons.on.the.slow.development.and.commercialization.of.products.of.horticultural.biotech-nology.include.the.technical.challenge.in.developing.genotype-independent.trans-formation.procedures.despite. the.fact. that.protocols. for.genetic. transfor.mation.have. been. developed. with. success. and. reported. in. horticultural. crops. such. as.Brassica,.cucumber,.chilli.pepper,.eggplant,.lettuce,.apple,.and.tomato.11–14.Where.Agrobacterium. transformation. method. is. used,. technical. challenges. remain. on.designing.strategies.to.avoid.its.persistence.in.plant.issues.especially.those.on.veg-etatively.propagated.fruit.trees.12.Other.than.the.technical.constraints,.economic,.regulatory,.and.market.factors.pose.additional.hurdles.to.developing.commercial.biotech.horticultural.crops.compared.to.biotech.field.crops.such.as.corn.or.soybean..For.example,.the.relatively.small.market.and.the.limited.hectarage.of.horticultural.crops. in.general. have.been. identified.as.major. factors. that. limit. the. recovery.of.product.development.costs.15–18.These.hurdles.limit.the.application.and.deployment.of.biotech.traits.and.products.that.can.potentially.provide.broader.direct.benefits.to.consumers.such.as.those.related.to.improving.nutritional.quality.or.enhancing.aesthetic.quality..Moreover,.the.fact.that.most.horticultural.crops.are.consumed.as.food,. in. raw.or.semi-raw.form,.apparently.elicits.a.more.extensive.and.demand-ing.food.safety.and.regulatory.requirements. to.ensure.consumer.confidence.and.market.acceptance.

HORTICULTURE CROP SUPPLY AND DEMAND IN ASIA

In.Asia,.horticulture.crops.mean.food,.income,.nutrition,.and.well-being,.particularly.for.women..Asia.contributes.a.substantial.proportion.to.the.global.horticultural.pro-duction,.particularly.vegetables.and.fruits..According.to.the.FAO,.the.area.harvested.in.the.region.in.2007.is.equivalent.to.about.73%.and.48%.of.the.world’s.vegetable.and.fruit.production.areas,.respectively..The.cultivation.area.of.vegetables.is.about.

Page 171:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

157Transgenic Horticultural Crops in Asia

1.47. times. larger. than. that. of. fruits.. China. alone. accounts. for. about. 60%. of. the.world’s.production.and.50%.of.the.world’s.vegetable.production.area..India.is.second.to.China. in.vegetable.production. in. the. region. primarily.because.majority.of. the.population.are.vegetarian.19.About.14.9%.of.the.country’s.total.farm.area.in.India.is.being.utilized.for.vegetable.growing.20

Figure.7.1.shows.an.increasing.trend.in.the.area.harvested,.volume.of.production,.consumption,.and.yield.of.vegetables.and.fruits.in.Asia,.as.well.as.globally..The.yield.of.vegetables.in.Asia.remains.higher.than.the.world’s.average,.while.the.yield.of.fruit.species.though.lower.in.the.past.decade.has.also.surpassed.the.world’s.average.in.2007..Northeast.Asian.countries. like.China,.Japan,.North.Korea,.South.Korea,.and.Taiwan. in.particular.have.higher.per.capita.consumption.and.production.of.horticultural.crops.than.other.countries.in.the.region.

Vegetables

Are

a har

vest

ed (h

a)

0102030405060

1997

Mill

ions

Cons

umpt

ion

(ton)

0100200300400500600700800

1993

Mill

ions

Prod

uctio

n (to

n)

0100200300400500600700800900

1000

1997 1999 2001 2003 2005 2007

Mill

ions

Yiel

d (h

g/ha

)Th

ousa

nds

155

160

165

170

175

180

1997 1999 2001 2003 2005 2007

2005 2007200320011999

20032001199919971995

Fruits

0102030405060

1997 1999 2001 2003 2005 2007

Mill

ions

050

100150200250300350400450

1993 1995 1997 1999 2001 2003

Mill

ions

0100200300400500600

1997 1999 2001 2003 2005 2007

Mill

ions

800

850

900

950

1000

1050

1997 1999 2001 2003 2005 2007

Hun

dred

s

Asia World

FIGURE 7.1 Selected.indicators.on.production.and.consumption.of.vegetables.and.fruits.in.Asia.and.the.World,.1997–2007..(Data.from.Food.and.Agriculture.Organization.of.the.United.Nations,.Rome,.Italy,.FAOSTAT.database,.http://faostat.fao.org,.accessed.October.28,.2009.)

Page 172:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

158 Transgenic Horticultural Crops: Challenges and Opportunities

The.substantial.growth.in.both.volume.and.variety.of.fruits.and.vegetables.traded.globally.has.been.noted.due.to.rising.incomes,.falling.transportation.costs,.improved.technology,.and.evolving.international.agreements.21.However,.within.Asia,.trading.of.horticultural.products.still.occurs.mostly.among.neighboring.countries.or.those.within.the.region.22,23.In.2007,.the.total.import.value.of.fruits.and.vegetables.in.Asia.was.more. than.$26.billion.with.banana. and.apple. contributing. about.$1.3.and.$1.0.billion,.respectively..The.total.export.value.of.fruits.and.vegetables.on.the.other.hand.was.higher,.at.about.$30.billion..The.trade.difference.(export–import).in.many.developing.Asian.countries.(Table.7.1).has.remained.relatively.low,.an.observation.also.reported.by.Lee.in.1998,22.which.he.attributed.to.a.well-established.self-supply.system. in. these. countries.. The. top. export. vegetables. and. fruits. from. the. region.include.onions,.tomatoes,.bananas,.garlic,.and.apples..China,.Thailand,.India,.and.

TABLE 7.1Trade Statistics of Fruits and Vegetables in Selected Asian Countries, 2007

Import Export 2007 Difference (Export − Import)

Bangladesh 285,214 70,487 −214,727

Brunei 31,957 29 −31,928

China 2,928,422 11,529,843 8,601,421

Hong.Kong,.SAR 1,743,593 586,395 −1,157,198

India 2,283,659 1,741,764 −541,895

Indonesia 738,506 496,539 −241,967

Iran 100,679 918,254 817,575

Israel 372,776 1,154,544 781,768

Japan 6,853,672 182,395 −6,671,277

Korea,.DPR 14,036 3,557 −10,479

Korea,.Republic.of 1,639,434 339,802 −1,299,632

Malaysia 782,266 270,666 −511,600

Myanmar 15,186 355,102 339,916

Nepal 84,517 4,338 −80,179

Pakistan 440,813 194,341 −246,472

Philippines 402,062 1,540,489 1,138,427

Singapore 848,485 210,626 −637,859

Sri.Lanka 189,687 84,078 −105,609

Thailand 496,378 2,542,711 2,046,333

Turkey 453,776 3,558,332 3,104,556

Vietnam 181,908 1,017,798 835,890

United.Kingdom 12,643,526 1,195,303 −11,448,223

United.States 17,633,830 13,373,194 −4,260,636

Source:. FAOSTAT.database,.http://faostat.fao.org,.accessed.October.28,.2009.Note:. Data. from. the. United. Kingdom. and. the. United. States. are. included. for. comparison.

(in thousands.of.dollars).

Page 173:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

159Transgenic Horticultural Crops in Asia

the.Philippines.are.the.largest.exporter.of.fruits.and.vegetables.while.Japan,.India,.Hong.Kong,.South.Korea,.and.Singapore.are.the.top.importers.24

It.is.evident.that.horticultural.crops.in.Asia.represent.an.enormous.opportunity.for.appropriate.agricultural.biotechnology.applications.that.can.help.develop.and.com-mercially.deploy.a.broad.range.of.improved.horticultural.products.that.meet.national.and.regional.needs..This.mostly.explains.the.extensive.level.of.biotech.research.and.development. on. horticultural. crops. in. the. region. as. elaborated. in. the. succeeding.sections.

OVERVIEW OF CURRENT ADOPTION OF TRANSGENIC CROPS IN ASIA

Of. the.25.countries. that. reportedly.planted. transgenic. (or.biotech).crops. in.2009,.three. mega-biotech. countries. (countries. that. are. growing. 50,000.ha. or. more). are.developing.countries.in.Asia..These.are.India.(8.4.million.ha),.China.(3.7.million.ha),.and.the.Philippines.(0.5.million.ha)..Their.combined.areas.accounted.for.9.4%.of.the.total.global.area.planted.to.biotech.crops.in.2009.9.While.China,.India,.and.the.Philippines.are.the.only.countries.in.Asia.cultivating.biotech.crops,.other.countries.in.the.region.have.granted.regulatory.approvals.for.their.importation.and.direct.use.for. food,. feed. or. processing. only.. However,. there. are. still. many. countries. in. the.region. that.have.no.official. record.of.granting. approval. for.both.planting. and. for.direct. use. of. any. transgenic. crops. although. trade. of. commodities. between. these.Asian.countries.and.countries.growing.transgenic.crops.are.on.going.realities..Many.of.these.countries.in.Asia.are.parties.to.the.Cartagena.Protocol.but.are.still.in.vari-ous.stages.of.approval.or.in.very.early.phases.of.implementation.of. their.national.biosafety.framework,.laws,.and.guidelines.

Table.7.2.presents.a.summary.of.number.of.regulatory.approvals.of.the.various.transgenic.crops.and.traits.in.the.region.as.of.2009..Asian.countries.with.most.num-ber.of.regulatory.approvals.are.Japan,.South.Korea,.Philippines,.and.China..Only.China.and.the.Philippines.have.planted.biotech.food.crops.in.the.region..Japan.has.the.most.number.of.approvals,.second.only.to.the.United.States.but.does.not.have.any.commercial.planting.of.any.of.the.approved.transgenic.crops.due.to.market.factors.and.consumer.acceptance..Interestingly,.India,.which.ranks.fourth.in.global.produc-tion.of.transgenic.crops,.has.only.approved.Bt.cotton..It.is.also.evident.in.Table.7.2.that.the.majority.of.regulatory.approvals.granted.are.for.agronomic.or.field.crops,.which.was.not.surprising..Of.the.total.number.of.approvals.granted,.those.given.for.horticultural.crops.accounted.for.only.18%.of.planting.and.12%.for.direct.use.for.food.and.feed..A.closer.inspection.of.Table.7.2.shows.that.the.only.horticultural.food.crops.approved.for.planting.are.all.grown.in.China..Japan.has.given.approval. for.ornamentals.but.these.are.not.planted.in.the.field..The.Philippines.has.only.approved.transgenic.horticultural.food.crop.for.direct.use.for.food.and.feed.such.as.potato..In.terms.of.traits,.single.event.“input.traits”.led.by.herbicide.tolerance,.dominate.the.approvals..Overall,.Asia’s.total.number.of.approvals.for.commercial.cultivation.of.transgenic.crops.is.still.quite.few..This.scenario.is.expected.to.change.dramatically.within.the.next.5.years.in.light.of.recent.developments.in.crop.biotechnology.in.the.

Page 174:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

160 Transgenic Horticultural Crops: Challenges and Opportunities

TABLE 7.2Regulatory Approvals Granted for Transgenic Crops and Traits for Planting and Direct Use for Food, Feed, or Processing (FFP) in Selected Countries in Asia through 2009

Country Crop Group (Crops) Traita

Number of Eventsb Approved

Planting FFP

China Vegetables.(tomato,.green.and.sweet.pepper)

DR,.VR 4 4

Fruit.(papaya) VR 1 1

Ornamental.(petunia) FC 1

Others.(canola,.cotton,.maize,.poplar,.rice,.soybean)

HT,.IR,.HT.+.IR,.high phytase

4 21

India Others.(cotton) IR 6 6

Indonesia Others.(cotton) IR 0 1

Japan Ornamental.(carnation,.rose) FC,.HT,.flav.path,.FC 9

Vegetables.(tomato,.potato) DR,.IR,.IR.+.VR 0 21

Others.(alfalfa,.canola,.cotton,.maize,.poplar,.rice,.soybean,.sugar.beets)

HT,.IR,.HT.+.F,.HT.+.IR,.Lys,.Lys.+.IR,.CPP,.OC,.OC.+.HT,.high.cellulose

52 101

Malaysia Others.(soybean) HT 0 1

Pakistan Others.(cotton) IR,.IR/IR 0 2

Philippines Vegetable/root.(potato) IR,.IR.+.VR 0 8

Others.(alfalfa,.canola,.cotton,.maize,.soybean,.sugar.beet)

HT,.IR,.HT.+.IR,.Lys,.Lys + IR,.plant.qual,.IR/HT

5 46

Singapore Others.(cotton,.maize,.sugar.beet) IR,.HT 0 4

South.Korea Vegetable/root.(potato) IR,.IR.+.VR 0 4

Others.(canola,.cotton,.maize,.soybean,.sugar.beet)

HT,.IR,.HT.+.IR,.IR/HT 0 53

Taiwan Others.(maize,.soybean) HT,.IR,.HT.+.IR,.IR/HT 0 26

Thailand Others.(maize,.soybean) HT 0 2

Horticultural.crops 15 38

Agronomic/field/other.crops 67 263

Total 82 301

Source:. James,. C.,. Global Status of Commercialized Biotech/GM Crops: 2009,. ISAAA. Briefs. 41,.International.Service.for.the.Acquisition.of.Agri-biotech.Applications,.Ithaca,.New.York,.2009.

Trait legend:. .HT,.herbicide.tolerance;.IR,.insect.resistance;.DR,.delayed.ripening/altered.shelf.life;.VR,.virus. resistance;.FC,.modified.flower.color;.Lys,.enhanced. lysine.content;.OC,.modified.oil.content;.F,.fertility.restored;.CPP,.cedar.pollen.peptide;.plant.qual,.modified.amylase;.flav.path,.flavonoid.pathway.

a. A.transgenic.event.refers.to.a.unique.product.resulting.from.stable.transformation—incorporation.of.foreign.DNA.into.a.living.cell.

b. Approvals.for.planting.have.been.granted,.but.no.actual.planting.in.the.country.has.been.done.

Page 175:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

161Transgenic Horticultural Crops in Asia

region..The most.significant.of. these.developments.are.China’s.approval.of. trans-genic. rice. and. maize,. India’s. Genetic. Engineering. Approval. Committee. (GEAC).recommendation. for.commercial. release.of.Bt.brinjal. (eggplant),. Japan’s.approval.for.commercial.planting.of.transgenic.blue.rose,.and.the.significant.number.of.trans-genic.food.crops.that.are.already.in.advanced.stages.of.development.and.commer-cialization.in.India.and.China.

PUBLIC ACCEPTANCE AND PERCEPTION OF BIOTECH CROPS IN ASIA

Public. acceptance. of. biotech. crops. and. products. ultimately. decides. whether. the.products. are. commercially. deployed. and. can. deliver. on. their. potential. benefits..Stakeholders.in.Asian.developing.countries.particularly.in.the.Philippines,.Malaysia,.India,.Vietnam,.and.China.were.reported.to.have,. in.general,.positive.perceptions.on.biotechnology.applications.25–27.Consumers. in.the.industrial.Asian.countries.of.Japan.and.South.Korea,.on.the.other.hand,.were.reported.to.be.more.conservative.in. outlook. or. negative. in. perception. toward. agricultural. biotechnology. compared.to.others.in.the.region.26,28.The.underlying.differences.among.these.country.groups.were.partly. attributed. to. the. relative. importance.of. agriculture. in. these. societies..Japan.and.South.Korea.are. food. importing.countries.where. the.generally.affluent.consumers.are.rather.unsure.about.the.potential.contributions.of.the.technology.to.their.individual.or.household.food.status.28.However,.if.made.aware.about.potential.contributions.of.the.technology.to.sustainability,.consumers.in.both.countries.show.a.marked.positive.shift. in.their.perception.and.acceptance.of. the.technology,.sug-gesting.that.they.easily.identify.themselves.with.the.higher.value.and.goal.of.sus-tainability..The.availability.of.the.biotech.blue.rose.recently.unveiled.in.Japan.and.the.apparent.market.acceptance.and.excitement.about.the.product.further.suggest.a.positive.consumer.response.to.a.product.with.perceived.added.value.

The.rising.hectarage.planted.to.biotech.crops.that.are.commercialized.in.some.Asian.countries.and.the.increase.in.the.number.of.regulatory.approvals.for.import-ing. countries. suggest. a. growing. confidence. and. acceptance. of. biotech. crops. and.products..In.Malaysia,.Bangladesh,.and.the.Philippines,.surveys.indicated.that.bio-technology.is.perceived.to.be.highly.important.and.would.be.instrumental.in.future.economic.development..Farmers.generally.accept.biotech.crops.if. they.can.derive.benefits.from.its.production,.as.the.preliminary.survey.on.biotech.rice.in.Bangladesh.revealed.29. Similar. perspectives. of. farmers. and. consumers. were. also. reported. in.Malaysia.and.the.Philippines.25,30,31.In.India,.Krishna.and.Qaim32.reported.that.60%.of.urban.consumers.will.likely.adopt.Bt.eggplant.when.commercialized.even.when.marketed.at.the.regular.vegetable.prices,.indicating.a.relatively.high.acceptance.level.of.the.eggplant.technology.

Among. the.stakeholders,. farmers’.perception.on.biotech.crops.and.biotechnol-ogy. in.general. is.very. important. since. they.are. the.direct. principal.beneficiaries..In.the.Philippines,.the.positive.experience.of.farmers.on.Bt.corn.since.it.was.com-mercialized.starting. in.2003.averted.what.could.have.been.continuing.opposition.from.sectors.that.were.initially.against.the.technology.31.In.most.cases,.ambivalence.

Page 176:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

162 Transgenic Horticultural Crops: Challenges and Opportunities

to.biotech.crops.and.biotechnology.were.attributed.to.critically.low.awareness.and.knowledge. on. the. subject. by. the. public.33–35. This. knowledge. gap. has. also. been.stressed. in.Taiwan.where.there.is.public.disconnect.on. the.topic. though.there.are.many.ongoing.research.on.biotechnology.in.the.country.34

The.effect.of.increasing.the.public’s.knowledge.of.biotechnology.is.a.decrease.in.their.perceived.risks.of.various.gene.technology.applications.in.food.production.and.in.agriculture..Collectively,.enhancing. the.awareness.of. the.public.will.help. them.make.informed.decisions.and.hopefully.create.a.favorable.attitude.toward.products.of. the. technology..These. factors. are. important. in. spelling. success. or. failure.dur-ing.the.commercialization.process.on.biotech.crops.36,37.There.were.recommenda-tions.that.early.consultation.and.dialogs.with.various.stakeholder.groups.should.be.considered.during.product.development,.regulatory.review.of.those.in.the.pipeline,.and.prior.to.final.genetically.modified.(GM).crop.approvals.to.ensure.product.suc-cess.36,38. Overall,. the. huge. economic. benefits. and. positive. experience. on. biotech.products.already.being.grown.and/or.used.in.Asia.is.expected.to.help.pave.the.way.for.future.success.and.consumer.uptake.of.other.biotech.horticultural.crops.

TRANSGENIC HORTICULTURAL CROPS IN THE PIPELINE IN ASIA

Since.biotech.crops.were.first.commercialized,.there.has.been.a.steady.increase.in.adop-tion.of.the.four.major.transgenic.crops.in.the.market.with.more.than.130.million ha.planted.in.2009.9.However,.despite.current.and.potential.benefits.offered.by.the.tech-nology,.development.and.commercialization.of.transgenic.horticultural.crops.in.the.United.States.has.almost.ground. to.a.halt.17.This. is. in.marked.contrast. to.what. is.happening.in.Asia.where.transgenic.horticultural.crops.have.taken.center.stage.par-ticularly.in.India.and.China.

Led.by.China,.Asia.has.significantly.increased.its. investments. in.agricultural.biotechnology.. In. 1999,. China’s. investment. was. estimated. to. be. $112. million39.and.in.2008,.the.government.announced.to.spend.up.to.$3.5.billion.for.a.special.project. to.develop.new.transgenic.crop.varieties.40.Other.countries. in. the.region.that. identified.agricultural.biotechnology.as.important.for. their.future.economic.development.have.also.allocated.part.of.their.national.agricultural.Research.and.Development.(R&D).budget.to.investments.in.biotechnology.including.about.$10.2.billion.in.South.Korea.and.$115.million.annually.in.India..Even.the.small.devel-oping.country. like. the.Philippines. allocated.5%.of. its. national. agriculture.bud-get.(Agriculture.and.Fisheries.Modernization.Act).to.biotechnology..Overall,.the.investment. of. the. public. sector. to. respective. national. agricultural. R&D. ranges.from.90.7%.to.100%.in.various.Asian.countries.41

As.a.result.of. this. favorable. investment.climate,. the.development.of. transgenic.crops. has. begun. in. several. countries. in. Asia.. FAO. database. shows. that. about.603.transgenic.crop.events.are.under.various.phases.of.development.and.commer-cialization.pipeline.in.the.region.(Figure.7.2).although.majority.of.these.are.in.the.experimental.phase..India.has.the.highest.number.of.transgenic.horticultural.crops.in.the.research.pipeline.and.many.of.these.are.horticultural.crops..In.2009,.a.signifi-cant.number.of.transgenic.horticultural.crops.have.reached.advanced.R&D.pipeline,.led.not.surprisingly.by.India.(Table.7.3)..Advanced.R&D.pipeline.refers.to.the.stage.

Page 177:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

163Transgenic Horticultural Crops in Asia

when. a. transgenic. event. is. not. yet. in. the. regulatory. process. but. at. late. stages. of.development,.that.is,.in.large.scale,.multi-location.field.trials,.and.generation.of.data.for.the.review.process.42.Table.7.3.and.Figure.7.3.present.the.summary.of.the.current.(2009).and.possible.numbers.of.expected.transgenic.horticultural.crops.and.traits.in.Asia.by.2015..The.numbers.presented.were.obtained.from.the.worldwide.survey.of.the.transgenic.crop.pipeline42.and.other.sources.9,39,43–45.Figure.7.3.shows.the.relative.proportion.of.GM.crops.by.trait..Table.7.3.also.shows.that.at.least.30.transgenic.horticultural.events.(approximately.60%.of.Asia’s.total).are.predicted.to.reach.the.market.by.2015..From.2009. to.2015,. the. total. number.of. transgenic.horticultural.crops. and. traits. grown. in. the. region. is. expected. to. increase. by. almost. fivefold.(from.7.to.33);.approximately.70%.(22.out.of.33).of.these.are.transgenic.vegetables.from.India.and.China..The.most.dramatic.increase.(from.0.to.16.events).is.expected.to.happen.in.India.if.the.current.situation.on.the.pending.market.release.of.Bt.brinjal.(eggplant).in.India.will.be.resolved.soon.

It.is.also.evident.in.Table.7.3.that.majority.of. the.efforts.have.been.focused.on.crops. and. traits. identified. to.be. important. to.national. and. regional.needs.. India’s.main.focus.on.vegetables.and.“input”.traits,.particularly.pest.and.disease.resistance,.is.understandable.given.the.vegetarian.diet.of.its.people,.the.high.incidence.of.pest.and.diseases.that.limits.production,.and.problems.with.abiotic.stresses..What.is.not.shown.in.the.table,.but.available.from.the.sources.listed,.is.the.high.proportion.(16/39.or.41%).of.private.(local.and.multinational).companies.involved.in.the.development.of.transgenic.crops.in.India.9,42.This.is.in.sharp.contrast.with.the.situation.in.China,.where.most.of.the.developers.are.public.institutions.funded.by.the.Chinese.govern-ment.39,42.It.remains.to.be.seen.which.between.China’s.public-sector-dominated.or.India’s.public–private.investment.strategy.will.prove.to.be.more.effective.and.sus-tainable. in. the. long. term..Notwithstanding. the.difference. in. their.strategies,.what.

BangladeshChinaIndia

IndonesiaMalaysiaPakistan

PhilippinesSouth Korea

Sri LankaThailandVietnam

0 10 20 30 40 50Number

60 70 80

Experimental phaseField trialCommercialization

90

FIGURE 7.2 Relative.number.of.transgenic.horticultural.crops.among.Asian.countries.at.different. stages.of. product. development.. (Data. from. FAO.Bio-Dec,.Food.and.Agriculture.Organization.Biotechnology.for.Developing.Countries.database.(FAO-BioDeC),.2009,.http://www.fao.org/biotech/inventory_admin/dep/default.asp)

Page 178:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

164 Transgenic Horticultural Crops: Challenges and Opportunities

TABLE 7.3Number of Current and Possible Transgenic Horticultural Crops and Traits in Selected Asian Countries through 2009 and Expected to Reach the Market by 2015

CountryHorticulture Crop Group Crops Trait(s)

Commercial in 2009

Advanced R&D

Total by 2015

China Vegetables.and.melons

Cabbage,.chili,.melon,.potato,.sweet.pepper,.tomato

Virus.resistance,.fungal.resistance,.quality.improvement,.abiotic.stress.tolerance,.shelf.life

3 7 10

Fruits Papaya Virus.resistance 1 0 1

Ornamental Petunia Modified.flower.color

1 0 1

Others Pogostemon Bacterial.resistance

0 1 1a

India Vegetables.and.melons

Cabbage,.cauliflower,.eggplant,.okra,.tomato,.watermelon

Insect.resistance,.abiotic.stress.tolerance,.fungal.resistance,.plant.stature,.quality.improvement,.virus.resistance

0 15 15

Others Mustard Male.fertility 0 1 1

Japan Ornamental Rose,.carnation

Modified.flower.color

2a 0 2

Philippines Fruits Papaya Shelf.life,.virus.resistance

0 2

Vegetables Eggplant Insect.resistance 0 1 (1)b

Bangladesh Vegetables Eggplant Insect.resistance 0 1 (1)b

Thailand Fruits Papaya Virus.resistance 0 1

Total 7 29 30–33

Sources:. James,. C.,. Global Status of Commercialized Biotech/GM Crops: 2009,. ISAAA. Briefs. 41,.International.Service.for.the.Acquisition.of.Agri-biotech.Applications,.Ithaca,.New.York,.2009,.Annex.1;.Stein,.A..and.Rodriguez-Cerezo,.E.,.Nat. Biotechnol.,.28,.23,.2010,.Supplementary.data;. Huang,. J.. et. al.. Science,. 295,. 674,. 2002;. Huang,. J.. and. Rozelle,. S.,. Calif. Agric.,.58, 112,.2004;.Authors’.firsthand.knowledge.

a. A.shrub.used.to.extract.oil.for.fragrance.or.medicinal.purposes.45

b. Same.transformation.event.used.in.India.but.bred.into.local.varieties.in.Bangladesh.and.the.Philippines.

Page 179:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

165Transgenic Horticultural Crops in Asia

seems.to.be.certain. is. that. transgenic.horticultural.crops.will.become.widespread.in.China.and.India,.with.high.potential.to.be.spread.in.their.neighboring.countries.considering. their. physical. proximity. and. the. nature. and. size. of. trade. among. the.countries.in.the.region.

DEVELOPMENT AND DELIVERY OF TRANSGENIC HORTICULTURAL CROPS: EXPERIENCES AND LESSONS LEARNED FROM SOUTH AND SOUTHEAST ASIA

The.development.pipeline.of.transgenic.crops.from.discovery.to.commercialization.could.be.a.long,.demanding,.and.expensive.undertaking..Depending.on.the.crop.and/or.trait,.it.has.been.estimated.that.it.would.take.between.7.and.15.years.at.an.esti-mated.cost.ranging.from.hundreds.of.thousand.to.millions.of.dollars.to.successfully.bring.to.market.a.transgenic.crop..A.number.of.published.papers.have.identified.the.possible. barriers. which. limit. the. successful. development. and. commercialization.of. transgenic.crops,. including.horticultural.crops. in. the.United.States16,17,31,46. and.in.developing.countries.36,47.These.potential.barriers.fall.mainly.into.the.following.categories:. (1). technical/technology,. (2). intellectual. property. rights. and. freedom.to.operate,.(3).regulation,.(4).market.considerations,.and.(5) .consumer.acceptance..Technical/technology.barriers. include. challenges. in.developing.efficient. transfor-mation. procedures. and. designing. vector. constructs,. choosing. the. crop. and. trait,.designing.critical.product.concept,.and.trait.efficacy.in.the.field..Intellectual.property.protection.and.lack.of.freedom.to.operate.present.hurdles.in.accessing.proprietary.technologies. that.are.owned.mostly.by.the.private.sector.and.concerns.on.poten-tial.for.liability.claims.associated.with.unwanted.transgenes.(low.level.presence).in.local.crops.42.The.high.cost.of.compliance.and.uncertainties.in.regulatory.approval.

IR 20%

OO 6%

DR 11%

AB 9%

FR 6%QI 11%

SL 6%

VR 31%

FIGURE 7.3 (See color insert.).Total.events.distributed.by.traits..AB, abiotic.stresses;.DR,.disease. resistance. including.bacterial. resistance;.FR,. fungal. resistance;. IR,. insect. resistance;.OO,.others;.QI,.quality.improvement;.SL,.shelf.life;.VR,.virus.resistance.

Page 180:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

166 Transgenic Horticultural Crops: Challenges and Opportunities

process.are.major.hurdles.particularly.for.horticultural.crops.because.of.small.mar-ket.and.limited.hectarage.that.could.limit.the.potential.for.recovery.of.production.costs. or. developing. countries. could. simply. not. afford.. Market. reluctance. partic-ularly. by. actors. in. the. supply. chain. (food. manufacturers,. processors,. and. retail-ers).also.presents.an.enormous.challenge.even.in.transgenic.crops.that.have.been.approved.for.market.release.due.to.worries.about.consumer.acceptance.and.higher.cost. and. potential. for. liability. associated. with. identity. preservation. and. product.stewardship.46

In.this.section,.we.discuss.our.own.experiences.and.the.lessons.we.learned.in.dealing.with.many.of.the.barriers.similar.to.the.ones.described.above,.in.the.course.of.pursuing.the.development.and.commercialization.of.two.important.horticultural.crops. in. the. region—the. transgenic. fruit. and. shoot. borer–resistant. eggplant.(Bt.eggplant).in.South.and.Southeast.Asia.and.the.papaya.ringspot.virus.(PRSV).resistant.papaya.in.Southeast.Asia..We.hope.that.by.sharing.these.experiences,.we.can.contribute.by.sharing.knowledge.on.and.insights.into.some.approaches.adopted.by. a. developing. country’s. national. R&D. programs. to. address. or. overcome. the.identified.constraints.to.biotech.crop.development.and.deployment..Table.7.4.sum-marizes.the.identified.principal.barriers.to.biotech.crop.development.and.deploy-ment.of.Bt.eggplant.and.PRSV-R.papaya.and.some.of.the.approaches.that.the.two.regional. projects. adopted. to. address. the. specific. constraints. as. discussed. in. the.succeeding.sections.below.

development of tranSGenIc prSv-reSIStant papaya for SoutheaSt aSIa

The.development.of.the.transgenic.PRSV.resistant.papaya.was.undertaken.through.the.Papaya.Biotechnology.Network.of.Southeast.Asia.(the.Network)..The.Network.was. established. in. 1998. with. the. assistance. of. the. International. Service. for. the.Acquisition.of.Agri-biotech.Applications.(ISAAA).with.funding.support.from.the.governments.of.the.five.member.countries.and.other.public.and.private.sector.donors.

An.early.consultation.and.planning.process.among.the.five.countries.of.Southeast.Asia—Indonesia,.Malaysia,.Philippines,.Thailand,.and.Vietnam—made.possible.the.exchange.of.research.updates.and.strategies.among.the.five.countries.and.identified.common.constraints. and.opportunities.. It.became.evident.during. the. consultation.process.that.it.would.be.highly.beneficial.to.establish.partnerships.among.the.countries.to.enable.a.regional.collaboration.that.would.capitalize.on.their.respective.strengths.and. build. a. regional. critical. mass. of. expertise. that. would. otherwise. take. time. to.develop.in.each.individual.country.

The. network. requested. and. designated. Malaysia. Agricultural. Research. and.Development.Institute.and.Thailand.(National.Center.for.Genetic.Engineering.and.Biotechnology.and.Kasetsart.University).to.serve.as.the.two.regional.hubs..Malaysia.and.Thailand,.which.were.the.furthest.advanced.in.the.development.of. transgenic.papaya,.provide.advanced.technical.assistance.and.training.support.to.other.mem-bers.of.the.network.in.molecular.virology,.tissue.culture.and.transformation,.molecu-lar.analyses,.among.others.

Among.the.early.identified.common.constraints.were:.(1).intellectual.property.restrictions. to. research. and. development. tools,. (2). technical. skill. limitations,.

Page 181:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

167Transgenic Horticultural Crops in Asia

TABLE 7.4Barriers to Biotech Crop Development and Deployment and Examples of Some Approaches from Two Regional Projects in Asia

Barrier

Strategic Approach

Bt Eggplant PRSV-Resistant Papaya

Technical/technology:.event.generation/selection

Access.and.use.a.common,.single.near-market.transformation.event.and transfer.by.conventional.breeding.to local.varieties

Country-specific.transformation.using.local.virus.strain.to.address.virus.diversity.and.trait.efficacy

“Shuttle.breeding”.through.internship.of scientists.from.partner.institutions.at Mahyco’s.Research.Center

Internship.of.scientists.from.partner.institutions.at.Monsanto.Laboratory

Intellectual.property.(IP).and.freedom.to.operate

Royalty-free.sublicensing.agreement.through.public–private.partnership.(PPP)

Royalty-free.licensing.agreement.through.public–private.partnership.(PPP)

Capacity.building.on.IP.management.thru.workshops.and.trainings

Capacity.building.on.IP.management.thru.workshops.and.trainings

Regulation Build.and.share.food.and.safety.data.package.of.the.common.transformation.event.to.spread.the.cost.of.food.safety.package

Capacity.building.for.scientists.and.regulators

Design.and.generate.an.insect.resistance.management.plan

Workshop.to.harmonize.regional.regulatory.needs.for.papaya

Early.discussion.with.regulators.on.regulatory.data.requirements

Technical.assistance.on.DNA.detection

Market Design.product.stewardship,.monitoring.and.seed.distribution.plan

Market.analyses.and.design.of.seed.distribution.plan

Capacity.building.of.partners.on.product.stewardship.and.monitoring

Outreach.and.communications.to.actors.in the.supply.chain

Public.acceptance Proactive.and.continuous.information,.communication,.and.education.(IEC).activities.for.various.sectors.of.society.implemented.through.a.network.of.partners;.activities.include

Workshops,.seminars,.public.forums

Publications

Regular.conduct.of.public.perception.surveys

Study.visits.to.project.sites

Interaction.with.the.media.thru.interviews;.news.sources,.guest.in.radio.and.TV broadcast,.television.features

Page 182:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

168 Transgenic Horticultural Crops: Challenges and Opportunities

(3) anticipated.regulatory.compliance.requirements.coupled.with.lack.of.regula-tions.and.guidelines.in.most.countries.at.the.time.the.network.was.established,.and.(4).anticipated.public/consumer.acceptance.issues.

The.network. facilitated.a. technology.donation.agreement.with.a.private. sector.technology. provider,. Monsanto,. for. all. virus. resistance. technologies. over. which.Monsanto. has. effective. intellectual. and. tangible. proprietary. rights.. Beyond. the.technology.donation,.Monsanto.also.hosted.and.provided.key.technical.training.to.papaya.scientists.from.all.five.countries.on.genetic.engineering.for.virus.resistance.and.provided.continuing.technical.assistance.in.product.development.and.regulatory.data.development.

In.addition.to.the.public–private.technology.transfer,.Thailand.and.Malaysia.pro-vided.key. technical. training.and.assistance. to.other.member.countries.of. the.net-work,.and.Malaysia.actually.served.as.a.research.laboratory.for.the.Philippines.for.the.initial.transformation.work.at.the.time.that.existing.Philippine.regulations.did.not.allow.Agrobacterium-mediated.transformation.of.papaya.

Recognizing. the.need.at. the. time. to.simultaneously.facilitate.product.develop-ment.with.the.evolving.regulations.and.guidelines,.the.regional.network.also.broad-ened. the.capacity.building.activities. to. include. intellectual.property.management,.biosafety,.and.food.safety,.to.include.not.just.the.national.technology.developers.but.the.emerging.corps.of.national.regulators..Undertaking.the.capacity.building.activi-ties.at.a. regional.basis.enabled.a. level.of.harmonization. in. the.science-based.risk.assessment.among.countries.without.intruding.into.the.sovereign.rights.of.member.countries.to.formulate.their.respective.regulations.

Finally,.the.network.has.been.proactive.in.education.and.information.activities.to.reach.out.to.various.sectors.and.the.general.public.by.raising.awareness.and.under-standing.of.modern.biotechnology.including.transgenic.crops.

The.network.is.considered.as.among.the.first.of.regional.initiatives.in.Asia.that.served.as.a.model.of.North–South.and.South–South.technology.transfer.partnership.in.agricultural.biotechnology..It.facilitated.the.transfer.of.proprietary.technologies,.enhanced.regional.and.national.capacity.in.biotechnology.including.the.associated.policy.and.regulatory.areas,.and.helped.shift.the.focus.of.national.R&D.from.mostly.academic. work. toward. developing. tangible,. commercializable. products. that. meet.farmers’.needs.and.compliant.to.best.practices.and.standards.

development and commercIalIzatIon of fruIt and Shoot borer–reSIStant eGGplant In South and SoutheaSt aSIa

The.development.and.commercialization.of.transgenic.fruit.and.shoot.borer–resis-tant.eggplant.containing.cry1Ac.gene.from.Bacillus thuringiensis.(Bt.eggplant).is.a.public–private.partnership.project.initiated.through.the.initiative.of.the.Agricultural.Biotechnology.Support.Project.II.(ABSPII),.a.consortium.of.public.and.private.sector.institutions.led.by.Cornell.University.and.funded.by.the.U.S..Agency.for.International.Development.(USAID)..Bt.eggplant.was.chosen.through.a.two-stage.priority.setting.process.. In. the.first.stage,.a.consultation.meeting.was.conducted.with. the.various.stakeholders.(scientists,.policy.makers,.regulators,.industry.representatives,.and.con-sumers).in.our.focus.countries.of.India,.Bangladesh,.and.the.Philippines..Bt.eggplant.

Page 183:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

169Transgenic Horticultural Crops in Asia

was.given. high.priority. in. each. country.based. on. SWOT. (strengths,.weaknesses,.opportunities,.and.threats).analyses.performed..In.the.second.step,.ex-ante.analysis.on.the.socioeconomic.impacts.of.Bt.eggplant.was.conducted.by.a.team.of.local.and.international.economists.working.in.the.project..The.results.showed.that.eggplant.is.a.very.important.food.for.the.people.of.India,.Bangladesh,.and.the.Philippines.and.a.highly.profitable.cash.crop.for.small.farmers.in.the.three.countries..Farmers.who.grow.eggplant. in.both. regions.share. the.same.problem—need.for.a.cost-effective.and.safe.method.to.control.the.most.damaging.insect.pest.of.eggplant—the.eggplant.fruit.and.shoot.borer.(EFSB)..Eggplant.yields.and.incomes.are.drastically.reduced.by.the.damage.caused.by.EFSB..Farmers.resort.to.frequent.application.and.exces-sive.amounts.of.pesticide.to.control.the.pest,.raising.the.level.of.pesticide.residue.in.the.environment.and.the.eggplant.consumed.by.the.public..Conventional.breeding.of.insect-resistant.varieties.has.failed.because.no.resistant.eggplant.varieties.have.been.found.that.can.effectively.control.EFSB..The.results.of.the.ex-ante.analyses. revealed.that.substantial.economic.and.environmental.benefits.are.projected.if.Bt.eggplant.is.commercialized.in.all.three.countries.48,49.Other.important.considerations.such.as.freedom.to.operate,.favorable.regulatory.approval.and.likelihood.of.gaining.market.acceptance.and.public.support.were.deemed.feasible.

Considering. the. cost. of. product. development. and. regulation,. ABSPII. made. a.strategic.decision.to.use.one.common.transformation.event.owned.by.Maharashtra.Hybrid.Seed.Company.(Mahyco),.Mahyco.eggplant.event.EE-1,.in.all.three.geogra-phies..The.strategy.presented.opportunities.to.spread.the.regulatory.cost.and.contrib-ute.to.the.regional.harmonization.of.regulatory.systems.by.building.a.common.safety.package.for.the.event,.which.was.proposed.to.be.submitted.to.the.regulators.in.each.partner.country..In.addition,.the.trait.stability.and.efficacy.of.EE-1.has.already.been.proven.and.was.determined.to.be.technologically.a.near-market.product..The.choice.of.EE-1.also.presented.an.opportunity.to.explore.the.opportunities.of.a.public–private.partnership.

From. the. very. outset. of. the. Bt. eggplant. project,. ABSPII. in. cooperation. with.Hyderabad-based.Sathguru.Management.Consultants.Pvt..Ltd..worked.with.Mahyco.to. devise. a. system. whereby. all. farmers. in. India. as. well. as. Bangladesh. and. the.Philippines. could.gain.access. to. the.Bt. eggplant. technology..The.dialogue. led. to.a. mutually. beneficial. arrangement. that. addressed. freedom-to-operate. issues. via.appropriate.licensing.arrangements..The.Bt.eggplant.transformation.event.developed.by.Mahyco.with.support.from.Monsanto.(which.licensed.the.use.of.Cry1Ac.expres-sion.vector).was.thus.cleared.of.potential.intellectual.property.(IP).barriers,.paving.the.way. for. further. development. and.commercialization..Mahyco. sublicensed. the.technology.on.a.royalty-free.basis.to.the.public.sector.partner.institutions.in.India,.Bangladesh,.and.the.Phiilippines.50.A.specific.product.stewardship.and.monitoring.strategy.to.be.implemented.by.the.licensee.to.safeguard.the.interest.of.the.licensors.was.also.devised.during.the.sublicensing.process..The.issue.of.market.share.among.the. different. Bt. varieties. in. India. was. also. addressed. by. segmenting. the. market.between.the.Bt.eggplant.hybrid.of.Mahyco.and.the.Bt.varieties.of.the.public.partners.

The.regulatory.file.development.of.Bt.eggplant.benefited.tremendously.from.the.expertise.and.experience.of.Mahyco,.the.first.Indian.company.to.commercialize.Bt.cotton.hybrids.in.India..In.addition.to.access.to.data.for.the.cry1Ac.gene.construct.

Page 184:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

170 Transgenic Horticultural Crops: Challenges and Opportunities

used.in.both.Bt.cotton.and.Bt.eggplant,.Mahyco.led.the.partners.in.streamlining.the.development.of.a.comprehensive.environmental.and.food.safety.regulatory.package.for.Bt.eggplant.event.EE-1..The.regulatory.file.complied.by.Mahyco.for.event.EE-1.was.made.available.in.the.Ministry.of.Environment.website.(http://www.envfor.nic.in/divisions/csurv/geac/information.brinjal.htm)..The.same.dossier.was.provided.to.all.partners. for.submission.and.review.of. relevant. information.by. their. respective.regulatory. bodies,. thus. accelerating. the. approval. process. in. these. two. countries..Proactive.and.frequent.interactions.with.the.regulatory.bodies.in.the.three.countries.also.helped.in.accelerating.the.approval.process.

A.proactive.information,.communication,.and.education.strategy.was.also.devel-oped. very. early. in. the. project. implementation. to. address. anticipated. public. and.market.perception.issues..The.communication.design.followed.the.product.develop-ment.pathway.so.that.the.communication.and.outreach.activities.and.messages.were.focused.on.the.needs.of.specific.stakeholders.as.the.product.moved.from.the.develop-ment.stage.toward.regulatory.clearance,.precommercial.stage,.and.eventually.toward.the.commercial.stage..An. important. feature.of. the.communication.strategy.was.a.regular.survey.of.perception,.attitude,.and.level.of.knowledge.and.information.needs.of.stakeholders.about.biotechnology.in.general.and.the.Bt.eggplant.in.particular.

CONCLUSION

Asia.is.home.to.more.than.half.of.the.world’s.population.as.well.as.to.the.highest.num-ber.of.poor.people.suffering.from.hunger.and.malnutrition..Ensuring.the.food.security.of.Asia.is.a.formidable.challenge.not.only.because.of.the.enormous.demand.brought.about.by.a.growing.population.with.rising.incomes,.but.because.the.additional.food.will.have.to.be.produced.amidst.decreasing.land.and.water.resources.and.increasingly.severe.and.frequent.biotic.and.abiotic.stresses.attendant.to.climate.change.

The.region.accounts.for.about.75%.and.50%,.respectively,.of.the.global.hectarage.growing.vegetables.and.fruits..Horticultural.crops.thus.comprise.a.major.part.of.the.region’s.and.the.world’s.agricultural.production.and,.being.high.value.cash.crops,.contribute. substantially. to. the. income. and. well-being. of. millions. of. farmers. and.consumers.especially.in.the.developing.countries.

Modern.biotechnology.applications,.including.genetic.engineering,.are.a.power-ful. tool. to.complement. the.conventional.methods.of.crop. improvement..Asia.cur-rently.has. three.countries.cultivating.biotech/transgenic.crops—China,. India,.and.the.Philippines,.but.only.China.commercially.grows.a.transgenic.fruit.crop,.a.papaya.engineered. for. virus. resistance.. Biotech-improved. blue. rose. is. also. cultivated. in.Japan.and.as.an.ornamental.crop.would.qualify.as.a.new.commercial.transgenic.hor-ticultural.product.in.the.region..Genetic.engineering.of.various.horticultural.crops.is.extensively.pursued.by.most.countries.in.the.region.that.have.developed.the.basic.capacity.to.undertake.modern.biotechnology.

Timely.development.and.commercial.deployment.of.biotech.horticultural.crops.in. the. region.are.hampered.by. several. constraints,. including. (1).access. to.propri-etary.biotechnology.applications,.(2).regulations.(or.the.absence.thereof).and.costs.of.regulatory.compliance,.(3).technical.capacity,.and.(4).market.and.public.acceptance..Overcoming.these.constraints.are.key.to.effective.development.and.use.of.a.broader.

Page 185:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

171Transgenic Horticultural Crops in Asia

range.of.biotech.crop.products.that.meet.national/local.needs..Innovative.approaches.such.as.public–private.and.multicountry.partnerships.and.networks,.product-focused.capacity. building. activities. and. proactive. and. dynamic. engagement. with. various.stakeholders.may.facilitate.overcoming.some.of.these.hurdles.and.expedite.commer-cial.adoption.of.new,.improved.products..Two.examples.of.such.regional.initiatives,.working.on.biotech.vegetable.(eggplant).and.fruit.(papaya).products,.are.cited.in.this.chapter.to.draw.some.lessons.and.insights.

The.biotech.pipeline.for.horticultural.crops.in.the.Asian.region,.coming.mostly.from.public.sector.institutions,.is.a.rich.array.of.key.crops.and.traits.that.meet.the.identified.priority.needs.of.producers.and.consumers..It.is.essential,.for.the.present.and. future. well-being. of. Asian. farmers. and. consumers,. for. these. products. to. be.commercially.deployed.in.the.most.appropriate.and.timely.manner.for.their.benefit.

ACKNOWLEDGMENTS

The.authors.gratefully.acknowledge.ABSPII,.a.United.States.Agency.for.International.Development.(USAID)-funded.consortium.led.by.Cornell.University.and.the.Papaya.Biotechnology.of.Southeast.Asia. facilitated.by.ISAAA.for.allowing.us. the.use.of.their.project.strategies.and.experiences.in.Asia.as.examples.of.regional.biotech.initiatives..We.wish.to.thank.Dr..Lourdes.D..Taylo.and.Ms..Zabrina.J..Bugnosen.for.their.valuable.assistance.in.proofreading.and.formatting.of.the.manuscript.

REFERENCES

. 1.. U.N.,. World Population Prospects: The 2008 Revision, Highlights.. United. Nations,.Department. of. Economic. and. Social. Affairs,. Population. Division,. Working. Paper.No..ESA/P/WP.210..New.York,.2009..http://www.un.org/esa/population/publications/wpp2008/wpp2008_highlights.pdf.(accessed.on.August.19,.2009).

. 2.. DFAT,.Asian Agrifood Demand Trends and Outlook to 2010,.Australia.Department.of.Foreign.Affairs.and.Trade.Subsistence.to.Supermarket.II.Series,.2004..http://www.dfat.gov.au/PUBLICATIONS/agrifoodasia/vIII.html.(accessed.on.August.29,.2009).

. 3.. Hautea,.R..and.Escaler,.M.,.Plant.biotechnology.in.Asia,.AgBioForum,.7(1&2),.2,.2004.

. 4.. FAO,.Press.Release:.More.people.than.ever.are.victims.of.hunger,.Food.and.Agriculture.Organization.of.the.United.Nations,.Rome,.Italy,.2009..http://www.fao.org/fileadmin/user_upload/newsroom/docs/Press%20release%20june-en.pdf.(accessed.on.August.19,.2009).

. 5.. Karplus,.V.J..and.Deng,.X.W.,.Eds.,.Agricultural Biotechnology in China: Origins and Prospects,.Springer,.New.York,.2008.

. 6.. Borlaug,. N.E,. Sixty-two. years. of. fighting. hunger:. Personal. recollections,. Euphytica,.157,.287,.2007.

. 7.. Brookes,. G.. and. Barfoot,. P.,. GM Crops: Global Socio-Economic and Environmental Impacts 1996–2007,.P.G..Economics.Ltd,.Dorchester,.U.K.,.2009..http://croplife.intraspin.com/Biotech/gm-crops-global-socio-economic-and-environmental-impacts-1996-2007.(accessed.on.August.23,.2009).

. 8.. McGloughlin,.M.M.,.Ten.reasons.why.biotechnology.will.be.important.to.the.developing.world,.AgBioForum,.2(3&4),.163,.1999.

. 9.. James,.C.,.Global Status of Commercialized Biotech/GM Crops: 2009,.ISAAA.Briefs.41,.International.Service.for.the.Acquisition.of.Agri-biotech.Applications,.Ithaca,.NY,.2009.

. 10.. Bruening,. G.. and. Lyons,. J.M.,. The. case. of. the. FLAVR. SAVR. tomato,. California Agriculture,.54(4),.6,.2000.

Page 186:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

172 Transgenic Horticultural Crops: Challenges and Opportunities

. 11.. Yu,.T.A.,.Yeh,. S.D.,. and.Yang,. J.S.,. Comparison.of. the. effects. of. kanamycin. and.geneticin.on.regeneration.of.papaya.from.root.tissue,.Plant Cell, Tissue and Organ Culture,.74,.169,.2003.

. 12.. Petri,.C..and.Burgos,.L.,.Transformation.of.fruit.trees..Useful.breeding.tool.or.continued.future.prospect?.Transgenic Research,.14,.15,.2005.

. 13.. Wang,.K.,.Ed.,.Agrobaterium.protocols,.in.Methods in Molecular Biology,.2nd.edn..Vol..1.,.Humana.Press,.Totowa,.NJ,.2006,.p..343.

. 14.. Seong,.E.S..and.Song,.K.J.,.Factors.affecting.the.early.gene.transfer.step.in.the.develop-ment.of.transgenic.‘Fuji’.apple.plants,.Plant Growth Regulation,.54,.89,.2008.

. 15.. Bradford,. K.J.. et. al.,. Challenges. and. opportunities. for. horticultural. biotechnology,.California Agriculture,.58(2),.68,.2004.

. 16.. Bradford,.K.J..and.Alson,.J.M.,.Diversity.of.horticultural.biotech.crops.contributes.to.market.hurdles,.California Agriculture,.58(2),.84,.2004.

. 17.. Clark,.D.,.Klee,.H.,.and.Dandekar,.A.,.Despite.benefits,.commercialization.of.transgenic.horticultural.crops.lags,.California Agriculture,.58(2),.89,.2004.

. 18.. Sumner,. D.A.,. World. trade. rules. affect. horticultural. biotechnology,. California Agriculture,.58(2),.77,.2004.

. 19.. Dalal,.M.,.Dani,.R.G.,.and.Kumar,.P.A.,.Current.trends.in.genetic.engineering.of.veg-etable.crops,.Scientia Horticulturae,.107,.215,.2006.

. 20.. Johnson,. G.I.,. Weinberger,. K.,. and. Wu,. M.H.,. The Vegetable Industry in Tropical Asia: An Overview of Production and Trade, with a Focus on Thailand, Indonesia, the Philippines, Vietnam, and India.(Explorations.series;.no..1),.AVRDC—The.World.Vegetable.Center,.Shanhua,.Taiwan,.2008.

. 21.. Huang,.S.W.,.Global.trade.patterns.in.fruits.and.vegetables,.USDA-ERS.Agriculture.and.Trade.Report.No..WRS-04-06,.2004.

. 22.. Lee,. J.M.,. Unique. feature. of. horticulture. in.Asia. and. its. global. impact,. presented. at.World Conference on Horticultural Research,. Rome,. Italy,. June. 17–20,.1998.. http://www.agrsci.unibo.it/wchr/wc1/lee.html.(accessed.October.26,.2009).

. 23.. Chatterjee,.S..et.al.,.Food.consumption,.trade.reforms.and.trade.patterns.in.contempo-rary.India:.How.do.Australia.and.NZ.fit.in?.Centre.for.Applied.Economics.and.Policy.Studies.Working.Paper.2/06,.Massey.University,.New.Zealand,.2006.

. 24.. FAO,.Selected.indicators.of.food.and.agricultural.development.in.the.Asia-Pacific.region.1998–2008..Food.and.Agriculture.Organization.of.the.United.Nations,.Regional.Office.for. Asia. and. the. Pacific,. Bangkok,. Thailand,. 2009.. http://www.fao.org/docrep/012/i1020e/i1020e00.htm.(accessed.on.October.28,.2009).

. 25.. Amin,.L..et.al.,.Uncovering.factors. influencing.Malaysian.public.attitude. towards.modern. biotechnology,. Pacific Journal of Molecular Biology and Biotechnology,.14(2),.33,.2006.

. 26.. AFIC,. Food Biotechnology: Consumer Perceptions of Food Biotechnology in Asia,.Asian.Food.Information.Center,.Bangkok,.Thailand,.2008.

. 27.. ISAAA,. Public. understanding,. perceptions,. and. attitudes. towards. biotechnology. in.Vietnam..Country.Monograph,.International.Service.for.the.Acquisition.of.Agri-biotech.Applications.(ISAAA).and.the.University.of.Illinois.at.Urbana-Champaign,.http://isaaa.org/kc/inforesources/publications/perception/Vietnam.pdf.(accessed.on.August.19,.2009).

. 28.. Hoban,.T.,. Public. attitudes. toward. agricultural. biotechnology,. ESA.Working. Paper.No..04-09..Agricultural.Economics.and.Development.Division,.Food.and.Agriculture.Organization. of. the. United. Nations,. 2004.. http://www.fao.org/docrep/007/ae064e/ae064e00.htm.(accessed.on.August.24,.2009).

. 29.. Gruere,.G.P..et.al.,.Potential.of.transgenic.crops.in.Bangladesh:.Findings.from.a.consulta-tion.of.Bangladeshi.scientific.experts,.Plant Cell Tissue and Organ Culture,.86,.411,.2006.

. 30.. Aerni,.P..and.Bernauer,.T.,.Stakeholder.attitudes.toward.GMOs.in.the.Philippines,.Mexico,.and.South.Africa:.The.Issue.of.Public.Trust,.World Development,.34(3),.557,.2006.

Page 187:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

173Transgenic Horticultural Crops in Asia

. 31.. Cabanilla,.L.S.,.Socio-economic.and.political.concerns.for.GM.foods.and.biotechnology.adoption.in.the.Philippines,.AgBioForum,.10(3),.178,.2007.

. 32.. Krishna,.V.V..and.Qaim,.M.,.Consumer.attitudes.towards.GM.food.and.pesticide.resi-dues.in.India..Review of Agricultural Economics,.30(2),.233,.2008.

. 33.. Torres,. C.S.. et. al.,. Public Understanding and Perception of and Attitude towards Agricultural Biotechnology in Indonesia.. International. Service. for. the.Acquisition.of. Agri-biotech. Applications. (ISAAA),. SEAMEO. Regional. Center. for. Graduate.Study. and. Research. in. Agriculture. (SEARCA). and. College. of. Development.Communication,.University.of.the.Philippines.Los.Baños.(CDC-UPLB),.Los.Baños,.Philippines,.2006.

. 34.. Fan,.M.F.,.Stakeholder.perceptions.and.responses.to.GM.Crops.and.foods:.The.case.of.Taiwan,.Sustainable Development,.17,.391,.2009.

. 35.. Chen,.M.F..and.Li,.H.L.,.The.consumer’s.attitude.toward.genetically.modified.foods.in.Taiwan,.Food Quality and Preference,.18,.662,.2007.

. 36.. Gregory,. P.. et. al.,. Bioengineered. crops. as. tools. for. international. development:.Opportunities.and.strategic.considerations,.Experimental Agriculture,.44,.277,.2008.

. 37.. Rommens,.C.M.,.Barriers.and.paths.to.market.for.genetically.engineered.crops,.Plant Biotechnology Journal,.8,.101,.2010.

. 38.. Cohen,.J.I..and.Paarlberg,.R.,.Unlocking.crop.biotechnology.in.developing.countries––.A.report.from.the.Field,.World Development,.32(9),.1563,.2004.

. 39.. Huang,.J..et.al.,.Plant.biotechnology.in.China,.Science,.295,.674,.2002.

. 40.. Lin,.X..and.Li,.J.,.Agricultural.biotechnology.and.its.management.in.China:.Country.Report,.presented.at.FAO Regional Biosafety Training Workshop,.Rama.Gardens.Hotel,.Bangkok.Thailand,.November.30.to.December.4,.2009.

. 41.. Beintema,. N.M.. and. Stads,. G.J.,.Agricultural. R&D. capacity. and. investments. in. the.Asia–Pacific.region..IFPRI.Research.Brief.No..11..International.Food.Policy.Research.Institute,.Washington,.DC,.2008.

. 42.. Stein,.A..and.Rodriguez-Cerezo,.E.,.International.trade.and.the.global.pipeline.of.new.GM.crops,.Nature Biotechnology,.28,.23,.2010.

. 43.. Cohen,.J.I.,.Poorer.nations.turn.to.publicly.developed.GM.crops,.Nature Biotechnology,.23(1),.27,.2005.

. 44.. FAO. Bio-Dec,. Food. and. Agriculture. Organization. Biotechnology. for. Developing.Countries. database. (FAO-BioDeC),. 2009.. http://www.fao.org/biotech/inventory_admin/dep/default.asp.(accessed.on.September.3,.2009).

. 45.. Huang,.J..and.Rozelle,.S.,.China.aggressively.pursuing.horticulture.and.plant.biotech-nology,.California Agriculture,.58,.112,.2004.

. 46.. Alston,.J.M.,.Bradford,.K.J.,.and.Kalaitzandonakes,.N.,.The.economics.of.horticultural.biotechnology,.in.Plant Biotechnology in Ornamental Horticulture,.Li,.Y..and.Pei,.Y.,.Eds.,.Haworth.Food.and.Agricultural.Products.Press,.an.imprint.of.The.Haworth.Press,.Inc.,.Binghamton,.NY,.2006.

. 47.. Delmer,. D.P.,.Agriculture. in. the. developing. world:. Connecting. innovations. in. plant.research.to.downstream.applications,.Proceedings of the National Academy of Sciences of the United States of America.102(44),.15739,.2005.

. 48.. Ramasamy,.C..et. al.,.Economic and Environmental Benefits and Costs of Transgenic Crops: Ex-Ante Assessment,.TNAU,.Coimbatore,.India,.2007.

. 49.. Norton,.G.W..and.Hautea,.D.M.,.Eds.,.Projected Impacts of Agricultural Biotechnologies for Fruits and Vegetables in the Philippines and Indonesia..ISAAA.and.SEARCA,.Los.Banos,.Laguna,.Philippines,.2009.

. 50.. Medakker,. A.. and. Vijayaraghavan,. V.,. Successful. commercialization. of. insect-resistant..eggplant.by.a.public–private.partnership:.Reaching.and.benefiting.resource-poor.farmers,.in.Intellectual Property Management in Health and Agricultural Innovation: A Handbook of Best Practices,.Krattiger,.A..et.al.,.Eds.,.MIHR,.Oxford,.U.K..and.PIPRA,.Chap..17.25.

Page 188:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,
Page 189:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

175

8 The Economic and Marketing Challenges of Horticultural Biotechnology

Steven Sexton and David Zilberman

INTRODUCTION

In.the.13.years.that.followed.the.commercial.introduction.of.genetically.engineered.field. crops. in. 1996,. agricultural. biotechnology. became. the. most. quickly. adopted.crop.technology.in.history..More.than.14.million.farmers.in.25.different.countries.planted. a. combined. 134. million. hectares. of. genetically. modified. (GM). crops. in.2009.1.Virtually,.none.of.this.land,.however,.was.planted.to.horticultural.crops,.even.though. agricultural. biotechnology. was. born. with. the. Flavr. Savr. tomato. in. 1994..While.the.introduction.of.agricultural.biotechnology.in.major.field.crops.has.been.a.success.and.marked.by.a.tremendous.acceptance.by.farmers.and.a.strong.empirical.record.of.productivity.growth,.the.development.of.horticultural.biotechnology.has.been.slow..The.Flavr.Savr.tomato,.intended.to.resist.damage.in.shipping,.is.no.longer.produced,.nor.is.a.strawberry.engineered.to.resist.frost.damage.or.an.insect-resistant.potato..Only.the.GM.papaya.has.achieved.any.degree.of.commercial.success,.with.70%.of.the.U.S.-bound.Hawaiian.crop.planted.with.GM.seeds..No.GM.horticultural.crop.has.been.deregulated.since.1999,.and.the.number.of.field.trials.has.declined.in.recent.years.2

CONTENTS

Introduction............................................................................................................. 175High.Fixed.Costs.of.R&D....................................................................................... 176Consumer.Acceptance............................................................................................. 178Regulation............................................................................................................... 180

Bans.on.GMOs................................................................................................... 181Identity.Preservation,.Segregation,.and.Labeling.............................................. 182

Directed.R&D.and.Role.for.Public.Sector:.Public–Private.Partnerships............... 183Predictions.and.Policy.Recommendations.............................................................. 186References............................................................................................................... 187

Page 190:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

176 Transgenic Horticultural Crops: Challenges and Opportunities

In. spite. of. the. commercial. failure. of. horticultural. biotechnology,. there. exists.ample. opportunity. for. welfare-improving. innovation. in. specialty. crops.. In. fact,.given.the.agronomic.demands.of.specialty.crops.and.the.quality.demands.of.those.who. consume. them,. the. capacity. for. genetic. improvements. in. horticultural. crops.may.exceed.that.of.major.field.crops..Farmers.of.horticultural.crops.could.benefit.not.just.from.the.herbicide-tolerant.and.insect-resistant.traits.introduced.into.major.field.crops.like.cotton,.maize,.soybean,.and.canola,.but.also.from.traits.to.protect.against.plant.disease.3–5.Traits. that. extend. the. shelf. life.of.produce.or.boost. their.nutrient.content.would.also.be.valuable,.as.would.traits.to.control.growth.in.orna-mental.plants.and.make.flowers.last.longer.2.In.addition,.because.plant.breeding.is.particularly.slow.and.cumbersome.for.specialty.crops,.the.capacity.to.introduce.an.advantageous.trait.into.an.elite.cultivar.without.backcrossing.is.highly.beneficial.2

In. spite. of. the. serious. potential. for. gains. to. producers. and. consumers,. horti-cultural. crops.have.been. largely.overlooked.by. the.biotechnology. revolution,. and.research.and.development.(R&D).for.these.crops.is.declining..The.failure.of.horti-cultural.biotechnology.innovation.to.proceed.at.the.same.pace.as.agricultural.bio-technology.is.largely.a.matter.of.economics..In.this.chapter,.we.explain.how.high.fixed.costs.for.biotechnology.research,.diversity.in.horticultural.crops,.market.size,.consumer.doubts.about.GM.foods,.consolidation.in.food.processing.and.marketing,.and.government.regulation.of.genetic.plant.engineering.constrain.the.development.of.new.specialty.crops..We.further.articulate.policies.to.help.spur.socially.beneficial.innovation.in.horticultural.biotechnology.and.offer.predictions.for.where.horticul-tural.biotechnology.may.succeed.

HIGH FIXED COSTS OF R&D

In.Schmookler’s.seminal.book,.Invention and Economic Growth,6.he.observed.that.“invention. is. largely. an. economic. activity,. which,. like. other. economic. activities,.is.pursued. for.gain.”.The. role.of.profits. in.determining. the.pace.and.direction.of.technological. change. is. a. subject. that. has. motivated. vast. theoretical. and. empiri-cal.literatures..Profits.are.central.not.just.to.endogenous.growth.models.but.also.to.theories.of.induced.innovation.and.directed.technical.change.7–10.In.his.assessment.of.the.adoption.of.hybrid.corn.seed.in.the.United.States,.Griliches.provided.early.evi-dence.that.profitability.and.market.size.are.closely.tied.to.innovation.and.technology.adoption.11.More.recently,.Kremer.argued.that.investment.in.cures.to.Third.World.diseases.is.too.low.because.markets.for.such.cures.are.too.small.12.The.literature.on.adoption.and.innovation.finds.that.adoption.and.innovation.activities.require.making.risky.investments.13,14.The.likelihood,.timing,.and.scale.of.adoption.and.innovations.are.affected.by.risk.considerations..Increased.variability.and.riskiness.tend.to.reduce.economic.activity.15,16

The.challenges. to. innovation. in.horticultural. biotechnology.are. fundamentally.economic,.and.they.are.derived.from.the.profitability.and.risk.management.decisions.made.by.firms.throughout.the.supply.chain,.which.affect.the.rate.and.direction.of.innovation..They.are.not.altogether.different.from.the.challenges.the.medical.world.faces.in.overcoming.Third.World.diseases:.The.potential.for.welfare.gains.is.tremen-dous,.and.yet.the.relevant.R&D.is.substantially.lacking..As.we.will.see.in.subsequent.

Page 191:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

177The Economic and Marketing Challenges of Horticultural Biotechnology

sections.of.this.chapter,. the.potential.to.recoup.costly.investments. in.horticultural.R&D.is.limited.by.consumer.acceptance.and.regulation..Against.these.expectations.of.low.benefits,.firms.must.weigh.the.costs.of.innovation,.which.are.mostly.fixed..While. the.costs.of.commercializing.GM.crops.are. independent.of. the. size.of. the.crop,.the.benefits.are.directly.proportional.to.the.size.of.crops,.which.means.that.the.development.of.GM.horticulture.is.less.likely.to.be.profitable.than.the.development.of.GM.field.crops.

Apart.from.the.costs.of.research,.the.regulatory.approval.process.for.new.bio-tech.crop.varieties. is. slow.and.expensive,. imposing.barriers. to. the.development.and. commercialization. of. new. technologies. and. creating. orphan. crops.17,18. The.cost. of. commercializing. a. single. transgenic. variety. can. exceed. $100. million.18.Once.a.new.trait.has.been.developed,.it.must.undergo.extensive.testing.for.envi-ronmental.and.human.safety.in.order.to.be.approved.for.production..In.the.United.States,.no.fewer.than.three.federal.agencies.are.responsible.for.approving.various.aspects.of.GM.technologies—the.U.S..Environmental.Protection.Agency,.the.U.S..Department.of.Agriculture.(USDA),.and.the.U.S..Food.and.Drug.Administration.(FDA).. The. registration. process. relies. on. ex. ante. testing. of. new. technologies,.followed.by.continual.monitoring.and.inspection.in.the.field,.with.the.technology.being. subject. to. cancellation. if. adverse. events.occur..The.outcomes.of. research.efforts,. the. regulatory. costs,. and. time. of. approval. are. uncertain,. and. investors.require.extra.gains.to.take.these.risks.

Each. transgenic. event. must. undergo. the. same. rigors. of. testing,. regardless. of.whether.the.same.trait.was.previously.approved.for.a.different.plant.species.or.variety.19.Registration. of. each. GM. variety. is. estimated. to. cost. as. much. as. $15. million..Testing.at.the.varietal.level.can.be.costly.and.causes.firms.to.introduce.new.traits.into.a.smaller.number.of.varieties.than.would.be.optimal.absent.the.costly.testing.20.Evidence.suggests. that.crop.biotechnology.innovation.has.slowed.because.of.high.costs.of.regulatory.compliance.17,21,22

The.diversity.of.horticultural.crops.causes.biotechnology.regulatory.costs.to.be.disproportionately.burdensome.relative.to.field.crops..Horticulture.comprises.hun-dreds.of.species.and.thousands.of.cultivars.each.produced.in.relatively.small.quanti-ties..It.can.be.costly.to.introduce.a.GM.trait.into.any.specific.crop.and.cultivar,.even.if.the.trait.has.previously.been.used.in.other.species.2.In.many.horticultural.crops,.several.different.varieties.are.commercially.important..If.introgression.of.the.new.trait.via.backcrossing.is.not.an.option,.such.as.may.be.the.case.for.clonally.propa-gated.varieties.that.do.not.breed.true,.each.variety.must.be.separately.transformed.in.the.lab,.and.each.must.be.separately.tested.and.approved..Regulatory.costs.would.add.up,.but. they. could.not.be. spread.out.over.nearly. as. large. a.market. as. could.row.crops.19.A.regulatory.regime.based.on.testing.at.the.trait.level.rather.than.the.event.or.varietal.level.would.reduce.compliance.costs.and.encourage.development.of. traits. that.could.be. introduced. into.closely.related.specialty.crops,. like.water-melon.and.cantaloupe.19

Another.cost.associated.with.the.development.of.horticultural.biotechnology.is.the.cost.of.gaining.access.to.complimentary.intellectual.property.rights.(IPRs)..The.transaction.costs.for.gaining.the.freedom.to.operate.(FTO).in.relevant.IP.space.are.considerable—as.high.as.$100,000.per.contract..And. these.costs.are. independent.

Page 192:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

178 Transgenic Horticultural Crops: Challenges and Opportunities

of.market.size..The.costs.also.increase.as.firms.seek.to.export. to.foreign.markets.because.additional.FTO.agreements.must.be.negotiated..A.large.share.of.horticul-tural.crop.output.is.exports,.making.these.costs.an.important.consideration.in.invest-ment.decisions..The.costs.of.FTOs.are.higher.for.horticultural.crops.than.field.crops.because.the.relevant.IP.is.more.secured.and.distributed.across.a.greater.number.of.IP.holders.23

Due. to. IP. congestion. and. the. difficulty. in. managing. IPRs. and. navigating. IP.spaces,.several.leading.U.S..public-sector.agricultural.research.organizations.estab-lished. the. Public. Intellectual. Property. Resource. for. Agriculture. (PIPRA),. which.provides.IP.management.solutions.for.public.sector.and.small.private.sector.players.in.horticulture..PIPRA.seeks. to.coordinate. the.disparate.portfolios.of. its.member.organizations.to.support.specialty.crop.applications..For.instance,.PIPRA.attempts.to. better. specify. licensing. agreements. to. distinguish. the. “fields. of.use”. so. that. a.technology.could.at.once.be.licensed.for.use.on.major.row.crops.as.well.as.for.uses.in.smaller.markets,.including.those.in.developing.countries..PIPRA.also.is.developing.an.IP.clearinghouse.and.working.to.pool.patents.to.be.licensed.as.a.bundle.for.uses.in.specific.crops.or.specific.regions..Such.efforts.can.help.to.mitigate.some.of.the.barriers.to.entry.in.horticultural.biotechnology.

In.spite.of.efforts.like.PIPRA,.the.high.fixed.costs.of.biotechnology.R&D,.par-ticularly,.the.regulatory.burden,.require.a.substantial.market.in.order.for.innovating.firms.to.recoup.their.investments..Many.of.California’s.specialty.crops.have.become.technological.orphans.because.agricultural.chemical.companies.have.concluded.that.the.potential.market.is.too.small.to.warrant.high.fixed.costs.to.develop.pesticides.for.specialty.crops..By.a.number.of.measures,.it.appears.that.seed.companies.share.the.sentiment.of.the.chemical.companies,.preferring.to.invest.in.conventional.breeding.of.horticultural.crops,.rather.than.genetic.engineering..Bradford.et.al..argue.that.the.marked.decline.in.R&D.intensity.for.lower.market.crops.is.a.consequence.of.high.registration.costs.2

CONSUMER ACCEPTANCE

In. the.11,000.years. since. the.domestication.of.plants,. crop. improvement.has.been.widely.hailed.as.a.necessity.for.overcoming.human.suffering.and.promoting.economic.growth..Plant.breeding.has.advanced.considerably.since.the.days.of.weak.selection..It.was.not.until.genetic.plant.engineering.was.introduced.that.sophisticated.breeding.techniques.elicited.consumer.opposition.24.The.application.of.the.same.genetic.pro-cesses.to.pharmaceutical.production.has.been.widely.accepted.by.consumers,.whereas.there. remain. considerable.health. and.environmental. concerns.associated.with.bio-technology.in.food.crops..In.the.13.years.since.the.commercial.introduction.of.GM.field.crops,.the.technology.has.largely.proven.to.be.safe.to.human.health.and.the.envi-ronment.and.to.provide.considerable.benefits.in.terms.of.increased.food.output.and.reduced.use.of.chemical.pesticides.and.tilling.operations.25.Shelton.et.al..reviewed.the.risks.of.insect-resistant.GM.crops.and.determined.the.risks.to.humans.and.the.envi-ronment.to.be.lower.than.the.risks.posed.by.alternative.pest-control.technologies.26.Nevertheless,.surveys.of.public.attitudes.routinely.find.large.portions.of.the.popula-tion.are.skeptical.of.biotechnology.in.general.and.food.applications.in.particular.27,28

Page 193:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

179The Economic and Marketing Challenges of Horticultural Biotechnology

Moschini.traced.current.doubts.about.biotechnology.to.the.introduction.of.recom-binant. DNA. and. the. surrounding. controversy. in. the. 1970s.27. Twenty. years. later,.and.with.accumulated.evidence.from.millions.of.experiments,.the.debate.about.the.safety.of.recombinant.DNA.was.settled—at.least.to.the.satisfaction.of.the.scientific.community.29.By.2003,.following.a.comprehensive.review.of.existing.evidence,.the.International.Council.for.Science.had.also.declared.consumption.of.foods.contain-ing.GM.ingredients.to.be.safe..The.safety.of.commercialized.GM.food.products.was.also.certified.by.a.number.of.national.science.academies.and.governmental.agen-cies,.including.the.USDA.

Environmental.concerns.center.on.the.impact.of.biotechnology.on.nontarget.spe-cies,.including.the.risk.of.gene.flow.beyond.the.farm.gate..While.such.risks.surely.exist.and.some.isolated.cases.of.gene.flow.between.GM.crops.and.proximal.non-GM.crops.have.been.documented,.governments.have.guarded.against.contamination.of.conventional.crops.by.requiring.buffer.crops.between.transgenic.and.conventional.crops..Against.these.risks,.including.the.yet.undocumented.risk.of.gene.flow.to.wild.flora.and.fauna,.weigh.environmental.benefits.associated.with.the.adoption.of.agri-cultural.biotechnology,.including.reduced.use.of.chemical.pesticides,.substitution.to.less.toxic.and.less.persistent.herbicides,.and.adoption.of.low-till.and.no-till.farming.practices.that.reduce.soil.erosion.and.carbon.emissions.

Not.withstanding. these.assurances.by.scientific.and.regulatory.agencies,.bio-technology. in. food. crops. remains. controversial,. perhaps. owing. to. heterogene-ity.with. regard. to. scientific. literacy.among. the.public.and.misperceptions.about.how. inserted. traits. alter. plant. development. and. food. production.27. Miranowski.et.al..and.Josling.and.Tangermann.reported.differing.opinions.on.biotechnology.between.scientists.and.the.public.at.large.30,31.Despite.a.spirited.debate.about.the.safety.of.biotechnology.in.academic.and.policy.circles,.surveys.consistently.show.that.consumers.have.little.information.about.the.risks.and.benefits.associated.with.GM.foods.32,33

Much.of.the.controversy.surrounding.consumption.of.GM.foods.may.stem.from.the.fact.that.the.first.commercialized.transgenic.crops.contained.input.traits.designed.to. improve.agronomic.performance.and.food.production,. rather. than.output. traits.intended.to.boost.food.quality.34.The.former.presumably.benefits.consumers.in.the.form.of.lower.food.prices,.though.these.benefits.may.be.less.discernable.to.consumers.than.products.with.new.attributes,.like.additional.nutrients.or.extended.shelf.lives..Agronomic.traits.can.be.perceived.as.benefiting.farmers.and.processors.rather.than.consumers.. Based. on. a. survey. of. more. than. 2000. consumers,. however,. Bredahl.found.broad.rejection.of.GM.technology.overall,.regardless.of.trait.35

A.number.of.studies.have.found.that.consumers.are.willing.to.pay.a.premium.for.food.products.that.are.free.from.GM.ingredients.36–39.Opposition.to.GM.foods.declines,. however,. when. consumers. are. provided. information. about. the. health.or. environmental. benefits. of. genetically. engineered. traits.37,38,40,41. Frewer. et. al..and.Mucci.and.Hough.found.evidence.that.consumers.are.more.willing.to.accept.genetic.modification.that.provides.nutritional.or.health.benefits.but.not.traits.that.reduce.cost. or. extend. shelf. life.42,43.Chern. and.Rickertsen. reported. results. from.a. cross-national. survey. that. showed. acceptance. of. GM. technology. was. broader.among. consumers. in. the. United. States. than. in. Norway.44. As. many. as. 70%. of.

Page 194:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

180 Transgenic Horticultural Crops: Challenges and Opportunities

Americans.consumed.products.with.GM.traits.that.either.reduced.chemical.appli-cations.on.crops.or.increased.the.nutritional.value.of.foods..Golden.rice—fortified.with. beta-carotene—elicits. a. positive. willingness. to. pay. (WTP).. Any. WTP. for.reduced.pesticide.residual.in.food,.however,.is.offset.by.the.perceived.risks.associ-ated.with.GM.technology.

Low. consumer. acceptance. of. crop. biotechnology. reverberates. up. the. supply.chain,.providing.a.disincentive.for.innovation..Food.processors.have.difficulty.in.marketing.products.made.with.GM.ingredients,.so.they.contract.with.farmers.for.non-GM.crops..Without.contracts.for.GM.crop.output,.farmers.are.disinclined.to.plant.GM.seeds..And.if.farmers.will.not.purchase.the.seed,.seed.companies.and.biotechnology.firms.will.not.invest.in.the.substantial.R&D.costs.necessary.to.pro-duce.the.seeds.

The.backlash.against.the.GM.potato.serves.as.a.cautionary.tale.about.the.limits.of.consumer.willingness.to.accept.GM.foods..McDonald’s,.the.largest.consumer.of.potatoes. in. the.United.States,.began.using.an. insect-resistant.potato. in. its.French.fries.in.order.to.reduce.costs..Consumer.opposition.was.intense,.however,.and.the.company.and.other.major.food.processors.stopped.sourcing.GM.potatoes.in.early.2000..One.year.later,.Monsanto,.which.had.developed.the.insect-resistant.potato.6.years.before,.stopped.marketing.it.altogether.

The.extent.to.which.the.experience.of.the.GM.potato.slowed.innovation.in.horti-cultural.biotechnology.is.not.clear,.but.it.is.likely.no.coincidence.that.R&D.directed.toward.food.crops.declined.sharply.after.Monsanto.withdrew.its.GM.potato..In.1999,.374.field.test.notifications.were.submitted.for.GM.horticultural.crops..By.2003,.that.number.had.fallen.to.97.2.In.contrast,.the.number.of.field-test.notifications.for.major.GM.field.crops.rose.from.506. in.1999. to.520. in.2003..Consumers.have.generally.been.more.tolerant.of.GM.crops.destined.for.animal.feed.rather.than.human.con-sumption,. which. may. explain. why. the. most. rapid. innovation. is. occurring. in. the.development.of.drought-tolerant.varieties.for.major.crops.

REGULATION

Consumer.acceptance.of.GM.foods.certainly.limits.the.returns.to.agricultural.and.horticultural. R&D.. But. government. regulation. further. constrains. the. market. and.deters. commercialization. of. GM. horticultural. crops. that. would. be. demanded,. at.least.in.niche.markets..Ex.ante.testing.and.registration.requirements.for.new.trans-genic.events.increase.the.fixed.costs.of.commercialization.and.create.a.disincentive.for.investment.in.horticultural.biotechnology.research,.as.was.discussed.previously..However,. two. other. elements. of. government. policy. also. limit. the. profitability. of.GM.horticulture.throughout.the.supply.chain..First,.some.governments.ban.imports.of.foods.containing.GM.ingredients.and.deny.registrations.for.domestic.GM.crop.production..These.policies.not.only.restrict.market.access.for.GM.output.but.also.limit. demand. for. seed. technologies. themselves.. Second,. where. GM. products. are.commercialized,.processors.often.face.strict.rules.for.segregating.and.labeling.GM.foods.and.derivatives.of.GM.ingredients..Liability.associated.with.adventitious.com-ingling.of.GM.and.non-GM.ingredients.creates.a.deterrent.to.GM-food.provision.by.food.processors.

Page 195:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

181The Economic and Marketing Challenges of Horticultural Biotechnology

banS on GmoS

The.United.States.was.an.early.and.aggressive.adopter.of.agricultural.biotechnol-ogy;.the.E.U..was.not..In.fact,.it.adopted.a.precautionary.approach.that.emphasized.a.zero-risk.tolerance.and.resulted.in.a.de.facto.ban.on.GM.technologies.for.a.decade,.ending.only. in. 2008..The. typical. explanation. for. the. stark.divergence. in.policies.is. that. European. consumers. are. more. risk. averse. than. American. consumers,. in.part. because. of. their. history. with. major. food. scares.45–48. Graff. and. Zilberman,.however,.rejected.this.conventional.wisdom.because.risk.preferences.for.agricultural.chemicals.and.intra-E.U..trade.reveal.a.level.of.acceptance.that.is.inconsistent.with.the.zero-risk.tolerance.that.defined.GM.food.policy.49.They.instead.offered.an.expla-nation. for. policy. divergence. based. on. political. economy. considerations. in. which.Europeans.sought.to.protect.the.agrochemical.industry.in.which.they.had.a.compara-tive.advantage.from.the.agricultural.biotechnology.industry.dominated.by.American.firms..Graff.et.al..formalized.this.hypothesis.in.a.model.in.which.interested.parties,.like.chemical.companies,.environmental.activists,.and.some.farming.cohorts,.per-suaded.consumers.to.be.wary.of.GM.foods.50.Consumer.sentiment.then.influenced.policy,.resulting.in.regulations.that.may.not.serve.the.interests.of.consumers.in.the.E.U..or.elsewhere.

The. European. ban. on. GM. foods. has. influenced. policies. in. Africa,. which. has.largely. banned. agricultural. biotechnology. in. spite. of. the. potential. for. substantial.gains.51. African. countries. largely. rely.on.European. countries. for. export.markets,.so. they.are.unlikely. to.deviate. from.European.policy..Still,. there. is.evidence. that.existing.technologies.could.generate.cost.savings.in.agricultural.production.of.10%.and.that.yields.would.climb.52.Subsequent.generations.of.agricultural.biotechnology.could.yield.even.greater.benefits.for.Africa,.providing.drought-tolerant.varieties.and.boosting.the.nutrient.content.of.staple.crops.

The.European.ban.on.GM.food. imports.has. impacted. the.adoption.decisions.of.farmers.beyond.Africa.48.For. instance,.Europe. is.a.major.destination. for.U.S.. farm.production.and.vice.versa..Following.the.institution.of. the.GM.food.moratorium.in.Europe,.U.S..corn.exports.to.the.region.essentially.halted.out.of.fear.of.comingling.GM.and.non-GM.corn.53.A.consequence.of.GMO.bans.around.the.world—and.especially.in.Europe—is.that.the.market.for.GM.traits.is.artificially.constrained..Even.though.the.adoption.of.agricultural.biotechnology.has.been.rapid.by.historical.standards,.only.about.one-fourth.of.the.world’s.countries.planted.GM.seeds.in.2009—and.half.of.it.was.planted.in.the.United.States.1.Farmers.in.nonadopting.countries.cannot.use.the.new.technologies.even.if.they.want.to.use.them,.and.those.in.adopting.countries.may.not.want.to.use.them.if.adoption.would.jeopardize.export.markets.

Without.a.robust.market.for.new.seed.technologies,.the.R&D.pipeline.shrinks,.stranding. traits. that.have.already.been.created.and.slowing. the.creation.of.new.traits..Graff.and.Zilberman.show.the.fall.in.patent.applications,.investment.dol-lars,.and.firm.start-ups.that.occurred.during.the.European.ban.49.While.stringent.regulation.may.have.been.intended.to.protect.against.risks.associated.with.damage-controlling.GM.traits,.they.also.surely.delayed.the.introduction.of.quality-enhancing.traits.. The. introduction.of. the. second-generation. GM.crops. is. long. overdue.. The.European. moratorium,. then,. may. prove. to. have. significant. and. lasting. social.

Page 196:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

182 Transgenic Horticultural Crops: Challenges and Opportunities

welfare  costs. in. terms.of.delayed. or. foregone. innovation. in.nutrition,. production.efficiency, and.environmental.mitigation.54

The.E.U..lifted.its.moratorium.on.GM.products.in.2008.and.by.2010.had.deregu-lated.its.first.transgenic.event.in.more.than.a.decade..Nevertheless,.the.adoption.of.GM.crops. in.Europe.declined. from.2008. to.2009,. and.Germany. instituted. a.ban.on.the.production.of.GM.crops..Spain.remains.the.only.consistent.and.significant.adopter.of.GM.technologies.in.Europe,.though.the.land.it.plants.to.GM.seed.con-stitutes.a.little.more.than.a.rounding.error.in.the.total.GM.land.base..Adoption.in.Africa.continues.to.lag.1

IdentIty preServatIon, SeGreGatIon, and labelInG

Despite.broad.consumer.opposition.to.GM.foods,.there.are.niche.markets.that.can.be.served.by.particular.genetically.engineered.traits..These.niches.may.be.under-served,. however,. because. of. demands. from. consumers. and. regulators. that. foods.derived.from.GM.crops.be.segregated..The.provision.of.GM.foods,.then,.may.require.separate.transportation,.shipping,.and.labeling.facilities..Identity.preservation.of.GM.and.non-GM.food.is.consistent.with.broader.trends.in.agriculture.and.food.produc-tion..Agricultural. commodities. are. increasingly.becoming.differentiated.products.in.response.to.wealthier.and.more.sophisticated.consumers.who.demand.foods.that.offer.environmental.and.health.benefits.relative.to.conventional.production..In.order.to.serve.niche.markets.for.organic,.free-range,.hormone-free,.and.local.foods,.pro-cessors.increasingly.contract.for.farm.output.in.order.to.ensure.quality.attributes.and.traceability.

Identity.preservation.of.GM.foods.is.likely.to.be.more.difficult.than.in.other.con-texts.for.a.number.of.reasons..First,.policies.on.GM.foods.vary.by.country..Some.GM.varieties,.produced.in.the.United.States,.for.instance,.have.not.been.approved.in.the.E.U..Heterogeneous.policies.require.processors.and.distributors.to.maintain.a.high.level.of.food.purity.or.risk.access.to.foreign.markets..More.than.40.countries.have.adopted. labeling. regulations.. The. United. States. is. most. lax,. providing. voluntary.labeling.guidelines. for.GM-free.food,.but. imposing.no.requirement..Only.foods.that. are. substantially. different. from. their. conventional. counterparts,. with. respect.to.nutritional.content,.for.instance,.require.labels..The.E.U..is.most.strict,.requiring.labeling.of.GM.foods.with.a.0.9%.tolerance.for.adventitious.presence.of.GM.crops.55.Australia,.Japan,.South.Korea,.and.China.have.adopted.stringent.regulations,.while.Canada,.like.the.United.States,.has.no.labeling.requirement.

Strict. mandatory. labeling. creates. a. disincentive. for. use. of. GM. ingredients..Following.the.adoption.of.labeling.requirements,.GM.food.disappeared.from.store.shelves.in.the.E.U..and.Japan.56.As.Lapan.and.Moschini.noted,.the.European.regula-tion.requires.food.produced.from.a.GM.ingredient.to.carry.a.GM.label.regardless.of.whether.the.final.product.contains.DNA.or.protein.of.GM.origin.57.Against.such.a.standard,.the.cost.of.avoiding.commingling.throughout.the.supply.chain.is.likely.to.be.enormous.and.prohibitive,.prompting.firms.to.source.from.suppliers.who.do.not.handle.any.GM.products..Such.regulations,.with.low.tolerance.thresholds.while.intended. to. improve.consumer.welfare.by.allowing.consumers. to.choose.between.GM.and.conventional.products,.practically.kill.the.market.for.GM.foods.

Page 197:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

183The Economic and Marketing Challenges of Horticultural Biotechnology

To.avoid.comingling,.GM.and.non-GM.crops.must.be.separated.on.the.farm.by.a.sufficient.distance.to.prevent.cross-pollination..They.must.also.be.kept.separate.in.transportation.to.grain.elevators.and.from.elevators.to.processors..The.challenge.of.isolating.crop.varieties.within.the.grain.marketing.system.and.preventing.unwanted.comingling.is.illustrated.by.the.2000.discovery.in.the.human.food.supply.of.a.GM.corn.variety.approved.only.for.animal.and.industrial.uses..The.StarLink.corn.was.discovered.first.in.taco.shells.marketed.at.retail.grocery.outlets,.including.the.Taco.Bell.brand.marketed.by.Kraft..The.discovery.ultimately.led.to.the.recall.of.200.food.products.and.a.temporary.ban.on.U.S..corn.imports.in.Japan.until.corn.purity.could.be.verified.

The.incident.was.estimated.to.cost.U.S..producers.as.much.as.$290.million.58.Aventis,. the. maker. of. StarLink. corn,. reportedly. budgeted. $1. billion. for. costs.associated.with.recalling.contaminated.corn.and.food.and.for.compensating.farmers.59.A. number. of. lawsuits. were. also. filed. against. Aventis,. which. finally. settled. for.$125.million.. It. took.nearly.half. a.decade. for. the. contaminated. corn. to. exit. the.food.supply.chain.despite.efforts. to.destroy. it. quickly..The.contamination. likely.occurred.via.gene.flow.across.buffer.crops.to.conventional.crops.destined.for.human.consumption.

The.StarLink.episode.demonstrates.that.without.reasonable.thresholds.in.label-ing.and.trade.import.regulations.for.the.adventitious.presence.of.GM.DNA.or.pro-teins,.the.risk.to.food.processors.is.high.while.the.benefits.are.low,.particularly.in.small.markets..Given.low.consumer.acceptance.and.strict.and.heterogeneous.label-ing.requirements,.firms.face.considerable.risk.to.serve.available.markets..Adverse.events.could.not.only.impose.significant.liability.but.also.jeopardize.brand.reputa-tion,.which.could.spread.to.non-GM.operations.of.the.firm..Niche.markets.for.GM.food.will.be.underserved.by.risk-averse.firms,.further.constraining.the.market.for.biotechnology.in.horticultural.crops.

DIRECTED R&D AND ROLE FOR PUBLIC SECTOR: PUBLIC–PRIVATE PARTNERSHIPS

Funding. for. horticultural. biotechnology. research. has. lagged. investment. in. trans-genic.research.for.major.field.crops,.even.controlling.for.relative.market.size.23.By.2004,.investment.in.horticultural.biotechnology.had.all.but.died.off,.with.leading.innovators.focusing.their.horticultural.R&D.efforts.on.conventional.plant.breeding.instead.of.genetic.engineering..Theory.predicts.that.the.investment.in.R&D.is.sub-optimally.low.because.of.free-rider.problems,.except.where.strong.IPRs.are.vigor-ously.enforced..Where.IPRs.are.strong,.however,.innovating.firms.are.rewarded.with.monopoly.power.for.the.terms.of.their.patents..Monopoly.power.permits.patent.hold-ers.to.earn.supra-normal.profits,.but.high.technology.prices.lead.to.adoption.rates.that.are.suboptimally.low.from.a.social.welfare.perspective..The.traditional.response.to.underprovision.of.agricultural.innovation.is.to.invest.public.dollars.in.research..Historically,.the.government.has.been.a.leader.in.agricultural.research,.and.horticul-ture.has.been.more.dependent.on.public.support.than.major.crops..Since.the.1990s,.however,.public.research.has.begun.to.decline.as.new.R&D.paradigms.emerge.

Page 198:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

184 Transgenic Horticultural Crops: Challenges and Opportunities

Since.the.mid-nineteenth.century,.governments.around.the.world.have.supported.agricultural.research,.which.has.historically.produced.publicly.available.crop.vari-ety.improvements.that.left.little.room.for.private.returns.60.The.rise.of.genetic.plant.engineering.at.the.close.of.the.twentieth.century,.however,.dramatically.changed.the.agricultural.R&D.landscape..Major.advances.in.crop.science.are.no.longer.mostly.in.the.public.domain..Instead,.due.to.the.nature.of.the.technologies.and.the.devel-opment.of.strong.IPRs,.the.benefits.of.innovation.are.excludable..Since.the.1980s,.governments.began.adopting.policies,.like.IPRs,.to.motivate.a.greater.share.of.agri-cultural.research.investment.from.the.private.sector..Consequently,.most.agricultural.biotechnology.R&D.is.undertaken.by.biotechnology.start-ups.and.established.seed.and.agrochemical.companies.

Because.the.costs.of.horticultural.biotechnology.are.immense,.including.the.fixed.costs.of.commercialization,.the.costs.of.identity.preservation,.and.the.risks.associ-ated.with. consumer. acceptance. and.comingling,. the.private. sector. is. expected. to.invest.scarce.R&D.dollars.elsewhere,.like.GM.applications.for.large.market.crops.that.do.not.directly.enter.the.food.supply..The.declining.investment.in.horticultural.biotechnology.has.been.documented.by.a.number.of.authors.54,61

Horticultural.research.has.typically.been.undertaken.in.the.public.sector,.but.bio-technology.research.has.been.dominated.by.the.private.sector..While.there.are.some.examples.of.public–private.partnerships.for.research.in.biotechnology,.none.relates.directly.to.horticultural.biotechnology.62.Horticultural.biotechnology.research.would.benefit. from. public–private. partnerships. because. the. traditional. paradigm. of.one-way.information.flows.from.public.research.institutions.to.private.firms.is.out-dated..Policy.changes.designed.to.push.research.expenses.toward.the.private.sector,.the.consequent. stagnation.of.public. funding. for.crop.science.research,. the. rise.of.large. life. sciences. firms,. and. the. alignment.of.public. and.private. incentives. for.long-term.R&D.created.an.imperative.for.a.new.formulation.of.the.R&D.pipeline.that.involved.closer.collaboration.between.industry.and.university.62,63

Universities.are.considered.to.have.a.comparative.advantage.in.basic.research.and.industry.in.applied.research.64–66.The.public-good.attributes.of.basic.research.make.it. an.appropriate.fit. for. the.university.environment.67–70.Applied. research,.with. its.focus.on.solving.particular.problems,.can.be.better.motivated.by.a.profit.incentive,.making.it.a.better.fit.for.industry..The.division.of.research.labor.between.industry.and.academia,.therefore,.allows.both.the.university.to.pursue.its.traditional.mission.of.providing.an.intellectual.commons.and.the.firm.to.pursue.its.profit.motive..The.complementarities.between.university.and.industry.research.have.been.fully.appre-ciated.only.in.recent.decades.66,71–73.In.line.with.their.mission.of.maintaining.“intel-lectual. commons,”. universities. have. historically. placed. innovations. in. the. public.domain.74.Administrators.now.recognize,.however,.that.they.can.increase.the.benefit.to.society.and.enhance.university.prestige.and.revenue.if.they.license.knowledge.to.firms.that,.by.virtue.of.having.rights.to.technologies,.will.invest.in.their.development.and.deployment.75.Firms.have.little.incentive.to.commercialize.a.technology.in.the.public.domain.because.competing.firms.can. freely.capitalize.on. the.R&D.invest-ments.of.others.76

While.the.outlook.for.investment.in.new.horticultural.biotechnologies.appears.dim. based. on. trends. in. public. funding. and. the. diversion. of. private. funds. to.

Page 199:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

185The Economic and Marketing Challenges of Horticultural Biotechnology

higher.valued.investments,.the.induced.innovation.hypothesis.offers.a.glimmer.of.hope.that.new.traits.in.horticultural.crops.can.be.introduced..A.considerable.literature. on. agricultural. R&D. has. subjected. the. induced. innovation. hypoth-esis. proposed.by.Hicks77. and. formalized.by.Hayami. and.Ruttan78. to. consider-able.scrutiny..It.has.emerged.as.both.an.intuitive.explanation.for. innovation.in.the. industry.and.one. that.explains.observed.phenomena.of. the.past.century.or.more.9,79–82.As.first.proposed.by.Hicks,.it.holds.that.“a.change.in.relative.prices.of. the. factors.of.production. is. itself. a. spur. to. invention,. and. to. invention. of. a.particular.kind—directed.to.economizing.the.use.of.a.factor.which.has.become.relatively.expensive.”.More.generally,.induced.innovation.holds.that.firms’.R&D.effort.is.directed.toward.technical.changes,.for.which.there.is.demand,.typically.because.of.scarcity.

More.generally,.the.theory.predicts.that.innovation.responds.to.scarcity.and.crisis..It.is.not.surprising.that.one.of.the.few.GM.horticultural.crops.on.the.market.today.was.developed.at.a. time.when.the.industry.was.severely.threatened..By.1994,. the.papaya. ringspot.virus,.which.had. forced. the. relocation.of.Hawaii’s.papaya. indus-try.from.two.other.islands,.reached.the.final.refuge.of.papaya.farmers.in.the.Puna.district.of.Hawaii. Island..The. industry.was. in.crisis..Fortunately,.as.crop.damage.spread,. an. effort. to. commercialize. a. papaya. variety. with. genetically. engineered.resistance.moved.forward..GM.papaya.was.commercialized.in.1998,.effectively.sav-ing.the.industry.83.Today,.more.than.70%.of.Hawaiian.papaya.is.produced.from.the.GM.seed.

The. underprovision. of. biotechnology. solutions. for. horticulture. is. analogous.to. the. problem. of. provision. for. developing. countries. and. mirrors. problems. in.medicine.regarding.the.development.of.treatments.and.cures.for.rare.diseases.and.those.that.plague.the.poor..Strong.patent.protections.in.medicine.have.motivated.R&D.in.global.illnesses.like.AIDS.and.cardiovascular.disease,.but.relatively.little.public.or.private.research.is.directed.at.diseases.specific.to.developing.countries,.like.tuberculosis.and.malaria,.even.though.millions.are.afflicted.by.these.diseases.every.year.84

The.incentive.problems.in.these.areas.of.research.are.the.same.as.that.which.causes.the.orphan.drug.problem—too.small.markets.for.firms.to.undertake.risky.R&D.investments..But. the.1983.Orphan.Drug.Act. in. the.United.States.has.pro-vided.a. jolt. to. research.on. rare. illnesses. like.Wilson’s.disease.and.Huntington’s.disease..The.Act.provided.tax.incentives.for.research.into.illnesses.that.caused.less.than.200,000.deaths.per.year,. guaranteed.exclusivity. for.7.years. (in.addition. to.patent.protection),.provided.expedited.reviews.by.the.FDA,.and.introduced.grants.for.qualifying.research..Twelve.times.as.many.biotechnology-based.treatments.for.rare.diseases.were.introduced.annually.in.the.decade.following.the.enactment.of.the.legislation.compared.to.the.decade.before..Mortality.from.rare.illnesses.also.declined.after. the.bill,.both.in.absolute.terms.and.relative.to.more.common.dis-eases..Deaths.from.rare.illnesses.had.been.growing.relative.to.deaths.from.other.diseases.84

In.agriculture,.PIPRA.constitutes.a.response.to.the.“orphan.drug”.problem.related.to.the.development.of.GM.crop.traits.for.horticultural.crops..Researchers.in.both.the.medical.and.agricultural.fields.also.endeavor.to.develop.international.partnerships.to.

Page 200:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

186 Transgenic Horticultural Crops: Challenges and Opportunities

mimic.the.successes.for.orphan.drugs.and.orphan.crops.for.the.purpose.of.delivering.valuable.technologies.to.poor.parts.of.the.world.

PREDICTIONS AND POLICY RECOMMENDATIONS

Since.1998,.there.has.been.a.downward.trend.in.R&D.intensity.for.crops.with.low.market.potential..Technology.has.marched.forward,.but.it.seems.to.have.left.horti-cultural.crops.behind..The.pace.of.innovation.has.been.slowed.by.market.resistance.and.regulatory.hurdles,.but.it.seems.to.have.slowed.disproportionately.for.specialty.crops.2.Despite.comparable.market.size.and.time.to.market,.pharmaceutical.R&D.investment.has.far.outpaced.crop.biotechnology.investment.22

Despite.the.decline.in.R&D.effort,.there.are.reasons.to.be.optimistic.that.rising.demand.for.horticultural.biotechnology.could.provide.a.jolt.to.lagging.R&D..Though.no.plant.breeding.technology.had.ever.elicited.consumer.opposition.before.agricul-tural.biotechnology,.other.revolutionary.technology.in.the.food.industry.has.caused.concerns.that.were.eventually.diminished..Huffman.and.Rousu.reported.that.it.took.40.years.for.consumer.opposition.to.pasteurization.of.milk.to.diminish.24.At.first,.the.opposition.was.widespread,.but.after.considerable.experience.with.pasteurized.milk.and.long.after.the.emergence.of.a.scientific.consensus.on.its.benefits,.full.acceptance.was.attained..The.slow.path.to.acceptance,.however,.was.not.without.costs.as.Pirtle.estimated.thousands.of.avoidable.deaths.occurred.because.acceptance.of.pasteurized.milk.was.not.more.immediate.85

General. acceptance. of. agricultural. and. horticultural. biotechnology. can. be.expected.to.grow.with.accumulating.experiences..Regardless,.clear. trends.in.food.demand.suggest. that.an.increasingly.wealthy,.educated,.and.discriminating.public.will. demand. more. and. more. differentiated. products. so. that. they. can. accomplish.heterogeneous.health,.environmental,.and.ethical.objectives..As.they.learn.to.dis-tinguish.organic,.low-fat,.low-carbohydrate,.and.farm.fresh.foods,.for.instance,.they.can.also.be.expected.to.identify.quality-enhancing.GM.traits.and.separate.irratio-nal.concerns.from.legitimate.risks..In.other.words,.niche.markets.for.GM.products.should.continue.to.grow..To.the.extent.there.is.a.consensus.view.on.consumer.accep-tance,.it.holds.that.the.right.quality-enhancing.attributes.will.be.warmly.received..As.consumers.become.more.accepting.and.demanding.of.GM.foods,.retailers.should.become.less.averse.to.stocking.them,.sending.appropriate.signals.up.the.supply.chain.to.seed.companies.

The. regulatory. environment. for. horticultural. biotechnology. is. also. changing.and. possibly. improving. with. growing. evidence. of. its. deficiencies.. Perhaps,. no.policy.change.has.broader.implications.than.Europe’s.decision.in.2008.to.lift.its.moratorium.on.GM.foods..Though.the.market.in.Europe.remains.constrained,.the.liberalizing.of.biotechnology.should.have.implications.for.policymakers.in.politi-cal.capitals.around.the.world,.especially.in.Africa,.and.should.provide.an.induce-ment. to. innovating. firms.. Costs. associated. with. regulatory. compliance. should.decline. as. policymakers. work. to. remove. socially. inefficient. barriers. to. entry..Governments.have.also.undertaken.to.improve.identity.preservation.infrastructure.throughout. their. food. systems. in. response. to. lapses. in. food. safety. and. risks. of.terrorist.attacks.on.the.food.supply..As.this.infrastructure.improves,.it.should.be.

Page 201:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

187The Economic and Marketing Challenges of Horticultural Biotechnology

easier. for. food.processors. to. serve.niche.markets. for.GM.foods.without. risking.liability.and.reputational.effects.associated.with.comingling..And.while.registra-tions. for. horticultural. crops. in. the. United. States. and. other. developed. countries.have.stagnated,.China.is.aggressively.moving.ahead.with.horticultural.biotechnology.applications..Perhaps,.competition.will.induce.other.countries.to.follow..The.rise.of.public–private.partnerships.like.PIPRA.that.intended.to.reduce.barriers.to.entry.is.also.likely.to.provide.increasingly.valuable.services.to.start-ups.and.horticultural.crop.operations.as.they.develop.

A.number.of.changes.to.IPR.and.regulatory.policy.could.also.improve.the.outlook.for.horticultural.biotechnology..First,.governments.should.move.from.a.system.of.event.and.variety-based.testing.to.one.that.is.trait-based..That.is,.innovators.should.not.be.required.to.undertake.the.same.testing.and.compliance.effort.to.introduce.an.already-approved.trait.into.a.new.variety.or.species..To.require.such.redundancy.in.testing. regimes. ignores. the.reduced. risks.associated.with.moving.a.probably.safe.trait.into.a.new.plant..Second,.governments.should.adopt.tolerances.for.adventitious.GM.content.in.foods.that.respect.consumer.choice.but.do.not.cause.the.market.for.GM.foods.to.collapse..The.tolerances.adopted.in.the.E.U..are.too.strict.to.permit.the.development.of.GM.food.markets..They.should.be.increased..Governments.should.also.pursue.standardized.policies.that.reduce.the.compliance.costs.to.firms.that.rely.on.exports.to.many.jurisdictions..Finally,.in.recognition.of.the.private.sector’s.insuf-ficient.incentives.to.invest.in.horticultural.crops.at.the.socially.optimal.level,.the.pub-lic.sector.should.step.up.its.effort.to.reduce.the.orphan-crop.problem..Horticulture.has.historically.been.publicly.supported..Even.though.policy.changes.have.provided.private.sector. inducements.for.agricultural.biotechnology,. it. is.clear.by.revealed.preference.that.firms.are.not.sufficiently.motivated.to.provide.biotechnology.appli-cations. for. small.markets.. An. orphan. crop. act,. like. the.Orphan.Drug.Act,. could.increase.the.incentive.for.research.on.GM.specialty.crops.

REFERENCES

. 1.. James,.C.,.Global Status of Commercialized Biotech/GM Crops: 2009,.ISAAA.Brief.41,.Ithaca,.NY,.ISAAA,.2009.

. 2.. Bradford,. K.,.Alston,. J.,. and. Kalaitzandonakes,. N.,. Regulation. of. biotechnology. for.specialty.crops,.in.Regulating Agricultural Biotechnology: Economics and Policy,.eds..R..E..Just,.J..M..Alston,.and.D..Zilberman,.Springer,.Berlin,.Germany,.2006,.p..683.

. 3.. Clark,.D.,.Klee,.H.,.and.Dandekar,.A.,.Despite.benefits,.commercialization.of.transgenic.horticultural.crops.lags,.California Agriculture,.58(2),.89,.2004.

. 4.. Gianessi,. L.. P.,.Economic. and. herbicide. use. impacts. of. glyphosate-resistant. crops,.Pest Management Science,.61(3),.241,.2005.

. 5.. Gianessi,.L.,.Sankala,.S.,. and.Reigner,.N..2004,.Potential. impact. for. improving.pest.management.in.European.agriculture:.Maize.case.study,.available.at:.http://www.ncfap.org..Accessed.on.January.2007.

. 6.. Schmookler,.J.,.Invention and Economic Growth,.Harvard.University.Press,.Cambridge,.MA,.1966.

. 7.. Aghion,.P..and.Howitt,.P.,.A.model.of.growth.through.creative.destruction,.Econometrica: Journal of the Econometric Society,.60(2),.323,.1992.

. 8.. Grossman,.G..M..and.Helpman,.E.,.Innovation and Growth in the Global Economy,.The.MIT.Press,.Cambridge,.MA,.1993.

Page 202:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

188 Transgenic Horticultural Crops: Challenges and Opportunities

. 9.. Hayami,.Y..and.Ruttan,.V..W.,.Agricultural Development: An International Perspective,.Johns.Hopkins.University.Press,.Baltimore,.MD,.1985.

. 10.. Acemoglu,.D.,.Labor-and.capital-augmenting.technical.change,.Journal of the European Economic Association,.1(1),.1,.2003.

. 11.. Griliches,.Z.,.Hybrid.corn:.An.exploration.in.the.economics.of.technological.change,.Econometrica,.25(4),.501,.1957.

. 12.. Kremer,. M.,. Pharmaceuticals. and. the. developing. world,. The Journal of Economic Perspectives,.16(4),.67,.2002.

. 13.. Feder,.G.,.Just,.R..E.,.and.Zilberman,.D.,.Adoption.of.agricultural.innovations.in.develop-ing.countries:.A.survey,.Economic Development and Cultural Change,.32(2),.255,.1985.

. 14.. Sunding,. D.. and. Zilberman,. D.,. The. agricultural. innovation. process:. Research. and.technology. adoption. in. a. changing. agricultural. sector,. in. Handbook of Agricultural Economics, Volume 1A Agricultural Production,.eds..B..L..Gardner.and.G..C..Rausser,.Elsevier.Science.B..V.,.Amsterdam,.the.Netherlands,.2001,.p..207.

. 15.. Sandmo,.A.,.On.the.theory.of.the.competitive.firm.under.price.uncertainty,.The American Economic Review,.61(1),.65,.1971.

. 16.. Dixit,.A.. K.. and. Pindyck,. R.S.,. Investment under Uncertainty,. Princeton. University.Press,.Princeton,.NJ,.1994.

. 17.. Bradford,. K.. et. al.,. Challenges. and. opportunities. for. horticultural. biotechnology,.California Agriculture,.58(2),.68,.2004.

. 18.. Alston,.J..M.,.Horticultural.biotechnology.faces.significant.economic.and.market.barriers,.California Agriculture,.58(2),.80,.2006.

. 19.. Zilberman,.D.,.The.economics.of.biotechnology.regulation,.in.Regulating Agricultural Biotechnology: Economics and Policy,.eds..R..E..Just,.J..M..Alston,.and.D..Zilberman,.Springer,.New.York,.2006,.p..243.

. 20.. Ameden,.H.,.Qaim,.M.,.and.Zilberman,.D.,.Adoption.of.biotechnology.in.developing.countries,. in.Agricultural Biodiversity and Biotechnology in Economic Development,.eds..J..Cooper,.L..M..Lipper,.and.D..Zilberman,.Springer,.New.York,.2005,.pp..329–357.

. 21.. Jaffe,. G.,. Regulatory. slowdown. on. GM. crop. decisions,. Nature Biotechnology,.24, 748,.2006.

. 22.. McElroy,. D.,. Sustaining. agbiotechnology. through. lean. times,. Nature Biotechnology,.21, 996,.2003.

. 23.. Graff,. G.. D.. et. al.,.Access. to. intellectual. property. is. a. major. obstacle. to. developing.transgenic.horticultural.crops,.California Agriculture,.58(2),.120,.2006.

. 24.. Huffman,.W..and.Rousu,.M.,.Consumer.attitudes.and.market.resistance.to.biotech.prod-ucts,.in.Regulating Agricultural Biotechnology: Economics and Policy,.eds..R..E..Just,.J..A..Alston,.and.D..Zilberman,.Springer,.New.York,.2006,.pp..201–225.

. 25.. Qaim,.M.,.The.economics.of.genetically.modified.crops,.The Annual Review of Resource Economics,.1,.665,.2009.

. 26.. Shelton,.A..M.,.Zhao,.J..Z.,.and.Roush,.R..T.,.Economic,.ecological,.food.safety,.and.social. consequences. of. the. deployment. of. Bt. transgenic. plants,. Annual Review of Entomology,.47(1),.845,.2002.

. 27.. Moschini,.G..C.,.Biotechnology.and.the.development.of.food.markets:.Retrospect.and.prospects,.European Review of Agricultural Economics,.35,.331,.2008.

. 28.. Gaskell,.G..et al.,.Europeans.and.biotechnology.in.2005:.Patterns.and.trends,.A.report.to. the. European. Commission’s. Directorate-General. for. Research,. London. School. of.Economics.and.Political.Science,.London,.U.K.,.2006.

. 29.. Berg,. P.. and. Singer,. M.. F.,. The. recombinant. DNA. controversy:. Twenty. years. later,.Proceedings of the National Academy of Sciences of the United States of America,.92,.9011,.1995.

. 30.. Miranowski,. J..A.. et. al.,. Economic. perspectives. on. GMO. market. segregation,. Staff.Paper.No..298,.Department.of.Applied.Economics,.University.of.Iowa,.Ames,.IA,.1999.

Page 203:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

189The Economic and Marketing Challenges of Horticultural Biotechnology

. 31.. Josling,.T..and.Tangermann,.S.,.Implementation.of.the.WTO.agreement.on.agriculture.and.developments.for.the.next.round.of.negotiations,.European Review of Agricultural Economics,.26(3),.371,.1999.

. 32.. Pew. Initiative. on. Food. and. Biotechnology,. Mellman. Group/Public. Opinion.Strategies,.Public.sentiment.about.genetically.modified.food,.2005..Available.online:.http://www.pewtrusts.org/news_room_detail.aspx?id=32804.(accessed.on.February.2,.2011).

. 33.. Eurobarometer 55.2,. Europeans,. science. and. technology,. European. Commission,.Public. Opinion.Analysis,. Brussels,. 2001. [cited. 20. December. 2002],. 62pp..Available.from. Internet:. http://ec.europa.eu/research/press/2001/pr0612.en-report.pdf. (accessed.on.February.2,.2011).

. 34.. Huffman,.W..E..et.al.,.The.effects.of.prior.beliefs.and.learning.on.consumers’.accep-tance.of.genetically.modified.foods,.Journal of Economic Behavior & Organization,.63(1),193,.2007.

. 35.. Bredahl,.L.,.Determinants.of.consumer. attitudes.and.purchase. intentions.with. regard.to.genetically.modified.food—Results.of.a.cross-national.survey,.Journal of Consumer Policy,.24(1),.2001.

. 36.. Lusk,. J.. L.,. Effects. of. cheap. talk. on. consumer. willingness-to-pay. for. golden. rice,.American Journal of Agricultural Economics,.85(4),.840,.2003.

. 37.. Lusk,.J..L..and.Rozan,.A.,.Consumer.acceptance.of.biotechnology.and.the.role.of.second.generation.technologies.in.the.USA.and.Europe,.Trends in Biotechnology,.23(8),.386,.2005.

. 38.. Moon,.W..and.Balasubramanian,.S..K.,.Willingness.to.pay.for.non-biotech.foods.in.the.US.and.UK,.Journal of Consumer Affairs,.37(2),.317,.2003.

. 39.. Chen,.H..and.Chern,.W..S.,.Consumer.acceptance.of.genetically.modified.foods,.paper.presented. at. Annual Meeting of the American Agricultural Economics Association,.Long.Beach,.CA,.2002.

. 40.. Onyango,.B.,.Govindasamy,.R.,.and.Nayga.Jr.,.R..M.,.An.application.of.choice.modeling.to.measure.US.consumer.preferences.for.genetically.modified.foods,.paper.presented.at.the.American Agricultural Economics Association Annual Meeting,.Denver,.CO,.2004.

. 41.. Lusk,. J.. L.. et. al.,  Effect. of. information. about. benefits. of. biotechnology. on. consumer.acceptance. of  genetically. modified. food:. Evidence. from. experimental. auctions. in. the.United.States, England,.and.France,.European Review of Agricultural Economics,.31(2),.179,.2004.

. 42.. Frewer,.L..J.,.Howard,.C.,.and.Shepherd,.R.,.The.influence.of.realistic.product.exposure.on.attitudes.towards.genetic.engineering.of.food,.Food Quality and Preference,.7(1),.61,.1996.

. 43.. Mucci,.A..and.Hough,.G.,.Perceptions.of.genetically.modified.foods.by.consumers.in.Argentina,.Food Quality and Preference,.15(1),.43,.2004.

. 44.. Chern,. W.. S.. and. Rickertsen,. K.,. A. comparative. analysis. of. consumer. acceptance.of.GM.foods. in. Norway. and. the.United.States,. paper. presented. at. 6th International Conference on Agricultural Biotechnology: New Avenues for Production, Consumption, and Technology Transfer,.Ravello,.Italy,.2002.

. 45.. Bernauer,.T.,.Genes,.Trade,.and Regulation,.Princeton.University.Press,.Princeton,.NJ,.2003.

. 46.. Hoban,.T..J.,.Trends.in.consumer.attitudes.about.agricultural.biotechnology,.AgBioForum,.1(1),.3,.1998.

. 47.. Runge,. C.. F.,. Bagnara,. G.. L.,. and. Jackson,. L..A.,. Differing. US. and. European. per-spectives.on.GMOs:.Political,. economic.and.cultural. issues,.Estey Centre Journal of International Law and Trade Policy,.2(2),.221,.2001.

. 48.. Sheldon,. I.. M.,. Regulation. of. biotechnology:. Will. we. ever. “freely”. trade. GMOs?.European Review of Agricultural Economics,.29(1),.155,.2002.

. 49.. Graff,.G..D..and.Zilberman,.D.,.Explaining.Europe’s.resistance.to.agricultural.biotech-nology,.Agricultural and Resource Economics Update,.7(5),.1,.2004.

Page 204:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

190 Transgenic Horticultural Crops: Challenges and Opportunities

. 50.. Graff,.G..D.,.Hochman,.G.,.and.Zilberman,.D.,.The.political.economy.of.agricultural.biotechnology.policies,.AgBioForum,.12(1),.34,.2009.

. 51.. Paarlberg,.R..L.,.Starved for Science: How Biotechnology Is Being Kept Out of Africa,.Harvard.University.Press,.Cambridge,.MA,.2008.

. 52.. Evenson,.R..E.,.Status.of.agricultural.biotechnology:.An.international.perspective,.in.Regulating Agricultural Biotechnology: Economics and Policy,. eds..R..E.. Just,.J. A..Alston,.and.D..Zilberman,.Springer,.New.York,.p..103,.2006.

. 53.. Hochman,.G..et.al.,.Agricultural.biotechnology.in.California.and.the.EU,.UC.Berkeley:.Institute. of. Governmental. Studies,. retrieved. from:. http://www.escholarship.org/uc/item/7kv3s4mg,.2008.(accessed.on.February.2,.2011).

. 54.. Graff,.G..D.,.Zilberman,.D.,.and.Bennett,.A..B.,.The.contraction.of.agbiotech.product.quality.innovation,.Nature Biotechnology,.27(8),.702,.2009.

. 55.. Gruère,.G..P.,.Carter,.C..A.,.and.Farzin,.Y..H.,.Explaining.international.differences.in.genetically. modified. food. labeling. regulations,. Review of International Economics,.17(3),.393,.2009.

. 56.. Carter,.C..A..and.Gruère,.G..P.,.Mandatory.labeling.of.genetically.modified.foods:.Does.it.really.provide.consumer.choice?.AgBioForum,.6(1&2),.68,.2003.

. 57.. Lapan,.H.. and.Moschini,.G..C.,.Grading,.minimum.quality. standards,. and. the. label-ing.of.genetically.modified.products,.American Journal of Agricultural Economics,.89(3),.769,.2007.

. 58.. Schmitz,.T..G.,.Schmitz,.A.,.and.Moss,.C..B.,.Did.StarLink.reduce.import.demand.for.corn?.Journal of Agricultural & Food Industrial Organization,.2(2),.Article.6,.2004.

. 59.. Smyth,.S.,.Khachatourians,.G..G.,.and.Phillips,.P..W..B.,.Liabilities.and.economics.of.transgenic.crops,.Nature Biotechnology,.20(6),.537,.2002.

. 60.. Alston,.J..M.,.Pardey,.P..G.,.and.Taylor,.M..J.,.Agricultural Science Policy: Changing Global Agendas,.Johns.Hopkins.Press,.Baltimore,.MD,.2001.

. 61.. Alston,.J..M.,.Bradford,.K..J.,.and.Kalaitzandonakes,.N.,.The.economics.of.horticultural.biotechnology,.Journal of Crop Improvement,.18(1),.413,.2006.

. 62.. Rausser,.G.,.Private/Public.research:.Knowledge.assets.and.future.scenarios,.American Journal of Agricultural Economics,.81(5),.1011,.1999.

. 63.. Alston,.J..M..and.Pardey,.P..G.,.Making Science Pay: The Economics of Agricultural R&D Policy,.American.Enterprise.Institute,.La.Vergne,.TN,.1996.

. 64.. Nelson,.R..R.,.The.simple.economics.of.basic.scientific.research,.The Journal of Political Economy,.67(3),.297,.1959.

. 65.. Bush,.V.,.Science:.The.endless.frontier,.Transactions of the Kansas Academy of Science,.48(3),.231,.1945.

. 66.. Rausser,. G.. and. Ameden,. H.,. Public–private. partnerships. needed. in. horticultural.research.and.development,.California Agriculture,.58(2),.116,.2006.

. 67.. Arrow,.K.,.Economic.welfare.and.the.allocation.of.resources.for.invention,.in.The Rate and Direction of Inventive Activity,.ed..R..Nelson,.Princeton.University.Press,.Princeton,.NJ,.1962,.pp..609–626.

. 68.. Griliches,.Z.,.The.search.for.R&D.spillovers,.The Scandinavian Journal of Economics,.94,.29,.1992.

. 69.. Stiglitz,.J..E..and.Wallsten,.S..J.,.Public.private.technology.partnerships:.Promises.and.pitfalls,.American Behavioral Scientist,.43(1),.52,.1999.

. 70.. Salter,.A..J..and.Martin,.B..R.,.The.economic.benefits.of.publicly.funded.basic.research:.A.critical.review,.Research Policy,.30(3),.509,.2001.

. 71.. Peters,. L.. and. Fusfeld,. H.,. Current US University–Industry Research Relationships,.National.Science.Board,.Washington,.DC,.1983,.pp..1–161.

. 72.. Fairweather,. J.. S.,. Entrepreneurship and Higher Education: Lessons for Colleges, Universities,.and Industry,.ASHE-ERIC.Higher.Education,.Report.No..6,.Association.for.the.Study.of.Higher.Education,.Washington,.DC,.1988.

Page 205:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

191The Economic and Marketing Challenges of Horticultural Biotechnology

. 73.. Geisler,. E.. and. Rubenstein,.A.. H.,. University-industry. relations:.A. review. of. major.issues,.in.Cooperative Research and Development: The Industry, University, Government Relationship,. eds..A..N..Link.and.G..Tassey,.Kluwer.Academic.Publishers,.Norwell,.MA,.1989.

. 74.. Hofstadter,.R.,.Academic Freedom in the Age of the College,.Transaction.Publishers,.New.Brunswick,.NJ,.1995.

. 75.. Etzkowitz,.H..et.al.,.The.future.of.the.university.and.the.university.of.the.future:.Evolution.of.ivory.tower.to.entrepreneurial.paradigm,.Research Policy,.29(2),.313,.2000.

. 76.. Graff,.G..D.. et.al.,.The.public–private. structure.of. intellectual.property.ownership. in.agricultural.biotechnology,.Nature Biotechnology,.21(9),.989,.2003.

. 77.. Hicks,.J..R.,.The Theory of Wages,.Macmillan,.London,.U.K.,.1932.

. 78.. Hayami,.Y..and.Ruttan,.V..W.,.Agricultural.productivity.differences.among.countries,.The American Economic Review,.60(5),.895,.1970.

. 79.. Boserup,.E..and.Kaldor,.N.,.The Conditions of Agricultural Growth: The Economics of Agrarian Change under Population Pressure,.G..Allen.and.Unwin,.London,.U.K.,.1965.

. 80.. Binswanger,.H..P.,.A.microeconomic.approach. to. induced. innovation,.The Economic Journal,.84(336),.940,.1974.

. 81.. Binswanger,. H.. P.. and. Rosenzweig,. M.. R.,. Behavioral. and. material. determinants. of.production.relations.in.agriculture,.Journal of Development Studies,.22(3),.503,.1986.

. 82.. Olmstead,.A..L..and.Rhode,.P.,.Induced.innovation.in.American.agriculture:.A.reconsid-eration,.Journal of Political Economy,.101(1),.100,.1993.

. 83.. Gonsalves,.D.,.Transgenic.papaya.in.Hawaii.and.beyond,.AgBioForum,.7(1&2),.36,.2004.

. 84.. Grabowski,. H.,. Patents,. innovation. and. access. to. new. pharmaceuticals,. Journal of International Economic Law,.5(4),.849,.2002.

. 85.. Pirtle,.T..R.,.Handbook of Dairy Statistics,.U.S..Department.of.Agriculture,.Washington,.DC,.1922.

Page 206:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,
Page 207:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

193

9 Consumer Acceptance of Genetically Modified Foods: Traits, Labels, and Diverse Information

Wallace E. Huffman

The.United.States.has.more. than.a.decade.of.experience.with.commercially.mar-keted,.genetically.modified.(GM).horticultural.and.field.crops.and.is.the.dominant.player.in.GM.crops..The.first.GM.commercial.crops.were.the.Flavr-Savr.tomato.and.the.Russet.Burbank.New.Leaf.potato,.both.deregulated.in.1994.and.marketed.com-mercially.shortly.thereafter..At.about.the.same.time,.field.crop.varieties.possessing.“input.traits”.were.also.developed.and.first.marketed.commercially..GM.papaya.was.developed.by.the.public.sector.and.successfully.marketed.a.little.later..Some.of.the.economic.issues.facing.biotech.horticultural.crops.have.been.summarized.1,2

In.this.chapter,.new.experimental.economic.methods.are.described.and.used.to.assess.consumer.willingness.to.pay.for.food.products.that.might.be.made.with.new.transgenic.and.intragenic.GM.traits..Participants.in.my.lab.auctions.are.randomly.

CONTENTS

Early.Development.of.GM.Crops........................................................................... 194New.Development.of.GM.Vegetable.Crops............................................................ 197Food.Labels.and.Information.................................................................................. 198Experiments.Designed.to.Assess.Consumer.Willingness.to.Pay.for.GM.Foods....... 200Experimental.Evidence.on.Key.Bid-Price.Differences...........................................204

Simple.Differences.in.Mean.Bid.Prices.............................................................204Individual.Bid-Price.Differences.and.Diverse.Information...............................204Individual.Differences.in.Bid.Prices.and.Prior.Information..............................206Other.Related.Results.........................................................................................207

Discussion.of.GM.Technology.and.Mixed.Messages.............................................207Conclusions.and.Predictions.for.the.Future............................................................208Appendix.A:. Information.Injected.into.the.2001.Des.Moines.and.St..Paul.Experiments........................................................................................209Appendix.B:. Information.Injected.into.the.2007.Des.Moines.and.Harrisburg.Experiments................................................................................... 212References............................................................................................................... 215

Page 208:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

194 Transgenic Horticultural Crops: Challenges and Opportunities

chosen. adult. consumers. in. major. U.S.. metropolitan. areas.. Food. labels. are. kept.simple.and.focus.on.key.attributes.of.experimental.goods..Diverse.private.informa-tion.from.the.agricultural.biotech.industry.(largely.Monsanto.and.Syngenta),.envi-ronmental.groups.(largely.Greenpeace.and.Friends.of.the.Earth),.and.independent.third-party.information.(scientifically.objective.at.the.time.of.the.experiments).is.used.to.construct.the.information.treatments..Willingness.to.pay.is.determined.by.experimental. lab. auctions. under. random. food. label. and. information. treatments..Auctions.are.best.described.as.sealed.bid.random.nth.price.and.not.a.first.price.of.Vickery.2nd.price.auction..I.show.that.participants.in.these.experiments.respond.both.to.food.labels.and.information.treatments,.but.no.single.type.of.information.is.dominant.

The.first.section.of.the.chapter.reviews.early.development.of.GM.crops.that.were. largely. input. traits. of. herbicide. tolerance. and. insect. resistance. that. have.now.spread.unevenly.across. the.world,.and. the. second.section.describes.some.new.methods.for.developing.GM.vegetable.crops.with.enhanced.consumer.attri-butes..The.third.section.summarizes.the.development.of.U.S..food-label.policy.and.requirements..The.fourth.section.briefly.describes.experimental.evidence.on.consumer.willingness. to.pay. for.GM.foods.using. lab.auctions.of.experimental.commodities..In.the.final.section,.some.conclusions.and.predictions.about.likely.future.developments.in.commercial.horticultural.crops.are.presented.

EARLY DEVELOPMENT OF GM CROPS

The.first.commercial.GM.crops.were.the.Flavr-Savr.tomato,.developed.for.sale.in.the.United. States. by. Calgene,. and. the. Russet. Burbank. New. Leaf. potato. developed. by.Monsanto..These.two.products.were.the.first.whole.foods.produced.with.biotechnology.that.were.approved.by.the.U.S..Food.and.Drug.Administration.(FDA).for.retail.sale.*.The.Flavr-Savr.tomato,.“a.delayed-ripening.tomato,”.was.the.product.of.more.than.a.decade.of.research.to.develop.a.tomato.that.could.be.picked.when.ripe.and.transported.without.bruising..(pp..256–257).3.The.claim.was.that.it.would.have.a.longer.shelf-life.than.conventional.tomatoes.and.would.provide.consumers.and.processors.with.tastier.tomatoes.because.the.fruit.had.been.left.to.mature.on.the.vine.†.This.was.accomplished.

*.A.potential.food.safety.concern.was.raised.by.the.fact.that.in.creating.the.GM.tomato,.a.marker.gene.for. the.antibiotic.kanamycin.was.inserted..The.marker.gene.is.helpful. for.identifying.which.plants.have.been.affected.by.a.target.gene.3.When.the.marker.is.an.antibiotic,.technicians.test.for.presence.of.successfully.transferred.genes.of.interest.by.applying.the.antibiotic..Only.those.cells.that.contain.the.antibiotic.resistance.will.survive.this.treatment,.and.thereby.indicate.that.an.accompanying.target.gene.is.present..The.FDA,.however,.found.no.food.safety.concerns.due.to.insertion.of.foreign.antibiot-ics.into.plant.cells.

†. Because.U.S..winter.fresh.market.tomato.production.is.concentrated.in.Florida,.which.means.shipping.the.fruit.long.distances.to.the.U.S..retail.markets.in.the.East,.Midwest,.and.South,.it.is.important.that.the.fruit.does.not.perish.on.its.journey.to.market.because.of.its.soft.skin..(Winter.tomatoes.for.the.West.are.generally.supplied.by.Mexico.).The.conventional.solution.has.been.for.tomato.farmers.to.pick.the.fruits.while.they.are.green,.i.e.,.“mature.greens,”.transport.them.to.the.location.of.the.retail.market.and.then.spray.them.with.ethylene,.a.natural.ripening.agent,.to.artificially.ripen.and.redden.the.fruit..However,.the.artificially.ripened.tomatoes.have.an.inferior.flavor.relative.to.vine-ripened.tomatoes.

Page 209:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

195Consumer Acceptance of Genetically Modified Foods

by. gene-silencing,. through. an. antisense. RNA. that. interfered. with. translation. and.reduced.the.production.of.specific.proteins.that.cause.ripening.(pp..256–257).3

The.first.Flavr-Savr.tomatoes.were.sold.in.U.S..grocery.stores.in.the.summer.of.1994.and.were.marketed.as.GM..They.sold.relatively.well.at.first.and.were.in.about.2500.stores.by.June.1995,.but. it.became.apparent. that. their.performance.did.not.match. expectations..First,. the.genes. for.delayed. ripening.were. inserted.into.a. tomato.variety.that.was.best.suited.for.processing,.not.direct.eating,.and.that.bruised.relatively.easily,.contrary.to.its.development.objective..Second,.con-trary.to.expectations,.it.had.a.bland.taste.relative.to.conventional.winter.tomatoes..Third,. the. new. tomato. variety. was. suited. to. California’s. dry. summer. growing.conditions,.but.not. to.the.humid.winter. tomato.growing.regions.of.Florida.and,.as.a.result,.was.susceptible.to.Florida’s.tomato.fungal.diseases..Fourth,.the.retail.price.was.more.than.two.times.higher.than.conventional.fresh.market.tomatoes..Hence,.a.number.of.factors.contributed.to.the.failure.of.the.Flavr-Savr.tomato.in.the.U.S..market.(pp..256–257).3,4

At. the.same.time,.Zeneca.produced.a.related.high-solid.GM.tomato.for.use. in.purees. and. soups,. obtained. approval. for. sale. in. the. United. Kingdom,. and. began.marketing. in.1996.under. the.brand.names.Safeway.Double.Concentrated.Tomato.Puree.and.Sainsbury’s.California.Tomato.Puree..These.products.were.sold.at.a.lower.per.unit.price.than.purees.from.conventional.tomatoes.and.were.marketed.in.larger.containers.to.make.the.product.appear.to.consumers.as.a.“better.value.”.By.1999,.the. GM. puree. had. captured. up. to. 60%. of. the. processed. tomato. market. share. in.the.United.Kingdom..However,.when.unrelated.food.scares.(e.g.,.BSE.in.sheep.and.cattle,.dioxin.in.livestock.feed).started.to.unfold.in.the.United.Kingdom.in.the.late.1990s,.Zeneca’s.GM.high-solid.tomato.varieties.were.a.casualty,.and.they.were.with-drawn.from.the.market.4

Monsanto.engineered.the.Russet.Burbank.New.Leaf.potato.to.be.resistant.to.the.Colorado.potato.beetle,.a.major.potato.pest,.and.this.potato.was.deregulated.in.1994..This.new.variety.offered.growers.the.advantage.of.significantly.reducing.the.need.for. chemical. pesticide. applications,. and. initially. gained. favor. in. the. fresh. potato.market..However,.under.pressure.from.consumer.groups,.the.fast-food.industry.(e.g.,.McDonalds). and. grocery. store. chains. would. not. purchase. it. or. halted. early. pur-chases,.and.this.prompted.Monsanto.to.withdraw.the.GM.potato.variety.from.the.retail.market.in.1999.5

To.date,.the.most.commercially.successful.GM.crops.in.the.United.States.have.been.those.engineered.with.so-called.input.traits,.namely,.insect.resistance.(Bt).and.herbicide. tolerance. (HT.or.RR/RoundUp.Ready)..These.GM.traits.were.obtained.by.transferring.genes.largely.from.soil.bacteria.into.selective.species.of.commercial.field.crops.to.induce.resistance.or.tolerance.to.target.organisms,.thereby.creating.a.so-called.transgenic.crop.variety.(pp..250–256).3.The.target.of.these.traits.has.been.canola,.soybean,.cotton,.and.corn,.with.commercial.GM.varieties.of.these.four.crops.first.introduced.in.the.mid-1990s..These.GM.field.crops,.whose.products.are.largely.destined.for.oil,.feed,.and.fiber,.have.had.very.rapid.grower.adoption.(Figure.9.1)..For.instance,.HT.soybeans.were.first.marketed.to.farmers.in.1996.and.now.account.for.more.than.90%.of.U.S..soybean.acreage..Canola.with.HT.has.also.been.successful,.although.it.is.a.relatively.small.acreage.crop.in.the.United.States..Bt.and.HT.cotton.

Page 210:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

196 Transgenic Horticultural Crops: Challenges and Opportunities

also.got.off.to.a.fast.start.in.1996..By.2005,.about.60%.of.U.S..cotton.carried.HT.or.Bt.genes,.with.the.most.recent.varieties.carrying.both.traits.as.a.“stacked.gene”.variety..GM.field.corn.got.off.to.a.slow.start,.and.in.2005.about.30%.of.the.corn.acreage.was.planted.to.Bt.and.15%.to.HT.*.In.corn,.recent.stacking.of.multiple.Bt.genes,.impart-ing.resistance.against.European.corn.borer.and.rootworm,.often.together.with.HT,.has.pushed.GM.corn.acreage.up.in.the.last.2.years.and.is.anticipated.to.become.the.“gold.standard”.in.the.future.†

Genetic. improvement. of. papaya. remains. the. one. bright. example. of. successful.public.sector.bioengineering.of.a.horticultural.food.crop..Starting.in.the.1940s,.the.Hawaiian.papaya.fruit. industry.was.ravaged.by.papaya.ringspot.virus.and,.by.the.1980s,.Hawaii’s.papaya.production.had.fallen.significantly.and.was.concentrated.in.the.Puna.district.of.the.Big.Island..However,.by.the.early.1990s,.ringspot.virus.was.invading.that.area,.too..The.University.of.Hawaii.at.Mãnoa,.Cornell.University.and.the.U.S..Department.of.Agriculture-Agricultural.Research.Service.(USDA-ARS).then. initiated.new. research. and.developed.a. transgenic. papaya.variety. that. was.resistant. to. ringspot,. labeled. Rainbow,. and. it. was. released. freely. to. farmers. in.

*.Zilberman.has.argued.that.rational.regulation.of.transgenic.products.should.compare.their.risks.and.benefits.with.the.risks.and.benefits.of.alternative.technologies..Current.regulations.ignore.the.alterna-tives,.and.this.is.costly.to.society.6

†. Although.herbicide-tolerant.wheat.varieties.have.been.developed.for.the.United.States.by.Monsanto,.they.have.not.been.marketed.widely,.nor.are.they.currently.available.to.farmers.because.of.consumer.resistance.due.to.the.use.of.wheat.largely.for.food.such.as.breads,.pastas,.etc.

Percent of acres100

80

60

40

20

01996 1997 1998 1999 2001 2002 2003 2004 2005 2006 20072000

HT

HT cotton

Bt cottonHT cornBt corn

soybeans

FIGURE 9.1 (See color insert.).Adoption.of.genetically.engineered.crops:.United.States,.1996–2007..Note:.Data.for.each.crop.category.include.varieties.with.both.HT.and.Bt.(stacked).traits.. (Data. for. 1996–1999. are. from. Femandez-Cornejo. and. McBride. (2002);. data. for.2002–2007.are.available.in.the.ERS.Data.Product,.adoption.of.genetically.engineered.crops.in.the.United.States,.Tables.1–3.)

Page 211:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

197Consumer Acceptance of Genetically Modified Foods

1998.7,8.Since. its. introduction,. the.Rainbow.variety.of.papaya.has.been.used.stra-tegically.to.create.a.virus-free.ring.as.a.buffer.to.slow.down.the.spread.of.papaya.ringspot.virus.in.the.Puna.area.and.to.slow.down.or.reduce.resistance.of.consumers.and/or.some.growers.to.the.new.GE.technology.7,9.Papaya.is.the.only.U.S..crop.in.which.public. sector. scientists.have.pioneered. the. development.of. a. commercially.successful.GM.crop.variety.

Overall,.the.early.commercial.successes.with.GM.crops.were.not.with.horticul-tural.crops,.but.rather.with.a.small.set.of.field.crops..The.most.likely.reason.is.that.consumers.failed.to.personally.see.enhanced.value.from.many.of.the.new.GM.traits.that.were.scientifically.possible..In.fiber.crops.and.crops.that.are.used.heavily,.but.not.exclusively,.for.livestock.feed,.consumer.acceptance.was.less.important..However,.the.image.of.GM.crops.with.consumers.has.been.damaged.by.the.fact.that.new.GM.products.with.unique.enhanced.consumer.attributes.have.been.slow.to.develop.

NEW DEVELOPMENT OF GM VEGETABLE CROPS

As.transgenic.GM.technology.has.been.developed.and.marketed.for.a.small.set.of.field.crops,.a.new.line.of.research.has.recently.emerged.around.intragenic.GM.hor-ticultural.crops.10,11.Prompted.by.continued.consumer.resistance.to.transgenic.food.crops,.these.new.methods.introduce.new.traits.into.a.crop.variety.by.using.only.DNA.from.the.same.species,.thereby.yielding.an.“intragenic”.genetic.modification..This.research.was.made.possible.by.a.small.set.of.scientists.recognizing.that.a.huge.range.of.genetic.diversity.exists.within.horticultural.crops.that.have.been.grown.for.a.long.period.of. time. under. diverse. environments. and. human. needs,. perhaps. in. relative.isolation..For.example,.major.genetic.diversity.exists.in.potato.and.tomato,.stretching.from.very.old.primitive.or.landrace.varieties.to.the.modern.commercial.varieties.of.today..However,.in.the.case.of.the.potato,.inbreeding.depression,.tetraploid.genetics,.and.clonal.propagation.conspire.to.make.traditional.breeding.difficult.and.slow..By.taking.a.new.intragenic.bioengineering.approach,.genomic.and.metabolic.pathway.discoveries.can.be.quickly.introduced.into.established.commercial.varieties.to.fast-track.the.breeding.process.without.introducing.foreign.DNA.or.antibiotic.markers.

Economists.have.shown.recently.that.consumer.acceptance.of.GM.food.crops.is. intimately. linked. to. the. type.of. traits. engineered. into. the. crops,. the. types.of.food.labels.on.retail.food.products,.and.the.information.environment..For.example,.the.GM.food.market.has.been. subjected. to.diverse.and.conflicting. information,.and.this.makes.informed.decision.making.by.consumers.and.producers.difficult.12.Although.the.first.commercial.GM.crop.was.a.horticultural.crop.(the.Flavr-Savr.tomato).with.“enhanced.consumer.attributes,”.all.of.the.other.commercially.suc-cessful. GM. crops. in. the. United. States. have. possessed. input. traits—traits. that.reduce.either. the.cost.of.production.or. the.variance. in. the.cost.of.production. to.farmers. and,.hence,. have.only. benefited. consumers. to. the. extent. that. they.have.lowered.food.prices.or.increased.food.availability..Although.Falck-Zepeda.et.al.13.and.Moschini.et.al.14.show.that.consumer.surplus.benefits.from.these.technologies.have.been.sizeable,.these.benefits.have.not.registered.effectively.with.consumers..With.new.intragenic.potatoes.and.tomatoes.that.are.engineered.for.dramatically.

Page 212:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

198 Transgenic Horticultural Crops: Challenges and Opportunities

enhanced.antioxidants. and.vitamins. (e.g.,. vitamin.C,.A,.or.E),. improved. starch.content,.and/or.reduced.bruising.becoming.scientifically.possible,.U.S..consumers.may,.for.the.first.time,.see.GM.crops.as.having.direct.positive.value.to.them.over.conventionally.bred.crops.*

FOOD LABELS AND INFORMATION

Economists. have. shown. that. food. labels. and. information. are. important. factors.conditioning. consumer. response. to. GM. foods. (e.g.,. see. Rousu. et. al.,12. Huffman.and.Rousu,15. and.Moschini.and.Lapan16)..Food.products. in. the.United.States.can.be. labeled. for.nutritional.claims.and. for. safety..The.1990.Nutrition.Labeling. and.Education.Act.dramatically.changed.nutrition.labels.on.packaged.foods.sold.in.U.S..supermarkets.17,†. This. law. requires. packaged. foods. to. display. nutrition. informa-tion.prominently. in.a.new.label. format,.namely,. the.Nutrition.Facts.panel.. It.also.regulates.serving.size,.health.claims.(that.link.a.nutrient.to.a.specific.disease),.and.descriptor.terms,.for.example,.“low.fat,”.on.food.packages..The.goal.of.this.legisla-tion.was.to.improve.consumer.welfare.by.providing.nutrition.information.that.would.assist.consumers.in.making.healthy.food.choices.

As.an.indication.of.the.costliness.of.effective.food.nutrient.labeling,.it.is.esti-mated.that.the.U.S..food.industry.spent.$2.billion.to.comply.with.the.1990.Nutrition.Labeling.and.Education.Act.(NLEA).(Public.Law.101-535).18.However,.some.attri-butes,.such.as.enhanced.calcium.and.vitamins.A.and.C,.are.viewed.positively.by.consumers,.that.is,.more.is.better.in.the.case.of.positive.consumer.attributes..But.other.food.attributes,.such.as.salt,.fat,.and.pesticide.residue,.are.negative,.and.then.the.consumer.views.less.to.be.better..Food.labels.before.the.Nutrition.Labeling.and.Education.Act.had.a.seeming.emphasis.on.negative.labeling..Balasubramanian.and.Cole17.suggest.that.this.tendency.can.be.explained.by.consumers.having.an.asym-metric.value.function,.weighing.a.dollar.of.loss.more.heavily.than.a.dollar.of.gain,.which.is.Tversky.and.Kahneman’s19.prospect.theory.

The.policies.under.the.Nutrition.Labeling.and.Education.Act.also.tend.to.emphasize.negative.rather.than.positive.labeling..First,.permissible.health.claims.are.ones.that.asso-ciate.specific.nutrients.with.reduced.risk.of.specific.diseases..Of.the.seven.health.claims.approved.by.the.FDA.at.the.onset.of.the.new.nutrient.labeling.act,.three.linked.negative.attributes.exclusively.with.deadly.diseases,.that.is,.dietary.fat.with.cancer,.sodium.with.hypertension,.and.dietary.saturated.fat.with.high.cholesterol.and.heart.disease,.and.only.one.claim.featured.a.positive.attribute,.that.is,.calcium.and.osteoporosis..Later.claims.have,.however,.been.more.balanced..Second,.regulations.on.nutrient-content.claims.tend.to.focus.more.heavily.on.negative.attributes.(calories,.sugar,.sodium,.fat,.fatty.acids,.and.cholesterol).than.on.positive.attributes.such.as.fiber.and.vitamins.

*.Antioxidants.are.substances.that.may.protect.human.cells.from.the.damage.otherwise.caused.by.unsta-ble.molecules.known.as.free.radicals..Free.radical.damage.over.time.is.believed.to.cause.some.types.of.cancer..Antioxidants.interact.with.and.stabilize.free.radicals.and.may.prevent.some.of.the.damage.free.radicals.might.otherwise.cause..Antioxidants.include.beta-carotene,.lycopene,.vitamins.C,.E,.and.A,. and. other. substances.. These. compounds. are. sometimes. called. phytonutrients. and. are. naturally.occurring.in.at.least.low.levels.in.most.fruits.and.vegetables.

†. Unpackaged.foods—for.example,.fresh.fruits.and.vegetables,.are.not.affected.

Page 213:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

199Consumer Acceptance of Genetically Modified Foods

GM.content.has.not.been.shown.to.have.negative.human.health.consequences..Nevertheless,.with.foods.made.currently.from.crop.varieties.that.contain.GM.input.traits,.adding.a.label.for.GM.content.would.be.an.example.of.labeling.a.negative.food.attribute.

Genetically.engineered.products.used.for.food,.however,.do.have.to.pass.a.food.safety.test..In.1992,.the.FDA.announced.its. landmark.decision.that.GM.food.and.food.products.will.be.regulated.the.same.as.those.created.by.conventional.means..This.policy.allows.new.GM.foods.to.be.treated.as.conventional.foods.as.long.as.they.meet.three.conditions:.their.nutritional.value.has.not.been.lowered;.they.incorporate.new.substances.that.are.already.a.part.of.the.human.diet;.and.they.contain.no.new.allergenic.substances..In.January.2001,.the.FDA.issued.a.“Guidance.for.Industry”.statement.reaffirming.this.policy..In.this.statement,. the.FDA.stated.to.the.biotech.industry.that.the.only.GM.foods.that.need.to.be.labeled.are.foods.that.have.different.characteristics.from.the.non-GM.version,.for.example,.elevated.vitamin.A.levels..In.the.United.States,. labeling.food.for.GM.content. is.not.otherwise.required..Firms,.however,. are. to.notify. the.FDA.at. least.4.months.before.putting. a.new.GM.food.product.on.the.market,.and.the.scientific.description.of.the.product.is.posted.on.the.Internet.for.review.during.this.time.20.Only.minor.changes.have.been.made.in.these.guidelines.since.2001.

Hence,.the.GM-labeling.policy.in.the.United.States.can.be.classified.as.being.volun-tary..If.a.voluntary.label.is.affixed,.the.FDA.has.mandated.that.it.cannot.use.the.phrase.“genetically.modified.”.The.FDA.prefers.the.phrase.“genetically.engineered”.or.“made.through.biotechnology.”*.Effective.GM.labeling,.however,.involves.real.costs,.espe-cially.the.costs.of.testing.for.the.presence.of.GM.content,.segregating.GM.and.non-GM.products,.variable.costs.of.monitoring.for.truthfulness.of.labeling.and.enforcement.of.the.regulations.that.exist,.and.risk.premiums.for.being.out.of.contract.21,22

An.effective.GM-labeling.policy.includes.effective.segregation.of.GM.from.non-GM.commodities..If.one.or. the.other.of. these.products.could.be. inexpen-sively.color.coded,.segregation.might.not.be.very.expensive..If,.however,. iden-tity.preservation. through. the.production,.marketing,.and.processing.chain.was.required,. this. system. would. be. substantially. more. costly.21. To. the. extent. that.there.is.a.market.for.non-GM.products,.buyers.would.be.expected.to.specify.in.their.purchase.contracts.some.limit.on.GM.content.and/or.precise.prescriptions.regarding.production/marketing/handling.processes..One.can.envision.a.market-place.of.buyers.with.differentiated.demand.according. to. their. aversion. to.GM.content..To.make.this.differentiation.effective,.new.costs.and.risks.are.incurred..Additional. testing. involves. costs. of. conducting. the. tests,. for. which. there. are.several.technologies.of.varying.accuracy..The.risk.is.that.GM.products.will.be.commingled.with.non-GM.products,.so.the.detection.system.must.test.to.see.that.customers’.shipments.are.within.contract.limits.for.GM.content..This.is.a.serious.

*.In.contrast,. the.European.Commission.adopted.GM.food.labels. in.1997..The.Commission.requires.each.member. country. to. enact. a. law. requiring. labeling.of. all. new.products. containing. substances.derived.from.GM.organisms..Japan,.Australia,.and.many.other.countries.have.also.passed.laws.requir-ing. GM. labels. for. major. foods.. The. international. environmental. lobby. has. frequently. argued. that.“consumers.have.the.right.to.know.whether.their.food.is.GM.or.not.”23

Page 214:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

200 Transgenic Horticultural Crops: Challenges and Opportunities

economic.problem,.as.agents.seek.to.determine.the.optimal.strategy.for.testing.and.other.risk.mitigation.strategies.*

While.private.sector.handlers.routinely.segregate.and.blend.grains.and.beans.as.a.primary.function.of.their.business,.new.risks.arise.when.handling.GM.and.non-GM.products,.due.to.the.added.risk.of.adventitious.commingling..When.GM.is.the.inferior.product,.growers.and.handlers.of.GM.products.have.an.incentive.to.mix.GM.with.non-GM.products..For.U.S..grains,.Wilson.and.Dahl.suggest.that.this.risk.may.be.about.4%.at.the.grain.elevator.level.21.Farmer-processor.contracting.in.horticul-tural.or.specialty.crops,.however,.could.reduce. this.margin.by.specializing. in. the.product.being.delivered,.such.as.non-GM.or.a.positive.GM.trait..Another.source.of.risk.is.testing,.because.no.test.is.100%.accurate..Testing.risk,.however,.varies.with.the.technology,.tolerance,.and.variety.of.products.handled,.and.seems.likely.to.fall.over.time,.as.the.technology.of.testing.advances.

In.markets.where.there.is.imperfect.information.due.to.one.or.more.parties.hav-ing.private. information,.private.parties.have.an. incentive. to.use. their. information.to.enhance.their.private.goals.24,25.Highly.conflicting.information.has.been.injected.into.the.GM.food.market.by.interested.parties..These.vested.parties.are.the.agricul-tural.biotech.industry.(pp..153–183),26.including.Monsanto,.DuPont/Pioneer.Hi-Bred,.Dow,.Syngenta,.and.BASF,.that.have.disseminated.information.that.is.very.favorable.to.GM. technologies,. crops. and. food.products,. and.environmental. groups,. includ-ing. Greenpeace,. Friends. of. the. Earth,. Action. Aid,. and. Earth. Watch,. that. have.disseminated.information.that. is.very.negative.about.GM.crops,.such.as.calling.it.“Frankenfood.”27.This.diverse.information.has.undoubtedly.contributed.to.the.GM.food.controversy.and.may.be.one.factor.explaining.differences.across.Western.coun-tries. in. their. acceptance.of.GM.crops..Also,.consistent.with.consumer.education,.independent. third-party.or.verifiable.information.about.agricultural. .biotechnology.may. have. considerable. value. if. available. and. disseminated. to. consumers.12,28,29.Verifiable. information.provides.an.objective.assessment.of. the.benefits.and.costs,.including.environmental.risks,.of.GM.crop.varieties.and.the.foods.made.from.these.raw.materials..Hence,.society.can.avoid.losses.due.to.the.strategic.behavior.of.inter-ested.parties.toward.new.technologies.and.products.if.decision.makers.have.access.to.and.use.independent.third-party.or.verifiable.information.

EXPERIMENTS DESIGNED TO ASSESS CONSUMER WILLINGNESS TO PAY FOR GM FOODS

Because.GM.foods.are.relatively.new,.my.research.team.chose.to.use.an.auction.market.setting30.to.collect.information.about.consumer.willingness.to.pay.for.(or.demand).GM.foods.12,31.This. reflects. the. reality. that.GM.food.products.are.not.

*. “Tolerances”.are.an.important.issue.in.segregation.and.identity.preservation..GM.tolerance.refers.to.the.maximum.impurity.level.for.GM.content.that.is.tolerated.in.a.product.that.still.carries.the.non-GM.label..There.are.two.levels.where.tolerances.apply:.one.is.defined.by.regulatory.agencies.such.as.the.FDA,.and.the.other.is.commercial.tolerance..Individual.firms.can.and.seem.likely.to.adopt.different.tolerance.lev-els,.subject.to.any.regulation..Moreover,.different.countries.are.likely.to.have.different.tolerance.levels,.and.this.increases.the.risks.and.costs.of.segregation.or.identity.preservation.

Page 215:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

201Consumer Acceptance of Genetically Modified Foods

generally.labeled.in.the.United.States,.so.grocery.store.purchases.are.not.informa-tive. on. this. issue.. Some. scientists. have. used. contingent. value. or. stated. prefer-ence.surveys.of.consumer.willingness.to.pay.for.new.products..These.surveys.are.known.to.contain.hypothetical.bias;.participants.in.these.surveys.are.not.required.to.execute. their.stated.preferences,. that. is,.“participants.don’t.have.to.pay.what.they.say.”32–34

In.contrast,.in.our.auction.market.settings,.consumers.were.expected.to.execute.their.winning.bids.by.purchasing.one.unit.of. the.auctioned.commodity..Also,.in.contrast.to.most.economics.experiments.that.use.university.undergraduate.students.from.the.investigator’s.class.as.auction.participants,.we.used.randomly chosen adult consumers in major metropolitan areas.that.were.identified.by.an.independent..survey.agency.and.told.that.a.university.project.was.being.undertaken.to.obtain.consumers’.assessments.of.food.and.new.household.products..In.particular,.screened.individuals.were.not.told.that.they.would.be.assessing.genetically.modified.organisms.(GMOs).or.even.would.be.participating.in.an.experimental.auction.

Economists.frequently.choose.a.Vickery.2nd.price.auction.(http://en.wikipedia.org/wiki/Vickrey_auction).for.valuing.goods..However,.it.is.well.known.that.individ-uals.who.anticipate.that.they.are.far.from.placing.the.margin.bid.will.bid.randomly.and.insincerely..These.participants.have.a.real.sense.that.their.bid.is.not.pivotal.in.determining.the.market.price..We.chose.the.random.nth.price.auction.35.In.this.auc-tion,.the.winning.bidders.are.chosen.from.a.uniform.distribution.over.1.to.n,.the.total.number.of.bidders.in.a.session..For.example,.if.there.are.15.participants.in.a.session,.the.bids.are.first.ranked.from.1.to.15,.and.the.randomly.drawn.n.is.5;.then.the.four.highest. bidders.pay. the.fifth.highest. price..With. this. type.of. auction. mechanism,.all. bidders. are. engaged.because. they. sense. that. their. bid.will. help.determine. the..market.price,.or.bidding.their.true.willingness.to.pay.is.a.weakly.dominate.strategy.36.Moreover,.our.auction.is.best.described.as.being.a sealed-bid random nth price auc-tion,.because no information about willingness to pay for experimental products is released before all bids are placed.

Individuals.who.agreed.to.participate.came.to.a.central.location,.signed.a.personal.consent.form,.were.paid.$40.for.their.participation,.and.completed.a.short.question-naire.on.their.social-demographic-economic.characteristics.and.beliefs.about.a.few.technologies,.including.GMOs..They.received.instruction.in.the.mechanics.of.a.ran-dom.nth.price.auction,.and.participated.in.an.auction.practice.session..Next,.they.took.a.short. test.on. their.understanding.of. the.auction.mechanism.and.any.ques-tions.were.answered..The.auctioning.of.experimental.commodities.followed..After.winning. bids. were. determined,. the. participants. completed. another. short. survey,.and.then.were.told.to.execute.winning.binds.by.completing.purchases.of.auctioned.commodities.in.an.adjacent.stock.room..Otherwise,.they.were.told.that.they.were.free.to.leave.

In. all. of. our. experiments,. we. used. three. sets. of. diverse. information. about.genetic.modification.and.GM.foods.to.construct. information.treatments:. (1). the.industry (pro-biotech) perspective—a.collection.of. statements. and. information.on.genetic.modification.provided.by.a.group.of.leading.biotechnology.companies,.including. Monsanto. and. Syngenta;. (2). the. environmental group (anti-biotech)

Page 216:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

202 Transgenic Horticultural Crops: Challenges and Opportunities

perspective—a.collection.of.statements.and.information.on.genetic.modification.from.Greenpeace,.a.leading.environmental.group;.and.(3).the.independent, third-party (verifiable information) perspective—a.statement.on.genetic.modification.approved. by. a. third-party. group,. consisting. of. a. variety. of. people. knowledge-able.about.GM.goods,. including.scientists,. professionals,. religious. leaders,. and.academics,.who.do.not.have.a.financial.stake.in.GM.foods..We.limited.the.infor-mation.statements. to.one.page.and.organized.the.information.under.five.differ-ent.headings,.General.Information,.Scientific.Impact,.Human.Impact,.Financial.Impact,.and.Environmental.Impact,.to.reduce.the.information.load.on.participants.(Appendices.A.and.B)..Information.treatments,.consisting.of.one-to-three.of.the.above.information.types,.were.injected.into.each.of.the.sessions.or.experimental.trials.. For. example,. in. the. first. set. of. experiments,. the. information. treatments.were:.(1).only.the.industry.perspective;.(2).only.the.environmental.group.perspec-tive;. (3). industry. and.environmental. perspectives;. (4). environmental. and. third-party. perspectives;. (5). industry,. environmental,. and. third-party. perspectives..Information. treatments. were. randomly. assigned. sessions. without. replacement..When.a.session.received.industry.and.environmental.perspectives,.the.order.was.randomized..When.a.session.received.the.third-party.perspective,.it.was.always.displayed.last.

In. the. 2001. Des. Moines. and. St.. Paul. experiments,. each. experimental. unit.(or.session).of.13–16.individuals/consumers.participated.in.only.two.rounds.of.bidding.on.experimental.food.items..The.rounds.were.differentiated.by.the.food.label..In.one.round,.which.could.be.round.1.or.2.depending.on.the.experimental.unit,. participants/consumers. bid. on. three. food. products,. each. with. a. conven-tional.food.label.that.stated.only.the.type of food.and.weight..In.the.other.round,.participants.bid.on.the.same.three.food.products.with.a.GM.label,.which.differed.from. the. conventional. food. label. by. the. inclusion. of. only. one. extra. sentence:.“This.product.is.made.using.genetic.modification.(GM)”.(Figure.9.2)..Each.ses-sion. or. experimental. unit. received. an. information. treatment. chosen. randomly.from.the.six.available.treatments..A.total.of.172.individuals.participated.in.these.experiments.

In.the.2007.Des.Moines.and.Harrisburg.experiments,.each.experimental.unit.(or.session).of.13–16.individuals/consumers.participated.in.four.rounds.of.bidding.on.experimental.food.items..The.rounds.were.differentiated.by.the.composition.of.the.food.label,.which.had.seven.variants.including.a.baseline.with.no.information.(with.a.maximum.of.four.used.in.any.session).(Figure.9.3).

Although. all. bidders. in. a. session. or. round. of. bidding. saw. the. same. food.labels,. they. received. different. information. treatments. in. the. Des. Moines. and.Harrisburg. experiments.. The. Des. Moines. and. Harrisburg. experiments. were.unique.in.not.only.distinguishing.the.type.of.GMO,.but.also.for.injecting.a.treat-ment.with.“No Information.”.Also,.the.exact.wording.of.the.three.types.of.infor-mation.was.modified.to.be.appropriate.to.the.emphasis.of.these.experiments;.for.example,.the.industry.perspective.and.third-party.perspective.described.the.key.differences.between.“Transgenic”.and.“Intragenic.GM.Products”.(Appendices.A.and.B).

Page 217:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

203Consumer Acceptance of Genetically Modified Foods

Russet potatoes

Net weight 5 lb.

Tortilla chips

Net weight 16 oz.fresh made Thursday April 5th

Russet potatoes

Net weight 5 lb.

This product is made usinggenetic modification (GM).

Tortilla chips

Net weight 16 oz.fresh made Thursday April 5th

This product is made usinggenetic modification (GM).

Vegetable oil

Net weight 32 fl. oz.

This product is made usinggenetic modification (GM).

Vegetable oil

Net weight 32 fl. oz.

FIGURE 9.2 GM.and.Plain.Food.Labels.for.2001.Des.Moines.and.St..Paul.Experiments.

Potato (5 lbs.)Potato (5 lbs.)

GM free product

Potato (5 lbs.)Intragenic GM product

Potato (5 lbs.)Transgenic GM product

Potato (5 lbs.)Enhanced levels of

antioxidants and vitamin CGM product

Potato (5 lbs.)Enhanced levels of

antioxidants and vitamin CIntragenic GM product

Potato (5 lbs.)Enhanced levels of

antioxidants and vitamin CTransgenic GM product

FIGURE 9.3 Food.Labels.for.Potato.in.the.2007.Des.Moines.and.Harrisburg.Experiments.

Page 218:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

204 Transgenic Horticultural Crops: Challenges and Opportunities

EXPERIMENTAL EVIDENCE ON KEY BID-PRICE DIFFERENCES37

SImple dIfferenceS In mean bId prIceS

We.first.examine.simple.bid-price.differences.for.consumer.willingness.to.pay.for.food.items.labeled.as.being.genetically.modified.versus.having.a.plain/conventional.food.label,.specifying.only.the.type.and.weight.of.the.food..The.2001.Des.Moines.and.St..Paul.data.showed.that.bidders.discounted.the.GM-labeled.product.by.about.15%.relative.to.its.plain-labeled.counterpart.*

Turning. to. the. 2007. Des. Moines. and. Harrisburg. samples,. bidders. were,. on.average,.willing.to.pay.a.sizeable.premium.for.food.products.containing.the.label.“Enhanced.Levels.of.Antioxidants.and.Vitamin.C—Intragenic.GM.Product”.relative.to.a.plain/conventionally.labeled.food.product..The.premium.ranged.from.39.to.45.cents.per.unit.on.the.three.food.products,.or.19%–26%.higher..The.mean.price.for.each.of.the.three.commodities—broccoli,.tomatoes,.and.potatoes—with.enhanced.attributes. relative. to. products. with. a. plain/conventional. label,. was. different. from.zero.at.the.5%.significance.level.†.Hence,.when.consumers.bid.on.GM.products.con-taining.input.traits,.the.GM.product.was.weakly inferior.to.the.plain/conventionally.labeled.product..However,.when.consumers.bid.on.fresh.intragenic.GM.horticultural.products.containing.enhanced.levels.of.antioxidants.and.vitamin.C,.they.were.will-ing. to.pay.a.premium.and,.hence,. the. intragenic.products.were.economically.and.statistically.superior.to.a.plain/conventionally.labeled.product.‡.These.results.imply.a.dramatic.difference.in.the.incentives.for.private.industry.to.label.new.GM.products.with.enhanced.consumer.attributes.relative.to.those.derived.from.raw.materials.that.contain.input.traits.22

IndIvIdual bId-prIce dIfferenceS and dIverSe InformatIon37

When.bidders.received.both.pro-biotech.and.anti-biotech.information,.the.bid.price.difference. was. reduced,. reflecting. the. opposing. forces. of. the. two. types. of. infor-mation.in.this.information.treatment..Moreover,.this.information.treatment.did.not.have.a.statistically.significant.effect.on.bid.price.differences..From.these.results,.we.conclude.that.in.those.sessions.where.bidders.received.only.anti-biotech.or.both.pro-biotech.and.anti-biotech.information,.they.bid.differently.than.when.they.received.only.pro-biotech.information.

When.bidders.were.in.sessions.that.received.the.pro-biotech.and.verifiable.infor-mation. treatment,. the. impact.of. this.combination.was.not. statistically. significant..

*.All.three.differences.are.significantly.negative.at.better.than.the.0.07.significance.level.†. The.mean.bid.prices.where.the.biotech.method.was.switched.from.intragenic.to.transgenic,.but.other-

wise.containing.enhanced.consumer.attributes,.were.larger.than.for.the.plain.label.but.14%–22%.lower.than.for.the.intragenic.label.

‡. We.have.not.undertaken.sensory.tests.to.determine.whether.consumers.can.perceive.any.differences.in.the.conventional.product.relative.to.one.with.intragenic.enhanced.consumer.attributes..Given.that.no.“foreign”.DNA.nor.antibiotic.marker.is.present.in.the.intragenic.product,.my.hypothesis.is.that.no.perceived.sensory.differences.exist..Moreover,.Zhao.et.al..found.no.difference.in.a.sensory.analysis.of.conventional.and.organically.grown.fruits.and.vegetables,.except.that.conventionally.grown.tomatoes.scored.slightly.higher.for.ripeness,.which.is.positively.correlated.with.flavor.intensity.38

Page 219:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

205Consumer Acceptance of Genetically Modified Foods

When. bidders. were. in. sessions. that. received. anti-biotech. and. verifiable. informa-tion,.bid-price.differences.are.reduced.(less.negative).and.the.difference.is.signifi-cantly.different. from.zero..Hence,. those.who. received.a. treatment.of.anti-biotech.information. and.verifiable. information.discounted.GM.foods. less. than. those.who.received.only.a.treatment.of.anti-biotech.information..When.bidders.were.in.sessions.that.received.a.treatment.that.contained.all.three.types.of.information.(pro-biotech,.anti-biotech,. and.verifiable),. the. impact.of. this. treatment.on.bid-price.differences.was.small.and.not.statistically.significant..Hence,.in.this.complex.setting,.verifiable.information.did.not.have.a.distinguishable.effect.

Bidders.who.had.larger.household.incomes.discounted.GM.by.a.larger.amount.than.those.with.less.household.income..This.result.is.statistically.significant.at.the.5%.level.and.is.consistent.with.non-GM.products.being.viewed,.on.average,.by.bid-ders. as. a. superior. product.. Participants. coming. into. our. experiments. were. asked.about. how. well-informed. they. were. about. genetic. modification.. This. subjective.information.was.then.coded.into.a.dichotomous.variable..Those.bidders.who.con-sidered.themselves.to.be.at.least.“somewhat.informed.about.GM.foods”.discounted.GM-labeled.foods.more.than.did.other.bidders..This.effect.is.statistically.significant.(at. the.10%. level).. Moreover,. this. result. suggests. that. bidders. in.our. experiments.who.were.“GM-informed”.had,.on.average,.acquired/received.negative.information.about.GM.foods.prior.to.the.experiment.*.Bids.also.were.affected.by.the.labeling.sequence..Bidders.in.sessions.that.bid.on.the.GM-labeled.food.products.in.round.one.(and.the.plain-labeled.food.products.in.round.two).discounted.GM-labeled.foods.by.less.than.those.who.were.in.sessions.that.bid.on.the.products.in.the.opposite.order..This result reinforces the importance of randomized assignments of treatments to sessions in experimental auctions,.which.is.an.innovation.in.our.methodology.

Next,.we.turn.to.the.2007.sample.of.individuals.from.Des.Moines.and.Harrisburg..In. these. results,. the. base. case. with. no-information. treatment. gives. a. bid-price.difference.of.intragenic.GM-.over.plain-labeled.food.products.by.a.statistically.sig-nificant.52.cents.per.unit.of.product..When.pro-biotech.information.treatment.was.injected.into.the.experiments,.the.bid-price.difference.was.a.statistically.significant.73.cents.per.unit.or.21.cents.more.than.for.the.no-information.treatment,.suggesting.a.net.positive.influence.of.industry-provided.biotech.information.on.willingness.to.pay.for.intragenic.GM.products..The.injection.of.the.anti-biotech.information.treatment.gives.a.bid-price.difference.of.only.25.cents.per.unit,.which.is.27.cents.per.unit.lower.than.for.the.no-information.treatment..However,.this.coefficient.is.not.different.from.zero.at.the.5%.or.10%.significance.levels,.suggesting.that.environmental.groups.do.not.distinguish.between.intragenic.and.transgenic.biotech.methods.for.engineering.new.crops..The.injection.of.a.pro-biotech.and.anti-biotech.treatment.(where.the.order.is. random.across.participants. in.a.session). increases. the.bid.price.difference.by.a.statistically.significant.56.cents.per.unit..The.impact.of.this.information.treatment.on.bid-price.differences.is.slightly.higher.(4.cents.per.unit).than.for.the.no-information.treatment,.which.is.a.reflection.of.the.opposing.forces.of.pro-biotech.and.anti-biotech.information,. but. with. the. edge. going. to. the. pro-biotech. information.. When. the.

*.See.Huffman.et.al.39.for.an.analysis.of.the.impact.of.bidders’.prior.beliefs.about.GM.technology.and.food.products.on.their.willingness.to.pay.for.food.items.that.are.potentially.GM.

Page 220:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

206 Transgenic Horticultural Crops: Challenges and Opportunities

injected.information.treatment.includes.all.three.types.of.information.(with veri-fiable. information. always. last),. the.bid-price.difference. is. larger.by. a. statistically.significant.44.cents.per.unit,.which.is.8.cents.less.than.for.the.no-information.treat-ment..Comparing.this.result.to.the.previous.one,.verifiable.information.seems.to.be.a.moderating.force.relative.to.the.pro-biotech.industry.perspective.

Consumers.have.expressed.some.skepticism.of.transgenic.GM.food.products,.and.our.2007.Des.Moines.and.Harrisburg.data.set.shows.that.consumers.bid.significantly.higher. prices. for. intragenic. than. transgenic. food. products. that. contain. enhanced.levels.of.antioxidants.and.vitamin.C..However,. the.differences.in.these.bid.prices.may.be.affected.by.the.information.environment.in.which.consumers.are.bidding..To.test.this.hypothesis,.we.examined.the.differences.in.bid.prices.for.products.with.an.intragenic.GM.label.versus.one.with.a.transgenic.GM.label.

Bid-price.differences. for. the.baseline.case.of. the.no-information. treatment.are.18 cents.per.unit.higher.for.intragenic.than.transgenic,.but.this.number.is.not.signifi-cantly.different.from.zero.at.the.10%.or.5%.levels,.suggesting.that.this.information.is.truly.uninformative.about.these.biotech.methods..In.contrast,.an.injection.of.the.pro-biotech.information.treatment.gives.a.bid-price.difference.by.a.statistically.significant.67.cents.per.unit,.suggesting.that,.on.net,.the.industry.perspective.favors.intragenic. over. transgenic.. In. contrast,. an. injection. of. anti-biotech. information.treatment.gives.a.bid-price.difference.of.only.17.cents.per.unit,.which.is.slightly.lower.than. the. point. estimate. for. the. no-information. treatment. and. 50. cents. per. unit.lower. than.for. the.pro-biotech. information. treatment.. Injection.of. the.pro-biotech.and.anti-biotech.information.treatment.gives.a.bid-price.difference.of.a.statistically.significant.42.cents.per.unit,.which. is. in. the.middle.of. the.estimates. for. the.pro-biotech.and.anti-biotech.treatment.estimates..The.injection.of.the.information.treat-ment.containing.all.three.information.types.gives.a.bid.price.difference.of.38.cents,.which. suggests. that. objective. information. moderates. the. positive. impact. of. the.pro-biotech.information.on.bid-price.differences.

The.estimated.coefficient.for.the.dummy.variable.denoting.that.the.food.product.has.enhanced.antioxidants.and.vitamin.C.is.a.positive.12.cents.per.unit.and.signifi-cant.at.the.10%.level..This.result.suggests.that.the.presence.of.enhanced.consumer.attributes.increases.the.value.to.bidders.of.the.intragenic.over.transgenic.methods..Our.results.also.showed.a.significant.“bidding.round.or.order.effects”.in.the.data,.which.supports.methodological.advances.using.randomization..Household.income.has.no.impact.on.bid-price.differences.in.these.results..In.conclusion,.I.can.say.that.the.information.setting.affects.consumer.discounting.of.transgenic.relative.to.intra-genic.horticultural.products.

IndIvIdual dIfferenceS In bId prIceS and prIor InformatIon

New. food. products. using. GM. crops. appeared. in. U.S.. supermarkets. starting. in.1996,. and. consumers. perceived. some. risks.. Because. consumers. are. exposed. to.diverse.and.sometimes.conflicting.perspectives.about.GM.technologies.and.foods,.they.form.subjective.beliefs..Huffman.et.al..examined.the.role.of.these.prior.beliefs.on.consumer.willingness.to.pay.for.foods.that.might.be.genetically.modified.39.The.data.are.from.the.2001.Des.Moines.and.St..Paul.experiments,.where.participants.

Page 221:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

207Consumer Acceptance of Genetically Modified Foods

were.asked.before.the.experimental.auction.how.well-informed.they.were.about.genetic.modification—extremely,.well,.somewhat,.not.very.well,.or.not.informed.at.all..Huffman.et.al..show.that.participants.who.had.informed.prior.beliefs.about.genetic. modification. discounted. GM-labeled. food. products. by. a. larger. amount.than.those.who.had.uninformed.prior.beliefs..Also,.uninformed participants.were.especially.susceptible.to.information.from.interested.and.third.parties..In.contrast,.informed participants.were.generally.not.affected.significantly.by.new.informa-tion..These.results.contradict.some.earlier.psychological.studies.that.claimed.that.individuals. tend. to.base.rates.19.The.results.show.how.both.skeptics.and.propo-nents.of.new.technologies.might.try.to.manage.information.to.achieve.private.or.group-wide,.but.not.social,.objectives.

other related reSultS

Rousu.et.al..examine.the.impact.of.tolerance.levels,.or.the.impact.of.the.minimum.level.of.GM.contamination.that.will.pass.as.GM-free.40.Using.the.2001.Des.Moines.and.St..Paul.data,.they.examine.bids.on.three.food.products.that.have.different.toler-ance.labels..In.one.trial,.all.consumers.bid.on.foods.with.a.non-GM.label,.certified.to.be.completely.free.of.genetically.engineered.material,.and.in.the.other.trial,.con-sumers.bid.on.foods.with.a.non-GM.label.indicating.that.a.certain.percentage.of.GM.material,.either.1%.or.5%.percent,.was.tolerated..Consumers.in.these.treatments.did.not.receive.any.information.on.GM.food.products..This.experiment.contained.three.experimental.units/sessions.with.a.total.of.44.participants.

Rousu. et. al.. found. evidence. that. consumers. preferred. foods. that. were. 100%.non-GM,.relative.to.food.products.with.small.amounts.of.GM.material.(1%.or.5%)..Consumers.bid.approximately.10%.less.for.the.GM-tolerant.food.products.than.they.did.for.the.certified.GM-free.products..However,.they.found.that.once.GM.content.was.present,.no.difference.existed.in.bids.between.foods.that.contained.1%.versus.5%.GM.content.40.Thus,.while.these.findings.indicate.that.a.significant.percentage.of.consumers.will.pay.more.for.GM-free.labeled.food.products.relative.to.convention-ally.labeled.food.products,.it.does.not.appear.that.1%.or.higher.tolerance.levels.for.GM.material.matters.

DISCUSSION OF GM TECHNOLOGY AND MIXED MESSAGES

Although.consumers.in.the.United.States.are.relatively.tolerant.of.alternative.produc-tion.methods.for.their.food,.they.do.respond.adversely.to.some.risks..For.example,.when.genetic.modification.refers.to.input.traits,.consumers.in.our.experiments.dis-counted.GM.food.products.by.15%,. relative. to. a.plain-.or. conventionally. labeled.alternative..This.seems.to.arise.from.environmental,.biodiversity,.or.health.concerns.from.introducing.foreign.DNA.into.food.crops..To.circumvent.these.concerns,.new.methods.have.been.developed.for.intragenic.genetic.modification,.where.no.foreign.DNA.is.introduced.in.the.GM.varietal.development.process..Our.results.from.the.2007.data.support.the.hypothesis.that.consumers.have.a.more.favorable.perspective.about. these.genetic.modifications,.and. that. they.are,. in. fact,.willing.to.pay.a.pre-mium.for.enhanced.levels.of.antioxidants.and.vitamin.C.by.intragenic.GM.methods..

Page 222:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

208 Transgenic Horticultural Crops: Challenges and Opportunities

However,. when. we. were. experimenting. with. food. traits. to. consider. including.enhanced.food.products,.we.experimented.with.“low.pesticide.residual”.as.a.food.quality. attribute.. Consumer. reaction. to. this. trait. was. complex,. because. the. label.raised.a.dormant.issue.that,.yes,.there.is.pesticide.residue.in.our.food..Mentioning.that.insect-resistant.(Bt).traits.could.be.introduced.so.as.to.reduce.the.need.for.farmers.to.apply.commercial.pesticides,.and.thereby.reduce.chemical.pesticide.residual,.was.a.hard.sell.

Along. a. similar. line. of. mixed. messages,. Markosyan. et. al.. conducted. surveys.of. consumers. in. grocery. stores. in. October. 2006. in. the. Pacific. Northwest. to. test.their.willingness.to.pay.for.“naturally.enriched.antioxidant.coatings”.embedded.in.the.wax.on.retail.fresh.apples.41.In.general,.consumers.were.willing.to.pay.a.little,.4%–8%.more,.for.the.antioxidant.enhanced.apples,.but.a.number.of.consumers.were.quite.negative.about. the.technology,.for.example,.“I.don’t.want. to.eat.wax,”.“it. is.unnatural,”.“additives.to.fruit.are.not.necessary,”.“washing.apples.removes.the.wax,”.“prefer.foods.without.additives,”.and.“it.is.better.to.get.nutrients.naturally.”.Hence,.adding.antioxidants. to. the.wax.of. apples.also. raised. the.dormant. issue. that. fresh.commercial.apples.are.waxed.

CONCLUSIONS AND PREDICTIONS FOR THE FUTURE

More.than.a.decade.has.passed.since.the.first.GM.foods.appeared.in.U.S..grocery.stores..Early.attempts.to.market.fresh.horticultural.products,.in.particular,.the.Flavr-Savr.tomato.and.the.Russet.Burbank.Newleaf.potato.failed.after.very.brief.appear-ances.in.the.market..Input.traits.developed.by.transgenetic.methods.applied.to.field.crops. have. been. much. more. successful,. but. consumers. continue. to. express. some.resistance.to.them.because.of.environmental,.biodiversity,.or.human.health.concerns..Recent.developments.of.new.intragenic.GM.methods.are.exciting.because.they.per-mit.scientists.to.use.diverse.genes.and.attributes.identified.in.the.genomes.of.particu-lar.horticultural.plants.to.quickly.enhance.quality.attributes.of.commercial.varieties.of.crops.like.potato.and.tomato..This.is.very.important.in.potato.breeding,.where.it.is.impossible.for.scientists.to.dramatically.enhance.conventional.levels.of.vitamin.C.and.antioxidants.using.a.range.of.conventional.non-GM.breeding.methods..The.new.intragenic.GM.potato.varieties.enhanced.with.antioxidants.and.vitamin.C.promise.to.be.the.first.successful.commercial.GM.product.with.consumer.traits.on.the.market.

Economists’.research.has.shown.that.U.S..consumer.acceptance.and.willingness.to.pay.for.GM.food.crops.is.not.only.conditioned.by.the.nature.of.the.new.trait.and.the.method. of.DNA. transfer,. but. also.by. the. content. of. food. labels,. prior.beliefs.of. consumers,. and. content. of. diverse. information. injected. into. the. food. market.about.GM.technologies.and.food.products..During.the.era.of.input-trait.dominated.GM.foods,.consumers.have.revealed.that.GM.food.products.are.weakly.inferior.to.conventional.products,.which.means.that.marketers.of.GM.food.products.will.not.label.voluntarily..With.the.commercialization.of.new.intragenic.GM.products.with.enhanced.consumer.attributes,.these.new.GM.food.products.promise.to.command.a.premium.relative.to.conventional.food.products..Hence,.the.private.sector’s.incentive.to.voluntarily. label.GM.products.will.change.dramatically..This.promises.to.be.a.positive.development.in.the.commercialization.of.GM.food.products.

Page 223:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

209Consumer Acceptance of Genetically Modified Foods

During.the.era.of.input.traits,.consumers’.informed.prior.beliefs.were.somewhat.negative.about.agricultural.biotechnology.and.GM.foods..These.prior.beliefs,.how-ever,.have.the.potential.to.become.more.favorable.toward.GM.horticultural.crops.as.new.products.with.intragenic.GM-enhanced.consumer.attributes.become.generally.available.in.the.food.market..Also,.strong.evidence.exists.that.consumers.are.posi-tively. influenced. by. biotech. industry. or. pro-biotech. information,. and. negatively.affected.by.environmental.group.or.anti-biotech.information..Moreover,.third-party.verifiable.information.has.been.shown.to.be.a.moderating.influence.on.consumer.interpretation. of. anti-biotech. and. pro-biotech. information. and. on. willingness. to.pay.for.GM.foods..Hence,.a.future.role.exists.for.public.sector.provision.of.third-party.verifiable.information.about.GM.technologies.and.GM.food.products..This.new.information.will.affect.prior.beliefs.of.consumers.about.GM.food.products.and.be.a.useful.input.to.objective.assessments.of.new.GM.food.products.that.enter.the.market,.which.could.be.important.to.the.commercial.successes.of.new.GM.horti-cultural.crops.

APPENDIX A: INFORMATION INJECTED INTO THE 2001 DES MOINES AND ST. PAUL EXPERIMENTS42

A..The.following.is.a.collection.of.statements.and.information.on.genetic.modification.from.Greenpeace,.a.leading.environmental.group.

General InformationGenetic. modification. is. one. of. the. most. dangerous. things. being. done. to. your.food. sources. today.. There. are. many. reasons. that. genetically. modified. foods.should. be. banned,. mainly. because. unknown. adverse. effects. could. be. cata-strophic!. Inadequate. safety. testing.of.GM.plants,. animals,. and. food.products.has.occurred,.so.humans.are.the.ones.testing.whether.or.not.GM.foods.are.safe..Consumers.should.not.have.to.test.new.food.products.to.ensure.that.they.are.safe.

Scientific ImpactThe.process.of.genetic.modification. takes.genes.from.one.organism.and.puts.them. into. another.. This. process. is. very. risky.. The. biggest. potential. hazard.of.GM.foods.is.unknown..This. is.a.relatively.new.technique,.and.no.one.can.guarantee.that.consumers.will.not.be.harmed..Recently,.many.governments.in.Europe.assured.consumers.that.there.would.be.no.harm.to.consumers.over.mad.cow.disease,.but.unfortunately,.their.claims.were.wrong..We.do.not.want.con-sumers.to.be.harmed.by.GM.food.

Human ImpactGM.foods.could.pose.major.health.problems..The.potential.exists.for.allergens.to.be.transferred.to.a.GM.food.product.that.no.one.would.suspect..For.example,.if.genes.from.a.peanut.were.transferred.into.a.tomato,.and.someone.who.is.allergic.to.peanuts.eats.this.new.tomato,.they.could.display.a.peanut.allergy.

Another.problem.with.GM.foods.is.a.moral.issue..These.foods.are.taking.genes.from.one.living.organism.and.transplanting.them.into.another..Many.people.think.it.is.morally.wrong.to.mess.around.with.life.forms.on.such.a.fundamental.level.

Page 224:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

210 Transgenic Horticultural Crops: Challenges and Opportunities

Financial ImpactGM.foods.are.being.pushed.onto.consumers.by.big.businesses,.which.care.only.about. their.own.profits.and. ignore.possible.negative.side.effects..These.groups.are.actually.patenting.different.life.forms.that.they.genetically.modify,.with.plans.to.sell.them.in.the.future..Studies.have.also.shown.that.GM.crops.may.get.lower.yields.than.conventional.crops.

Environmental Impact GM.foods.could.pose.major.environmental.hazards..Sparse.testing.of.GM.plants.for. environmental. impacts. has. occurred.. One. potential. hazard. could. be. the.impact.of.GM.crops.on.wildlife..One.study.showed.that.one.type.of.GM.plant.killed.Monarch.butterflies.

Another.potential.environmental.hazard.could.come. from.pests. that.begin. to.resist.GM.plants.that.were.engineered.to.reduce.chemical.pesticide.application..The.harmful.insects.and.other.pests.that.get.exposed.to.these.crops.could.quickly.develop.tolerance.and.wipe.out.many.of.the.potential.advantages.of.GM.pest.resistance.

B..The.following.is.a.collection.of.statements.and.information.on.genetic.modifica-tion.provided.by.a.group.of.leading.biotechnology.companies,.including.Monsanto.and.Syngenta.

General InformationGM.plants.and.animals.have.the.potential.to.be.one.of.the.greatest.discoveries.in.the.history.of.farming..Improvements.in.crops.so.far.relate.to.improved.insect.and.disease.resistance.and.weed.control..These.improvements.using.bioengineering/GM.technology.lead.to.reduced.cost.of.food.production..Future.GM.food.prod-ucts.may.have.health.benefits.

Scientific ImpactGenetic.modification.is.a.technique.that.has.been.used.to.produce.food.products.that.are.approved.by.the.FDA..Genetic.engineering.has.brought.new.opportuni-ties. to. farmers. for. pest. control. and. in. the. future. will. provide. consumers. with.nutrient-enhanced. foods.. GM. plants. and. animals. have. the. potential. to. be. the.single.greatest.discovery.in.the.history.of.agriculture..We.have.just.seen.the.tip.of.the.iceberg.of.future.potential.

Human ImpactThe.health.benefits.from.genetic.modification.can.be.enormous..A.special.type.of.rice.called.“golden.rice”.has.already.been.created.which.has.higher.levels.of.vitamin.A..This.could.be.very.helpful.because.the.disease.vitamin.A.deficiency.(VAD).is.dev-astating.in.third-world.countries..VAD.causes.irreversible.blindness.in.over.500,000.children,.and.is.also.responsible.for.over.1.million.deaths.annually..Since.rice.is.the.staple.food.in.the.diets.of.millions.of.people.in.the.third.world,.golden.rice.has.the.potential.of.improving.millions.of.lives.a.year.by.reducing.the.cases.of.VAD.

The.FDA.has.approved.GM.food.for.human.consumption,.and.Americans.have.been.consuming.GM.foods.for.years..While.every.food.product.may.pose.risks,.there.has.never.been.a.documented.case.of.a.person.getting.sick.from.GM.food.

Page 225:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

211Consumer Acceptance of Genetically Modified Foods

Financial ImpactGM.plants.have.reduced.the.cost.of.food.production,.which.means.lower.food.prices,.and.that.can.help.feed.the.world..In.the.United.States,.lower.food.prices.help.decrease.the.number.of.hungry.people.and.also.let.consumers.save.a.little.more.money.on.food..Worldwide. the.number.of.hungry.people.has.been.declining,.but. increased.crop.production.using.GM.technology.can.also.help.further.reduce.world.hunger.

Environmental ImpactGM.technology.has.produced.new.methods.of.insect.control.that.reduce.chemical.insecticide.application.by.50%.or.more..This.means.less.environmental.damage..GM.weed.control.is.providing.new.methods.to.control.weeds,.which.are.a.special.problem.in.no-till.farming..Genetic.modification.of.plants.has.the.potential.to.be.one.of.the.most.environmentally.helpful.discoveries.ever.

C..The.following.is.a.statement.on.genetic.modification.approved.by.a.third-party.group,.consisting.of.a.variety.of.individuals.knowledgeable.about.GM.foods,.includ-ing.scientists,.professionals,.religious.leaders,.and.academics..These.parties.have.no.financial.stake.in.GM.foods.

General InformationBioengineering. is. a. type. of. genetic. modification. where. genes. are. transferred.across.plants.or.animals,.a.process.that.would.not.otherwise.occur.(in.common.usage,. genetic. modification. means. bioengineering).. With. bioengineered. pest.resistance.in.plants,.the.process.is.somewhat.similar.to.the.process.of.how.a.flu.shot.works.in.the.human.body..Flu.shots.work.by.injecting.a.virus.into.the.body.to.help.make.a.human.body.more.resistant. to.the.flu..Bioengineered.plant-pest.resistance.causes.a.plant.to.enhance.its.own.pest.resistance.

Scientific ImpactThe.FDA.standards.for.GM.food.products.(chips,.cereals,.potatoes,.etc.).are.based.on. the.principle. that. they.have.essentially. the. same. ingredients,. although. they.have.been.modified.slightly.from.the.original.plant.materials.

Oils.made.from.bioengineered.oil.crops.have.been.refined,.and.this.process.removes.essentially.all.the.GM.proteins,.making.them.like.non-GM.oils..So.even.if.GM.crops.were.deemed.to.be.harmful.for.human.consumption,.it.is.doubtful.that.vegetable.oils.would.cause.harm.

Human ImpactWhile.many.GM.foods.are.in.the.process.of.being.put.on.your.grocers’.shelves,.there.are.currently.no.foods.available.in.the.United.States.where.genetic.modifi-cation.has.increased.nutrient.content.

All.foods.present.a.small.risk.of.an.allergic.reaction.to.some.people..No.FDA-approved.GM.food.poses.any.known.unique.human.health.risks.

Financial ImpactGM.seeds.and.other.organisms.are.produced.by.businesses.that.seek.profits..For.farmers.to.switch.to.GM.crops,.they.must.see.benefits.from.the.switch..However,.genetic.modification.technology.may.lead.to.changes.in.the.organization.of.the.

Page 226:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

212 Transgenic Horticultural Crops: Challenges and Opportunities

agri-business.industry.and.farming..The.introduction.of.GM.foods.has.the.poten-tial.to.decrease.the.prices.to.consumers.for.groceries.

Environmental ImpactThe. effects. of. genetic. modification. on. the. environment. are. largely. unknown..Bioengineered. insect. resistance. has. reduced. farmers’. applications. of. environ-mentally.hazardous. insecticides..More.studies.are.occurring. to.help.assess. the.impact.of.bioengineered.plants.and.organisms.on.the.environment..A.couple.of.studies.reported.harm.to.Monarch.butterflies.from.GM.crops,.but.other.scientists.were.not.able.to.recreate.the.results..The.possibility.of.insects.growing.resistant.to.GM.crops.is.a.legitimate.concern.

APPENDIX B: INFORMATION INJECTED INTO THE 2007 DES MOINES AND HARRISBURG EXPERIMENTS

A..The.following.is.a.collection.of.statements.and.information.on.genetic.modifica-tion.from.Greenpeace,.a.leading.environmental.group.

General InformationGenetic. modification. takes. genes. from. one. organism. and. places. them. into.another.. The. process. lets. scientists. manipulate. genes. in. an. unnatural. way..Inadequate.safety.testing.of.GM.plants.and.food.products.has.occurred..Humans.and.the.Earth.are.being.used.as.guinea.pigs.for.testing.whether.“Frankenfoods”.are.safe..GM.foods.should.be.banned.because.their.effect.on.consumers.and.the.environment.is.unknown.and.potentially.catastrophic!.Genetic.modification.is.one.of.the.most.risky.things.being.done.to.your.food.sources.today.and.should.be.stopped.before.more.damage.is.done.

Scientific ImpactAll.genetic.modifications.of.plants.are. risky..All.GM.techniques.are. relatively.new.and.no.one.can.guarantee. that.consumers.or. the. environment.will.not.be.harmed..The.biggest.potential.hazard.of.GM.foods.is.unknown.

Human ImpactGM.foods.could.pose.serious.risks.to.human.health..Some.foods.contain.aller-gens,.and.the.potential.exists.for.allergens.to.be.transferred.into.a.GM.food.prod-uct. that. no. one. would. suspect.. For. example,. if. the. genes. from. a. peanut. were.transferred.into.a.tomato,.and.someone.who.is.allergic.to.peanuts.eats.this.GM.tomato,.he.could.display.a.peanut.allergy.

Another.problem.with.transgenic.foods.is.a.moral.issue..Many.GM.techniques.transfer.genes.across.species..We.believe.it.is.morally.wrong.to.alter.life.forms.on.such.a.fundamental.level.

Financial ImpactGM.foods.are.being.pushed.onto.consumers.by.big.businesses.which.only.care.about.their.own.profits.and.ignore.possible.negative.side.effects..These.groups.are.actually.patenting.new.life.forms.they.create.with.plans.to.sell.for.profits..Studies.have.shown.that.GM.crops.may.even.get.lower.yields.than.conventional.crops.

Page 227:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

213Consumer Acceptance of Genetically Modified Foods

Environmental ImpactGM.foods.could.pose.major.environmental.hazards..Little.testing.of.GM.plants.for.environmental.impacts.has.occurred..One.potential.risk.of.GM.crops.is.their.impact.on.wildlife,.including.wild.species.of.plants.and.insects..A.study.showed.that.one.type.of.GM.plant.killed.Monarch.butterflies.

Another.potential.environmental.hazard.could.come.from.pests.that.become.resis-tant.to.new.naturally.occurring.toxic.substances.engineered.into.plants.to.kill.pests—insects.and.worms—or.to.make.a.plant.resistant.to.a.particular.herbicide.application..The.target.pests.that.get.exposed.to.these.new.GM.crops.could.quickly.develop.toler-ances.and.wipe.out.many.of.the.potential.advantages.of.GM.pest.resistance.

B..The.following.is.a.collection.of.statements.and.information.on.genetic.modifica-tion.provided.by.a.group.of.leading.biotechnology.companies,.including.Monsanto,.Pioneer,.and.Syngenta.

General InformationGM.plants.have.the.potential.to.be.one.of.the.greatest.discoveries.in.the.history.of.farming..GM.crops.have.lowered.food.production.costs.by.improving.insect.and.disease.resistance.and.weed.control.in.plants..New.genetic.engineering.tech-niques.could.dramatically.enhance.consumer.benefiting.attributes.of.food.such.as.vitamins,.antioxidants,.flavor,.and.shelf.life..These.improvements.to.plant.quality.can.only.be.attained.through.GM,.not.conventional.breeding.

The.process.of.genetic.modification.takes.genes.from.one.organism.and.places.them.into.another..There.are.two.distinct.types.of.GM.used.by.biotechnology.compa-nies..Transgenic.GM.transfers.genes.between.two.unrelated.organisms,.for.example,.from.soil.bacteria.to.corn..Intragenic.GM.involves.transferring.genes.between.two.breeds.of.the.same.organism,.for.example,.from.wild.species.of.corn.to.a.commercial.variety.of.corn.

Scientific ImpactBoth. transgenic. and. intragenic. techniques. are. used. to. produce. food. products.that.are.approved.by.the.FDA..Intragenic.modification.is.a.genetic.technique.for.significantly.speeding.up.the.conventional.process.of.plant.cross-breeding,.which.has.been.undertaken.by.farmers.and.plant.breeders.for.thousands.of.years..Many.industry.groups.believe.intragenics.should.require.minimal.FDA.testing.because.no.foreign.genes.or.proteins.are.added.to.the.GM.plant..We.have.only.seen.the.tip.of.the.iceberg.of.the.future.potential.of.GM.for.improving.worldwide.health.and.nutrition.through.enhanced.plants.

Human ImpactThe.potential.exists.for.GM.to.dramatically.enhance.traits.that.have.direct.value.to.consumers,.such.as.increased.vitamins.and.antioxidants,.more.flavor,.longer.shelf.life,.lower.pesticide.use,.and.reduced.cost.of.production..Superior.GM.plants.will.help.reduce.worldwide.malnutrition.and.improve.the.healthiness.of.foods..The.FDA.has.approved.GM.food.for.human.consumption,.and.Americans.have.been.consum-ing.GM.foods.for.a.decade..While.every.food.(modified.or.not).poses.some.risks,.there.has.never.been.a.documented.case.of.a.person.getting.sick.from.GM.food.

Page 228:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

214 Transgenic Horticultural Crops: Challenges and Opportunities

Financial ImpactWith.the.introduction.of.enhanced.nutrition,.antioxidants,.shelf.life,.flavors,.and.other.consumer-desired.attributes.using.GM.technology,.consumers.will.for.the.first.time.enjoy.the.direct.benefits.of.genetic.engineering..GM.plants.have.reduced.farmers’.costs,.which.mean.lower.food.prices..Worldwide.the.number.of.hungry.people. is. declining.. GM. technology. is. helping. to. feed. the. world. and. improve.worldwide.nutrition.

Environmental ImpactGenetic.modification.of.plants.has.the.potential.to.be.one.of.the.most.environ-mentally.helpful.discoveries.ever..GM.technology.has.produced.new.methods.of.insect.control.that.reduce.chemical.insecticide.application.by.50%.or.more..GM.weed.control.is.providing.new.methods.to.control.weeds,.which.are.a.problem.in.no-till.farming..This.means.greater.crop.yields.and.less.environmental.damage.

C..The.following.is.a.statement.on.genetic.modification.approved.by.a.third-party.group.consisting.of.a.variety.of.individuals.knowledgeable.about.GM.foods,.includ-ing.scientists,.professionals,.religious.leaders,.and.academics..These.parties.have.no.financial.stake.in.GM.foods.

General InformationThe.process.of.genetic.modification.takes.genes.from.one.organism.and.places.them. into. another..There.are. two.distinct. types.of.GM.used.by.biotechnology.companies..Transgenic.GM.transfers.genes.between.two.unrelated.organisms,.for.example,.from.soil.bacteria.to.corn..Intragenic.GM.involves.transferring.genes.between.two.breeds.of.the.same.organism,.for.example,.from.wild.species.of.corn.to.a.commercial.variety.of.the.crop..Hence,.intragenic.modification.has.much.in.common.with.conventional.plant.breeding.

Scientific ImpactThe. FDA. standard. for. GM. food. products. is. based. on. the. principle. that. they.have.essentially.the.same.ingredients,.although.modified.from.the.original.plant..Almost.all.GM.crops.meet.the.FDA’s.substantive.equivalent.requirement..Hence,.they.do.not.require.special.testing.before.commercial.marketing.can.occur.

Human ImpactMany.scientists.see.intragenics.as.having.real.potential.for.enhancing.consumer.attributes.of.plants.such.as.dramatically.increasing.vitamin.and.antioxidant.lev-els,.extending.shelf.life,.and.reduced.chemical.pesticide.application.without.con-cerns.about.gene.transfer.across.species..These.improvements.to.plants.are.only.possible.using.genetic.modification.and.not.conventional.breeding.

All.foods.present.a.risk.of.an.allergic.reaction.to.a.small.fraction.of.the.popula-tion..No.FDA-approved.GM.food.poses.any.known.unique.human.health.risks,.but.when.genes.are. transferred.across.species,.a.new.allergen. is.possible..This.is.more.likely.with.transgenics.than.intragenics..While.GM.crops.can.result.in.higher.yields.and.enhanced.nutrition,.there.is.no.consensus.whether.GM.foods.have.or.will.reduce.worldwide.hunger.

Page 229:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

215Consumer Acceptance of Genetically Modified Foods

Many. people. have. moral. or. religious. objections. to. GM.. Some. groups. see.intragenics.as.being.more.acceptable.because.genes.are.transferred.between.two.breeds.of.the.same.species.

Financial ImpactGM.seeds.and.other.organisms.are.produced.by.businesses.that.seek.profits..For.farmers. to.switch. to.GM.crops,. they.must.see.benefits. from.making.a.change..Consumers. must. also. see. benefits. from. consuming. GM. foods—lower. price. or.enhanced.consumer.attributes..However,.GM.technology.may.lead.to.changes.in.the.organization.of.the.agri-business.industry.and.farming.

Environmental ImpactThe. long-term. effects. of. GM. on. the. environment. are. largely. unknown..Bioengineered. insect. resistance. has. reduced. farmers’. applications. of. envi-ronmentally.hazardous.insecticides,.but.resistance.to.this.bio-control.system.will.increase.over.time..More.studies.are.occurring.to.help.assess.the.impact.of.bioengineered.plants.on.the.environment..Some.studies.reported.harm.to.Monarch.butterflies.from.GM.crops,.but.other.scientists.were.not.able.to.rec-reate.the.results.

Enhanced. consumer. attributes,. such. as. vitamins,. antioxidants,. and. longer.shelf.life.due.to.intragenics.pose.no.known.environmental.hazards.

REFERENCES

. 1.. Alston,. J.M.,. K..Bradford,. and.N..Kalaitzandonakes..The. economics. of.horticultural.biotechnology..Journal of Crop Improvement,.18,.413,.2006.

. 2.. Bradford,.K.J..and.J.M..Alston..Diversity.of.horticultural.biotech.crops.contributes.to.market.hurdles..California Agriculture,.58,.84,.2004.

. 3.. Alcamo,.I.E..DNA Technology,.2nd.edn..New.York:.Harcourt.Academic.Press..1999.

. 4.. Soil.Association..Flavr-Savr.tomato.&.GM.tomato.puree:.The.failure.of.the.first.GM.foods..Briefing.Paper,.November.29,.2005..Available.at:.http://www.soilassociation.org/web/sa/sweb.nsf/.(accessed.April.11,.2007).

. 5.. Fernandez-Cornejo,.J..and.M..Caswell..The.first.decade.of.genetically.engineered.crops.in.the.United.States..USDA-ERS,.Economic Information Bulletin,.No..11,.April.2006.

. 6.. Zilberman,.D..The.economics.of.biotechnology.regulation..In.R.E..Just,.J.M..Alston.and.D.. Zilberman,. eds.,. Regulating Agricultural Biotechnology:. Economics and Policy..New.York:.Springer,.2006,.pp..243–261.

. 7.. Gonsalves,.D..and.S..Ferreira..Transgenic.papaya:.A.case.of.managing.risks.of.papaya.ringspot.virus.in.Hawaii..Plan Health Progress,.November.13,.2003.(6pp).

. 8.. Gonsalves,.D..Transgenic.papaya.in.Hawaii.and.beyond..AgBioForum,.7,.36,.2004.

. 9.. Zilberman,. D.. The. economics. of. pesticide. usage.. Department. of.Agricultural. and.Resource. Economics,. University. of. California. Berkeley,. 2004..Available. at:. http://are.berkeley.edu/%7Ezilber/.(accessed.April.12,.2007).

. 10.. Rommens,.C.M.,. J.M..Humara,. J..Ye,.H..Yan,. C.. Richael,.L..Zhang,. R.. Perry,. and.K..Swords..Crop.improvement.through.modification.of.the.plant’s.own.genome..Plant Physiology,135,.421,.2004.

. 11.. Rommens,.C.M.,.O..Bougri,.H..Yan,.J.M..Humara,.J..Owen,.K..Swords,.and.J..Ye..Plant-derived.transfer.DNAs..Plant Physiology,.139,.1338,.2005.

Page 230:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

216 Transgenic Horticultural Crops: Challenges and Opportunities

. 12.. Rousu,.M.,.W.E..Huffman,.J.F..Shogren,.and.A..Tegene..Effects.and.value.of.verifiable.information.in.a.controversial.market:.Evidence.from.lab.auctions.of.genetically.modi-fied.food..Economic Inquiry,.45,.409,.2007.

. 13.. Falck-Zepeda,.J.B.,.G..Traxler,.and.R.G..Nelson..Surplus.distribution.from.the.intro-duction.of.a.biotechnology.innovation..American Journal of Agricultural Economics,.82,.360,.2000.

. 14.. Moschini,. G.,. H.. Lapan,. and. A.. Sobolevsky.. Roundup. ready. soybeans. and. welfare.effects.in.the.soybean.complex..Agribusiness,.16,.33,.2000.

. 15.. Huffman,.W.E.. and. M.. Rousu.. Consumer. attitudes. and. market. resistance. to. biotech.products..In.R.E..Just,.Julian.Alston,.and.D..Zilberman,.eds.,.Regulating Agricultural Biotechnology: Economics and Policy..New.York:.Springer,.2006,.pp..201–226.

. 16.. Moschini,.G..and.H..Lapan..Labeling.regulations.and.segregation.of.first-.and.second-generation. GM. products:. Innovation. incentives. and. welfare. effects.. In. R.E.. Just,.J. Alston,.and.D..Zilberman,.eds.,.Regulating Agricultural Biotechnology: Economics and Policy..New.York:.Springer,.2006,.pp..263–282.

. 17.. Balasubramanian,.S.K..and.C..Cole..Consumers’.search.and.use.of.nutrition.information:.The. challenge. and. promise. of. the. Nutrition. Labeling. and. Education. Act.. Journal of Marketing,.66,.113,.2002.

. 18.. Silverglade,.B..The.Nutrient.Labeling.and.Education.Act:.Progress. to.date.and.chal-lenges.for.the.future..Journal of Public Policy and Marketing,.15,.148,.1996.

. 19.. Tversky,.A..and.D..Kahneman..The.framing.of.decisions.and.the.psychology.of.choice..Science,.211,.453,.1981.

. 20.. Just,. R.E.,. D.. Zilberman,. and. J.M.. Alston.. Regulating. agricultural. biotechnology:.Introduction. and.overview.. In. R.E.. Just,. J..Alston,. and.D..Zilberman,. eds.,.Regulating Agricultural Biotechnology: Economics and Policy..New.York:.Springer,.2006,.pp..3–17.

. 21.. Wilson,.W.W.. and. B.L.. Dahl.. Costs. and. risks. of. testing. and. segregating. genetically.modified.wheat..Review of Agricultural Economics,.27,.212,.2005.

. 22.. Roe,.B..and.I..Sheldon..Credence.good.labeling:.The.efficiency.and.distributional.impli-cations.of. several.policy.approaches..American Journal of Agricultural Economics,.89,.1020,.2007.

. 23.. Greenpeace.International..We.want.natural.food!.2001..Available.at.http://www.greenpeace.org/∼geneng/.(accessed.March.15,.2004).

. 24.. Akerlof,. G..The. market. for. lemons:. Quality. uncertainty. and. the. market.mechanism..Quarterly Journal of Economics,.84,.488,.1970.

. 25.. Molho,. I.. The Economics of Information:. Lying and Cheating in Markets and Organizations..Oxford,.U.K.:.Blackwell.Publishing.Ltd..1997.

. 26.. Huffman,.W.E..and.R.E..Evenson..Science for Agriculture: A Long-Term Perspective..Ames,.IA:.Blackwell.Publishing,.2006.

. 27.. Rousu,.M.,.W.E..Huffman,.J.F..Shogren,.and.A..Tegene..Estimating.the.public.value.of.conflicting.information:.The.case.of.genetically.modified.foods..Land Economics,.80,.125,.2004.

. 28.. Milgrom,. P.. and. J.. Roberts.. Relying. on. the. information. of. interested. parties.. Rand Journal of Economics,.17,.18,.Spring.1986.

. 29.. Huffman,.W.E..and.A..Tegene..Public.acceptance.of.and.benefits.from.agricultural.bio-technology:.A.key.role.for.verifiable.information..In.V..Santaniello,.R.E..Evenson.and.D..Zilberman,.eds.,.Market Development for Genetically Modified Foods..Wallingford,.U.K.:.CAB.International,.2002,.pp..179–189.

. 30.. Smith,. V.. L.. Experimental. economics:. Induced. value. theory.. American Economic Review,.Papers.and.Proceedings,.66,.274,.1976.

. 31.. Huffman,. W.E.,. M.. Rousu,. J.F.. Shogren,. and.A.. Tegene.. The. public. good. value. of.information. from.agribusinesses.on.genetically.modified. foods..American Journal of Agricultural Economics,.85,.1309,.Dec.2003.

Page 231:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

217Consumer Acceptance of Genetically Modified Foods

. 32.. Haneman,.M.W..Welfare.evaluations.in.contingent.valuation.experiments.with.discrete.responses..American Journal of Agricultural Economics,.66,.332,.1984.

. 33.. Mendenhall,.C.A..and.R.E..Evenson..Estimates.of.willingness.to.pay.a.premium.for.non-GM.foods:.A.survey..In.V..Santaniello,.R.E..Evenson,.and.D..Zilberman,.eds.,.Market Development for Genetically Modified Foods..Wallingford,.U.K.:. CAB. International,.2002,.pp..55–62.

. 34.. Chern,. W.D.. and. K.. Rickertsen.. A. comparative. analysis. of. consumer. acceptance. of.GM.foods.in.Norway.and.in.the.USA..In.R.E..Evenson.and.V..Santaniello,.eds.,.Consumer Acceptance of Genetically Modified Foods..Cambridge,.MA:.CABI.2004,.p..95

. 35.. Shogren,.J.F.,.M..Margolis,.C..Koo,.and.J.A..List..A.random.nth-price.auction..Journal of Economic Behavior and Organization,.46,.409,.2001.

. 36.. McFadden,.D..The.human.side.of.mechanism.design:.A.tribute.to.Leo.Hurwicz.and.Jean-Jacque. Laffont..Working. Paper,. Department. of. Economics,. University. of. California,.Berkeley,.April.2007..Available.at:.http://emlab.berkeley.edu/econ/faculty/mcfadden_d.shtml.(accessed.April.30,.2007).

. 37.. Huffman,.W.E..Consumer.acceptance.of.genetically.modified.foods:.Traits,.labels.and.diverse.information..Iowa.State.University,.Department.of.Economics,.Working.Paper.No..10029,.August.2010..Available. at:.http://www.econ.iastate.edu/research/working-papers/p11835.(accessed.August.30,.2010).

. 38.. Zhoa,.X.,.E..Chambers.IV,.Z..Matta,.T.M..Loughin,.and.E.E..Carey..Consumer.sensory.analysis.of.organically.and.conventionally.grown.vegetables..Journal of Food Science,.72,.S87,.2007.

. 39.. Huffman,.W.E.,.M..Rousu,.J.F..Shogren,.and.A..Tegene..The.effects.of.prior.beliefs.and.learning.on.consumers’.acceptance.of.genetically.modified.foods..Journal of Economic Behavior and Organization,.63,.193,.2007.

. 40.. Rousu,.M.,.W.E..Huffman,.J.F..Shogren,.and.A..Tegene..Are.US.consumers.tolerant.of.GM.foods?.Review of Agricultural Economics,.26,.19,.Spring/Summer.2004.

. 41.. Markosyan,.A.,. J.J.. McCluskey,. and.T.I..Wahl.. Functional. foods. in. the. marketplace:.Willingness. to. pay. for. apples. enriched. with. antioxidants.. School. of. Economics,.Washington.State.University,.July.2007.

. 42.. Huffman,.W.E.,.J.F..Shogren,.M..Rousu,.and.A.Tegene..Consumer.willingness.to.pay.for. genetically. modified. food. labels. in. a. market. with. diverse. information:. Evidence.from.experimental.auctions..Journal of Agricultural and Resource Economics,.28,.481,.December.2003.

. 43.. Fernandez-Cornejo,.J.,.and.W.D..McBride..The Adoption of Bioengineered Crops..U.S..Department.of.Agriculture,.Economic.Research.Service,.Agricultural.Economic.Report.No..810..May.2002.

Page 232:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,
Page 233:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

219

10 Intellectual Property and Development of Transgenic Horticultural Crops

Cecilia L. Chi-Ham and Alan B. Bennett

INTELLECTUAL PROPERTY IN HORTICULTURAL BIOTECHNOLOGY

For. centuries,. horticulturists. have. applied. science. and. art. to. genetically. improve.edible.and.ornamental.plant.varieties..Horticultural. industries.have.produced.new.flowers,.fruit.and.perennial.trees,.landscape.plants,.and.vegetables..Also,.the.indus-try.has.provided.technological.advances.to. improve.plant.cultivation.and.posthar-vest. practices.. The. time. and. economic. investment. by. plant-breeding. programs. is.significant.because.it.may.take.decades.for.the.development.of.a.new.plant.variety.or. improved. seed.. Historically,. breeders’. inventions. have. been. freely. distributed,.diminishing.the.incentive.to.invest.and.the.ability.to.capture.value..In.order.to.rec-oncile. societal.needs. for.new.crops,. recognize.breeders’.creativity,. and.provide. a.means.that.ensures.financial.returns.for.the.economic.investment,.international.and.national.legal.intellectual.property.protections.systems.have.been.developed..As.a.consequence,.there.is.an.increasing.need.for.horticultural.scientists.to.complement.their.technical.knowledge.with.intellectual.property.information.and.awareness.

This.chapter.is.intended.to.provide.horticulturists.with.an.understanding.of.intel-lectual. property. issues. affecting. the. development. and. deployment. of. genetically.engineered.horticultural.crops..The.chapter.is.divided.into.three.sections..First,.we.describe. the. different. forms. of. intellectual. and. tangible. property. rights. and. their.application.in.the.development.of.horticultural.crops,.particularly.transgenic.crops..The.second.part.of.the.chapter.addresses.scientists’.increasing.needs.to.complement.their. technical.knowledge.with.intellectual.property. information.and.awareness..

CONTENTS

Intellectual.Property.in.Horticultural.Biotechnology............................................. 219Types.of.Intellectual.Property.to.Protect.Horticultural.Inventions.........................220Freedom.to.Operate.................................................................................................224Strategies.for.IP.Access..........................................................................................228References...............................................................................................................230

Page 234:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

220 Transgenic Horticultural Crops: Challenges and Opportunities

We. specifically. define. freedom-to-operate,. a. systematic. way. of. considering. legal.implications.and.navigating.through.IP.landscape.and.issues.in.research.and.com-mercial. development.. Finally,. the. third. section. describes. strategies. of. accessing.intellectual. property. rights. (IPRs). to. enhance. broad. access. and. dissemination. of.new.transgenic.horticultural.crops..We.present.PIPRA.as.a.model.of.a.public.sector.initiative.that.provides.expertise.to.understand.and.to.facilitate.access.to.IP.for.the.development.and.deployment.of.horticultural.crops.

TYPES OF INTELLECTUAL PROPERTY TO PROTECT HORTICULTURAL INVENTIONS

In.the.case.of.horticultural.crops,.the.legal.systems.protect.human-made.improve-ments,.such.as.a.new.plant.variety,.with.IPRs.and. the.physical.materials,.such.as.seeds,.with.tangible.property.rights.(TPRs)..These.forms.of.IPRs.and.TPRs.can.be.used.by.themselves.or.compounded.to.protect.and.manage.innovations.in.horticul-tural.biotechnology..The.main.types.of.intellectual.property.protection.applicable.to.horticultural.inventions.include.patents,.plant.variety.rights,.trade.secrets,.trade-marks,.and.copyrights.(Table.10.1).1,2.Tangible.property.rights.are.also.important.and.are.often.managed. through.material. transfer.agreements. (MTAs).or.bailments.and.can.be.used.to.limit.the.use.of.physical.materials..These.forms.of.IPRs.and.TPRs.are.the.cornerstone.of.the.innovation.process.in.the.United.States.and.Europe,.and.these.rights.are.increasingly.expanding.into.other.countries.in.the.world.

Below,. we. describe. the. different. forms. of. IPRs. and. TPRs. and. how. these. are.related.to.the.development.of.horticultural.crops..There.are.significant.differences.between.intellectual.and.tangible.property.rights,.particularly.in.terms.of.geographic.and.time.limitations..IPRs,.like.plant-variety.protection.(PVP).or.plant.patents,.are.granted.by.national.offices.for.a.specific.country-jurisdiction.and.for.a.specified.time.period.. In.contrast,. tangible.property.rights.are.not. limited.by.geography.or. time.and.the.terms.governing.their.use.are.left.to.the.discretion.of.the.tangible.property.owner..The. terms.governing. tangible.property.use.are.usually.specified. in.MTAs.or.bailments..Thus,.the.tangible.property.rights.may.extend.beyond.the.protection.offered.by.IPRs.

Of.the.many.forms.of.IPRs,.patents.provide.the.legal.rights.to.exclude.others.from.using.your.invention.that.must.be.novel,.useful,.and.nonobvious.to.one.skilled.in.the.art.of.horticultural.breeding..Patent.rights.are.conferred.by.national.governments.for.a.specified.period.of.time,.usually.20.years,.and.are.limited.to.the.country.in.which.the.patent.is.granted..In.exchange.for.exclusivity,.the.inventor.makes.a.public.disclo-sure.of.the.invention..In.the.United.States,.the.two.forms.of.patents.most.pertinent.to.the.horticultural.industry.are.plant.patents.and.utility.patents.

Plant patents.are.specific.to.the.U.S..legal.system.and.are.granted.only.for.asexu-ally. propagated. plants,. such. as. strawberries. and. fruit. trees,. and. exclude. tuber-propagated. and. uncultivated. species.. At. the. time. the. U.S.. Plant. Patent. Act. was.enacted.in.the.1930s,.sexually.produced.plants.were.believed.to.be.unstable.and.non-uniform.and,.as.a.result,.were.excluded.from.plant.patent.protection..Utility patents.offer.one.of.the.most.robust.forms.of.IP.protection..In.horticultural.biotechnology,.utility.patents.can.be.used.to.protect. the.genetically.modified.seeds.or.plants.and.

Page 235:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

221Intellectual Property of Transgenic Horticultural Crops

TABLE 10.1Overview of IP Protection Systems

Means of Protection

What Can Be Protected

How to Protect Term of Protection Rights of the Owner

Utility.patent

Any.useful,.novel,.and.nonobvious.invention

USPTO If.filing.date.is.after.June.8,.1995,.20 years.from.filling.date;.if.filing.date.is.before.June.8,.1995,.17.years.from.issue

Right.to.exclude.others.from.making,.using,.manufacturing,.selling,.and.offering.to.sell

U.S..plant.patent

Asexually.produced.plants.(excludes.uncultivated.and.tuber.propagated.plants)

USPTO If.filing.date.is.after.June.8,.1995,.20 years.from.filling.date;.if.filing.date.is.before.June.8,.1995,.17.years.from.issue.date

Right.to.exclude.others.from.asexually.reproducing,.selling,.or.using.claimed.plant

U.S..PVP Sexually.produced.plants.(excludes.first.generation.hybrids,.uncultivated.plants)

USDA 20.years.most.crops;.25.years.trees,.vines

Right.to.exclude.others.from.importing.or.selling,.sexually.or.asexually.reproducing,.distributing.without.proper.notice,.producing.a.hybrid.or.new.variety,.and.using.the.claimed.patent

UPOV91 All.genera.and.species

UPOV 20.years.most.crops;.25.years.trees,.shrubs,.and.vines

Prevents.others.from.producing.or.reproducing,.conditioning.for.the.purpose.if.propagation,.offering.for.sale,.selling.or.other.marketing,.importing,.exporting,.and.stocking.for.any.purposes

Trademarks Words,.phrases,.and.logos.that.can.distinguish.the.goods.and.services.from.those.of.others

Use.or.have.a.bona.fide.intent.to.use.and.apply.for.a.federal.registration

Unlimited.duration.as.long.as.the.mark.is.in.use;.the.mark.has.to.be.renewed.every.10th.year

Right.to.exclude.others.from.using.the.mark.and.other.marks.so.similar.they.cause.confusion

(continued)

Page 236:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

222 Transgenic Horticultural Crops: Challenges and Opportunities

the.methods.embodied.in.the.invention.such.as.plant.transformation.and.selection.methods..Utility.patents.may.protect.different.aspects.of.the.invention..For.instance,.Calgene.Inc.,.now.Monsanto.Company,.used.a.series.of.claims.in.the.family.of.utility.patents.to.protect.the.first.horticultural.biotechnology.crop,.the.FlavrSavr™.tomato.that.was.genetically.engineered.to.suppress.the.expression.of.the.tomato.fruit.rip-ening. polygalacturonase. enzyme.. Using. a. portfolio. of. patents,. the. company. pro-tected.the.DNA.sequence.of.the.enzyme,.a.DNA.construct.to.suppress.the.enzyme.expression. in.plants,. the. transgenic. tomato. cell,. and.even,. the.overall.method. for.antisense-based. gene. suppression.of. this.or. any.other.gene.. In. the.United. States,.plant. and. utility. patents. are. awarded. by. the. United. States. Patent. and. Trademark.Office.(USPTO).

A.more.widely.employed.international.legal.system.to.award.rights.to.breeders.was.created.in.Europe.through.The.International Union for the Protection of New Varieties of Plants,.UPOV,.commonly.referred.to.as.Plant.Breeder’s.Rights.(PBRs).1,3.The.original.international.convention.that.established.UPOV.was.held.in.1961,.and.

TABLE 10.1 (continued)Overview of IP Protection Systems

Means of Protection

What Can Be Protected

How to Protect Term of Protection Rights of the Owner

Copyright Literary.works,.software,.dramatic.works,.music,.pictures,.sound.recordings,.architectural.works,.and.movies

Apply.for.federal.registration

Life.of.the.author.plus.70.years

Right.to.prevent.unauthorized.copying.or.public.performance

Trade.secrets

Any.technical.or.business.information.that.is.secret.and.that.gives.the.holder.an.advantage.over.a.competitor.who.does.not.have.the.information

Keep.secret;.no.registration.available

Unlimited.duration.as.long.as.the.subject.matter.is.secret

Right.to.prevent.unlawful.use

Sources:. Modified. from. Dodds,. J.. et. al.,. Plants,. germplasm,. Genebanks,. and. intellectual. property:.Principles,. options,. and. management,. in. Intellectual Property Management in Health and Agricultural Innovation: A Handbook of Best Practices,. MIHR. (Oxford,. U.K.). and. PIPRA.(Davis,. CA),. 2007;. Dodds,. J.. and. Krattiger,.A.,. The. statutory. toolbox:.An. introduction,. in.Intellectual Property Management in Health and Agricultural Innovation: A Handbook of Best Practices,.MIHR.(Oxford,.U.K.).and.PIPRA.(Davis,.CA),.2007.

Page 237:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

223Intellectual Property of Transgenic Horticultural Crops

the.treaty.has.been.revised.in.1972,.1978,.and.more.recently.in.1991..UPOV.provides.the. international. standardized. framework. in.which.each.national.government.can.establish.their.own.legal.system.

As.a.member.of.UPOV,.the.U.S..Plant.Variety.Protection.Act.offers.protection.of.sexually.propagated.or.tuber-propagated.plant.species..In.the.United.States,.PBRs.are.granted.through.Plant.Variety.Protection.(PVP).Certificates.issued.through.the.U.S..Department.of.Agriculture..UPOV.requires.that.a.plant.variety.meet.a.set.of.criteria.known.as.DUS.requirements;.distinct,.uniform,.and.stable..UPOV.provides.a.PVP-like.system,.which.can.offer.robust.protection.worldwide.

The. horticultural. industry. can. use. a. combination. of. plant. patents,. PVP,. and.PRBs.to.protect.and.market. its.varieties. in.most.parts.of. the.world..For.example,.the.University.of.California.relies.on.UPOV.and.U.S..plant.patents.to.manage.a.suc-cessful.Strawberry.Licensing.Program.in.domestic.and.international.markets..The.Strawberry.Licensing.Program.has.expanded.its.international.markets.in.countries.with.strong.IP.protection.and.the.UC.strawberry.cultivars.now.represent.up.to.60%.of.the.worldwide.production.4

Trade secrets.are.one.of.the.oldest.forms.of.IP.protection.and.are.used.to.pro-tect.confidential.business. information,.processes,.know-how,.data,.and.materials.5.However,. a. trade. secret. does. not. protect. against. competitors. reverse. engineering.a.product..In. the.horticultural.and.seed.industries,. trade.secrets.have.been.widely.used.to.protect.parent.inbred.lines.for.hybrid.seed.production.but.are.clearly.not.use-ful.for.the.protection.of.a.variety.that.can.be.directly.propagated.asexually.or.with.open-pollinated.seeds..Where.appropriate,.however,.trade.secrets.can.be.maintained.indefinitely.so.long.as.confidentiality.is.not.breached.

Another. form.of. IP. protection.of. limited. utility. in.horticulture. is. a.copyright..A copyright.protects. the.expressed. idea,.plant.variety.description.or.diagrams,.or.other.material.that.may.be.displayed.in.catalogs.or.seed.packages..This.form.of.IP.protection. is.weaker. than.others.because.anyone.is.free. to.use.the.actual.plant.or.depicted.idea..Also,.anyone.is.free.to.use.the.copyright.information.for.the.devel-opment.of.a.product..Copyright.use.in.plant.sciences.could.apply.to.plant.genome.information.in.electronic.databases.and.bioinformatics.software.and.hardware..For.example,.the.use.of.information.in.electronic.databases.can.be.limited.or.controlled.by.granting.access.to.databases.through.a.copyright.license.or.an.information.access.agreement..The.International.Center.for.Tropical.Agriculture.(CIAT),.for.example,.limits.the.ability.to.claim.intellectual.property.protection.over.any.data.or.informa-tion.in.its.databases.through.an.information.access.agreement.(http://isa.ciat.cgiar.org/urg/ita.do;jsessionid=9FEEC2C59FAB82D4EABF5052083238A3).

Trademarks. are.another. form.of. IP.protection.applicable. to.brand.names.of.horticultural.products;.however,.as.with.copyright,. it.does.not.protect. the.tech-nology. itself.. In. the. United. States,. trademarks. are. registered. at. the. USPTO..A searchable.database.of.trademark.registrations.is.available.on.the.USPTO.web-site.at.the.Trademark.Electronic.Search.System.(http://tess2.uspto.gov)..For.horti-cultural.crops,.trademarks.are.often.used.to.protect.any.word,.phrase,.symbol,.or.logo.that.represents.brand.varieties.or.products.such.as.Dole®.(a.registered.trade-mark. of. Dole. Fruit. Company),. Sunkist™,. and. Monsanto. Company’s. Roundup.Ready®.products.

Page 238:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

224 Transgenic Horticultural Crops: Challenges and Opportunities

Tangible property rights. reside.with. the.property.owner..MTAs.are. typically.used.to.transfer.possession.of.materials.but.not.ownership..The.party.who.transfers.the.materials. retains. full.ownership,.and. the. transfer. is. governed.by.a.contract,.typically.specifying.the.term.of.the.transfer,.how.the.materials.may.and.may.not.be.used,.and.other.related.issues,.such.as.confidentiality..MTAs.are.legal.contracts.and.are.also.referred.to.as.bailments,.which.is. the. legal. term.for.a.contract. that.transfers.physical.possession.but.not.ownership.of.personal.property..In.research,.MTAs.are.often.used.for.transfer.of.materials.for.research.use.only,.allowing.sci-entist.to.perform.academic.research..However,.there.is.typically.no.guarantee.or.promise. that. the. owner. will. give. rights. for. commercial. applications.. Also,. the.time.period.and.geographical.limitations.can.be.established.by.the.property.owner,.and,. thus,. unlike.patents,. limitations.on. the.use.of. tangible.property. typically.have. no  temporal.or.geographic. limitations..Research-use.only.MTAs.are. typi-cally.easier.to.obtain,.especially.between.public.or.nonprofit.research.institutions,.but.could.represent.a.considerable.obstacle.downstream.if.the.materials.cannot.be.used.for.commercial.applications.

FREEDOM TO OPERATE

Navigating.the.complex.IP.landscape.of.a.research.project.in.horticultural.biotech-nology.requires.some.analytical.tools.and.specialized.analytical.capabilities.6.The.analysis.requires.both.legal.and.scientific.knowledge.as.well.as.access.to.both.patent.and.literature.databases.and.typically.takes.the.form.of.what.is.known.as.a.freedom.to.operate.(FTO).opinion..The.FTO.opinion.is.a.legal.assessment.about.whether.a.research.project.or.the.development.of.a.new.product.can.proceed.with.a.low,.or.tol-erable,.likelihood.that.it.will.not.infringe.existing.patents.or.other.types.of.IP.rights..It. is. important. to. note. that. the.FTO. determination. is.not. absolute. but. reflects. an.evaluation.of.risk.since.there.is.typically.some.uncertainty.around.the.interpretation.of.patent.claims.as.well.as.uncertainty.as.to.whether.new.IP.may.issue.or.be.dis-covered.at.a.later.date..The.FTO.opinion.may.lead.to.a.range.of.options:.identifying.in-licensing.targets,.considering.the.substitution.of.technologies.or.processes,.decid-ing.to.ignore.the.potential.infringement,.investing.in.work-around.technologies,.or.perhaps. deciding. to. abandon. the.project. all. together..Although,.private. firms. are.more.likely.to.engage.in.FTO.analysis.because.any.infringement.risk.may.directly.affect.their.ability.to.develop.new.products,.and.their.ultimate.profitability,.public,.and.not-for-profit.private.institutions.are.becoming.increasingly.aware.of.the.need.for.better.FTO.information..This.is.particularly.true.for.research.projects.undertaken.by.universities.or.not-for-profit.research.centers.for.the.specific.purpose.of.producing.new.crops.for.developing.countries..In.these.cases.where.deployment.is.anticipated,.it.is.critical.that.IP.considerations.be.taken.into.account.early.in.the.research.process.to.avoid.the.need.for.re-engineering.due.to.IP.constraints..Similarly,.horticulturists.should.address.IP.needs.to.ensure.that.commercialization.is.not.halted.due.to.a.lack.of.IP.clearance.

While.patents.are.the.most.common.type.of.IP.right.encountered,.a.thorough.FTO.analysis.needs.to.assess.all.types.of.existing.property.rights.for.the.likelihood.that.the.research. project. or. the. product. being. commercialized. infringes. terms. of. an. MTA..

Page 239:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

225Intellectual Property of Transgenic Horticultural Crops

Of particular.concern.are.tangible.property.rights,.such.as.cell.lines,.transgenic.plants,.germplasm,. and. plasmids..Because,. as.described.above,. the. transfer.of. tangible.property.often.occurs.under.the.terms.of.an.MTA.that.has.no.geographic.or.temporal.limitation..These.terms.can.be.particularly.problematic.and.directly.impact.FTO.

Enabling.technologies.for.plant.transformation.or.transformation.vectors.combine.several.components.such.as.promoters,.selectable.markers,.marker.removal.systems,.and.more..Because.of.the.fundamental.role.that.these.technologies.play,.they.have.been.extensively.patented..In.addition,.the.FTO.surrounding.enabling.technologies.related.to.plant.transformation.is.further.complicated.because.these.technologies.are.not.used.individually.but.are.combined.with.a.suite.of.related.enabling.technologies,.specific.trait.technologies,.and.deployed.in.many.different.plant.species..We.can.look.at.a.relatively.simple.example.of.a.single.component.of.a.transformation.vector.to.illustrate.the.elements.of.an.FTO.analysis.

The. target. technology.for. this.case.study.was.a. fruit-specific.promoter. from. the.tomato.E8.gene..The.E8.promoter.has.been.used.to.improve.fruit.quality,.extend.fruit.shelf.life,.and.to.express.edible.human.vaccines.specifically.in.ripening.tomato.fruit.7,8.The.first.step.in.an.FTO.investigation.is.to.clearly.define.the.target.technology..In.this.hypothetical.case,.the.fruit-specific.promoter.will.be.used.exactly.as.described.in.the.initial.publications.9,10.The.promoters.in.these.publications.are.virtually.identical.and.consist.of.about.2100.nucleotides.upstream.of.the.E8.structural.gene..Further.promoter.characterization.identifying.the.location.and.sequence.of.functional.elements.within.the.promoter.and.upstream.nucleotide.sequence.was.reported.in.Deikman.et.al.9.These.publications.draw.the.technical.boundaries.surrounding.the.target.promoter.technol-ogy.and.provide.important.prior.art.to.subsequently.filed.patents.

To.establish. the. relationship.of.publications.and.patents. that.describe.or.claim.the.E8.promoter,.a.patent.landscape.must.first.be.established..The.patent.landscape.should. include. patents. and. patent. applications. closely. related. to. the. technology..Keywords. and. authors. of. key. publications. are. used. to. search. for. patents. or. pat-ent.applications..A.separate.search.should. then.be.conducted. to. identify.patents.or. patent. applications,. which. referenced. the. scientific.publications.describing. the.technology..Additionally,.in.the.E8.case,.patented.DNA.and.protein.sequence.data-banks.were. searched.using. the. promoter’s. DNA.sequence. as. a.query.. The.patent.landscape.will.reveal.“family”.relationships.among.different.patents.and.published.patent.applications..Patent.families. include.later.patent.applications.that.claim.the.benefit.of.an.earlier,.related,.application,.or.later.patent.applications.that.arise.from.foreign.filings.of.the.parent.application..Figure.10.1.illustrates.a.patent.family.aris-ing.from.a.1989.patent.application.related.to.the.E8.promoter.filed.by.Agritope,.an.agricultural.biotechnology.company.

An.informative.way.of.analyzing.the.FTO.search.results.is.to.construct.a.timeline.of.scientific.literature,.patent.applications,.and.issued.patents.on.the.specific.tech-nology.and.on.potentially.overlapping.subject.matter..Ordering.the.patents.and.published.applications.according.to.their.priority.dates.(also.known.as.effective.filing.dates).reveals.important. relationships..For.example,. it. reveals.what.publica-tions. or. patents. are. prior. art. against. newer. patents.. Since. patents. may. only. be.granted.if.the.claims.are.both.novel.and.nonobvious.over.the.prior.art,.this.analysis.reveals.the.relative.dominance.of.earlier,.broader.patents.over.later,.narrower.patents..

Page 240:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

226 Transgenic Horticultural Crops: Challenges and Opportunities

U.S.

appl

icat

ion

USS

N 4

48,0

95Fi

led

12/1

2/19

89

U.S.

appl

icat

ion

USS

N 6

13,8

58Fi

led

12/1

2/19

90

U.S.

appl

icat

ion

USS

N 0

46,5

83Fi

led

04/0

9/19

93

U.S.

appl

icat

ion

USS

N 3

31,3

55Fi

led

10/2

7/19

94

U.S.

pate

nt6,

054,

635

File

d 04

/25/

2000

U.S.

appl

icati

onU

SSN

255

,833

File

d 06

/08/

1994

U.S.

appl

icati

onU

SSN

360

,974

File

d 12

/20/

1994

U.S.

pate

nt5,

589,

623

File

d 12

/31/

1996

U.S.

pate

nt5,

416,

250

Publ

ished

05/

06/1

995

U.S.

pate

ntU

SSN

5,7

50,8

64Pu

blish

ed 0

5/12

/199

8

U.S.

pate

nt5,

723,

746

Publ

ished

03/

03/1

998

WO

appl

icati

on95

/353

87Fi

led

10/2

7/19

94

WO

appl

icat

ion

94/2

4294

File

d 04

/08/

1994

CIP

CIP

CIP

CIP

U.S.

appl

icat

ion

USS

N 7

77,1

47Fi

led

12/2

7/19

96

U.S.

pate

nt5,

859,

330

Publ

ished

01/

12/1

999

CIP

U.S.

appl

icat

ion

USS

N 2

61,6

77Fi

led

06/1

7/19

94

CIP

FIG

UR

E 10

.1

The

.epi

tope

/agr

itope

.pat

ent.f

amily

6 .di

spla

ys.t

he.n

umer

ous.

Uni

ted.

Stat

es.(

U.S

.).an

d.W

orld

.(W

O).

pate

nt.fi

ling

s.st

emm

ing.

from

.a.1

989.

U.S

..pat

ent.a

ppli

cati

on..T

he.p

aten

t.fam

ily.in

clud

es.a

.ser

ies.

of.c

onti

nuat

ion.

in.p

art.(

CIP

).ap

plic

atio

ns.fi

led.

in.th

e.U

nite

d.St

ates

.that

.cla

im.n

ew.a

spec

ts.o

f.th

e.in

vent

ion.

whi

le.r

etai

ning

.the.

pare

nt.a

ppli

cati

on.fi

ling

.dat

e.

Page 241:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

227Intellectual Property of Transgenic Horticultural Crops

Figure.10.2.illustrates.the.IP.priority.timeline.for.the.E8.promoter..A.thorough.FTO.analysis.may.require.direct.contact.with.the.researchers,.and,.in.this.analysis,.it.was.learned.from.the.authors.of.the.Deikman.and.Fischer.publication10.that.they.did.not.apply.for.patent.protection.prior.to.their.publication..This.information.was.also.con-firmed.by.searching.patent.databases..Based.on.this.information,.it.was.presumed.that.the.basic.E8.promoter.technology.was.in.the.public.domain.based.on.the.pub-lications,.which.constituted.a.public.disclosure..However,.this.conclusion.required.thorough.review.and.documentation.of.the.published.literature.or.“prior.art”.relative.to.the.subject.matter.of.subsequent.patents.

As.shown. in. the.priority. timeline,. the.Deikman.and.Fischer10.and.Giovannoni.et al.11.publications. initially.describe. the.E8.promoter. technology..This.precluded.the.novelty.of.any.subsequent.patent.claims.on.the.E8.promoter.per.se.(for.example,.applications.filed.by.Agritope.and.Epitope)..Counsel.concluded.that.the.tomato.E8.promoter.constructs.per.se.and.as.described.in.the.scientific.publications.can.be.rea-sonably.considered.to.be.in.the.public.domain..However,.patent.issues.subsequently.may.limit.the.use.of.the.E8.promoter.to.drive.specific.heterologous.genes.or.to.use.in.combination.with.other. transcription.regulatory.elements.(see.Figure.10.2)..For.example,.Epitope’s.patent.U.S..5,859,330.contains.very.narrow.claims.to.the.use.of.the.E8.promoter.with.a.specific.gene,.S-adenosylmethionine.hydrolase..Therefore,.this.specific.E8.promoter-gene.combination.would.fall.under.the.scope.of.the.patent..

1985 19951990

Deikman and Fischer (1988)

Giovannoni et al. (1989)

Deikman et al. (1992)

Agritope448,095

12/12/1989

Agritope613,858

12/12/1990

Monsanto632,440

12/26/1990

Epitope 046,58304/09/1993

U.S. 5,723,746WO 94/24294

Agritope 255,83306/08/1994

U.S. 5,416,250 Epitope 261,67706/17/1994

U.S. 5,750,864

Epitope10/27/1994

U.S. 5,859,330

Agritope 360,97412/20/1994

U.S. 5,589,623

Patent and patentapplication timeline

Literature timeline

FIGURE 10.2 Timeline.of. tomato.E8.promoter. scientific.publications.and.United.States.(U.S.).and.World.(WO).patent.filing..(From.Fenton,.G..et.al.,.eds.,.Freedom.to.operate:.the.law.firms.approach.and.role,. in.Intellectual Property Management in Health and Agricultural Innovation: A Handbook of Best Practices,.eds..A..Krattiger.et.al..2007,.available.online.at.www.ipHandbook.org)

Page 242:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

228 Transgenic Horticultural Crops: Challenges and Opportunities

Similarly,.other.patents.may.limit.the.use.of.the.E8.promoter.in.chimeric.constructs.that. contain. other. promoter. elements.. For. example,. another. of. Agritope’s. patent,.U.S..6,118,049,.claims.the.use.of.the.tomato.E8.promoter.fused.to.a.portion.of.the.tomato. E4. promoter.. These. examples. illustrate. the. complexities. in. analyzing. the.FTO.of.particular.DNA.elements..We.exemplify.that.FTO.may.differ.when.you.con-sider.a.DNA.element.by.itself.(i.e.,.promoters).or.in.combination.with.other.elements.(i.e.,.trait.genes).

This.example.provides.an.overview.of. the.data.and.information.that.should.be.considered.in.an.FTO.analysis..It.is.not.difficult.to.imagine.how.the.complexity.of.an.FTO.analysis.would.grow.dramatically.with.the.inclusion.of.multiple.enabling.technologies,.one.or.more.trait.technologies.and.proprietary.germplasm..This.is.one.of. the. challenges. of. understanding. IP. constraints. and. developing. FTO. strategies.in.plant.biotechnology.where.multiple.complementary.technologies.are.necessarily.integrated.to.develop.new.crop.varieties.

STRATEGIES FOR IP ACCESS

During. the. 1990s,. it. became. clear. that. universities. and. nonprofit. agricultural.research.institutions.were.constrained.in.their.historical.role.of.providing.many.new.agricultural.innovations—particularly.biotechnology-derived.innovations—directly.to.the.agricultural.industry.or.to.farmers..This.was.especially.apparent.for.specialty.or.horticultural.crops.that.do.not.individually.occupy.the.large.acreage.of.agronomic.crops.but.as.a.group.represent.a.high-value.agricultural.sector..While.there.are.many.contributing. factors,. access. to. the. suite. of. proprietary. technologies. required. to.produce.a.genetically.modified.crop.has.been. frequently.cited. as. a.barrier. to. the.commercialization.of.public.sector.agricultural.research.12.In.Europe,.a.similar.pic-ture.emerged.in.2000,.when.a.Swiss.scientist.developed.“Golden.Rice,”.genetically.modified. rice.with. elevated.provitamin.A,13.which. triggered. an. intellectual.prop-erty.audit..The.audit.revealed.that.70.proprietary.technologies.had.been.infringed.in.the.development.of.Golden.Rice.and.illustrated.the.complex.patent. thicket. that.surrounded.biotechnology.innovations.for.crop.improvement.14

The. complex. IP. environment. surrounding. agricultural. biotechnology. research.and.development,.exemplified.by.the.Golden.Rice.case.or.even.the.relatively.simple.FTO.opinion.described.above,.has.spawned.some.new.strategies.and.new.organiza-tions.committed.to.lower.the.IP.barriers.to.new.crop.developments.and.to.provide.more.open.access.to.patented.technologies..These.issues.are.critical.for.small.private.companies.attempting.to.enter.this.sector.but.can.also.be.important.for.public.or.not-for-profit.research.institutions..Most.plant.biotechnology.laboratories.routinely.use.patented.technologies.in.their.research.without.specific.legal.permissions..Although.patent.owners.have.rarely.been.concerned.about.academic.research.infringement.in.agriculture,.there.are.many.examples.where.fundamental.biomedical.research.has.been.challenged.because.of.IP.issues.15.In.addition,.projects.carried.out.in.public.or.not-for-profit.institutions.that.are.targeted.toward.the.development.of.crops.for.devel-oping.country.farmers.must.consider.the.IP.inputs.to.the.project..Increasingly,.the.sponsors.of.such.research.are.requiring.the.full.analysis.and.disclosure.of.strategies.to.ensure.global.access.to.all.IP.embodied.in.a.project.

Page 243:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

229Intellectual Property of Transgenic Horticultural Crops

To.develop.a.strategy.for.IP.access,. it. is.important. to.consider.both.the.IP.and.TP.rights..Most.researchers.are.still.relatively.unfamiliar.with.how.to.find,.under-stand,. and.utilize. IP. information,. including.published.patents.and.patent. applica-tions..Therefore,.it.is.important.for.scientists.to.seek.legal.expertise.to.understand.the.FTO.and.IPRs.of.the.components.and.processes.used.to.develop.agricultural.biotech.products..In.addition,.management.of.other.TP.agreements.(like.MTAs).is.crucial..Keeping.track.of.contractual.obligations.specified.in.sponsor.research.agreements,.employment. contracts,. and.MTAs. are. important. to. address. the. development.of. a.project.because.they.may.be.critically.important. in.the.downstream.deployment.of.a.biotechnology.product..For.example,.agreements.may.define.who.holds.patent.rights,.whether.a.technology.can.be.commercialized.or.transferred.to.third.parties,.or.if.the.license.is.for.“research-use.only.”.Therefore,.understanding.these.complex.IP.and.TP.issues.are.critical.in.order.to.develop.strategies.for.IP.access.

Scientists.worldwide.are.realizing.the.increasing.need.to.address.IP.and.TP.issues.in.order.to.deploy.their.biotechnology.discoveries..In.the.private.sector,.the.corporate.culture.prioritizes.preemptive.mitigation.of.IP.and.TP.issues,.and,.as.a.consequence,.biotechnology. companies. have. robust. legal. resources.. In. contrast,. public. sector.scientists.usually.do.not.have.access.to.the.legal.information.necessary.to.address.these. issues..In.2003,.several.public.sector.and.not-for-profit.agricultural. research.institutions.recognized.the.need.to.develop.an.organization.to.address.the.relative.inaccessibility.of.IP.information.and.to.provide.a.framework.to.ensure.that.IP.does.not.block.applications.of.agricultural.biotechnology.and,.in.particular,.to.facilitate.projects.that.can.have.broad.humanitarian.benefits.16.Numerous.universities,.includ-ing.the.University.of.California,.the.Donald.Danforth.Plant.Science.Center,.North.Carolina.State.University,.Ohio.State.University,.Boyce.Thompson.Institute.for.Plant.Research,.Michigan.State.University,.Cornell.University,.University.of.Wisconsin-Madison,. University. of. Florida,. the. United. States. Department. of. Agriculture,.Rutgers.University,.Texas.A&M. University,. and.Purdue.University.developed. the.Public.Sector.Intellectual.Property.Resource.for.Agriculture.(PIPRA;.www.pipra.org)..These.institutions.made.a.public.commitment.to.participate.and.promote.strat-egies.to.collectively.manage.public-sector.intellectual.property.in.support.of.both.U.S.. and. developing. country. agriculture.. This. initial. founding. group. of. PIPRA.members.has.grown. to.over.53. institutional.members. in.15. countries,. illustrating.the.widespread.concern.and.interest.in.working.collectively.to.remove.and.avoid.IP.barriers.that.might.slow.development.of.new.crops.

PIPRA.operates.on.several.levels.to.effectively.support.the.broad.application.of.agricultural.technologies.developed.in.public-non/profit.research.institutions..Its.pri-mary.strategy.has.been.to.adopt.a.highly.collaborative.program.built.on.consensus.views.of.its.members—all.of.whom.fundamentally.believe.that.intellectual.property.protection.is.an.important.tool.to.support.innovation..PIPRA.is.working.within.the.context.of.its.members.to.support.both.commercial.and.humanitarian.applications.of. technologies.and. to.develop.strategies.and.mechanisms.to.stimulate.even.more.innovation.globally.

A.number.of.strategies.have.been.implemented.to.enhance.FTO.using.public-sector.IP.for.agricultural.biotechnology.projects..For.example,.informed.decisions.regarding.dissemination.of.new.knowledge.via.open.publication.or.protecting.it.with.

Page 244:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

230 Transgenic Horticultural Crops: Challenges and Opportunities

a.patent.are.clearly.important.and.FTO.can.be.improved.if.public-sector.institutions.systematically.consider.how,.when,.and.if.to.use.the.patent.system.to.support.broad.innovation.17.Even.when.using.the.patent.system,.PIPRA.encourages.its.members.to.reserve.rights.to.use.their.newest.and.best.technologies.for.humanitarian.purposes,.particularly.when.they.issue.exclusive.commercial.licenses.18.For.U.S..agriculture,.it.is.also.important.to.use.licensing.strategies.that.promote.commercialization.of.technologies.for.both.large.and.small.acreage.crops..Thus,.for. technologies.with.potential.applications.in.many.crops,.instead.of.granting.an.exclusive.license.for.all.fields.and.in.all.crops,.it.may.be.prudent.to.license.for.a.specific.field-of-use.or.spe-cific.crop.and.retain.rights.to.use.the.technology,.or.to.issue.additional.licenses,.for.the.development.of.other.crops.that.may.not.be.within.the.commercial.interests.of..large.companies..The.anticipated.benefits.of.a.collective.IP.management.regime.are.to.enable.an.effective.assessment.of.FTO.issues.to.overcome.the.fragmentation.of.public-sector.IPR.and.re-establish.the.necessary.FTO.in.agricultural.biotechnology.for.the.public.good.and.to.enhance.private.sector.interactions.by.more.efficiently.identifying.collective.commercial.licensing.opportunities.

Among.PIPRA’s.core.activities.is.working.with.scientists.and.funding.agencies.on.a.project-specific.basis.to.understand.the.underlying.FTO,.IP,.and.TP.necessary.to.develop.and.deploy.agricultural.biotechnology.projects..Based.on.this.informa-tion,.PIPRA.works.with.scientists.and.technology.managers.to.design.and.implement.strategies.to.access.and.negotiate.third.party.rights..PIPRA.offers.services.to.develop.patent.landscapes.in.particular.technology.spaces,.for.example,.gene.suppression.in.plant.biotechnology.19

Delmer.et.al..described.other.initiatives.designed.to.play.roles.in.enabling.access.to. IPRs. for. the. development. of. crops,. including. horticultural. crops,. the. African.Agricultural. Technology. Foundation,. and. CAMBIA.20. The. African. Agricultural.Technology.Foundation. focuses.on.negotiating. access. to.proprietary. technologies.for.the.benefit.of.smallholder.farmers.in.Sub-Saharan.Africa.(www.aatf-africa.org).21.CAMBIA. offers. a. number. of. resources. and. initiatives. to. promote. innovation.(www.cambia.org).

In.particular,.foundations.with.an.interest.in.supporting.broad.innovation.as.well.as.corporations.and.corporate.foundations.whose.future.depends.on.the.broad.accep-tance.of.biotechnology.in.both.agronomic.and.horticultural.crops.are. likely.to.be.important.sponsors.of.activities.to.enable.access.to.IPRs.

REFERENCES

. 1.. Kesan,. J.P.,. The. statutory. toolbox:. Plants,. in. Intellectual Property Management in Health and Agricultural Innovation: A Handbook of Best Practices. 2007,. MIHR.(Oxford,.U.K.).and.PIPRA.(Davis,.CA).

. 2.. Dodds,.J.,.A..Krattiger,.and.S.P..Kowalski,.Plants,.germplasm,.Genebanks,.and.intel-lectual. property:. Principles,. options,. and. management,. in. Intellectual Property Management in Health and Agricultural Innovation: A Handbook of Best Practices.2007,.MIHR.(Oxford,.U.K.).and.PIPRA.(Davis,.CA).

. 3.. Lesser,. W.H.,. Plant. breeders’. rights:. An. introduction,. in. Intellectual Property Management in Health and Agricultural Innovation: A Handbook of Best Practices.2007,.MIHR.(Oxford,.U.K.),.and.PIPRA.(Davis,.CA).

Page 245:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

231Intellectual Property of Transgenic Horticultural Crops

. 4.. Bennett,.A.B..and.M..Carriere,.The.University.of.California’s.strawberry.licensing.program,.in.Intellectual Property Management in Health and Agricultural Innovation: A Handbook of Best Practices.2007,.MIHR.(Oxford,.U.K.).and.PIPRA.(Davis,.CA).

. 5.. Dodds,. J.. and. A.. Krattiger,. The. statutory. toolbox:. An. introduction,. in. Intellectual Property Management in Health and Agricultural Innovation: A Handbook of Best Practices.2007,.MIHR.(Oxford,.U.K.).and.PIPRA.(Davis,.CA).

. 6.. Fenton,. G.,. C.. Chi-Ham,. and. S.. Boettiger,. eds.. Freedom. to. operate:. The. law. firms.approach. and. role,. in. Intellectual Property Management in Health and Agricultural Innovation: A Handbook of Best Practices,. eds..A.. Krattiger. et. al.,. 2007,. available.online.at.www.ipHandbook.org.(accessed.January.28,.2011).

. 7.. Sandhu,.J.S..et.al.,.Oral.immunization.of.mice.with.transgenic.tomato.fruit.expressing.respiratory.syncytial.virus-F.protein.induces.a.systemic.immune.response..Transgenic Res.,.9(2),.127,.2000.

. 8.. Sheehy,.R.E.,.M..Kramer,.and.W.R..Hiatt,.Reduction.of.polygalacturonase.activity.in.tomato.fruit.by.antisense.RNA..Proc. Natl. Acad. Sci. USA,.85(23),.8805,.1988.

. 9.. Deikman,.J.,.R..Kline,.and.R.L..Fischer,.Organization.of.ripening.and.ethylene.regula-tory.regions.in.a.fruit-specific.promoter.from.tomato.(Lycopersicon esculentum)..Plant Physiol.,.100,.2013,.1992.

. 10.. Deikman,.J..and.R.L..Fischer,.Interaction.of.a.DNA.binding.factor.with.the.5′-flanking.region.of.an.ethylene-responsive.fruit.ripening.gene.from.tomato..EMBO J.,.7(11),.3315,.1988.

. 11.. Giovannoni,.J.J..et.al.,.Expression.of.a.chimeric.polygalacturonase.gene.in.transgenic.rin.(ripening.inhibitor).tomato.fruit.results.in.polyuronide.degradation.but.not.fruit.soft-ening..Plant Cell,.1(1),.53,.1989.

. 12.. Graff,.G.D..et.al.,.Accessing.intellectual.property.for.biotechnological.development.of.horticultural.crops..Calif. Agric.,.58,.122,.2003.

. 13.. Ye,.X..et.al.,.Engineering.the.provitamin.A.(beta-carotene).biosynthetic.pathway.into.(carotenoid-free).rice.endosperm..Science,.287(5451),.303,.2000.

. 14.. Kryder,.R.D.,.S.P..Kowalski,.and.A.F..Krattiger,.The.intellectual.and.technical.property.components.of.pro-vitamin.a. rice. (GoldenRice™):.A.preliminary. freedom-to-operate.review..ISAAA.Briefs,.20,.pp..1–56,.2002.

. 15.. Marshall,.E.,.Intellectual.property..DuPont.ups.ante.on.use.of.Harvard’s.OncoMouse..Science,.296(5571),.1212,.2002.

. 16.. Atkinson,.R.C..et.al.,.Intellectual.property.rights..Public.sector.collaboration.for.agricultural.IP.management..Science,.301(5630),.174,.2003.

. 17.. Boettiger,. S.. and. C.. Chi-Ham,. eds.. Defensive. publishing. and. the. public. domain,.in. Intellectual Property Management in Health and Agricultural Innovation: A  Handbook of Best Practices,. eds..A.. Krattiger. et. al.,. 2007,. available. online. at.www.ipHandbook.org.(accessed.January.28,.2011).

. 18.. Bennett,. A.B.,. Reservation. of. rights. for. humanitarian. use,. in. Intellectual Property Management in Health and Agricultural Innovation: A Handbook of Best Practices.2007,.MIHR.(Oxford,.U.K.).and.PIPRA.(Davis,.CA).

. 19.. Chi-Ham,.C.L.,.K.L..Clark,.and.A.B..Bennett,.The.intellectual.property.landscape.for.gene.suppression.technologies.in.plants..Nat. Biotechnol.,.28(1),.32,.2010.

. 20.. Delmer,.D.P..et.al.,. Intellectual.property. resources. for. international.development. in.agriculture..Plant Physiol.,.133(4),.1666,.2003.

. 21.. Boadi,. R.. and. M.. Bokanga,. eds.. The. African. agricultural. technology. foundation.approach. to. IP. management,. in. Intellectual Property Management in Health and Agricultural Innovation: A Handbook of Best Practices,.eds..A..Krattiger.et.al.,.2007,.available.online.at.www.ipHandbook.org.(accessed.January.28,.2011).

Page 246:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,
Page 247:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

233

11 Structuring University–Private Partnerships for Developing and Commercializing Transgenic Horticultural Crops

Gordon Rausser and Reid Stevens

INTRODUCTION

Horticultural. research. is. conducted. primarily. in. the. public. sector,. with. private.research.institutions.playing.a.relatively.minor.role..As.a.result,.research.gaps.emerge.between.the.basic.research.generated.by.public.institutions.and.the.applied.research.needs.of.industry..This.gap.can.be.reduced.by.forming.public–private.partnerships.(PPPs). that. allow.academic. researchers. access. to. commercialization. technologies.(such.as.gene.expression.profiles.and.genome.maps).and.give.private.firms.access.to.new.research.and.innovation.

However,. significant. obstacles. hinder. the. formation. of. successful. research.partnerships..Both.parties.in.a.partnership.face.substantial.risks..These.risks.are.rooted.in.the.conflict.between.a.university’s.academic.objectives.and.the.private.

CONTENTS

Introduction............................................................................................................. 233Operational.Framework.......................................................................................... 235

Stage.1:.Setting.the.Bargaining.Space.and.Negotiating.the.Contract................ 235Stage.2:.Decision.Making.through.Bargaining.................................................. 238Stage.3:.Is.There.a.Shock?................................................................................. 238

General.Guidelines.................................................................................................. 239PPPs.and.Public.Good.Research........................................................................ 239Two.Leading.University–Private.R&D.Partnerships......................................... 241

PPPs.in.Horticultural.Research...............................................................................244References...............................................................................................................246

Page 248:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

234 Transgenic Horticultural Crops: Challenges and Opportunities

firm’s. corporate. incentives.. One. critical. risk. is. the. potential. co-opting. of. the.academic.research.agenda.by.private.interests..University.researchers.risk.the loss.of. academic. freedom. and. integrity. while. industry. risks. the. loss. of. investment.capital,.privacy,.and.proprietary.information..Differences.between.the.university’s.educational.objectives.and.the.private.sector’s.goals,.as.well.as.differences.in.the.cultures,. institutional. incentives,.and.time.frames,.can. lead.to.a.clash.of.values..Intellectual.property. (IP). rights. issues. are. also. a. frequent. source.of. contention..Given.these.risks,.partnerships.must.be.based.on.carefully.structured.contracts.to.protect.the.interests.of.the.private.and.public.partners.

Though.there.has.been.much.discussion.of.public–private.research.partnerships.in.both. the.popular.press.and.academic.community,. there. is.no.consensus.on. the.optimal.contract.structure.for.these.partnerships..We.have.developed.a.three-stage.framework.for.evaluating.PPP.contracts..This.framework.is.unique.because.it.takes.into. account. the. type. of. economic. good. the. partnership. produces. as. well. as. the.incomplete.nature.of. contracts. that. deal.with. sponsored. research..Partnerships. in.horticultural. research. deal. with. the. management. and. provision. of. impure. public.goods.*.The.optimal.structure.of.a.PPP.depends.on.the.degree.of.impurity,.and,.if.a.PPP.produces.a.good.that.is.impure.to.some.extent,.its.contract.should.differ.from.that.of.a.PPP.that.produces.a.purely.private.good..The.contracts.that.govern.these.partnerships. and. assign. ownership.of. the. impure. goods. they.produce. are. incom-plete. in. the. sense. that. there. is. a. set. of. events. that. can. influence. the. partnership,.which.cannot.be.enumerated.in.the.contract..These.events.could.be.unanticipated.research.opportunities.that.arise.during.the.research.process.or.could.be.an.unex-pected.discovery.that.falls.outside.of.the.contract’s.scope..An.optimal.contract.will.take.into.account.the.uncertainty.inherent.in.the.research.process.and.assign.control.in.the.case.of.unanticipated.events.in.a.manner.that.does.not.pervert.the.partner’s.incentives.

Contracts.for.PPPs.in.horticultural.research.and.their.associated.control.and.prop-erty. rights. come. in.many. forms,. ranging. from. large,.multiproject,.multiyear. alli-ances.to.small-scale.projects..Our.three-stage.framework.to.analyze.these.contracts.is.based.on.the.contractual.assignment.of.control.in.the.case.of.unanticipated.events..In.Stage.1,.the.public.and.private.partners.negotiate.to.determine.the.allocation.of.the.front-end.control.rights.and.the.back-end.property.rights.†.The.front-end.control.rights. determine. the. nature. and. scope. of. the. research. activities. that. the. partner-ship.will.undertake.as.well.as.decision-making.authority.over.those.activities.while.back-end.property.rights.determine.how.any.benefits.generated.by.the.research.will.be. distributed. among. the. partners.. The. partners. also. make. relationship-specific.investments.according.to. the.contract. in.Stage.1..In.Stage.2,. the.partners.bargain.over.management.decisions.with.bargaining.power.determined.by.the.contract.rights.

*.Impure. public. goods. are. goods. that. are. either. nonrival. or. nonexcludable.. A. nonrival. good. can. be.consumed.by.one.person.without.preventing.simultaneous.consumption.by.others. (e.g.,. intellectual.property)..A.good.is.nonexcludable.if.it.is.not.possible.to.prevent.anyone.from.consuming.the.good.(e.g.,.a.lighthouse).

†. In.this.chapter,.we.will.use.control.rights.to.refer.to.the.authority.to.make.decisions.during.the.research.process.(the.“front-end”).and.property.rights.to.refer.to.ownership.of.the.research.produced.by.the.partnership.(the.“back-end”).

Page 249:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

235Structuring University–Private Partnerships for Commercialization

and.investments.made.in.Stage.1..The.outcome.of.this.bargaining.is.a.decision.that.lies.between. the.noncooperative.bargaining.solution.(where.each.partner.unilater-ally.exercises. their.control. rights).and. the.cooperative.bargaining. solution. (where.the.partners.maximize.their.joint.benefit)..In.Stage.3,.there.may.be.an.unanticipated.“shock.”.For.our.purposes,.a.shock.is.an.event.that.affects.the.partnership.over.which.there.are.no.explicit.contract.provisions..Such.a.shock.may.cause.the.players.to.revisit.their.control.and.property.rights..Depending.on.the.nature.of.the.shock,.the.partners.may.engage.in.renegotiation.that.reassigns.the.control.and.property.rights.(and.begin.again.at.Stage.1).or.they.may.conclude.the.partnership.

The.remainder.of.the.chapter.is.organized.as.follows:.in.the.“Operational.framework”.section,. we. present. the. three-stage. framework. for. evaluating. public–private. research.contracts;.in.the.“General.guidelines”.section,.general.guidelines.for.university–private.partnerships. in. research. and. development. (R&D). are. provided;. and. in. the. “Public–private.partnerships.in.horticultural.research”.section,.we.visit.the.implications.of.our.framework.for.PPPs.in.horticultural.research.and.more.specifically.for.the.development.and.commercialization.of.transgenic.horticultural.crops.

OPERATIONAL FRAMEWORK

There.is.a.considerable.body.of.literature.related.to.PPP.theory,.and.the.reader.inter-ested. in.developing.a.greater.depth.of.knowledge. in. this.area. is.directed. to. these.selected.citations.1–14

In.this.section,.we.describe.an.operational.framework.that.can.be.used.as.a.con-ceptual.lens.to.analyze.PPP.contracts.in.horticultural.research.that.includes.the.terms.and.conditions.used.to.assign.front-end.control.rights.and.back-end.property.rights..The.following.three-stage.framework.provides.a.lens.that.will.allow.us.to.evaluate.PPP.contracts.

StaGe 1: SettInG the barGaInInG Space and neGotIatInG the contract

In.Stage.1,.the.partners.negotiate.a.contract.and.make.investments..The.public.insti-tution. should. begin. this. process. with. a. self-assessment. to. identify. their. primary.objectives.in.seeking.out.private.partners,.their.strengths.and.assets,.and.the.desired.complementarities..This.assessment.is.essential.to.form.an.efficient.partnership.

Though. the. order. in. which. partnership. negotiations. proceed. is. not. of. much.consequence,.it.is.vital.for.the.public.institution.to.be.deliberately.early.in.the.pro-cess,.when.seemingly.innocuous.decisions.ex-ante.may.severely.limit.its.control.or.flexibility.at.crucial.junctures.ex-post..At.each.point.in.a.relationship,.it.is.important.for.the.public.institution.to.consider.the.long-term.consequences.of.all.relationship-related.decisions.

Consider.the.importance.of.the.public.institution’s.method.for.finding.and.select-ing.a.partner..Often.firms.seek.government.contracts.and.make.specific.offers,.leaving.public.institutions.the.passive.role.of.waiting.to.be.approached.and.evaluating.one.partnership.at.a.time..Alternatively,.the.public.institution.can.take.a.proactive.role..Given. the. results. of. the. self-assessment,. the. public. institution. can. seek. out. well-matched.partners.that.complement.their.strengths..Although.deliberately.seeking.out.

Page 250:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

236 Transgenic Horticultural Crops: Challenges and Opportunities

partners,.rather.than.waiting.to.be.approached.with.a.proposal,.requires.more.effort.up.front,.it.gives.the.public.institution.the.greatest.degree.of.control.over.the.selec-tion.of.partners,.which.implicitly.define.the.control.that.the.public.institution.will.have.over.the.remainder.of.the.structuring.process..In.addition,.by.actively.approach-ing.potential.partners.in.the.private.sector,.a.public.institution.can.form.a.consortium.with.a.group.of.specialized.partners.if.that.better.suits.the.public.institution’s.objec-tive..This.active.approach.can.substantially.broaden.the.public. institution’s.choice.set..Likewise,.a.proactive.approach.on.the.part.of.a.private.firm.can.increase.their.control.in.the.bargaining.process.

Once. a. partner. is. selected,. the. public. and. private. institutions. engage. in.nego-tiations.that.result.in.a.contract.that.allocates.to.each.of.the.partners.a.share.of.the.front-end.control.rights.and.back-end.property.rights..The.front-end.control.rights.enumerate.the.resources.committed.by.both.partners.and.give.the.partners.decision-making. power. over. the. partnership’s. R&D. processes,. and. the. back-end. property.rights. specify. the.manner. in. which. the.partnership’s. assets. will. be.distributed. at.the.conclusion.of.the.partnership..At.the.end.of.this.stage,.the.partners.invest.in.the.partnership.according.to.the.contract.

In.this.negotiation,.each.partner.works.to.minimize.its.share.of.input.while.mak-ing.sure.the.combined.resources.will.be.sufficient.for.a.successful.joint.effort..The.commitment.of.resources.in.the.front-end.is.fairly.transparent;.however,.the.implica-tions.of.choosing.particular.governing.structures.for.the.partnership.are.less.trans-parent..Given.the.diversity.of.assets,.it.is.difficult.for.potential.partners.to.balance.their.respective.asset.contributions..These.assets.can.be.tangible,.as.with.financial.assets.or.equipment,.or.intangible.“knowledge”.assets.15.Unlike.tangible.assets,.the.value.of.intangible.assets.is.not.easily.defined.as.it.relies.on.many.factors.such.as.the.nature.of.the.assets.and.the.degree.of.complementarity.

Knowledge.assets.may.be.tacit.(e.g.,.know-how).or.codifiable..Tacit.knowledge.draws.on.skills.and. techniques.and. is. transferred.by.demonstration,.apprentice-ships,. personal. instruction,. and. provision. of. expert. services.. Codifiable. knowl-edge.can.be.reduced.to.messages.and.is.easily.transferred..Knowledge.assets.can.assume.the.form.of.a.nonrivaled.or.inexhaustible.good..In.other.words,.sharing.this.information.will.not.reduce.the.amount.available.to.others..Although.nonrivaled,.these.assets.are.not.necessarily.public.goods.since.it.may.be.possible.to.exclude.access.by.others..This. is.certainly.true.of.patents,.copyrights,.and.trade.secrets..To.be.sure,.exclusive.control.over.a.specified.set.of.knowledge.assets.creates.rents.for. its. holders.. A. further,. important. distinction. is. between. generic. and. special-ized.assets.16,17.Generic.assets.are.useful.for.most.research,.such.as.basic.scientific.knowledge.concerning.biotechnology.research..In.contrast,.specialized.assets.are.suited.to.a.narrow.set.of.specific.applications.that.can.be.more.easily.commercial-ized..In.the.area.of.plant.R&D,.these.assets.can.be.further.characterized.as.input-.(e.g.,.herbicide-resistant.transgenic.seed).or.output-trait.assets.(e.g.,.high-nutrient.content.seeds).

Identifying.these.aspects.of.the.partner’s.assets.is.important.to.create.complemen-tarities.among.the.different.assets.held.by.the.public.and.private.partners,.and.when.negotiating.over.the.contributions.each.partner.will.make.to.the.relationship..Private.institutions.are.likely.to.have.more.access.to.funding,.state-of-the-art.scientific.tools,.

Page 251:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

237Structuring University–Private Partnerships for Commercialization

experience. in. commercialization,. and. marketing. expertise.. Public. institutions,. in.return,.offer.preferential.access.to.academic.resources.and.assistance.in.navigating.bureaucracies..The.objective.of.the.contract.is.to.combine.each.partner’s.assets.in.the.most.productive.combinations.

The.governance.structure.of.the.partnership.must.be.determined.in.the.first.stage..Fundamentally,. it. defines. each. partner’s. front-end. control. rights. and. back-end.property. rights..This. assignment.of. control.will. determine.how. the.partners.will.interact,.make.decisions,.resolve.conflicts,.and.terminate.the.agreement.if.necessary..The.most.important.consequence.of.the.governance.structure.is.that.it.determines.how.the.project.will.be.evaluated,.and.the.governance.structure.specifies.how.the.agreement.will.be.administered.and. if. the.scope.will.be.changed.(i.e.,. the.agree-ment.extended.or. terminated)..At. the.conclusion.of. the.partnership,. the.back-end.options.in.the.agreement.determine.how.benefits.are.disseminated.and.the.process.for.establishing.ownership..Each.of.these.issues.is.crucial.in.determining.how.both.the.pecuniary.and.nonpecuniary.benefits.of.the.project.are.shared.by.the.partners.and.by.the.public.

In. the. case. of. partnerships. that. involve. research,. licensing. options. are. impor-tant.when. the.PPP.generates. a.new,.marketable.product..Currently,. it. is. common.for. the. industry. partner. to. be. given. a. first-to-negotiate. licensing. option. for. some.subset.of.the.innovations.generated.under.the.partnership..Generally,.these.options.must.be.exercised.within.a.specified.time.period,.or.else.the.option.is.extended.to.third.parties.. In. response. to.public.outcry.over.poorly. structured. agreements. and.concern.about.blocking.patents,.right-of-first-refusal.options.evolved. into.right-to-negotiate.options..If.the.industry.partner.is.granted.the.more.limited.option.of.right-to-negotiate,.a.public.institution.should.have.greater.control.over.licensing.rights.and.can.prevent.blocking.patents.from.being.awarded.

Other.aspects.of.licensing.agreements.receive.less.attention.but.are.also.critical..One. such. aspect. is. the. percentage. of. the. total. innovation. for. which. the. indus-try.partner.holds.an.option.to.negotiate.an.exclusive.license.or.access.option..For.example,. in. some. partnerships,. the. private. partner. can. exercise. this. option. for.an.“allowable.percentage”.of.patents,.equal.to.the.percentage.of.the.funding.that.came. from. private. partner.. Under. other. agreements,. the. industry. partner. holds.this.option.for.all.patented.discoveries.generated.by. the.agreement..Third-party.options.are.also.a.critical.aspect.of.licenses.options..These.options.are.the.rights.that.parties.outside.the.agreement.have.to.innovation.generated.by.the.agreement..In.some.agreements,.third.parties.hold.open.options.on.patents.not.included.in.the.allowable.percentage.and.on.patented.innovations.either.covered.by.nonexclusive.license,.or.for.which.the.first-to-negotiate.option.has.expired.for.private.partner..In. this.case,. the.private.partner.has.no. recourse.once. their. licensing.option.has.expired,.and. the.public.partner. is. free. to.enter. licensing.negotiations.with. third.parties..In.contrast,.other.agreements.give.third.parties.only.a.conditional.option..The.private.partner.has.right-of-first.refusal.on.any.licensing.arrangement.between.the.public.institution.and.third.parties,.even.if.their.original.licensing.option.has.expired..Thus,.private.partner.is.guaranteed.an.option.of.first.refusal.on.any.third.party.offers.made.to.the.public.partner..This.severely.limits.the.options.available.to.third.parties.

Page 252:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

238 Transgenic Horticultural Crops: Challenges and Opportunities

StaGe 2: decISIon makInG throuGh barGaInInG

In.Stage.2,.the.partners.jointly.manage.the.partnership.by.making.decisions.based.on.a.two-person,.two-phase.bargaining.game.*.In.the.first.phase,.the.public.partner.and.the.private.partner.decide.what.threats.to.invoke.if.no.agreement.is.reached,.where.the.threat.strategies.are.chosen.to.maximize.their.pay-off.while.minimizing.effort.and.are.based.on.the.control.rights.and.property.rights.assigned.in.Stage.1..These.threat. strategies. determine. the. disagreement. point. and. are. taken. as. given. in. the.second.phase..These.strategies.need.not.actually.be.carried.out.and.may.not.even.be.explicit..All.that.is.required.is.the.potential.of.threat..In.this.stage,.the.partners.will.achieve.an.efficient.outcome,.in.which.the.partner.with.control.rights.implements.a.decision,.and.a.pay-off.is.exchanged.between.the.partners..The.partner.holding.the.control.rights.is.aware.of.the.noncontrolling.partner’s.reaction.function.and.unilat-erally.selects.an.action.that.maximizes.the.controlling.partner’s.objective.function.given. the.noncontrolling.partner’s. reaction.pattern.13.The.reaction.function.allows.the.noncontrolling.partner.to.influence.controlling.partner’s.decision.

Beyond. their. choice. of. threat. strategy,. each. partner. exercises. control. over. the.resources.dedicated.to.the.relationship.through.its.choices.in.Stage.1..For.example,.if.a.public.institution.is.approached.by.a.single.firm.and.considers.only.their.offer,.it.has.a.very.limited.choice.set.and.is.likely.to.have.little.leverage.over.that.firm’s.resources..In.contrast,.if.a.public.institution.considers.multiple.offers.from.partners.with.varied.assets,.its.choice.set.is.broader.

StaGe 3: IS there a Shock?

In.the.final.stage.of.the.agreement.(Stage.3),.the.partners.deal.with.unanticipated.shocks..When.there.is.a.shock,.the.partners.have.two.options:.(1).they.can.conclude.the.partnership.and.exercise.their.back-end.property.rights.over.the.partnership’s.property,.or.(2).they.can.renegotiate.the.control.rights.and.property.rights.assigned.and.begin.again.at.Stage.1..If.the.partners.choose.to.renegotiate,.the.allocation.of.bargaining.power.in.renegotiation.may.be.different.from.the.allocation.in.the.pre-vious.stages..By.this.stage,.a.partner.might.find.themselves.in.a.more.vulnerable.position.due.to.the.nature.of.the.shock.or.relationship-specific.investments..This.potential.for.changes.in.relative.bargaining.power.could.lead.to.a.reassignment.of.control.rights.

After.Stage.3,. the.partners.assess. the.outcome.of. their.partnership.and.con-sider. whether. to. renew. the. agreement.. Although. many. public. institutions. have.developed.policies.to.evaluate.partnerships,.there.is.no.generally.accepted.method.for. formal. review.of.partnerships.with.private. institutions..These.methods. rely.mainly.on.anecdotal.feedback.from.involved.personnel.to.measure.the.merits.of.specified.projects.and.to.monitor.unintended.consequences..The.informal.reviews.and.vague.impressions.of.both.partners.are.coupled.with.more.tangible.outcomes,.such.as.the.project’s.revenue,.in.assessing.whether.a.partnership.was.successful.or.not.

*.See.Rausser.et.al.18.for.an.extension.of.this.analysis.to.a.multi-person.bargaining.game.

Page 253:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

239Structuring University–Private Partnerships for Commercialization

A.key.policy. issue.is.developing.concrete.measures.of.PPP.productivity..Much.of.the.literature.on.PPPs.focuses.on.developing.proper.incentives.for.behavior.cov-ered.within.the.scope.of.an.individual.agreement,.but.little.consideration.is.given.to.incentives.that.fall.outside.a.specific.agreement..Because.many.of.these.agreements.are.up.for.renewal.once.completed,.there.are.incentives.for.the.public.institution.to.make.sure.that. the.private.partner. is.satisfied.with.the.outcome.of. the.agreement,.and,.under.increasing.financial.pressure,.this.may.affect.behavior.within.a.current.agreement.. In.other.words,. these.agreements. are.not.necessarily.one-shot.games,.but.might.be.a.single.round.of.a.repeated.game..As.such,. there.are.incentives.for.the.public.institution.to.develop.a.certain.reputation.so.that.the.private.partner.will.support. a. renewed. relationship..This. speaks. to.one.of. the.primary. concerns.with.these. agreements. that. public. institutions. will. fail. to. look. for. funding. from. other.sources,.will.become.dependent.on.renewing.these.agreements,.and.will.therefore.lose.their.ability.to.walk.away.from.negotiations,.and,.as.a.result,.will.sacrifice.much.of.their.bargaining.power..If.recognized,.these.issues.may.be.addressed.by.choosing.a.partner.with.which.there.is.strong.incentive.alignment.as.well.as.safeguards.in.the.agreement.

GENERAL GUIDELINES

In.this.section,.we.will.apply.our.operational.framework.to.structure.general.guide-lines.and.evaluate.the.control.rights.for.two.leading.university–private.partnerships.in.R&D..These.case.studies.provide.insights.into.structuring.horticulture.university–private.partnerships.

pppS and publIc Good reSearch

As.public. funding.of. scientific. research.has.declined,.and.knowledge. inputs.have.played.an.increasingly.important.role.in.industrial.processes,.universities.and.other.public.research.institutions.have.looked.to.private.sources.to.increase.their.research.budgets..Many.lessons.have.been.learned.as.public.criticism.and.scrutiny.of.these.research.partnerships.have.evolved.19.Issues.such.as.conflict.of.academic.and.indus-try. interests,.ownership.of,.and.access. to,. IP.(e.g.,. issues.of.hold-up.and.blocking.patents),. and. publication. delays. have. fueled. the. current. debate. and. often. present.insurmountable.obstacles.to.forming.research.partnerships.

A. host. of. external. forces. have. shaped. the. current. environment. in. which. pub-lic.researchers.are.seeking.to.actively.engage.with.private.firms..Among.these.are.diminishing. federal. and. state. funds. for.public.good. research. and. increased. state.funding. incentives. for. private–public. research.. In. addition,. legislation. (e.g.,. the.Bayh–Dole.Act),.the.restructuring.of.many.large.life.sciences.firms,.and.an.align-ment. of. private. and. public. research. incentives. have. contributed. to. this. trend.20.Moreover,. the. traditional. research.paradigm,.which.presumes. that. there. is.a.one-way. flow. from. basic. science. conducted. in. public. institutions. to. applied. research.and. commercialization. undertaken. by.private. industry,. has. begun. to.be. replaced.by.a.chaotic.R&D.feedback.loop.paradigm.13,20.Increasingly,.public.universities.and.

Page 254:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

240 Transgenic Horticultural Crops: Challenges and Opportunities

private. companies. are. engaging. in. joint. research,. establishing. relationships. with.exchange.and.collaboration.in.all.stages.of.research.

The.potential.benefits.from.university–industry.partnerships.are.clear..Comple-mentarities.between.scientific.and.practical.knowledge.have.the.capacity.to.generate.rapid. and. far-reaching. innovation.. Under. the. best. of. circumstances,. each. partner.is.seeking.attributes.and.assets.in.prospective.partners.that.complement.their.own.abilities.and.resources..Industry.is.interested.in.combining.its.knowledge.of.markets.with.information.on.new.research.and.innovation.in.order.to.identify.those.devel-opments. that. are. likely. to. lead. to. commercial. applications.. This. motivation. may.be.obvious,.but. industry. is.also. interested. in.more.subtle.assets.such.as.access. to.academic.expertise,.networks,.and.first-hand.information.about.up-and-coming.sci-entists.(current.graduate.students)..And.while.universities.are.very.clearly.interested.in.financial.capital,.they.are.also.seeking.intellectual.capital,.cutting-edge.research.technologies,21. proprietary. research. tools. (e.g.,. databases),. and. in. many. instances.enabling.IP.22.Access.to.these.research.assets.enhances.a.university’s.ability.to.pro-vide.first-rate.education.to.its.graduate.students.

Although.the.potential.benefits.of.research.partnerships.are.reasonably.transpar-ent,.the.potential.risks.to.both.parties.are.opaque..These.risks.pose.serious.obstacles.to. the.successful.formation.of.public–private.research.partnerships..In.addition.to.the.uncertainty.inherent.in.any.research.process,.the.differences.between.university.educational.objectives.and.corporate.goals.are.an.important.source.of.risk.in.these.relationships..Recent.data.show.that.almost.70%.of.research.in.universities.has.been.categorized.by. the.National.Science.Foundation. as.basic,.while. the. proportion. is.reversed. in. industry.. In. 2000,. while. universities. accounted. for. only. 14%. of. total.R&D. funding. in. the. United. States,. they. performed. about. 50%. of. the. total. basic.research.23. With. private. financing. comes. the. concern. that. the. traditional. orienta-tion.of. the.academic. research.agenda. toward.basic,.public.goods.research.will.be.directed.toward.more.applied,.appropriable.research.that.serves.the.objectives.of.the.private.partner,.and.that.this,.in.turn,.will.result.in.a.loss.of.academic.integrity..Not.only.research.direction.but.research.results.from.sponsored.studies.might.be.biased.toward.sponsors’. interests..Bekelman.et.al.,. for. instance,. show. that. in.biomedical.research.there.is.a.statistically.significant.association.between.industry.sponsorship.and.proindustry.conclusions.24

Industrial. sponsors. may. also. impose. constraints. on. communication. between.grantees. and. other. colleagues,. which,. in. turn,. may. hinder. research. progress. and.increase. research. costs.23. Planning. horizons. tend. to.differ;. university. researchers.focus.on.long-term.research.while.companies.often.seek.quick.turn-around.projects..In.addition,.the.cultures.and.values.of.research.partners.may.simply.clash,.creating.insurmountable.blocks.to.a.continuing.relationship..Furthermore,.the.incentives.to.secure.a.renewal.or.extension.of.an.existing.contractual.agreement.may.adversely.influence.university.scientist.behavior.under.a.current.collaboration.

Rights.to.IP.are.especially.contentious..Hold-up.and.background.rights.are.of.pri-mary.concern.to.an.industry.partner.interested.in.commercializing.the.products.of.a.research.partnership..Researchers.at.universities.and.other.public.institutions.often.use. proprietary. or. enabling. IP. research. tools. in. their. research. without. obtaining.rights..They.are.sometimes.blocked,.however,.for.any.research.discoveries.that.have.

Page 255:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

241Structuring University–Private Partnerships for Commercialization

commercial.value..Generally,.one.researcher. in.a.university.institution.may.freely.access.another.researcher’s.patented.research.tool.for.academic.study..This.oppor-tunity.does.not.typically.extend.to.private.researchers.unless.a.formal.agreement.is.forged..Thus,.a.private.company.looking.to.partner.with.a.particular.researcher,.for.example,.may.experience.hold-up.at.the.commercialization.stage.because.the.public.research.partner.did.not.obtain.formal.rights.to.all.research.inputs.(i.e.,.background.rights). from. some. other. private. company.. Note. also. that. if. numerous. university.researchers.and.graduate.students.are.involved.in.a.research.project,.industry.risks.loss.of.privacy,.and.protection.for.proprietary.information.

The.interests.of.parties.outside.a.research.agreement.(i.e.,.third.parties).are.also.at.risk.under.public–private.research.agreements..If.an.agreement.is.not.effectively.structured.with.regard.to.patenting.and.licensing.rights,.a.third-party.interest.in.hav-ing.access.to.research.products.and.innovations.may.not.be.adequately.represented..In.fact,.blocking.patents.can.and.do.arise.22

In.summary,.the.cooperation.between.universities.and.industry.opens.a.series.of.questions..Does.the.profit-driven.sponsor.shift. the.university’s.mission.away.from.basic.research?.Does.industry’s.desire.to.exploit.IP.rights.interfere.with.communica-tion.within.and.between.universities.to.an.extent.harmful.to.open.science?23.These.conflicts. are. an. inevitable. consequence. of. a. fundamental. clash. between. a. public.system.that.encourages.openness.in.science.and.an.industrial.system.that.gives.finan-cial.rewards.based.on.secrecy..In.the.end,.this.all.boils.down.to.one.question:.can.a.university–industry.partnership.be. socially.beneficial. or,.more.precisely,. Pareto.improving?*

Scotchmer23.argues.that.a.public–private.venture.is.justifiable.for.big.science.proj-ects..For.certain.large.projects,.the.public.sector.may.face.the.problem.of.choosing.the.right.investments.(those.with.high.probability.of.success).and.making.sure.the.funds.are.used.as.intended;.the.private.sector,.on.the.other.hand,.has.the.expertise.needed.to.screen.likely.successful.projects.but.sometimes.cannot.reap.unappropri-able.social.benefits,.thus.is.unable.to.recover.the.cost.of.research..In.this.situation,.a.PPP.can.help.solve.the.duality.problem..If.the.partners.do.not.have.access.to.the.same.information,.however,.industry.may.manipulate.the.public.sector.into.subsidiz-ing.its’.privately.profitable.projects.

two leadInG unIverSIty–prIvate r&d partnerShIpS

The.University.of.California. formed.a.partnership.with. the.Novartis.Agricultural.Discovery.Institute,.Inc..(NADI).in.1998.that.allowed.Berkeley.to.retain.control.of.an.open.research.agenda..Initially,.an.open.call.is.put.out.to.participating.faculty.for.research.proposals.with.neither.the.University.nor.NADI.defining.the.type.of.project.proposals.that.would.be.considered..Further,.the.committee.that.allocates.funding.to.each.project.(all.proposed.projects.receive.some.amount.of.funding).is.made.up.of.three.Berkeley.University.faculty.members.and.two.members.representing.NADI..In.addition,.the.criteria.used.for.ranking.project.include.the.quality.and.intellectual.

*.A.partnership.is.Pareto.improving.if.at.least.one.partner.is.made.better.off.by.joining.and.no.partner.is.made.worse.off.by.joining.

Page 256:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

242 Transgenic Horticultural Crops: Challenges and Opportunities

merit.of.the.proposed.research,.potential.advancement.of.discovery,.and.the.past.and.present.productivity.of. the.research..As.a. result,. the.direct.value.of.any.potential.projects.to.NADI.is.not.considered.

An. alternative. structure. governs. a. biological. research. agreement. between.Washington.University.(WU).in.St..Louis.and.the.agricultural.biotechnology.com-pany,.Monsanto..An.advisory.committee.solicits.proposals.that.conform.to.research.areas.specified.by.the.committee..In.this.case,.the.committee.is.equally.split.with.three.university.members.and.three.representatives.from.Monsanto..Therefore,.the.interests.of.Monsanto.have.more.weight,.both.in.defining.the.choice.set.of.research.proposals.that.will.be.considered.by.the.committee.and.in.selecting.which.of.those.proposals.are.funded..Moreover,. the.agreement.specifically.directs. the.committee.to.identify.and.fund.projects.that.not.only.have.exceptional.academic.merit.but.also.serve.the.research.interests.of.Monsanto.

Depending.on.the.mission.of.the.university.and.its.role.in.the.community,.both.of.these.alternative.governance.structures.have.merits..Because.the.research.interests.of. the.private.partner. carry.more.weight,. the.WU/Monsanto.agreement.may.be.more.likely.to.generate.innovations.that.result.in.commercial.applications,.meeting.the.objective.of.serving.the.community.with.successful.technology.transfers..On.the.other.hand,.the.Berkeley/NADI.agreement.more.adequately.protects.the.academic.freedom. of. participating. faculty.. What. is. important. is. that. the. public. institutions.make.conscious.decisions.about.where.they.are.comfortable.on.this.spectrum.of.con-trol.over.the.research.agenda.and.that.they.are.fully.aware.of.the.implicit.trade-offs.contained.in.the.related.contract.language.

The.primary.interest.of.universities.is.to.share.their.research.results.with.colleagues.as.rapidly.as.possible,.through.publications.and.presentations.at.conferences,.with.the.hope.that.scientific.knowledge.and.research.will.be.advanced..This.academic.mission.conflicts.with.the.interest.of.the.private.partner.to.appropriate.innovation.and.techno-logical.advancements,.thus.requiring,.for.a.certain.amount.of.time,.that.research.results.are.kept. from.competing. interests.until. the.private.partner.establishes. rights. to. the.innovation..As.such,.the.publication.delay.provisions.of.research.agreements.usually.come.under.considerable.scrutiny..In.fact,.guidelines.issued.by.the.National.Institutes.of.Health.recommend.a.delay.of.30–60.days.25

A.more.relevant.question.concerns.control.of.the.option.for.terminating.the.delay.period.rather.than.the.specified.maximum.length.of.this.period..For.example,.under.the.Berkeley/NADI.agreement,.NADI.has.an.initial.30.day.delay.during.which.they.must.decide.whether.an.innovation.has.the.potential.to.be.patented..If.they.decide.that.the.parties.should.proceed.with.a.patent.application,.publications.can.be.delayed.only.up.until.the.time.the.patent.application.is.filed.or.90.days—whichever.is.shorter..And.Berkeley.has.right.to.file.the.patent.application.at.any.time..The.filing.process.can.be.expedited,.with.an.initial.application.filed.in.a.day.or.so..Therefore,.under.this.agreement,.although.the.maximum.publication.delay.is.120.days,.Berkeley.has.complete.control.to.end.the.delay.(past.the.initial.30.day.period).

In.contrast,.in.the.WU/Monsanto.agreement,.important.issues.concerning.patent-ing.of.innovations.that.are.generated.from.the.partnership.include.who.is.responsible.for.filing.for.the.patents,.the.right.not.to.file.for.a.patent,.control.of.patent.litigation,.the.right.to.“know-how”.transfer,.and.ownership.of.the.core.technology..Who.holds.

Page 257:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

243Structuring University–Private Partnerships for Commercialization

the.option. to.file.a.patent.application. is. important.not.only.because.of.control.over. the. publication. delay. period. but. also. because. the. content. of. the. application.defines.who.is.responsible.for.generating.the.innovation.as.well.as.the.nature.of.the.innovation..Both.of.these.parameters.can.be.defined.broadly.or.more.conservatively;.this.will.have.significant.implications.for.who.controls.the.licensing.rights.and.how.strong.these.rights.turn.out.to.be..In.some.instances,.the.university.partner.is.respon-sible.for.filing.the.patent.applications,.but. the.degree.to.which.the.private.partner.provides.guidance.and.is.involved.in.patent.litigation.is.varied.

A. more. subtle. issue. is. whether. a. university. is. obligated. to. file. for. a. patent. if.requested. to. do. so. by. the. industry. partner,. or. whether. it. has. some. discretion..A university.partner.may.wish.to.avoid.expending.the.effort.required.to.patent.inno-vations.if.it.does.not.foresee.that.it.will.be.applied.commercially..For.example,.under.the.Berkeley/NADI.agreement,.Berkeley.can.elect.not.to.file.for.a.patent.that.NADI.does.not.intend.to.commercialize..In.other.words,.Berkeley.can.make.sure.that.inno-vation,. or. know-how,. that. would. not. otherwise. be. commercialized. remain. freely.available.to.the.public.and.that.limited.administrative.resources.are.not.diverted.to.pursue.meaningless.patents.

Of.vital.importance.for.industry–university.research.agreements.is.the.nature.of.the.licensing.options..Currently,.it.is.common.for.the.industry.partner.to.be.given.a.first-to-negotiate.licensing.option.for.some.subset.of.the.innovations.generated.under.the.research.agreement..Generally,.these.options.must.be.exercised.within.a.specified.time.period,.or.else.the.option.is.extended.to.third.parties..In.response.to.public.out-cry.concerning.previous,.poorly.structured.agreements,.such.as.the.Sandoz/Scripps.agreement,*. and. concern. about. blocking. patents,. right-of-first-refusal. options.evolved.into.right-to-negotiate.options..In.theory,.if.the.industry.partner.is.granted.the.more.limited.option.of.right-to-negotiate,.a.university.has.greater.control.over.licensing.rights.and.can.prevent.blocking.patents.from.being.awarded..Other.aspects.of.licensing.agreements.receive.less.attention.but.are.also.critical..One.such.aspect.is.the.percentage.of.the.total.innovation.for.which.the.industry.partner.holds.an.option.to.negotiate.an.exclusive.license.or.access.option..For.example,.under.the.Berkeley/NADI.agreement,.NADI.can.exercise.this.option.for.an.“allowable.percentage”.of.patents,.equal.to.the.percentage.of.the.research.funding.that.came.from.NADI;.there-fore,.NADI.has.limited.access.options..Under.other.agreements,.the.industry.partner.holds.this.option.for.all.patented.discoveries.generated.by.the.agreement.

Third-party.options.are.also.a.critical.aspect.of.licenses.options..These.options.are.the.rights.that.parties.outside.the.agreement.have.to.innovation.generated.by.the.agree-ment..Under.the.Berkeley/NADI.agreement,.third.parties.hold.open.options.on.patents.not.included.in.the.allowable.percentage,.and.on.patented.innovations.either.covered.by.nonexclusive.license.or.for.which.the.first-to-negotiate.option.has.expired.for.NADI..NADI.has.no.recourse.once.their.licensing.option.has.expired,.and.Berkeley.is.free.to.

*.In.1993,. the.publicly.funded.Scripps.Research.Institute.agreed.to.form.a.research.partnership.with.Sandoz.Pharmaceuticals..Sandoz.agreed.to.provide.$300.million.in.funding.for.research.over.10.years.in.return.for.a.worldwide.license.for.all.of.discoveries.made.by.researchers.at.Scripps..This.controver-sial.agreement,.which.would.have.given.Sandoz.licensing.rights.to.nearly.$1.billion.of.research.funded.by.the.federal.government,.was.restructured.after.the.government.threatened.to.cut.off.funding.for.the.institute.

Page 258:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

244 Transgenic Horticultural Crops: Challenges and Opportunities

enter.licensing.negotiations.with.third.parties..In.contrast,.under.the.WU/Monsanto.agreement,.third.parties.hold.only.a.conditional.option..Monsanto.has.right-of-first-refusal.on.any.licensing.arrangement.between.the.university.and.third.parties,.even.if.Monsanto’s.original.licensing.option.has.expired..Thus,.Monsanto.is.guaranteed.an.option.of.first.refusal.on.any.third.party.offers.made.to.WU..This.severely.limits.the.options.available.to.third.parties.and.ill.serves.the.interests.of.the.university.

PPPs IN HORTICULTURAL RESEARCH

The.horticultural.research.industry.is.composed.primarily.of.small-.to.medium-sized.enterprises.with.small.markets.for.individual.products.26.Even.though.these.firms.are.relatively.small,.they.have.demonstrated.a.capacity.to.apply.new.discoveries.for.pos-sible.commercialization..However,.when.it.comes.to.genetically.engineered.crops,.these. small.firms.generally.do.not.have. the.assets. to.develop.new.products..As.a.result,.research.funds.in.horticulture.are.sourced.primarily.from.the.public.sector.26,27

The.reluctance.of.major.biotechnology.R&D.companies.to.dedicate.funds.to.hor-ticultural. research. is,. in. part,. because. technological. advances. in. horticulture. are.not.viewed.as.“low-hanging.fruit.”.The.commercial.value.is.not.nearly.as.attractive.as.that.of.annual.agronomic.crops.grown.on.large.acreages..In.addition,.consumer.acceptance.of.genetically.modified.foods.is.considered.a.major.obstacle.to.the.adop-tion.and.commercialization.of.agricultural.biotechnology..These.constraints.on.the.application. of. modern. biology. to. the. market. for. horticultural. crops. are. the. most.important. impediment. to. the. formation. of. public–private. research. partnerships..Hence,.public.institutions.might.be.best.served.by.forming.partnerships.with.private.associations.or.consortia.(i.e.,.Western.Fruit.Growers’.Association).rather.than.single.firms..Such.partnerships.are.more.likely.to.“crowd-in”. in.contrast. to.“crowd-out”.public.good.research.at.land-grant.universities.13

Groups.of.horticultural.firms.have.expressed.interest.in.funding.research.for.crop.and.seed.improvement.in.response.to.the.recent.global.food.shortages.27.These.firms,.attracted.by.the.research.expertise.of.university.faculty,.have.begun.working.with.universities.to.develop.effective.new.technologies..Some.firms.have.indicated.that.partnerships.with.universities.have.the.added.advantage.of.improving.the.image.of.genetically.modified.crops.by.allowing.for.increased.public.exposure.to.the.benefits.of. their.work..Though.many.firms.have.expressed. interest.and.some.partnerships.have.been.formed,.there.is.potential.for.many.more.research.partnerships.

Public.research.institutions.have.much.to.gain.by.forming.partnerships.with.con-sortia.composed.of.small.private.firms,.nurseries,.or.grower’s.associations..Currently,.these.groups. sponsor. relatively. little.horticultural. research. in. the.United.States.28.A. model. similar. to. Australia’s. check-off. funding. organizations*. could. be. used.to. increase. private. sector. sponsorship. of. public. agricultural. research. institutions..One.check-off.organization,.Horticulture.Australia.Limited.(HAL),.invests.over.$80 million.annually.in.more.than.1200.research.partnerships..All.HAL.members.are.required.to.donate.a.percentage,.determined.by.an.external.council,.of.their.revenue.

*.A.check-off.program.levies.a.small.tax.on.the.producers.of.a.horticultural.product.and.uses.these.funds.to.sponsor.research.at.public.institutions.

Page 259:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

245Structuring University–Private Partnerships for Commercialization

to.HAL,.which.is.distributed.to.a.broad.range.of.research.programs.in.response.to.the.horticulture.industry’s.current.needs..The.establishment.of.similar.organizations.in. the. U.S.. horticulture. industry. (see. Figure. 11.1),. with. mandatory. contributions,.would.dramatically.increase.funding.for.public.good.research.

Domestic.and.international.public–private.research.partnerships.in.horticulture.are.considered.especially.important.for.developing.economies.29.Dixon26.notes.that.successful.entrepreneurs.in.horticulture.maintain.a.continuous.dialogue.with.scientists;.partnerships. are. one. approach. for. guaranteeing. this. dialogue.. Dixon. also. notes.that.linkages.between.research.and.industry.(public.and.private.relationships).have.improved.“where.levy.funding.systems.have.been.established.to.support.scientific.endeavors.”.In.other.words,.more.formal.financial.arrangements.between.partners.are.likely.to.yield.a.superior.exchange.

The.most.relevant.partnership.model.for.the.horticulture.industry.is.that.of.less.formal,. single,. or. multiple-project. partnerships. (sponsored. project. and. informal.arrangements)..Private.horticulture.institutions.should.seek.to.align.research.incen-tives.and.form.consortia.of.small.and.medium.firms.with.parallel.research.interests.to.concentrate.intellectual.and.financial.resources..These.consortia.are.organized.by.crop.or.pest.type.(or.other.research.interests).to.facilitate.networking,.identify.key.researchers.at.public.institutions,.and.propose.specific.research.projects..A.propor-tional-contribution.burden.sharing.scheme.between.consortia.members.is.likely.to.be. the.most. effective. self-governing.approach.given. the.public.nature.of. research.leads.and.outcomes.

The. university. should. accept. or. reject. these. proposals. based. on. the. research.synergy. and. embedded. options.. Although. all. universities. share. a. common. set. of.core.principles.that.guide.their.decisions,.different.institutions.emphasize.different.

Firms Universities

Commerical discoveries

Nurseries

Grower adoption

Packaging and processing

Consumers

Wholesale

Public institutions

Food serviceRetail

FIGURE 11.1 Sources.of.discovery.and.commercialization.

Page 260:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

246 Transgenic Horticultural Crops: Challenges and Opportunities

objectives;.the.private.partner.should.consider.the.university’s.research.culture.when.considering.research.partners..Given.the.nature.of.research.objectives.at.universi-ties,.the.horticulture.industry.partner.should.propose.research.projects.that.are.more.basic,.have.longer.time.frames,.and.are.not.adequately.addressed.by.current.private.research.efforts..These.partnerships.are.more. likely. to.be. successfully.negotiated.if. the. industry. partner. understands,. ex. ante,. the. need. for. academic. freedom.. On.the.back-end,.university.guidelines.and.policy.usually.constrain. its. researchers. to.specific. conditions. for. patenting. research. and. licensing. and. disseminating. results.(publication.delays)..Although. there. is. some.variation,. these.constraints.are. fairly.common.among.research.universities.

Both. partners. should. establish. links,. so. that. industry. can. effectively. utilize.public.research,.and.universities.can.secure.access.to.research.funding.and.com-plimentary. enabling. technologies.. These. collaborations. can. serve. as. stepping.stones.to.more.formal,.long-term.agreements..Alternatively,.once.initial.consortia-university.research.partnerships.are.established,.more.enterprising.members.of.the.consortia.can.capitalize.on.the.research.contacts.and.pursue.firm-specific,.applied-research. partnerships.. The. primary. obstacle. to. forming. these. research. partner-ships.is.high.transaction.costs..The.process.of.identifying.appropriate.researchers.as.potential.partners.can.involve.significant.search.costs..And.once.the.potential.partners.have.been.selected,.the.time.and.effort.involved.in.negotiating.a.research.agreement,.especially.given.the.differing.objectives.of.public.versus.private.insti-tutions,.can.be.substantial..The.consortium.approach.is.a.strategy.for.sharing.these.costs..If.the.consortia.are.not.well.structured,.however,.reduced.external.transac-tion.costs.may.face.higher.internal.costs.of.organizing.and.maintaining.the.con-sortia..Inequitable.benefits.sharing.within.a.consortium.may.also.be.a.source.of.conflict..And.although.this.approach.is.intended.to.serve.the.needs.of.medium-to-smaller-sized.firms,. the.smallest.enterprises.may.still.be.excluded.(especially.in.subsequent.partnerships).

Dramatic.improvement.in.the.development.and.commercialization.of.transgenic.horticultural.crops.can.come. from. increased. involvement. from. the.private. sector..Though.the.potential.benefits.from.university–industry.partnerships.in.the.field.of.agricultural. biotechnology. are. obvious,. the. private. sector. will. not. increase. their.investment.in.horticultural.R&D.without.active.solicitation.by.the.public.sector..As.soon.as.the.public.sector.is.able.to.form.horticultural.PPPs,.whether.they.are.com-posed.of.a.single.firm.or.a.consortia,.formal.or.informal,.or.in.developing.or.industri-alized.nations,.and.demonstrate.their.value.to.the.private.sector,.there.will.be.fewer.obstacles. to.forming.PPPs. in.the.future,.and. those.partnerships.are.likely. to.have.more.favorable.terms.for.the.public.sector.

REFERENCES

. 1.. Aghion,.P..and.Bolton,.P..An. incomplete.contracts.approach. to.financial.contracting,.Rev. Econ. Stud.,.59,.473,.1992.

. 2.. Bennett,.C..and.Iossa,.E..Delegation.of.contracting. in. the.private.provision.of.public.services,.Rev. Ind. Organ.,.29,.75,.2006.

. 3.. Besley,.T..and.Ghatak,.M..Government.versus.private.ownership.of.public.goods,.Q. J. Econ.,.116,.1343,.2001.

Page 261:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

247Structuring University–Private Partnerships for Commercialization

. 4.. Engel,.E.,.Fischer,.R.,.and.Galetovic,.A..The.basic.public.finance.of.public–private.partnerships,.Working.Paper,.13284,.NBER,.2007.

. 5.. Francesconi,. M.. and. Muthoo,. A.. Control. rights. in. public–private. partnerships,.Discussion.Paper,.2143,.IZA,.2006.

. 6.. Grossman,.S..and.Hart,.O..The.costs.and.benefits.of.ownership:.A.theory.of.vertical.and.lateral.integration,.J. Polit. Econ.,.94,.691,.1986.

. 7.. Hart,.O..Firms, Contracts, and Financial Structure,.Oxford,.U.K.:.Oxford.University.Press,.1995.

. 8.. Hart,.O.. Incomplete.contracts. and.public.ownership:.Remarks,. and.an.application. to.public–private.partnerships,.Econ. J.,.113,.C69,.2003.

. 9.. Hart,.O..and.Moore,.J..Incomplete.contracts.and.renegotiation,.Econometrica,.56,.755,.1988.

. 10.. Hart,. O. and. Moore,. J.. Property. rights. and. the.nature. of. the. firm,. J. Polit. Econ.,.98, 1119,.1990.

. 11.. Hart,.O.,.Shleifer,.A.,.and.Vishny,.R..The.proper.scope.of.government:.Theory.and.an.application.to.prisons,.Q. J. Econ.,.112,.1126,.1997.

. 12.. Martimort,.D.. and. Pouyet,. J.. “Build. it. or. not”:. Normative. and.positive. theories. of.public–private.partnerships,.Discussion.Paper,.5610,.CEPR,.2006.

. 13.. Rausser,.G.,.Simon,.L.,.and.Stevens,.R..Public.vs..private.good.research.at.land-grant.universities,.J. Agric. Food Ind. Organ..6,.artic..4,.2008.

. 14.. Wang,.C..Public. investment.policy.and. industry. incentives. in. life. science. research,.PhD.thesis,.Oregon.State.University,.Corvallis,.OR,.2007.

. 15.. Rausser,.G.,.Ameden,.H.,.and.Simon,.L..Public–private.alliances.in.biotechnology:.Can.they.narrow.the.knowledge.gaps.between.rich.and.poor?.Food Policy,.25,.499,.2000.

. 16.. Teece,.D..Profiting.from.technological.innovation:.Implications.for.integration,.collabo-ration,.licensing,.and.public.policy,.Res. Policy,.15,.285,.1986.

. 17.. Vonortas,. N.. Cooperative Research in R&D-Intensive Industries,. Aldershot,. U.K.:.Avebury.Academy,.1991.

. 18.. Rausser,.G.,.Swinnen,.J.,.and.Zusman,.P..2010..Political Power and Endogenous Policy Formation,.Cambridge,.U.K.:.Cambridge.University.Press.(in.press).

. 19.. Press,.E..and.Washburn,.J..The.kept.university,.Atl. Mon.,.285,.39,.2000.

. 20.. Rausser,.G..Private/public.research:.Knowledge.assets.and.future.scenarios,.Am. J. Agric. Econ.,.81,.1011,.1999.

. 21.. Blumenstyk,.G..Temple.University.shuts.down.for-profit.distance-education.company,.Chron. High. Educ.,.47,.29,.2001.

. 22.. Heller,.M..and.Eisenberg,.R..Can.patents.deter.innovation?.The.anticommons.in.biomedical.research,.Science,.280,.698,.1998.

. 23.. Scotchmer,.S..Innovation and Incentives,.Cambridge,.MA:.MIT.Press,.2004.

. 24.. Bekelman,.J.,.Gross,.C.,.and.Li,.Y..Scope.and.impact.of.financial.conflicts.of.interest.in.biomedical.research,.JAMA,.289,.454,.2003.

. 25.. National.Institutes.of.Health..NIH Guidelines for Research Involving Recombinant DNA Molecules,.Washington,.DC:.Department.of.Health.Human.Service,.1994.

. 26.. Dixon,.G..Market-led.horticultural.research:.Does.this.provide.what.the.industry.needs?.World Conference on Horticultural Research,. Rome,. Italy,. 1998.. http://www.agrsci.unibo.it/wchr/wc3/dixon.html.(accessed.July.9,.2010).

. 27.. American.Seed.Research.Foundation..Strategic.research,.education,.and.policy.goals.for.seed.and.crop.improvement,.American Seed Research Summit,.2008.

. 28.. Alston,. J.. and.Pardey,.P.. Making. science.pay:.The.economics.of. agricultural.R&D.policy..AEI Studies in Agricultural Policy,.Washington,.DC:.The.AEI.Press,.1996.

. 29.. Robitaille,. H.. Needs. and. expectations. of. the. horticulture-related. industry.. World Conference on Horticultural Research,.Rome,. Italy,.1998..http://www.agrsci.unibo.it/wchr/wc3/robitail.html.(accessed.July.9,.2010).

Page 262:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,
Page 263:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

249

12 Why Are Regulatory Requirements a Major Impediment to Genetic Engineering of Horticultural Crops?

Steven H. Strauss

Regulations.in.the.United.States.and.in.most.other.countries.treat.all.plants.produced.using.recombinant.DNA.methods.(genetic.engineering.or.genetic.modification).as.illegal.for.use.in.the.environment.or.in.commercial.products.until.their.safety.and.acceptability.has.been.specifically.authorized..The.costs.of.complying.with.regula-tions. and. the. legal. risks. of. not. complying. place. severe. constraints. on. the. use. of.recombinant.DNA.breeding.methods.at.both. research. and.commercial.phases.. In.particular,.the.limitations.to.gene.release.in.the.environment.pose.severe.constraints.for.required.field.research,.development,.and.commercial.applications.for.most.hor-ticultural. crops,. a.problem. that. is. exacerbated. in.many.cases.by. their. incomplete.

CONTENTS

Need.for.Biotechnology.Scientists.to.Be.Informed.and.to.Inform.Regulations.....250Consequences.of.Failure.to.Comply.with.Regulations.Are.Large.......................... 252A.Multitude.of.Regulations.Exist.at.National.and.International.Levels................. 253Regulatory.Compliance.Is.Especially.Problematic.for.Horticultural.Crops........... 253Deregulated.Horticultural.Varieties.Do.Not.Provide.General.Models....................254Causes.of.Our.Stringent.Regulatory.System..........................................................254

Presumption.of.Harm.from.Transgenic.Methods............................................... 255Environmental.Concerns.Prompt.Strong.Regulations.......................................256Familiar.Genes.Meet.Same.Regulatory.Review................................................ 256

Environmental.Studies.Are.Seriously.Compromised.by.Regulations.................... 258Presumption.That.Stasis.Is.Desirable..................................................................... 258Consequences.of.Simple.Definitions.of.Clean.and.Green...................................... 259Conclusions.............................................................................................................260References...............................................................................................................260

Page 264:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

250 Transgenic Horticultural Crops: Challenges and Opportunities

domestication.and.wild.or.feral.relatives..This.chapter.explores.the.direct.and.indi-rect.causes. for. the.stringent.regulatory.system.in.place,.discusses.the.opportunity.costs. they. impose,.and.proposes.some.alternative.regulatory.concepts.. I.maintain.that.until.regulatory.systems.incorporate.a. tier. that.provides,.at. the.outset.of.field.research,.exemptions.or.workable.tolerances.for.adventitious.presence,.the.ability.to.use.transgenic.approaches.for.horticultural.breeding.will.be.severely.limited,.thus.foreclosing.a.number.of. important.options.for. improving.pest.management,.stress.tolerance,.and.product.quality.

It.is.common.to.see.lay.discussions.of.the.social.controversies.and.the.potential.of.genetic.engineering.(GE)*.virtually.ignore.the.federal.regulatory.gauntlet.that.GE.products.must.get.through..Those.who.tend.to.be.in.favor.of.GE.crop.solutions.often.assume.that.regulations.are.well-crafted.and.essential. to.protect.the.public.safety;.their.efficacy,.cost,.and.what.products.might.have.been.discouraged.even.before.they.are.created.are.rarely.considered..In.contrast,. those.against.GE.argue.that.regula-tions.are.not.strong.enough,.as.evidenced.by.the.very.existence.of.GE.products.with.the.absence.of. full. scientific.certainty.about. their.effects..Because.of. the.esoteric.nature.of.regulations,.it.often.seems.to.be.only.the.practitioners.of.GE.who.really.understand.the.implications.of.regulations.in.practice..Who.else.would.know.what.it.costs.in.time.and.labor.to.conduct.a.regulated.field.trial.apart.from.those.conducting.the.trials?.Or.of.what.it.costs.to.bring.a.product.to.market,.other.than.public.sector.institutions.or.companies.that.have.sought. to.do.so?.The.goal.of.this.chapter. is.to.discuss.the.costs.and.impediments.to.research.and.development.of.transgenic.horti-cultural.crops.from.the.perspective.of.a.public.sector.biotechnologist.who.works.on.ornamental.and.forest.trees..In.addition.to.my.own.experience,.this.article.is.moti-vated.by.the.apparent.absence.of.any.new.horticultural.transgenic.crops.in.the.public.sector.pipeline.(an.observation.based.on.discussions.with.many.colleagues).in.spite.of.a.rather.large.number.of.field.trials.that.have.been.conducted.during.the.past.two.decades.(see.http://www.isb.vt.edu/cfdocs/fieldtests1.cfm.for.listings)..This.suggests.that.regulatory.costs.and.obstacles,.in.combination.with.market.risks,.are.severely.impeding.transgenic.variety.development.

NEED FOR BIOTECHNOLOGY SCIENTISTS TO BE INFORMED AND TO INFORM REGULATIONS

Few.scientists.or.students.who.are.drawn.to.plant.science.or.to.its.practical.applica-tions.such.as.horticulture.and.forestry.like.the.idea.of.studying.government.regula-tions..It.sounds.about.as.exciting.as.reading.the.United.States.Internal.Revenue.tax.code,.and.about.as.enticing.as.a.trip.to.the.dentist.to.have.your.teeth.drilled..As.a.scientist,.I.fully.share.these.sentiments,.but.my.work.over.the.years.with.field.trials.of.genetically.modified.trees1,2.(Figure.12.1),.and.the.small.part.I.have.played.in.writing.

*.Throughout.this.chapter,.which.specifically.addresses.the.products.of.genetic.engineering.or.genetic.modification,.I.use.the.terms.“biotechnology”.or.“GE”.or.“GM”.as.shorthand..I.am.referring.to.crops.produced.using.methods.where.plants.are.modified.by.asexually.induced,.specific.genetic.modification.and.regeneration.of.the.modified.cells.into.plants.

Page 265:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

251Regulatory Obstacles to Transgenic Horticultural Crops

FIGURE 12.1 (See color insert.).USDA-APHIS.authorized.field.trial.of.transgenic.poplars.in.Oregon.(United.States).during. its.first. (top).and.second. (bottom).growing.seasons..The.population,. part. of. a. gene. discovery. program. using. a. method. called. “activation. tagging”.(where. genes. are. randomly. upregulated. by. insertion. of. a. gene. expression. enhancer),. was.being.screened.for.novel.morphologies.under.field.conditions..The.trees.had.to.be.removed.prior.to.the.desired.long-term.nature.of.this.experiment.because.of.regulatory.costs.associ-ated.with.long-term.containment,.monitoring,.reporting,.and.removal.costs.for. large.trees..There.is.no.obvious.scientific.basis.for. intensively.regulating.such.trees.while.interspecies.hybrid.poplar.trees,.and.those.produced.through.non-transgenic.forms.of.mutagenesis,.are.essentially.unregulated.throughout.the.world.

Page 266:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

252 Transgenic Horticultural Crops: Challenges and Opportunities

about.regulatory.reforms3,4.and.taking.part.in.national.and.international.workshops.designed.to.inform.or.influence.regulations,5.have.shown.me.how.important.they.are..I.now.often.argue.that.every.plant.scientist.who.works.in.and.understands.the.poten-tial.benefits.of.transgenic.plant.biotechnology.needs.to.understand.regulations,.and.play.a.role.in.improving.them..The.goal.is.to.craft.regulations.that.more.effectively.target.and.limit.very.high.risk.applications,.while.minimizing.encumbrances.to.field.research.on.safe.and.highly.valuable.applications..At.least.for.now,.regulations.and.their.implementation.are.still.evolving,.providing.an.opportunity.for.influence.from.scientists.6. In. addition,. all. applications. for. permits. and. petitions. for. deregulation.(USDA). and. registration. of. GE. pest-tolerant. plants. (EPA). have. required. periods.of open.public.comment;.the.high.quality.science-based.or.data-based.input.that.is.often.received.from.biotechnology.scientists.is.valued.by.regulatory.agencies.

CONSEQUENCES OF FAILURE TO COMPLY WITH REGULATIONS ARE LARGE

Regulations.are.informed.by.science,.but.mainly.they.embody.the.overall.“attitude”.of.a.society.about.a.technology.7.Emotions,.perceptions,.economics,.and.politics.generally.dwarf.the.influence.of.science.in.developing.regulatory.policies..Regulations.can.be.writ-ten.with.a.tone.of.aversion.and.extreme.caution.when.society.senses.risk.and.harm.rather.than.direct.benefit—as.we.see.today.with.plant.biotechnology..Or,.they.can.be.written.with.a.sense.of.optimism.and.encouragement,.as.we.tend.to.see.today.with.respect.to.wind.power.and.related.technologies..Because.regulations.have.the.force.of.law.behind.them,.even.minor.violations.can.have.significant.penalties. including.heavy.fines.and.even.imprisonment..Thus,.they.have.a.power.and.gravity.very.different.from.research.procedures.or.recommendations,.such.as.those.followed.in.molecular.biology.laborato-ries.in.the.United.States.under.the.National.Institute.of.Health.(NIH).recombinant.DNA.research.guidelines..The.risks.and.costs.of.complying.with.regulations—or.being.unable.to.comply—often.determine,.not.just.inform,.scientific.and.business.strategies.

As.seen.with.the.StarLink.GE.maize.debacle8.and.with.the.ongoing.multimillion.dollar.lawsuits.over.accidental.infusion.of.USDA-approved.GE.rice.that.harmed.U.S..exports,9.the.consequences.of.getting.the.regulations.about.gene.dispersal.(often.called.adventitious.presence.[AP].or.low-level.presence.[LLP]).wrong,.even.in.small.detail,.can.be.enormous.for.companies.and.for.the.entire.agricultural.sector..In.addition,.recent.successful.lawsuits.over.USDA.decisions.on.herbicide.resistant.sugar.beets,.alfalfa,.and.creeping.bentgrass.have.set.new.precedents.for.use.of.the.National.Environmental.Protection.Act.. Its. requirement. for.Environmental. Impact.Statements. in. regulatory.decisions.on.crop.biotechnologies.has.brought.the.courts.into.the.regulation.of.crop.biotechnology. in.a.major.way10. that. requires. far.more.work.and. legal.detail. to. the.process.in.order.to.increase.the.likelihood.that.Animal.and.Plant.Health.Inspection.Service.(APHIS).decisions.can.withstand.legal.challenges..In.addition,.given.the.broad.interpretation. of. what. National. Environmental. Policy. Act. (NEPA). covers. in. these.cases—which.include.economic.damages.to.organic.and.conventional.farmers.from.AP—it.is.unclear.whether.the.preparation.of.Environmental.Impact.Statement.(EISs).will.improve.the.quality.of.scientific.analysis.of.the.underlying.biological.issues.

Page 267:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

253Regulatory Obstacles to Transgenic Horticultural Crops

A MULTITUDE OF REGULATIONS EXIST AT NATIONAL AND INTERNATIONAL LEVELS

The.problems.with.AP.and.consequent.trade.disruptions.described.above.also.remind.us.that.we.have.not.one,.but.a.multitude.of.national.regulatory.regimes.that.can.vary.widely.by.country,.as.well.as.an.overarching.international.regulatory.policy.in.the.Cartagena.Protocol.of.the.Convention.on.Biological.Diversity.(CBD).11.The.CBD’s.provisions.must.be.addressed.if.living.agricultural.products.such.as.seeds.are.traded,.or.if.pollen,.seed.or.vegetative.propagules.can.move.across.country.boundaries..Such.rules.are.critical.for.trade.in.many.horticultural.crops,.where.the.products.are.often.living.(e.g.,.nuts,.fruits,.horticultural.varieties),.and.where.wind.and.insect.vectors.often. can.move. pollen,. fruits,. and. sometimes. small. seeds. many.kilometers..This.network.of.regulations.means.that.making.changes.to.regulations.is.truly.a.glacial.process;. it. involves.seeking.coordinated.changes.in.the.attitudes.of.highly.diverse.societies,.as.well.as.through.fractious.and.highly.political.bureaucracies.such.as.the.United.Nations..Given.the.negative.attitude.inherent.in.most.regulatory.regimes.con-cerning.crop.biotechnology,.it.is.not.hyperbole.to.state.that.the.regulatory.challenges.facing.horticultural.biotechnology.are.both.global.and.monumental.

REGULATORY COMPLIANCE IS ESPECIALLY PROBLEMATIC FOR HORTICULTURAL CROPS

For.most.horticultural.crops,*. the. implications.of. the. stringent. regulatory.system.are.even.more.grave.than.for.field.crops..This.is.because.the.high.regulatory.costs12.per.gene.insertion.event.tend.to.be.spread.over.a.smaller.variety.base,.with.a.smaller.economic.return,.and.with.a.longer.time.for.the.return.to.be.manifest..This.results.because.these.crops.are.far.more.diverse.in.their.genetics.and.geography,.transfer-ring.approved.biotech. traits. into.new.varieties. through.breeding. is.slow.due. to.a.longer. generation. time. and. biological. limits. to. inbreeding,. and. because. valuable.genotypes.tend.to.be.cloned.rather. than.sexually.propagated..Thus,.it. is.expected.that. individual. transgenic.events. from.elite.clones,.not.progeny. from.deregulated.or.registered.events,.will.each.require.separate.regulatory.dossiers.and.decisions.3

Moreover,.these.crops.as.a.category.tend.to.be.less.domesticated.and.thus.can.more. readily. mate. with. wild. or. feral. relatives,. and. spread. directly. via. seed. or.vegetative.propagation.in.wild.or.feral.environments..Because.of. their. large.size.and. potential. for. wide. pollen. or. seed. dispersal. by. wind,. insect,. or. animal. vec-tors,.containment.when.plants.are.old.enough.to.flower.and.are.producing.fruit.can.be. very. difficult,. costly,. and.often. impossible. to. assure.. This. creates. a. situation.where.gathering.needed.regulatory.data.on.environmental.effects,.under.the.very.strong.confinement.mandated.by.regulations,.poses.a.kind.of.“Catch-22” situation.(i.e., where.the.required.information,.at.a.high.level.of.scientific.rigor.and.ecologi-cal.relevance,.is.nearly.impossible.to.obtain.while.assuring.full.containment)..Even.if. the. data. could. be. obtained,. the. required. depth. of. analyses. (e.g.,. of. nontarget.

*.Throughout.this.chapter.my.focus.is.on.woody.fruit,.shade,.and.ornamental.horticulture.species.

Page 268:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

254 Transgenic Horticultural Crops: Challenges and Opportunities

effects,.fitness,.potential.for.spread,.effect.on.endangered.species).is.very.costly.and.by. their.nature. imprecise,. requiring,. for. reasonable.estimates,. large.experiments.and.years.of.study.over.many.environments..For.pest-tolerant.crops.(i.e.,.those.with.plant.incorporated.protectants,.[PIPs]),.the.required.analyses.by.EPA.are.expected.to.be.even.more.costly.and.complex..Rarely.are.the.paybacks.to.developers.from.improved.horticultural.crops.sufficient.to.cover.all.of.these.large.up-front.costs.

DEREGULATED HORTICULTURAL VARIETIES DO NOT PROVIDE GENERAL MODELS

The.very.few.woody.horticultural.crops.that.appear.to.have.successfully.navigated.the. regulatory. maze. have. special. characteristics,. and. thus. provide. few. general.lessons..They.are.trees.that.have.genes.that.protect.against.a.major.viral.pest.and.make.no.actual.novel.pest-toxic.compound.(papaya.and.plum:.they.invoke.the.natu-ral.RNA.interference.mechanism),.and.also.cannot.spread. in. the.wild. to.any.sig-nificant.degree..The.GE.cold-tolerant.and.male-sterile.eucalypt,.now. in.extensive.field.trials.and.part.of.a.petition.for.deregulation,.is.also.dependent.for.its.approval.to.allow.flowering.and.commercial.planting.on.its.presumed.sterility.or.inability.to.spread.13. It. is.as.yet.unclear. if,. in.a.practical.and.affordable.way,.normally.fertile.horticultural.varieties.that.have.wild.or.feral.relatives.can.comply.with.regulations.and.obtain.regulatory.approval.for.commercialization.

CAUSES OF OUR STRINGENT REGULATORY SYSTEM

How.have.we,.in.the.Unites.States,.produced.a.regulatory.environment.that.appears.so.hostile.to.transgenic.innovation.in.horticultural.crops?.The.political.and.legal.his-tory.of.our.regulatory.framework.is.well.known,6,14.and.there.are.a.number.of.very.significant.political.issues15.that.appear.to.have.played.a.major.role.in.shaping.the.negative,.or.at.least.highly.divided,.public.view.of.crop.biotechnology..Major.sources.of.controversy.include:

. 1..The. relatively. new. and. major. roles. for. strong. patents. in. crop. breeding,.which. provide. no. breeder’s. rights. to. the. use. of. genetic. material. and. no.limits.on.ownership.of.genes.and.transgenic.plants.when.they.move.in.the.environment..This.appears.to.be.considered.an.overstep.or.an.outright.ethi-cal.transgression.to.many.

. 2..The.growing.role.of.multinational.corporations. in.biotechnology..This. is.in.no.small.part.due.to.the.costly.intellectual.patent.and.regulatory.land-scapes.discussed.above..Negative.attitudes.toward.these.corporations.and.their.dominance.in.the.development.of.commercial.biotech.crops.are.also.a. result.of. the. legacy.of. the.production.and.marketing.of.pesticides,.and.of.divisive.products.such.as.recombinant.bovine.somatotropin.(rBST),.by.these.companies.or.their.predecessors.

. 3..The. lack.of.direct.benefits. to.consumers.and. food.production/service.com-panies,.in.the.face.of.perceived.risks.to.people.or.retail.chains,.from.use.of.herbicides.and.pesticidal.molecules.in.the.current.major.transgenic.varieties.

Page 269:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

255Regulatory Obstacles to Transgenic Horticultural Crops

. 4..Divided.scientific.advice.on.the.risks.versus.benefits.of.GE.in.relation.to.the.stringency.of.regulations..The.large.majority.of.ecologists.I.have.met.with,.including.during.services.on.National.Research.Council.panels,.show.a. strong. negative. attitude. toward. GE. of. crops,. whereas. most. breeders,.agronomists,.and.biotechnologists.seem.to.view.them.positively..The.con-cern.expressed.by.ecologists.is.prompted.in.no.small.part.by.the.commonly.made.analogy.between. transgenic.and. invasive.exotic.species..Moreover,.many.serious.invasive.plant.species.are.the.result.of.intentional.introduc-tions. from.the.horticulture. industry..Thus,.although. there. is.only. limited.biological.homology.between.a.novel. invasive.organism.and.introduction.or.modification.of.one.or.a.few.genes.in.a.familiar.organism,.the.legacy.of.exotic.species.problems.creates.a.climate.that.dictates.extreme.precaution.and.concern.

. 5..The.growing.popularity.of.organically.certified.forms.of.agriculture.and.its.strong.direct.and.indirect.campaigns.against.transgenic.breeding.methods.and.varieties.as.dangerous.and.“unnatural.”

. 6..Waning. trust. in. government. and. government. organized. science. pan-els.to.make.wise.judgments.about. the.safety.of.novel.genes.in.foods.and.environment.

. 7..The.strong.political.and.legal.pressures.for.stringent.regulations.from.well-funded.nongovernmental.organizations.that.are.opposed.to,.or.highly.con-cerned.about,.GE.crops.

All.of. these. are. clearly.major.problems. for. any.efforts. to.produce.what.GE.crop.developers.would.view.as.more.balanced.science-based.regulations..However,.I.will.discuss.what.I.see.as.deeper,.more.foundational.issues.that.I.believe.have.contributed.to.making.the.regulatory.system.such.a.difficult.barrier.to.progress.in.horticultural.biotechnology.

preSumptIon of harm from tranSGenIc methodS

Thomas.Jefferson.is.widely.quoted.as.having.said.that.“the.greatest.service.which.can.be.rendered.any.country.is.to.add.a.useful.plant.to.its.culture.”*.Clearly,.some-thing. has. changed. since. the. era. of. transgenic. biotechnology. began.. Whereas. all.products.of.traditional.breeding.are.considered.generally.regarded.as.safe.(GRAS),.all.varieties.produced.using.transgenic.methods.are.in.effect.considered.the.opposite,.that.is,.hazardous.until.“proven”.safe.†.This.is.despite.the.common.scientific.knowl-edge,. and.FDA. rulings,. that. the. transgenic.method.per. se. is.not.more. risky. than.conventional.breeding.methods.such.as.inbreeding,.wide.hybridization,.and.muta-genesis..Moreover,.the.established.legacy.of.plant.breeding.includes.importations.of.exotic.plants.that.can.spread.widely;.enabling.agriculture.and.humans—arguably.the.

*.Thomas.Jefferson,.“A.Memorandum.of.Services.to.My.Country,”.September.2,.1800.(PTJ,.32:124)..Polygraph. copy. at. the. Library. of. Congress.. http://wiki.monticello.org/mediawiki/index.php/Useful_plant_%28Quotation%29

†. It.is.not.in.fact.possible.to.prove.the.absence.of.any.risk.

Page 270:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

256 Transgenic Horticultural Crops: Challenges and Opportunities

most.environmentally.destructive.forces.on.the.planet—to.migrate.around.the.globe.as.plants.have.been.and.are.bred.for.adaptation.to.new.regions..Clearly,.the.distinct.regulatory.treatments,.which.impose.such.a.striking.double.standard.of.strong.regu-lation.versus.the.absence.of.regulation,.are.a.legacy.of.history..It.is.fair.to.say.that.if.conventional.breeding.were.forced.to.undergo.the.same.scrutiny.as.does.GE,.much.of.it.would.not.be.legally.permissible.today..At.a.minimum,.conventional.breeding.would.all.be.subject.to.much.higher.costs.and.long.delays,.with.inestimable.penalties.for.yield.and.product.quality.improvement..It.is.also.very.likely.that.environmental.impacts.of.agriculture.would.be.far.greater,.as.the.amount.of.output.per.unit.area.of.land,.water,.and.fertilizer.would.certainly.be.far.lower.in.the.absence.of.vigorous.plant.breeding.programs.

envIronmental concernS prompt StronG reGulatIonS

The. pressing. environmental. problems. facing. society. are. another. motivation. for.strong.regulations.of.this.new.agricultural.technology..Whether.one.considers.climate.change,.non-point-source.pollution,.soil.erosion,.or.water.quality,.there.is.clearly.a.pressing.need.to.reduce.the.environmental.footprint.of.agriculture..However,.is.the.intensive. regulation.of.all. forms.of. transgenic.biotechnology,.and.only. transgenic.biotechnology.among.breeding.methods,. a. sensible.means. for.doing. this?.Such.a.practice.seems.especially.specious.in.that.the.environmental.benefits.of.transgenic.crops.have,.on.the.whole,.been.strongly.positive.to.date.(primarily.in.the.form.of.tillage.and.pesticide.ecotoxicity.reductions),16.yet.many.crops.with.similar.expected.benefits.have.not.made.it.to.market.at.all.12.Some.of.the.most.notable.examples.of.transgenic.crops.that,.though.developed.and.field.proven,.have.not.made.it.to.mar-ket,.are.horticultural.crops..These.include.virus-resistant.berries,.disease-resistant.apples,.and.disease-.and.insect-resistant.potatoes..All.of.these.would.have.reduced.pesticide.applications..Although.business.and.market.factors.also.contributed,.some-times.substantially,.to.decisions.not.to.commercialize.such.varieties,.the.overarching.hostile.regulatory.environment.made.the.business.proposition.marginal.at.the.outset,.especially. for. public. sector. breeders. and. smaller. companies.. It. is. not. difficult. to.argue.that.the.stringent.regulation.of.plant.biotechnology.has.had.the.opposite.envi-ronmental.consequence.of.what.was.intended.

famIlIar GeneS meet Same reGulatory revIew

Unfortunately,. the. “guilty. until. proven. innocent”. framework. applies. not. just. to.biotechnologies.that. impart.novel.properties,.such.as.new.kinds.of.pest.resistance.proteins.or.metabolites,.but.it.applies.to.all.cases.where.a.transgenic.method.is.used..Thus,.it.is.the.method,.not.the.actual.biological.novelty.of.the.new.gene.that.trig-gers.the.regulatory.system..As.a.result,.we.scrutinize.all.changes.from.the.method,.not. just. the. novel. property. imparted,. presuming. all. changes. are. hazardous. until.“proven”. otherwise.. This. means. that. mutagenesis. due. to. the. gene. insertion. pro-cess.is.intensely.scrutinized—though.mutagenesis. in.various.forms.has.been.long.applied.in.conventional.breeding..The.nature.of.the.insertion.site.and.any.changes.in.general.plant.chemistry.are.studied. in.detail,.not. just. transgene.expression.and.

Page 271:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

257Regulatory Obstacles to Transgenic Horticultural Crops

its.associated.phenotypes..Regulatory.agencies.apply. similar. scrutiny.even.where.genes. from.sexually.compatible.or.closely. related. species. are. transferred,. or.nor-mally.expressed.genes.are.attenuated,.shut.down,.or.mutated.(often.called.cisgenics.or.intragenics)..Incremental.changes.to.existing.phenotypes.such.as.cold.hardiness,.reduced.rate.of.ripening,.and.pest.resistance—even.when.due.to.modified.expression.of.native.genes—are.treated.as.ecologically.novel.traits.if.GE.is.involved..Canada.has.attempted.to.put.in.place.a.method-neutral.regulatory.system.that.covers.GE.as.well.as.conventional.breeding,.called.the.“plants.with.novel. traits”.system.(http://www.inspection.gc.ca/english/sci/biotech/gen/terexpe.shtml).. In. practice,. however,.it.appears.to.regulate.all.forms.of.GE.crops.similarly.to.method-based.systems.in.the.United.States,.while.upsetting.conventional.breeders.when.their.new.varieties.come.under.regulation.for.the.first.time.

The. intense. scrutiny. compelled. by. the. GE. method. creates. serious. legal. and.epistemic.problems..How.can.we.prove.safety.when.the.variances.for.the.system.we.regard.as.GRAS.are.so.extraordinarily.wide?.Food.is.known.to.contain.“tox-ins”.and.contaminants.whose.concentrations.vary.widely.and.can.cause.adverse.effects.in.high.dosage.tests,.and.breeders.often.make.crosses.with.wild.relatives.that. have. not. been. widely. consumed. for. food. and. may. even. be. poisonous.. For.example,. if.a.modified.crop.has.chemical.components.whose.levels.are.elevated.but.are.still.within.the.enormous.range.of.variation.seen.among.conventional.vari-eties,. hybrids,. and. environments. (e.g.,. of. a. natural. alkaloid. or. terpenoid),. such.changes.might.not.be.considered.safe.or.desirable.from.a.toxicological.viewpoint.(i.e.,. in. light.of. the.known.biochemical.actions.of. those.compounds)..How.such.cases.would.fare.under.legal.scrutiny.in.the.EU.where.the.Precautionary.Principle.prevails,.or.under.legal.challenge.in.the.United.States.where.FDA.could.declare.such.changes.as.adulteration.if.supported.by.toxicological.science,.is.unclear..In.addition,.because.it.is.logically.impossible.to.prove.the.absence.of.a.risk,.it.is.very.difficult.to.scientifically.declare.safety.for.the.whole.organism,.especially.for.crops.or.where.gene.products.that.do.not.fit.the.standard.toxicology.model.(i.e.,.where.they.have.complex.phenotypic.changes,.and.thus.simple.dose–response.tests.per-formed.in.the.laboratory.are.not.meaningful)..This.has.led.to.continued.political.debate.over.how.safe.is.safe.enough,.including.over.whether.“substantial.equiva-lence”.is.a.satisfactory.regulatory.attribute.

This.indiscriminant.system.also.means.that.gene.transfers.from.related.species,.such.as. the. transfer.of.a.pest. resistance.gene.from.a.wild.relative,.faces. the.same.regulatory.system..Why.should.a.gene.introduced.through.hybridization.from.a.wild.relative,.with.its.usual.linkage.drag,.be.considered.less.risky.than.the.same.gene.iso-lated.and.introduced.using.GE.methods.and.accompanied.by.a.well-studied.vector.and.associated.sequences?.In.other.words,.why.are.they.regulated.at.all,.when.the.same.or.a.similar.result.can.be.produced.with.conventional.breeding,.though.with.less. precision?. Although. it. seems. likely. that. regulators. will. require. less. data. for.low.novelty.transfers.compared.to.wide.phylogenetic.transfers.or.newly.synthesized.genes,.just.by.entering.the.highly.politicized.regulatory.arena—where.agencies.sim-ply.respond.to.each.case.as.they.come.in.the.door—the.costs,.delays,.and.outcomes.are.unpredictable,.and.thus.can.result.in.costly.delays.or.roadblocks..The.unpredict-ability.of.the.regulatory.process.is.a.very.serious.problem.for.companies,.investors,.

Page 272:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

258 Transgenic Horticultural Crops: Challenges and Opportunities

and.grant.agencies.choosing.among.research.and.technology.transfer.options..They.have.little.idea.what.the.cost.and.time.delays.will.really.be,.and.agencies.provide.no.guarantees.up.front.

ENVIRONMENTAL STUDIES ARE SERIOUSLY COMPROMISED BY REGULATIONS

From. an. environmental. viewpoint,. the. presumption. of. harm. creates. even. larger.problems.and.regulatory.obstacles..As.discussed.above,. it. is.very.difficult. to.pre-dict. ecological. impact. from. small. studies. that. are. performed. under. containment..Although. simple. extrapolations. are. possible. when. the. toxicology. model. applies.(as.with.a.pest.toxin.whose.effects.on.wild.species.can.be.roughly.estimated.in.the.greenhouse.or.short-term.field.study),.even.this.simple.case.is.fraught.with.difficulty..Such.studies.say.little.about.the.effect.of.such.genes.under.varying.abiotic.and.biotic.environments.in.the.field,.and.they.cannot.predict.in.any.meaningful.way.what.might.happen.in.a.future.dominated.by.climate.change,.nor.can.assess.how.biological.com-munities.will.adapt.and.evolve.in.response.to.the.new.gene.product.and.phenotype.

In.other.words,.under.current.regulatory.constraints.we.are.unable.to.adequately.answer.any.of.the.big.questions.about. transgene.impacts..For.example,.how.will.the.myriad. species. that.might.be. exposed. to. a.naturalized. transgene-expressing.plant.be.affected.over.time?.Can.the.novel.gene/toxin.have.so.strong.an.effect.as.to.drive.an.herbivorous.species.to.extinction,.or.will.most.species,.or.other.ecosys-tem.adjustments,.attenuate.such.effects.over.evolutionary.time?.Do.the.perturba-tions.matter.given.the.very.large.effects.of.agriculture,.breeding,.climate-induced.variation,. anthropogenic. change,. and. exotic. species. in. general?. How. often. will.genes.of.value.in.the.management.of.simple.agricultural.systems,.or.as.a.result.of.crop.domestication.for.human.tastes.in.food.and.fiber,.be.ecologically.powerful.in.diverse.wild.or.feral.systems?.The.point.is.that.while.the.goal.of.regulations.is.to.force.informed.and.wise.decisions,.the.reality.is.that.the.process.imposed,.with.its.high.costs.and.legal.risks,.appears.to.do.more.harm.than.good.by.impeding.most.forms. of. transgenic. research. and. development. with. horticultural. crops.. A  more.efficient.option.might.be.to.exempt.the.transgenic.method.and.small.or.contained.field. trials. from. regulation,. but. require. substantially.novel. gene. products—such.as. phylogenetically. novel. and. broadly. effective. toxins,. or. pharmacologically.active.molecules.that.result.from.synthetic.biology.or. long.distance.phylogenetic.transfers—to. undergo. regulatory. review. prior. to. large. scale,. uncontained. field.research.or.commercial.use..We.have.provided.more.specific.recommendations.for.regulatory.reform.elsewhere.3,4,14

PRESUMPTION THAT STASIS IS DESIRABLE

The. USDA. regulations. for. transgenic. biotechnology. treat. all. transgenic. innova-tions.as. risks..The.benefits.of. transgenic.plants.are.not. formally.considered..This.framework. is.not. surprising.given. the. evolution.of. the. current. regulatory. scheme.from. a. plant. pest. oriented. system.17. The. framework. therefore. implicitly. assumes.that.crop.species.and.their.wild.relatives.that.might.receive.transgenes.via.gene.flow.

Page 273:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

259Regulatory Obstacles to Transgenic Horticultural Crops

are.superior.in.their.present.form.to.what.they.would.be.with.the.modified.genes—unless.a.strong.case.can.be.made.otherwise..This.presumption.(and.the.underlying.conservation-oriented.value.that.supports.it).seems.reasonable,.until.one.considers.the.very.strong.barrier.it.also.poses.to.the.transgenic.use.of.pest.or.stress.resistance.genes.to.promote.the.health.of.horticultural.woody.plants.in.cases.where.they.have.wild.or.feral.relatives.(as.nearly.all.do)..If.the.gene.disperses,.the.genetic.diversity.and.fitness.of.wild.relatives.might.be.increased.to.some.degree..This.might.in.fact.be.beneficial.because.woody.horticultural.and.forest.species.are.often.foundational.members.of.terrestrial.ecosystems,.providing.much.of.the.structural.habitat.and.pri-mary.productivity..Thus,.some.increased.vigor.and.adaptability.would.generally.be.expected.to.be.ecologically.advantageous,.not.disadvantageous..In.addition,.many.woody.species.are.under.serious.threat.from.climate.change.and.the.emergence.or.invasion.of.newly.epidemic.and/or.exotic.pests,18.and.thus.could.benefit.from.genes.that.increased.their.resilience.or.pest/stress.tolerance..Of.course,.in.cases.where.a.wild.relative.is.already.a.problematic.exotic.species.that.is.having.a.strong.negative.environmental.impact,.such.improvements.of.vigor.would.not.be.considered.desir-able..Such.cases.could.be.specially.identified.and.disallowed.(e.g.,.by.presence.on.a.noxious.weed.list),.rather.than.imposing.a.blanket.preclusion.to.gene.flow.to.wild.relatives.as.a.result.of.the.transgenic.method.

The.core.regulatory.and.ecological.problem.is.the.extreme.difficulty.in.predicting.the.outcome.of.transgene.introductions.in.terms.of.their.ultimate.ecological.impact.in.advance,.without.actual.field.releases.and.monitoring.over.many.years.and.sites..This,.however,.is.very.costly,.especially.where.strong.containment.must.be.imposed.during. these. trials.. As. stated. above,. this. is. a. reasonable. requirement. for. species.with.high.risk.relatives.such.as.a.Johnson.grass.or.a.scotch.broom,.but.unfortunately.under.the.current.operational.“presumption.of.harm”.such.precaution.is.applied.to.all.transgenes.and.species..This.makes.commercialization.of.each.transgenic.prod-uct.a.multidecade.and.multimillion.dollar.undertaking,.even.when.pest.resistance.genes.from.related.plant.species.are.used,.and.appears.to.make.transgenic.solutions.prohibitive.except. in.special.cases. (e.g.,.American.Chestnut,. a.dominant. tree. that.was.driven.near.to.extinction.and.has.strong.private.and.public.foundation.support.for. the.use.of.biotechnology.for. its.restoration).19.Given. the.growing.pace.of.such.serious.threats.to.wild.and.cultivated.trees,.it.would.appear.that.new,.expedited.regu-latory.options—such.as.exemptions.for.species.in.crisis.and/or.genes.from.related.species—are.critically.needed.

CONSEQUENCES OF SIMPLE DEFINITIONS OF CLEAN AND GREEN

Finally,.a.major.impediment.to.the.use.of.transgenic.methods.appears.to.reside.in.the.blanket.manner.with.which.society.seems.to.categorize.technologies.as.good.or.bad..Organically.certified.food.is.currently.considered.by.much.of.the.public.to.be.greener,.safer,.and.thus.superior. to.conventionally.produced.food..Yet.when.scru-tinized.it.has.not.shown.any.consistent.advantages.for.food.safety.or.nutrition,.and.its.net.environmental.benefits.are.also.questionable.(e.g.,.when.full.life.cycle.stud-ies.of.nitrogen,.land.use,.runoff,.soil.erosion,.transport,.and.energy.consumption—and. even. pesticide. ecotoxicity. in. some. cases—are. considered).20–22. Nonetheless,.

Page 274:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

260 Transgenic Horticultural Crops: Challenges and Opportunities

perceived.economic.harms.to.marketing.organic.products.as.a.result.of.“contamination”.of.organic.food.by.GE,.even.when.at.very.low.levels,.have.prompted.successful.law-suits..The.courts.have.viewed.organic.agriculture.as.an.environmental.good,.whose.possible.harm.thus.requires.careful.consideration.via.an.environmental.impact.state-ment..Such.a.ruling.for.alfalfa.has.resulted.in.its.withdrawal.from.the.marketplace,23.and.a.similar.case. is.pending.for.sugar.beet..These. legal.precedents.and.the.high.costs. they. impose. are. likely. to. continue. to. slow,. and. in.many. cases. will. prevent.development.of.GE.crops..Unfortunately,.these.legal.decisions.appear.to.be.informed.by.a.popular,.rather.than.a.scientific,.view.of.the.relative.environmental.value.of.GE.versus.organically.certified.food..Simple.green.labels.that.presume.GE.is.bad.and.any.GE.“contamination”.of.“green”.products.is.bad—when.uncritically.accepted.by.courts.and.a.large.section.of.the.public—pose.considerable.challenges.to.revision.of.the.current.regulatory.system.

CONCLUSIONS

Regulatory. change. that. would. decriminalize. the. GE. process. is. needed. to. move.forward..But.how.can.that.happen?.It.could.be.motivated.by.growing.urgency.for.improved. food. production,. as. expanded. uses. of. crops. for. bioenergy,. and. climate.change-induced.crop.losses,.continue.to.drive.up.food.prices..Change.may.also.be.motivated.by.the.many.humanitarian.GE.projects.underway.for.the.developing.world,.of.which.Golden.Rice.is.the.best.known..A.single.major,.highly.publicized.success.could.shift.public.opinion.substantially..Change.may.also.be.motivated.by.informed,.popular,.and.powerful.thought.and.environmental.leaders,.such.as.Stewart.Brand.and.Michael.Specter,.who.have.embraced.the.benefits.and.debunked.the.myths.surround-ing.GE.crops.and.other.environmental.and.scientific.technologies.22,24.However,.as.discussed.above,.due.to.the.many.layers.of.national.and.global.regulations,.and.the.strong.political.influences.on.them,.the.timescale.of.change.may.be.on.the.order.of.decades.or.more.

For. change. to. ultimately. occur. scientists. must. play. a. key. role.. By. educating.decision.makers.and.the.public.in.understandable,.contextually.relevant,.and.gen-erationally. appropriate. forms,. and. by. taking. an. active. part. in. providing. public.input.to.regulatory.decisions,.biotechnologists.can.help.to.craft.a.new.era.of.intel-ligent,.discriminating,.science-based.regulations..Transgenic.biotechnology.is.too.powerful.a.tool.to.surrender..Our.precarious.world,.the.billions.of.needy.people,.and.threatened.nonhuman.species.need.it.to.become.a.potent.and.central.part.of.the.crop.technology.toolkit.

REFERENCES

. 1.. Li,. J.. et. al.,. Stability. of. herbicide. resistance. over. 8. years. of. coppice. in.field-grown,.genetically.engineered.poplars..Western Journal of Applied Forestry,.23,.89,.2008.

. 2.. Strauss,.S.H..et.al.,.Ten.lessons.from.15.years.of.transgenic.Populus.research..Forestry,.77,.455,.2004.

. 3.. Bradford,.K.J..et.al.,.Regulating.transgenic.crops.sensibly:.Lessons.from.plant.breeding,.biotechnology.and.genomics..Nature Biotechnology,.23(4),.439,.2005.

Page 275:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

261Regulatory Obstacles to Transgenic Horticultural Crops

. 4.. Strauss,.S.H.,.Genetic.technologies:.Genomics,.genetic.engineering,.and.domestication.of.crops..Science,.300(5616),.61,.2003.

. 5.. Strauss,.S.H..et.al.,.Strangled.at.birth?.Forest.biotech.and.the.convention.on.biological.diversity..Nature Biotechnology,.27,.519,.2009.

. 6.. APHIS,.Programmatic.Environmental.Impact.Statement.(for.new.proposed.regulations)..http://www.aphis.usda.gov/publications/biotechnology/content/printable_version/fs_programmatic_eis.pdf,.2007..(Accessed.January.27,.2011).

. 7.. Devos,.Y..et.al.,.The.interplay.between.societal.concerns.and.the.regulatory.frame.on.GM.crops.in.the.European.Union..Environmental Biosafety Research,.5(3),.127,.2006.

. 8.. Bucchini,.L..and.L.R..Goldman,.Starlink.corn:.A.risk.analysis..Environmental Health Perspectives,.110(1),.5,.2002.

. 9.. Vinluan,. F.,. Genetically. modified. rice. leads. to. ruling. against. Bayer. CropScience..Triangle Business Journal,. December. 7,. 2009.. http://www.bizjournals.com/triangle/.stories/2009/11/30/daily70.html.(Accessed.January.27,.2011).

. 10.. Bryson,.N.,.APHIS.programmatic.EIS–Implications.for.crop.biotechnology.regulation..In.Farm Foundation Conference,.Washington,.DC,.January.16–17,.2008.

. 11.. Kinderlerer,.J.,.The.Cartagena.protocol.on.biosafety..Collection Biosafety Reviews,.4,.12,.2008.

. 12.. Kalaitzandonakes,.N.,.J.M..Alston,.and.K.J..Bradford,.Compliance.costs.for.regulatory.approval.of.new.biotech.crops..Nature Biotechnology,.25(5),.509,.2007.

. 13.. APHIS,.ArborGen,. LLC;.Availability. of. an. environmental. assessment. for. controlled.release.of.a.genetically.engineered.Eucalyptus.Hybrid..74.Federal Register,.74,.26648–26719,.June.3,.2009.

. 14.. Strauss,.S.H..et.al.,.Far-reaching.deleterious.impacts.of.regulations.on.research.and.envi-ronmental.studies.of.recombinant.DNA-modified.perennial.biofuel.crops.in.the.USA..BioScience,.60(9),.729,.2010.

. 15.. Herring,.R.J.,.Opposition.to.transgenic.technologies:.Ideology,.interests.and.collective.action.frames..Nature Reviews Genetics,.9(6),.458,.2008..(Accessed.January.27,.2011).

. 16.. NRC,.Impact.of.genetically.engineered.crops.on.farm.sustainability.in.the.United.States..http://www.nap.edu/catalog/12804.html,.2010,.p..240..(Accessed.April.20,.2011).

. 17.. Medley,. T.L.. and. S.L.. McCammon,. Strategic. regulations. for. safe. development. of.transgenic.plants..In.Biotechnology,.H.-J..Rehm.and.G..Reed,.eds..Weinheim:.Federal.Republic.of.Germany,.1995.

. 18.. Chornesky,.E.A..et.al.,.Science.priorities.for.reducing.the.threat.of.invasive.species.to.sustainable.forestry..BioScience,.55(4),.335,.2005.

. 19.. Merkle,.S..et.al.,.Restoration.of.threatened.species:.A.noble.cause.for.transgenic.trees..Tree Genetics & Genomes,.3(2),.111,.2007.

. 20.. DiGregori,. T.R.,. Bountiful Harvest: Technology, Food Safety, and the Environment..Washington,.DC:.Cato.Institute,.2002,.p..262.

. 21.. McWilliams,.J.E.,.Just Food: Where Locavores Get It Wrong and How We Can Truly Eat Responsibly..New.York:.Little,.Brown.&.Company,.2009.

. 22.. Specter,.M..Denialism: How Irrational Scientific Thinking Hinders Scientific Progress, Harms the Planet, and Threatens Our Lives..New.York:.Penguin.Press,.2009.

. 23.. Peck,.A.E.,.Plant.biotechnology.law.after.Geertson.Seed.Farms:.Potential.impacts.on.regulation,.liability,.and.coexistence.measures..National.AgLaw.Center,.2008..http://www.nationalaglawcenter.org/assets/articles/peck_aftergeertson.pdf.(Accessed.January.27,.2011).

. 24.. Brand,.S.,.Whole Earth Discipline: An Ecopgramatist Manifesto..New.York:.Viking,.2009.

Page 276:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,
Page 277:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

263

13 Virus-Resistant Transgenic Horticultural Crops: Safety Issues and Lessons from Risk Assessment Studies

Jonathan E. Oliver, Paula F. Tennant, and Marc Fuchs

CONTENTS

Introduction.............................................................................................................264Pathogen-Derived.Resistance.and.Engineered.Resistance.to.Viruses.in.Plants.... 265RNA.Silencing.and.Engineered.Resistance.to.Viruses.in.Plants.......................265

Safety.Issues.and.Risks...........................................................................................266Transencapsidation.............................................................................................266Recombination................................................................................................... 267Gene.Flow.to.Free-Living.Relatives..................................................................268Effects.on.Nontarget.Organisms........................................................................268Allergenicity.and.Human.Health.Effects...........................................................269Durability.and.Specificity.of.Engineered.Resistance.to.Viruses.in.Plants......... 270

Breakdown.of.Engineered.Virus.Resistance................................................. 270Specificity.of.Engineered.Virus.Resistance................................................... 271

Examination.of.Risks.Associated.with.Commercialized.Transgenic.Horticultural.Crops................................................................................................. 271

Squash.Resistant.to.Cucumber Mosaic Virus,.Zucchini Yellow Mosaic Virus,.and.Watermelon Mosaic Virus ................................................................ 272

Background................................................................................................... 272Risk.Studies................................................................................................... 272

Papaya.Resistant.to.Papaya Ringspot Virus ...................................................... 273Background................................................................................................... 273Risk.Studies................................................................................................... 274

Tomato.and.Sweet.Pepper.Resistant.to.Cucumber Mosaic Virus...................... 275Background................................................................................................... 275Risk.Studies................................................................................................... 276

Page 278:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

264 Transgenic Horticultural Crops: Challenges and Opportunities

INTRODUCTION

Horticultural.crops.were.the.first.transgenic.crops.commercialized.in.the.United.States.in. the.mid-1990s..Among.the.first.of. these.were.virus-resistant. transgenic.summer.squash.(Cucurbita pepo.ssp..ovifera.var..ovifera.L.)..The.first.transgenic.squash.cul-tivars,.deregulated.in.1994,.were.resistant.to.Zucchini yellow mosaic virus.(ZYMV).and.Watermelon mosaic virus.(WMV).1–3.Other.transgenic.summer.squash.cultivars.resistant. to. ZYMV,. WMV,. and. Cucumber mosaic virus. (CMV). were. released. in.19962–4. followed.by.papaya. (Carica papaya.L.).genetically.modified.for. resistance.to.Papaya ringspot virus.(PRSV).in.1998.2,5,6.To.date,.virus-resistant.summer.squash.and.papaya.are.the.only.transgenic.horticultural.crops.that.are.commercially.released.in. the. United. States,. along. with. Bt. sweet. corn. (Zea mays. L.).7. Potato. (Solanum tuberosum.L.).resistant.to.Potato virus Y.(PVY),.Potato leafroll virus.(PLRV).and.the.Colorado.potato.beetle.were.released.in.1998,.but.were.withdrawn.from.the.market.almost.immediately.thereafter.due.to.anti-biotechnology.campaigns.and.international.trade. barriers.8. In. the. People’s. Republic. of. China,. transgenic. tomato. (Solanum esculentum.L.).and.sweet.pepper.(Capsicum annuum.L.).resistant.to.CMV.and.papaya.resistant.to.PRSV.have.also.been.released.9

The. virus-resistant. transgenic. horticultural. crops. commercially. available. have.been.developed.by.applying.the.concept.of.pathogen-derived.resistance.10.Pathogen-derived.resistance.refers.to.the.use.of.a.pathogen’s.own.genes.to.confer.resistance.in.a.host.to.that.pathogen..In.the.case.of.the.horticultural.crops.released.to.date.in.the.United.States,.engineered.virus.resistance.has.been.achieved.through.expression.of.viral.coat.protein.genes.3,6

The.development.and.release.of.transgenic.horticultural.crops,.in.particular.those.engineered. for. virus. resistance,. have. raised. potential. safety. issues. regarding. their.impact. on. the. environment. and. human. health.2,11–13. Similarly,. concerns. have. been.expressed.over.the.release.of.horticultural.crops.expressing.cry.toxin.genes.from.the.bacterium,. Bacillus thuringiensis. (Bt).14,15. Over. the. years,. a. significant. amount. of.research.has.been.done.to.address.safety.issues.and.examine.potential.risks..In.this.chapter,.we.provide.a.synopsis.of.transgenic.horticultural.crops,.in.particular.virus-resistant.transgenic.crops.with.the.major.emphasis.on.those.that.are.currently.available.in.commerce..We.also.examine.the.mechanisms.underlying.engineered.virus.resis-tance.and.discuss.potential.safety.issues.with.this.technology..We.then.examine.risk.assessment.research.by.focusing.on.commercial.crops.for.which.data.from.realistic.

Examination.of.Risks.Associated.with.Transgenic.Plum.Which.Is under Consideration.for.Deregulation................................................................. 276

Background........................................................................................................ 276Risk.Studies........................................................................................................ 277

Overview.of.Risk.Lessons.of.Transgenic.Horticultural.Crops............................... 278Perspectives............................................................................................................. 279

Introduction........................................................................................................ 279Future.Trends.....................................................................................................280

Conclusions............................................................................................................. 281References............................................................................................................... 281

Page 279:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

265Virus-Resistant Transgenic Horticultural Crops

field. studies. are. available,. thereby. using. each. released. crop. as. a. case. study. in. our.examination.of.the.safety.issues.associated.with.transgenic.horticultural.crops..Finally,.we. summarize. lessons. from. risk. assessment. research. and. evaluate. whether. safety.issues.account.for.the.limited.number.of.horticultural.transgenic.crops.released.to.date.

pathoGen-derIved reSIStance and enGIneered reSIStance to vIruSeS In plantS

The. first. report. on. engineered. resistance. to. viruses. in. plants. was. published. in.1986.16. These. researchers. noted. that. tobacco. plants. expressing. the. coat. pro-tein. gene. of  Tobacco mosaic virus. (TMV).exhibited.delayed. infection. following.mechanical. inoculation.with.TMV..This.observation.conformed. to. the.concept.of.pathogen-derived.resistance.that.had.been.postulated.earlier.10.Following.the.initial.breakthrough.by.Abel.et. al.,16.viral. coat.protein.genes. from.various.viruses.were.introduced.into.numerous.economically.important.crop.species.in.hopes.of.achieving.resistance.17.It.was.initially.believed.that.resistance.was.provided.by.the.viral.protein.itself.via.a.mechanism.involving.excess.plant-expressed.coat.protein.that.interfered.with.the.uncoating.step.in.viral.replication.18.However,.it.soon.became.apparent.that.resistance.could.be.achieved.in.transgenic.plants.producing.low.or.undetectable.lev-els. of. coat. protein.19. Further. observations. indicated. that. the. mechanism. involved.degradation.of.the.transgene-derived.messenger.ribonucleic.acid.(mRNA).into.small.fragments.in.a.sequence-specific.manner.20–23

rna SIlencInG and enGIneered reSIStance to vIruSeS In plantS

Extensive. research. has. shown. that. engineered. virus. resistance. in. transgenic. plants.works. primarily. through. the. antiviral. pathways. of. the. mechanism. known. as. RNA.silencing..This.mechanism.regulates.the.expression.of.genes.at.the.RNA.level.follow-ing.RNA.transcription.by.the.host.plant..RNA.silencing.is.triggered.by.the.replica-tion.of.genomic.viral.RNA.within. the.host.cell.18,21,24.Following.entry. into. the.cell,.most.viruses.form.double-stranded.RNA.(dsRNA).intermediates.during.their.replica-tion..These.dsRNA.are.recognized.by.host.RNase.III.Dicer-like.enzymes.and.cleaved.into.short.fragments.called.small.interfering.(si).RNA.(∼21.nts)..These.fragments.then.associate.with.the.RNA-induced.silencing.complex.(RISC),.which.proceeds.to.target.homologous.RNA.sequences.within. the.cell..Once. identified.by. the.RNA.silencing.machinery,.these.target.RNA.sequences.are.similarly.cleaved.18,21,23,24.In.this.way,.the.host.cell.severely.limits.or.entirely.prevents.viral.replication,.resulting.in.resistance..Though.originally.identified.in.plant–virus.interaction.studies,.RNA.silencing.has.been.shown.to.be.present. in.a.wide.range.of.organisms. including.humans,.plants,.nema-todes,.and.fruit.flies.and.is.believed.to.function.as.a.sort.of.primitive.immune.system.25

The.activation.of.these.cellular.viral.defenses.within.host.plants.is.believed.to.explain.the.long-recognized.phenomenon.of.recovery.from.viral.symptoms.seen.in.the.upper.leaves.of.some.infected.plants,.as.it.has.been.shown.that.a.silencing.sig-nal.can.move.systemically.within.the.plant,.activating.silencing.ahead.of.the.viral.replication.advance.26

Page 280:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

266 Transgenic Horticultural Crops: Challenges and Opportunities

Lending.further.support.to.the.importance.of.the.RNA.silencing.system.in.plants.is.the.discovery.that.most.virus.families.encode.one.or.more.proteins.that.suppress.silencing.21,24,27–29.Viral. suppressors.have.been.shown. to. interact. in.multiple.ways.with. the. RNA.silencing. machinery. to.prevent. effective. control.of. the. expression.of.the.viral.genome.within.the.host..One.such.example.is.the.HC-Pro.protein.from.PVY..This.protein.binds.the.siRNAs.produced.by.the.cell’s.RNA.silencing.machin-ery,. thereby. squelching. the. signal,. which. effectively. suppresses. RNA. silencing.within.the.host.cell.30.This.not.only.can.allow.for.continued.PVY.replication,.but.has.also.been.shown.to.be.primarily.responsible.for.the.observed.phenomenon.of.viral.synergism.where.two.unrelated.viruses,.when.co-infecting.the.host.plant,.can.exhibit. more. severe. symptoms. than. either. virus. on. their. own.. Experiments. with.PVY.and.Potato virus X.(PVX).have.shown.that.HC-Pro.of.PVY.can.suppress.host.defenses.and.allow.for.PVX,.which.very.weakly.suppresses.silencing.on.its.own,.to.replicate.and.produce.much.more.severe.symptoms.than.either.PVX.or.PVY.cause.on.their.own.13

The. fact. that.RNA.silencing. is. a.nucleotide. sequence-based. resistance.mecha-nism.has.unique.implications.for.risk.assessment.and.the.development.of.new.virus-resistant.transgenic.plants..This.feature.is.discussed.in.the.next.section.

SAFETY ISSUES AND RISKS

Due. to. the.expression.of.viral. gene. constructs. to.provide. resistance. to.viruses. in.transgenic.plants,.there.are.unique.safety.issues.associated.with.this.technology2,11–13.versus.many.of.the.other.commercialized.transgenic.crop.plants..Among.these.are.the. risks. of. viral. recombination. and. transencapsidation.. However,. not. all. of. the.potential.risks.associated.with.this.technology.are.unique.to.virus-resistant.transgenic.plants..Risks.also.associated.with.other.transgenic.plant.technology.including.gene.flow. to. free-living. relatives,. allergenicity. and. other. human. health. effects,. break-down.of.resistance,.and.effects.on.nontarget.organisms.also.need.to.be.assessed.with.regard.to.engineered.resistance.against.viruses..In.the.following.section,.we.examine.each.of.these.areas.of.concern.and.assess.their.scientific.merits.

tranSencapSIdatIon

One.of.the.concerns.associated.with.virus-resistant.transgenic.crops.is.the.potential.that.viral.capsid.proteins,.when.produced.in.a.transgenic.host.plant,.may.transencap-sidate.the.genome.of.a.challenge.virus.2,11–13.Since.viral.capsid.proteins.play.roles.in.such.diverse.processes.as.movement.within.the.host,.replication,.suppression.of.gene.silencing,.and.vector.transmission.specificity,31.it.is.plausible.that.a.transencap-sidated.virus.may.have.altered.properties..If.the.coat.protein.of.a.virus.vectored.by.aphids,.for.example,.were.transgenically.produced.within.a.host.plant,.it.is.conceiv-able.that.an.aphid.non-transmissible.virus.could.be.encapsidated.within.the.coat.pro-tein.derived.from.the.transgene..This.transencapsidated.virus.(with.the.coat.protein.from. the.aphid-borne.virus.and. the.genome.of. the.aphid.non-transmissible.virus).might.then.acquire.the.characteristics.of.an.aphid-borne.virus,.potentially.allowing.it.to.move.more.expeditiously.into.new.host.plants—possibly.even.to.plant.species.

Page 281:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

267Virus-Resistant Transgenic Horticultural Crops

that.the.parent.viruses.heretofore.had.not.come.into.contact.with..Transencapsidation.has. been. shown. experimentally.11. However,. many. of. the. concerns. with. respect.to. transencapsidation. have. been. alleviated. by. our. current. understanding. of. RNA.silencing..This.is.true.because.when.RNA.silencing.is.active.(as.is.expected.if.the.transgenic.plants.exhibit.viral.resistance),.the.expression.of.viral-derived.proteins.is.regulated.posttranscriptionally,.with.little.to.no.detectable.capsid.protein.produced..In. the. case. of. untranslatable. coat. protein. transgenes,. this. concern. is. alleviated.altogether..Also,.since.the.interactions.between.viral.proteins.or.between.capsid.pro-teins.and.viral.genomes.is.often.very.specific,31.it.seems.unlikely.that.interactions.necessary.for.a.viral.coat.protein.to.aid.in.the.replication.or.movement.of. its.cor-responding.viral.genome.would.take.place.in.coordination.with.genomic.material.or.proteins.from.a.heterologous.virus..Finally,.it.is.unclear.how.these.risks.are.substan-tially.different.from.the.risks.already.present.when.a.host.plant.is.infected.with.two.distinct.viruses—which.has.been.shown.to.lead.to.transencapsidation11—and.how.transencapsidation.would.be.any.more.likely.to.occur.in.the.transgenic.case.than.in.the.non-transgenic.multiple.infection.scenario.2,11,12

Even. if. transencapsidation.did.occur,. it. is.questionable.how. it. could.result. in.viruses.with.permanently.altered.properties,. since. it. is.not.conceivable.how. the.movement.of.a.transencapsidated.virus.to.a.new.host.would.be.anything.other.than.a.so-called.dead.end,.since.(due.to.the.lack.of.a.coat.protein.from.the.heterologous.virus. in. the.new.host).all.new.viruses.produced. in. the.new.host.plant.would.be.encapsidated.within.their.own.capsid.protein.2,11–13.An.exception.would.be.if.the.new.host.were.transgenic.and.expressing.the.coat.protein.gene.of.a.closely.related.heterologous. virus.. In. any. event,. if. problems. with. transencapsidation. did. arise,.the.problem.could.be.eliminated.by.ending.the.cultivation.of.the.transgenic.crop.in.question.25

recombInatIon

Another.potential.risk.of.virus-resistant.transgenic.crop.plants.expressing.viral.genes.is. that. of. recombination. between.viral-derived. transgene.mRNA.and. the.genomic.RNA.of.an.infecting.virus.2,11–13.It. is. thought.that.this.type.of.recombination.could.potentially.give.rise.to.a.new.virus.strain.or.new.virus.species.possessing.characteris-tics.different.from.those.of.the.parent.viruses..Recombination.may.involve,.for.example,.an. incoming.virus.containing.a.viral.coat.protein.gene.whose.product. is.defective  in.its.ability.to.be.vectored,.and.transcripts.of.a.homologous.viral.transgene.sequence.possessing.a.functional.copy.of.the.coat.protein.gene..Recombination.between.these.sequences.may.then.restore.vector.transmissibility..Unlike.the.risk.of.transencapsida-tion,.recombination.cannot.be.as.easily.dismissed.as.an.evolutionary.dead.end,.since.viral.progeny.identical.to.the.recombined.strain.could.be.produced.in.a.new.host.2,12,13.Recombination. between. transcripts. of. a. viral. gene. construct. in. a. transgenic. plant.and.an.incoming.virus.has.been.shown.by.several.groups.32.If.resistance.were.effec-tive.through.RNA.silencing,.the.occurrence.of.recombination.is.less.likely.unless.the.incoming.virus.were.a.related,.but.divergent,.isolate.of.the.virus.from.which.the.trans-gene.is.derived..In.that.case,.it.is.conceivable.that.the.incoming.virus.would.replicate.to.the.same.extent.as.in.a.susceptible.plant,.providing.opportunities.for.recombination..

Page 282:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

268 Transgenic Horticultural Crops: Challenges and Opportunities

Nevertheless,.it.is.unclear.how.recombination.would.be.more.likely.to.occur.between.a.viral. transgene.mRNA.and.an. infecting.virus. than.between. two.viruses. that.are.coinfecting.the.same.host.(a.common.situation).2,33–35.It.is.likewise.unclear.how.recom-bination.is.any.more.likely.to.occur.in.the.transgenic.case.than.in.the.case.of.cross-protection,.an.accepted.method.used.in.controlling.viral.diseases..Cross-protection.relies.on.the.use.of.mild.virus.strains.to.protect.plants.from.economic.damage.caused.by.closely.related.severe.virus.strains.36,37.Therefore,.RNA.molecules.of.distinct.viral.strains.have.ample.opportunities.to.recombine.in.cross-protected.plants..Though.not.shown.to.have.emerged.in.cross-protected.plants,.recombinant.viral.strains.resulting.from. recombination. between. Arabis mosaic virus. (ArMV). and. Grapevine fanleaf virus.(GFLV).have.been.observed.38.The.use.of.recombinant.mild.strains.of.ArMV.and.GFLV.to.cross-protect.against.GFLV.is.an.accepted.experimental.control.method.for.GFLV39.despite.their.deliberate.dissemination.in.the.environment.

Gene flow to free-lIvInG relatIveS

Another.concern,.not.unique.to.virus-resistant.transgenic.crops,.is.the.risk.of.transgene.flow.2,12,13.Transgene.movement.from.a.transgenic.crop.species.to.a.free-living.relative,.through.pollen.flow,.can.be.a.significant.concern..If.transgenes.provide.a.selective.advan-tage,.it.is.conceivable.that.hybrids.between.transgenic.and.free-living.compatible.species.might.acquire.a.fitness.benefit.and.eventually.a.competitive.edge.over.free-living.plants.40.In. an. extreme. scenario,. a. transgenic. hybrid. may. outcompete. free-living. plants. and.thereby.lead.to.an.elimination.of.entire.species,.land.races,.or.varieties.of.non-transgenic.plants..In.the.case.of.virus-resistant.transgenic.plants,.it.is.postulated.that.a.hybrid.pos-sessing.a.transgene.conferring.virus.resistance.might.outcompete.compatible.free-living.plants.and.become.established.in.the.natural.environment..Though.this.is.unlikely.to.be.due.to.an.increase.in.weediness.potential.of.the.transgenic.crop.itself,.such.a.scenario.may.have.far-reaching.environmental.consequences.in.the.case.of.free-living.species.2

The. likelihood.of.outcrossing.between. transgenic.crop.plants.and. free-living.relatives.depends.on.numerous.factors,.including.pollen.phenology,.pollen.compat-ibility,.and.spatial.proximity.40.Each.of.these.factors.could.vary.significantly.between.any.two.given.transgenic.crop.species.and.environments..Therefore,.evaluations.of.the.likelihood.of.gene.flow.(and.its.effects).must.be.carried.out.on.a.case-by-case.basis..Even.if.gene.flow.from.a.virus-resistant.transgenic.crop.to.free-living.relatives.could.readily.occur,.it.is.not.obvious.what.effect.this.would.have..Gene.flow.from.domesticated.crop.species.developed.through.traditional.breeding.practices.has.also.been.shown.to.occur,40–44.but.in.the.case.of.traditional.breeding,.problems.arising.from. gene. flow. to. free-living. relatives. have. not. been. seen,. and. it. is. unclear. how.the.effect.of.transgenic.virus.resistance.genes.would.be.substantially.different.from.those.of.resistance.genes.derived.from.traditional.breeding.

effectS on nontarGet orGanISmS

An.additional.concern.regarding.transgenic.horticultural.crops.is.their.potential.to.have. negative. effects. on. nontarget. organisms,2,45. for. example,. organisms. that. are.not. intentionally. targeted.by. the.disease.or. pest.management. strategy.. Effects.on.

Page 283:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

269Virus-Resistant Transgenic Horticultural Crops

nontarget.organisms.can.be.difficult. to.evaluate,.and.even.when.an.effect. is.seen,.it. can. be. difficult. to. assess. the. significance. of. this. observation.. With. respect. to.virus-resistant.transgenic.crops,.it.is.not.easy.to.identify.a.mechanism.which.might.result.in.an.effect.on.nontargets,.because.the.titer.of.the.transgene.protein.product.is. likely.manyfold. lower. than. the. amount.of. the. corresponding.viral. protein. in. a.non-transgenic.virus-infected.plant.46,47.In.addition,.given.the.fact.that.the.resistance.mechanism.is.likely.to.be.RNA.silencing,.in.many.cases.little.to.no.protein.is.likely.produced.at.all,.especially.in.the.case.of.untranslatable.transgenes..Furthermore,.crop.plants.derived.through.traditional.breeding.practices.have.been.shown.to.produce.a.wide.range.of.allergens.and.toxins.with.clear.effects.on.animals,.plants,.insects,.and.nematodes.that.may.come.into.contact.with.these.plants.during.their.lifetime.48

allerGenIcIty and human health effectS

Another.area.of.concern.regarding.transgenic.horticultural.crops.is.the.possibility.of.the.introduction.of.allergenic.proteins.into.the.food.supply.and.the.introduction.or. increase.in. the.production.of. toxic.compounds.48–52.Although.this.concern.also.applies.to.crop.varieties.developed.using.conventional.breeding.methods,.transgenic.products.have.received.strict.scrutiny.presumably.because.of.the.nature.of.the.trans-gene.proteins..The.underlying.concept.of.safety.evaluations.of.genetically.modified.foods.was.proposed.in.the.early.1990s53.and.is.based.on.comparative.analyses.of.the.transgenic.crop.with.the.conventionally.bred.parent.that.has.a.history.of.safe.use.(i.e.,.substantial.equivalence).54.Additionally,.safety.testing.of.whole.foods.in.animals.is.used.to.determine.toxicity.and.allergenicity.of.genetically.modified.foods.as.well.as.toxicity.testing.of.individual.proteins..The.latter.tests,.in.combination.with.nutritional.analysis,.are.regarded.as.more.sensitive.and.accurate.55,56.While.postmarket.monitor-ing.of.transgenic.food.crops.provides.data.on.patterns.of.human.nutritional.exposure.and.may.be.useful.in.confirming.premarket.risk.assessment.and.the.detection.of.rare.unintended.effects.on.health,.the.evaluation.is.not.regarded.as.a.component.of.risk.assessment.and.is.not.a.substitute.for.thorough.premarket.risk.assessment.57

Based.on.this.approach,.a.number.of.transgenic.crops.expressing.protein.prod-ucts,. such. as. those. derived. from. Bt-derived. toxins. (cry). and. marker. transgenes.(nptII,.uidA),.have.been.found.to.present.little.to.no.risk.to.food.or.feed.safety.2,58–62.Further,.analysis.of.potential.pleiotropic.effects.on.inherent.plant.toxins.and.antinu-trients.of.transgenic.plants.and.their.progenitor.cultivars.(e.g.,.maize,.rape,.tomato,.potato,. and.soybean).has. shown.minor. to.perceptible.variations,.albeit.within. the.ranges. documented. in. literature,. in. the. contents. of. these. compounds.63. Natural.biological.variation,.including.nutrient.variation,.of.individual.plants.grown.under.the.same.conditions.is.expected,.given.the.influences.of.differences.in.plant.devel-opment,.metabolism,. and.biotic. factors.63,64.However,. the.differences.between. the.transgenic.and. the.progenitor. cultivar.can. also.be.attributed. to. somaclonal.varia-tion,. given. that. the. transformation. of. many. crops,. including. papaya,. involves. an.adventitious. regeneration. protocol,. and. in. some. cases,. 2,4-dichlorophenoxyacetic.acid,65–68. a.plant.growth. regulator.known. to. introduce.genetic.mutations,. is.used..Nonetheless,.backcrossing.to.the.original.parental.variety.(and.selecting.progeny.with.appropriate.traits).effectively.eliminates.composition.alterations.caused.by.tissue.

Page 284:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

270 Transgenic Horticultural Crops: Challenges and Opportunities

culture.methods.69.It.is.important.to.also.note.that.variation.in.composition.is.not.limited.to.transgenic.crops.generated.by.recombinant.DNA.technologies.and.tissue.culture.methods..Nutritional.variation.has.been.reported.for.a.number.of.plant.prod-ucts.derived.from.conventionally.bred.varieties,.and.ranges.for.most.of.the.compo-sitional.variables.are.available.in.the.literature.70.Variation.in.conventional.crops.is.attributed.to.genetics.as.well.as.preharvest.conditions,.maturity.at.harvest,.harvest-ing.methods,.postharvest.handling,.and.storage.conditions.

Although.numerous.animal.studies.have.been.conducted.with.transgenic.crops.carrying. cry. insecticidal,. cowpea. trypsin. inhibitor,. phytase,. and. snowdrop. lec-tin. genes,58. there. are. only. a. few. published. studies. on. the. safety. assessment. of.whole.foods.derived.from.transgenic.crop.plants.transformed.with.viral.coat.pro-tein.genes..Presumably.viral.coat.proteins.are.not.regarded.as.potential.allergens.or.toxins.given.the.physicochemical.and.structural.properties.of.the.proteins.and.the. low.exposure. levels.due. to. low.or.undetectable. transgene.protein.expression.(because.of.RNA.silencing)..For.transgenic.viral.proteins.expressed.in.commer-cialized.horticultural.crops,.sequence.relatedness.of.35%.(or.higher).or.a.continuous.stretch.of.eight.amino.acids.is.not.shared.with.known.allergens.71.Moreover,.resis-tance. to. digestion. under. acidic. conditions. has. not. been. demonstrated.2,72,73. It. is.important.to.bear.in.mind.that.many.of.the.crop.plants.available.in.commerce.contain.natural.toxins.and.allergens.48.Peanuts,.tomatoes,.soybeans,.kiwi,.and.potatoes.are.a.few.examples.

durabIlIty and SpecIfIcIty of enGIneered reSIStance to vIruSeS In plantS

The. issues. of. broad-spectrum,. durable. resistance. with. regard. to. virus-resistant.transgenic. horticultural. crops. do. not. conceivably. have. any. impact. on. the. envi-ronment.and.human.health..If.the.engineered.resistance.to.viruses.were.to.show.limitations. in. terms. of. durability. and. specificity,. it. would. likely. only. create. an.agronomic.problem.and.affect.growers.2.However,.these.issues.should.be.considered.in.light.of.an.effective.management.of.the.technology.

Breakdown of Engineered Virus ResistanceThe.risk.that.virus.resistance.may.break.down.or.not.prove.durable.is.not.unique.to.virus-resistant.transgenic.crops..It.is.a.risk.shared.by.conventional.crops.and.other.transgenic.technologies.including.the.pest.resistance.of.Bt.crops..The.durability.of.resistance.refers.to.the.ability.of.a.gene.conferring.resistance.to.hold.up.over.time.after.being.widely.deployed..In.the.case.of.virus.resistance,.however,.the.potential.mechanisms.for.resistance.breakdown.are.different..As.alluded. to.previously,.one.potential.breakdown.of.resistance.could.occur.if.virus.isolates.that.are.genetically.divergent.enough,.at.the.nucleotide.sequence.level,.from.the.transgene.are.not.rec-ognized.by. the.RNA.silencing.machinery.and.are.subsequently.capable.of. infect-ing.the.genetically.modified.host.plant..Another.potential.mechanism.of.resistance.breakdown. centers. on. the. virus’. ability. to. mutate. in. such. a. way. as. to. overcome.the. resistance. triggered. by. the. transgene.. A. third. potential. mechanism. for. resis-tance.breakdown.involves.infection.of. the.resistant.host.plant.with.a.heterologous.virus74,75. encoding. a. strong. suppressor. of. gene. silencing.. This. heterologous. virus.

Page 285:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

271Virus-Resistant Transgenic Horticultural Crops

might.suppress.the.host.resistance.provided.by.the.host.transgene,.thereby.allowing.the.host. to.be. infected.by. the.original.virus. toward.which. their. resistance.had.been.targeted.

Though.each.of.these.mechanisms.could.lead.to.a.potential.breakdown.in.host.resistance,. it. is. important. to. note. that. the. risk. of. resistance. breakdown. is. not.unique. to.virus-resistant. transgenic. crops.nor. is. it. unique. to. transgenic. crops..Resistance.breakdown.is.also.an.issue.associated.with.the.deployment.of.resis-tance.genes.derived.via.traditional.breeding..Pathogens.capable.of.overcoming.deployed. resistance. genes. have. been. extensively. documented;76. likewise,. the.deployment.of.new.resistance.genes.has.been.shown.to.alter.pathogen.popula-tions.to.overcome.that.resistance.76.Initial.infection.by.a.virus.not.targeted.by.a.traditional.breeding-derived.resistance.gene.has.also.been.shown.to.lead.to.a.break-down.of.the.resistance.to.the.virus.targeted.by.the.resistance.gene77—analogous.to.the.breakdown.of.resistance.due.to.a.co-suppressor.of.RNA.silencing..Therefore,.it. is.unclear.how. the.risks.of.breakdown.(with. transgenic.virus. resistance).are.substantially.different.from.those.associated.with.the.use.of.resistance.genes.in.traditional.breeding.

Specificity of Engineered Virus ResistanceAnother.concern.unique.to.virus-resistant.transgenic.technology.is.the.so-called.specificity. of. resistance. provided. by. the. transgene.. As. has. been. shown. previ-ously,78. the. resistance. provided. by. the. transgene. might. only. be. specific. to. the.virus.isolate.from.which.it.was.derived.and.a.few.closely.related.isolates..Though.previously.not.well.understood,.the.current.understanding.of.RNA.silencing.sug-gests.that.this.may.be.due.to.the.sequence.specificity.of.the.resistance.mechanism.itself..Since.the.RNA.silencing.mechanism.relies.on.the.alignment.of.cleaved.frag-ments.of.the.target.RNA.in.the.search.for.invading.RNA.sequences,.divergence.at.the.sequence.level.(over.∼10%).can.lead.to.an.apparent.breakdown.in.resistance.79.However,. this.has.not.been. shown. to.be. the. case.with.all. of. the.virus-resistant.transgenic.plants,80.as.a.single.transgene.is.able.to.confer.resistance.to.challenge.from. numerous. isolates. of. the. same. virus.81. Also,. it. is. important. to. note. that.similar.specificity.has.been.shown.with.resistance.genes.derived.from.traditional.breeding,82.and.it.is.unclear.how.the.resistance.provided.in.the.transgenic.case.is.substantially.more. specific. than. the. resistance.provided.by. the.resistance.genes.derived.by.traditional.breeding.

EXAMINATION OF RISKS ASSOCIATED WITH COMMERCIALIZED TRANSGENIC HORTICULTURAL CROPS

Once.safety.issues.associated.with.transgenic.horticultural.crops.are.identified,.how.are.risks.assessed?.How.does.one.examine.the.significance.of.risk.assessment.data?.When.is.there.enough.evidence.to.start.drawing.conclusions.on.the.safety.of.trans-genic.horticultural. crops?. From. risk. assessment. conclusions,. are. there. any. safety.issues.that.need.to.be.examined.further?.Or,.are.there.any.that.can.be.put.to.rest,.so.to.speak?.In.the.following.section,.we.address.these.questions.with.regard.to.virus-resistant.transgenic.horticultural.crops.

Page 286:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

272 Transgenic Horticultural Crops: Challenges and Opportunities

Given.the.tremendous.amount.of.transgenes.that.have.been.engineered.to.provide.virus.resistance.and.the.numerous.crops.that.these.genes.have.been.introduced.into,.there.is.a.staggering.amount.of.scientific.literature.on.resistance.to.viruses.in.trans-genic.crop.plants.17

To.focus.our.efforts.on.findings.that.we.believe.to.be.the.most.relevant,.we.have.chosen.to.examine.risk.assessment.of.virus-resistant.transgenic.horticultural.crops.already.commercialized. (e.g.,.papaya,. summer.squash,. tomato,.and.sweet.pepper).or.awaiting.deregulation.(e.g.,.plum)..In.our.examinations,.we.will.rely.primarily.on.realistic.field.studies,.which.may.provide.the.most.accurate.reflection.of.risks,.and.to.a.lesser.extent.on.laboratory.and.greenhouse.studies..We.will.look.at.the.conclusions.that.can.be.made.about.the.safety.of.virus-resistant.transgenic.horticultural.crops.by.analyzing.the.significance.of.risk.assessment.studies,.as.well.as.at.identifying.gaps.in.knowledge.where.further.experimental.evidence.may.be.needed.before.conclusions.can.be.drawn.with.respect.to.the.safety.of.these.crops.

SQuaSh reSIStant to cucumber mosAic Virus, zucchini Yellow mosAic Virus, and wAtermelon mosAic Virus

BackgroundThe.first.disease-resistant.transgenic.crop.to.be.commercialized.in.the.United.States.was.transgenic.summer.squash..This.squash,.which.possesses.resistance.to.ZYMV.and.WMV,.was.deregulated.in.1994.2,3.Another.summer.squash.cultivar.resistant.to.CMV,.ZYMV,.and.WMV.was.later.released.in.1996.2–4.Virus-resistant.transgenic.squash.possess.the.coat.protein.genes.from.each.virus..Early.testing.indicated.that.they. provide. high. resistance. to. viral. infection1,3,4. and. prevent. viral. epidemics. by.reducing.secondary.plant-to-plant.spread.83.No.similar.resistance.to.multiple.viruses.is.available.in.traditionally.bred.commercial.summer.squash.2

Squash.is.unique.among.commercial. transgenic.plants. in.that. it. is.monoecious.and.readily.outcrosses,44.emphasizing. the.significance.of.gene.flow.issues. for. this.crop..Since.the.center.of.origin.for.many.squash.species.is.in.the.southern.United.States. and. Mexico,42. the. commercialization. of. virus-resistant. transgenic. squash.marks.the.first.transgenic.crop.to.be.released.within.its.center.of.origin.

Risk StudiesAs.summer.squash.was.the.first.virus-resistant.crop.with.a.coat.protein.transgene.to.be.commercialized,. the.potential.allergenicity.and.impacts.on.human.health.were.considered.extensively.46.No.significant.difference.in.protein,.total.fat,.dietary.fiber,.carbohydrate,.calories,.vitamins.A.(and.its.precursor,.β-carotene).and.C,.calcium,.iron,.sodium,.ash,.moisture,.and.sugar.profiles.(fructose,.glucose,.sucrose,.maltose,.and.lactose).was.found.between.transgenic.and.non-transgenic.squash.46.Also,.an.exami-nation. into. human. consumption. of. virus-infected. non-transgenic. summer. squash.fruits.led.to.the.conclusion.that.there.was.likely.to.be.no.significant.negative.impact.on.human.health.beyond.those.of.virus-infected.traditionally.bred.squash.cultivars.with.which.consumers.have.a.long.history.of.exposure.to.without.any.clear.hazards.arising.46

Page 287:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

273Virus-Resistant Transgenic Horticultural Crops

Field.trials.relating.to.gene.flow.from.virus-resistant.transgenic.summer.squash.to.a.free-living.relative.(C. pepo.ssp..ovifera.var..texana).and.the.persistence.of.trans-genes.among.hybrids.of.transgenic.and.free-living.C. pepo.have.been.carried.out..Gene.flow.occurred.with.sympatric.populations.(populations.of.related.species.exist-ing.in.the.same.geographic.area).under.conditions.of.low.disease.pressure.84.Hybrid.plants.containing.transgenes.were.likely.to.produce.more.fruit,.seed,.and.be.more.vigorous. than.free-living.C. pepo. and.non-transgenic.hybrids.under.conditions.of.high.disease.pressure.85.This.was.not. true.under.conditions.of. low.virus.pressure,.where.free-living.plants.outperformed.the.transgenic.hybrids.85.These.results.clearly.indicated.the.advantage.that.the.transgenes.might.provide.under.conditions.of.high.disease.pressure,.although.it.is.not.clear.whether.this.poses.a.significant.risk.in.terms.of.population.dynamics..Surveys.of.free-living.C. pepo.for.viruses.in.areas.where.transgenic.summer.squash.had.not.yet.been.released.showed.an.extremely.low.inci-dence.of.viruses,.including.CMV,.ZYMV,.and.WMV.86.These.results.suggested.that.viruses.have.a.limited.effect.on.the.dynamics.of.free-living.C. pepo.populations.86.Also,. the. studies. on. gene. flow. and. its. consequence. in. squash. do. not. necessarily.indicate.any.risk.of.engineered.virus.resistance.beyond.that.of.conventionally.bred.resistance.genes,.as.far.as.free-living.populations.are.concerned.2

An.additional. study.by.Fuchs.et.al.4. investigated. the. likelihood.of. transencap-sidation. in. transgenic. squash,. tomato,.and.melon,. so.as. to.allow.the. transmission.of. an. aphid. non-transmissible. strain. of. CMV. by. aphids. through. interaction. with.the.coat.protein.transgene.derived.from.an.aphid.transmissible.strain.of.CMV..The.results.of.this.study.failed.to.demonstrate.that.transencapsidation.could.occur.over.two. consecutive. growing. seasons.4. However,. transencapsidation. of. an. aphid. non-transmissible.strain.of.ZYMV.likely.occurred.in.transgenic.squash.expressing.the.coat.protein.gene.of.an.aphid.transmissible.strain.of.WMV.at.a.very.low.rate.and.without.triggering.an.epidemic.87

Similarly,.virus-resistant.transgenic.summer.squash.had.no.effect.on.the.genetic.diversity.of.CMV.strains,. suggesting. that. these.plants.did.not. facilitate. the.emer-gence.of.recombinant.viruses.88

papaya reSIStant to PAPAYA ringsPot Virus

BackgroundAn.early.success.story.in.the.development.and.commercialization.of.virus-resistant.transgenic. fruit. crop. plants. is. the. case. of. papaya. resistant. to. PRSV.6. This. virus.causes.one.of. the.most.devastating.viral.diseases.of.papaya..There.is.no.practical.resistance.known.to.PRSV.in.Carica.germplasm;.therefore,.control.of.this.virus.has.relied.on.exclusion,.movement. to.new.growing. regions.where.PRSV. is.not. found.(often. involving. the.destruction.of.native. rainforest. habitats),. and. the.use.of.mild.isolates.of.PRSV.in.attempts.to.control.the.disease.via.cross-protection.6.PRSV.is.an.aphid-borne.potyvirus.and.can.readily.spread.over.long.distances.by.its.vectors..Papaya.is.grown.in.tropical.and.semitropical.regions.and.Hawaii.is.by.far.the.largest.producer.of.papaya.in.the.United.States..The.production.center.for.Hawaiian.papaya.is.in.the.Puna.district.of.the.island.of.Hawaii..Production.from.this.district.comprises.

Page 288:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

274 Transgenic Horticultural Crops: Challenges and Opportunities

over.95%.of.the.total.Hawaiian.papaya.production..In.1992,.PRSV.was.discovered.in.Hawaii’s.Puna.district5.and.within.3.years.nearly.all.of.the.plants.in.Puna.were.severely.affected..By.1997,.papaya.production.had.declined.by.36%.from.21,800.tons.(at.the.start.of.the.outbreak).down.to.14,000.tons.6

Transgenic. papaya. cultivars,. ‘SunUp’. and. ‘Rainbow,’. resistant. to. PRSV. were.released.in.1998.and.widely.planted.in.Hawaii.providing.effective.virus.control.and.allowing.for.increased.papaya.production.(from.the.low.in.1998).2,6.Since.the.release.of.the.PRSV-resistant.transgenic.papaya.in.Hawaii,.additional.papaya.cultivars.resis-tant.to.PRSV.containing.other.PRSV.coat.protein.transgenes.have.also.been.devel-oped.in.Australia,.Florida,.Brazil,.Taiwan,.Jamaica,.the.Philippines,.Thailand,.and.Venezuela.68,81,89–94.The.transgenic.varieties.are.at.various.stages.of.development.and. evaluation..Other. transgenic.papaya.purportedly. resistant. to.PRSV.have.also.been.developed.utilizing.the.viral.replicase.gene67.but.the.major.focus.here.will.be.on.PRSV-resistant.papaya.involving.the.coat.protein.gene.

Risk StudiesSince.the.development.and.commercial.release.of.transgenic.papaya.expressing.the.coat.protein.gene.of.PRSV,.numerous.experiments.and.field.trials.have.probed.the.potential.risks.associated.with.this.transgenic.technology.

As.one.of.the.first.widely.commercialized.fruit.crops,.there.has.been.much.inter-est.in.the.effects.of.the.coat.protein.transgene.on.human.health.and.potential.aller-genicity.as.well.as.investigations.into.compositional.changes.in.fruit.with.respect.to.nutrient.and.antinutrient.content..Descriptions.of. transgenic.papayas.developed. in.Hawaii.report.on.percent.soluble.solids.above.the.minimum.required.for.commercial.fruit.and.yields.of.almost.three.times.those.of.industry.averages.5.Comparable.values.for.vitamin.C.and.minerals.(potassium,.phosphorus,.calcium,.magnesium,.sodium,.iron,.copper,.zinc,.and.boron).for.the.transgenic.and.non-transgenic.cultivars.have.been.published.95,96.Also,.no.evidence.of.ill.effects.has.been.linked.to.the.consump-tion.of.transgenic.papaya.in.the.United.States.and.Canada.2

Another.study.on.transgenic.papaya.from.Thailand.reported.on.comparable.nutri-ent.composition.with.the.non-transgenic.counterpart.93.Recently,.the.levels.of.nutrients.(protein,.fat,.carbohydrate,.minerals).and.antinutrients.(oxalates,.hydrocyanic.acid,.and.benzyl.isothiocyanate).in.three.transgenic.papaya.lines.expressing.a.PRSV.coat.protein.gene.construct,.which.are.not.currently.available.on.the.market,.were.com-pared.to.those.of.the.commercial.papaya.cultivar.‘Sunrise.solo’.grown.under.the.same.conditions.in.an.experimental.plot.in.Jamaica.73.Since.papaya.is.a.climacteric.fruit,.three.stages.of.maturity.were.considered.to.facilitate.an.evaluation.of.the.changes.in.various.parameters.that.accompany.the.ripening.process.after.harvest..With.the.exception.of.one.transgenic.line,.no.significant.differences.were.observed.in.selected.nutrients.and.antinutrients.between.the.control.and.test.samples.at. three.stages.of.maturity,. although. a. few. random. variations. were. noted.73. Overall,. the. composi-tional.changes.over.the.three.maturities.were.as.expected.and.comparable.to.those.reported.97–99.Sugars,.vitamin.C,.and.carotenoids.followed.a.general.upward.trend,.whereas.slight.decreases.in.moisture,.ash,.and.fat.at.the.final.stage.of.ripening.were.observed.. Some. variability. in. the. concentrations. of. the. three. antinutrients. tested.was.observed,.but.the.values.were.within.the.range.of.concentrations.reported.for.

Page 289:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

275Virus-Resistant Transgenic Horticultural Crops

the.parental.variety.100.A.general.trend.of.decreasing.antinutrient. levels.was.noted.during.ripening.in.transgenic.and.control.fruits..Similar.nonsignificant.variations.in.selected.horticultural.traits.(water,.lipid,.nitrogen,.protein,.reducing.sugar,.vitamin.A.(and.its.precursor),.vitamin.C).were.obtained.with.transgenic.papaya.expressing.the.replicase.gene.of.a.PRSV.isolate.from.the.People’s.Republic.of.China.67,101

Recently,. Powell. et. al.102. evaluated. the. safety. of. transgenic. papaya. in. a. sub-chronic.feeding.study..A.diet.formulated.with.10%.transgenic.papaya,.the.equivalent.of.twice.the.average.daily.human.consumption.of.fresh.papayas.based.on.food.con-sumption.data.from.the.Caribbean.and.Latin.America,103,104.was.administered.to.rats.for.90.consecutive.days..For.comparison,.reference.non-transgenic.papaya.‘Sunrise.solo’,.from.which.the.transgenic.papaya.was.derived,.and.a.control.laboratory.rodent.diet.formulation.were.also.evaluated..Markers.of.general.health,. including.body.weight,. food. intake,. and.activities.of.plasma,. liver,. and.kidney. function. enzymes.(acid.and.alkaline.phosphatases.and.alanine.and.aspartate.transaminases).were.com-parable.for.the.test,.reference,.and.control.groups..No.significant.effects.were.observed.in.organ.weights.or.histopathology.102.Changes.in.the.liver.and.kidney,.the.sites.of.biotransformation.and.detoxification,.and.of.excretion.of.metabolic.waste.products,.respectively,.were.not.observed.102.Overall,.the.plasma.cholesterol.levels,.which.are.markers. of. cardiovascular. risk,. were. similar. to. the. control. as. were. triglycerides,.which.are.biomarkers.for.hepatotoxicity..Although.not.statistically.relevant,.varia-tions.in.the.values.of.the.parameters.monitored.with.the.control,.reference,.and.test.groups.were.observed.102.Based.on.literature.ranges,.the.variations.were.attributed.to.natural.biological.fluctuations.and.were.not.regarded.as.reflecting.a.toxicologically.meaningful.effect.

In.addition.to.looking.at.the.effect.of.transgenes.on.papaya.fruit,.other.researchers.have.focused.on.the.effects.of.transgenic.papaya.on.nontarget.organisms.including.soil.microbial.organisms..Hsieh.and.Pan,105.looking.at.populations.of.fungi,.bacteria,.and.actinomycetes.present.in.the.soil.from.field.plantings.of.both.transgenic.and.non-transgenic.fields,.found.highly.similar.(>80%).populations.in.both.soil.environments.(transgenic.vs..non-transgenic).as.well.as.in.upper.and.lower.soils.within.the.environ-ments..These.authors.concluded.that.the.planting.of.transgenic.papaya’s.effect.on.the.soil.microorganisms.is.limited.105.Minor.effects.on.nontargets.have.been.observed,106.but.these.effects.are.varied.and.not.consistent.across.all.virus-resistant.transgenic.crops..Another.study,.also.examining.the.effects.of.transgenic.papaya.on.the.soil,.relied.upon.polymerase.chain.reaction.to.determine.the.persistence.and.availability.of. transgenic. genes. that. may. be. released. by. transgenic. papaya. during. growth.107.Though. transgenic.DNA.was.detected.at. low.levels,.no.gene. transfer.events. from.soil.DNA.extracts.to.Acinetobacter.(a.bacterium.well.known.for.its.ability.to.uptake.foreign.DNA).were.observed.107

tomato and Sweet pepper reSIStant to cucumber mosAic Virus

BackgroundWith.regard.to.transgenic.tomato.and.sweet.pepper.engineered.for.CMV.resistance,.the. body. of. publications. is. much. smaller. than. for. the. aforementioned. transgenic.crops..Transgenic.tomato.and.sweet.pepper.containing.the.coat.protein.gene.from.

Page 290:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

276 Transgenic Horticultural Crops: Challenges and Opportunities

a.local.isolate.of.CMV.were.released.in.the.People’s.Republic.of.China.108.CMV.is.a.cucumovirus.that.is.transmitted.in.a.nonpersistent.manner.by.several.aphid.spe-cies.109.It.has.the.widest.host.range.of.any.known.plant.virus.with.1300.species.in.more. than.500.genera.of.over.100. families..Control.of.CMV.can.be.achieved.by.planting.resistant.crops.but.resistance.in.many.crops.species.is.often.not.available.to.a.broad.range.of.CMV.strains.109

Risk StudiesA. study. on. gene. flow. was. performed. with. transgenic. sweet. pepper. and. tomato.by. Ming. et. al.110. Seeds. and. pollen. of. many. different. plants. at. varying. distances.from.fields.of.transgenic.plants.were.examined.to.determine.whether.gene.flow.had.occurred..Selection.of.seedlings.on.antibiotic-containing.medium.and.polymerase.chain.reaction.were.used.to.monitor.transgene.movement,.but.transfer.of.transgenes.was.not.detected.110

For. assurance. of. food. safety,. transgenic. sweet. peppers. and. tomatoes. express-ing.the.coat.protein.gene.of.CMV.were.evaluated.in.animal.feeding.studies.108.The.animals.received.about.12,600.and.7100.times.the.average.daily.human.consump-tion.of.sweet.peppers.and.tomatoes,.respectively..Comparable.performance.of.rats.fed.transgenic.and.non-transgenic.diets.was.demonstrated.108.Significant.differences.were.not.reported.in.mean.weekly.body.weights,.body.weight.gains,.or.food.con-sumption.of. rats. fed. transgenic.or.non-transgenic. sweet.pepper. and. tomato.diets..Similarly,. significant. differences. were. not. observed. with. the. hematological. and.blood. biochemical. parameters. monitored. (including. cholesterol. and. triglyceride),.although.fluctuations.in.the.values.were.observed.108.In.another.study,.Cai.et.al.111.conducted.30-day.acute.toxicity.(LD50).experiments.with.male.and.female.rats.and.mice. using. gavage. administration. of. a. series. of. doses. ranging. from. 1. to. 10.g/kg.body.weight.of.dry.pepper.fruit.containing.the.coat.protein.gene.of.TMV.and.CMV..Abnormalities.in.body.weights,.organ.weights,.histopathology,.and.hematology.were.not.observed.111

EXAMINATION OF RISKS ASSOCIATED WITH TRANSGENIC PLUM WHICH IS UNDER CONSIDERATION FOR DEREGULATION

backGround

Though. not. yet. commercially. available,. the. transgenic. plum. cultivar. ‘Honey.sweet’.(aka.C5).resistant.to.Plum pox virus.(PPV).has.been.deregulated.by.the.U.S..Department.of.Agriculture’s.Animal.and.Plant.Health.Inspection.Service.(USDA-APHIS).and.registered.by.the.Environmental.Protection.Agency.(EPA).in.the.United.States.and.is.being.widely.tested.in.Europe.under.varying.growing.conditions..PPV.is.a.potyvirus.that.is.considered.the.most.important.pathogen.in.Prunus.by.the.U.S..and.E.C..agencies.112.Conventional.breeding.has.not.been.able.to.produce.any.trees.of.commercially.acceptable.varieties.with.high.resistance.to.PPV..Therefore,.control.of.PPV.has.relied.on.prevention.via.certified.planting.material,.quarantine.measures,.and.eradication.112.PPV.is.spread.by.multiple.aphid.species,.but.control.of.the.vector.is.not.feasible.for.both.efficacy.and.environmental.impact.reasons.113

Page 291:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

277Virus-Resistant Transgenic Horticultural Crops

Transgenic.plum.trees.containing.multiple.copies.of.the.PPV.coat.protein.gene.were.developed114.and.line.C5.was.shown.to.be.highly.resistant.to.PPV.infection.113.The.involvement.of.the.posttranscriptional.RNA.silencing.mechanism.in.the.resis-tant.line.C5.was.confirmed.115,116.Clone.C5.was.tested.extensively.in.the.field.in.the.Czech.Republic,.Poland,.Romania,. and.Spain. to.demonstrate. the.effectiveness.of.the.engineered.resistance..Transgenic.C5.trees.all.remained.free.from.PPV.infec-tion.even.6117,118.and.8.years.after.transfer.to.the.field,119.while.100%.of.the.control,.non-transgenic.trees.were.infected.with.PPV.after.these.periods..Though.these.data.indicate. the. durability.of. the. engineered. resistance. to. PPV,. trees. inoculated. with.PPV. via. chip. budding. exhibited. very. mild. symptoms. after. several. years,. though.these.symptoms.did.not.progress.to.severe.118,119

rISk StudIeS

Fruit.compositional.analyses. indicated. that.PPV-resistant. transgenic.C5. is. typical.for. P. domestica. plums. in. terms. of. protein,. total. fat,. antioxidant. capacity,. pheno-lics,.starch,.dietary.fiber,.ash,.moisture,.acidity,.carbohydrates,.sugar.profiles.(glucose,.sucrose,.lactose,.maltose,.and.fructose),.calcium,.magnesium,.sodium,.potassium,.iron,.and.vitamins.A,.B1,.B2,.B3,.and.C.120

The.potential.for.viral.recombination.between.transgene.transcripts.and.incoming.PPV.RNA.was.examined.in.transgenic.plums.as.well.as.the.effects.of.PPV-resistant.transgenic.plums.on.aphid.vector.populations.121.Utilizing.transgenic.European.plum.lines.as.well.as.non-transgenic.plums.from.an.experimental.orchard.and.Japanese.plums.from.an.external.control.plot,.85.PPV.isolates.were.collected.from.these.three.popu-lations.of.trees.and.their.genetic.diversity.was.compared..Looking.at.variable.regions.of. the. PPV. genome. including. the. coat. protein.gene,. no. significant.differences. in.genetic.variability.were.found.among.isolates.from.the.three.populations,.indicating.that.the.PPV.populations.were.not.being.selectively.altered.in.the.transgenic.trees.121.Subsequent.analysis.of.12.PPV.isolates.showed.no.detectable.recombinant.virus.121.Of.note.in.this.experiment,.C5.could.not.be.used.as.a.source.of.virus.isolates.for.testing.since.it.remained.free.from.infection.8.years.after.natural.exposure.to.PPV.populations..Recombination.in.C5.trees.therefore.would.have.been.impossible.due.to.lack.of.virus.infection.

For.assessing.the.impact.of.transgenic.plums.on.nontarget.organisms,.the.diver-sity.of.aphid.populations.visiting.transgenic.and.non-transgenic.plums.was.investi-gated.121.Aphids.were.captured,.identified,.counted,.and.their.viruliferous.potential.was.subsequently.characterized..These.comparisons.found.no.significant.differences.between.the.aphid.populations.from.either.transgenic.or.control.plums.in.terms.of.total.aphid.numbers,.aphid.species.distributions,.and.viruliferous.potential.over.the.2.year.period.of.the.study.121.To.test.the.effect.of.heterologous.viruses.on.the.stability.of.RNA.silencing.in.transgenic.plum.line.C5,.trees.were.graft-inoculated.with.differ-ent.combinations.of.PPV.and.either.Prunus necrotic ringspot virus.(PNRSV),.Prune dwarf virus.(PDV),.or.Apple chlorotic leafspot virus.(ACLSV).75.PNRSV,.PDV,.and.ACLSV.are.common.in.Prunus.sp..The.engineered.resistance.to.PPV.was.stable.and.was.not.suppressed.by.the.presence.of.heterologous.viruses.during.a.3.year.field.trial.in.Romania.and.Spain.75

Page 292:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

278 Transgenic Horticultural Crops: Challenges and Opportunities

OVERVIEW OF RISK LESSONS OF TRANSGENIC HORTICULTURAL CROPS

Based.on.the.existing.body.of.research.into.the.potential.risks.posed.by.virus-resistant.genetically.modified.horticultural.crops,.there.appears.to.be.a.significant.amount.of.evidence.that.these.crops.have.little.to.no.detrimental.impact.on.the.environment.and.human.health.beyond.those.of.conventional.horticultural.crops.

The.work.on.summer.squash.supports.the.aforementioned.claim.that.transencap-sidation.is.not.a.significant.environmental.risk.beyond.that.already.posed.by.multiple.infected.conventionally.bred.plants.4,87.This. is.also. true. for. the.risks.of.gene.flow.to.free-living.relatives84–86.and.human.health.effects,.specifically.on.allergenicity.46.Furthermore,.there.is.a.documented.safe.release.of.this.transgenic.crop.over.the.past.12.years.in.the.United.States.2

In. the.case.of.papaya,. the.results. from.the.allergenicity.and.nutritional.experi-ments. seem. to. very. strongly. refute. risks. to. human. health.73,93,102,111. The. threat. of.negative.nontarget.effects.appears.to.be.lessened.though.the.papers.published.on.this.topic.are.very.limited.in.scope.105–107.With.respect.to.the.other.areas.of.risk,.direct.experimental.evidence.does.not.appear.to.exist.in.sufficient.quantities.to.make.any.firm.conclusions.on.transencapsidation,.recombination,.and.gene.flow..However,.the.safe.commercial.use.of. transgenic.papaya.over.a.decade.and.evidence.from.other.transgenic.crops.may.speak.to.some.of.these.issues.enough.to.be.extrapolated.to.the.PRSV.papaya.case.2

The.work.on.plums.supports.the.fact.that.recombination.is.unlikely.to.facilitate.the.emergence.of.virus.species.with.altered.or.new.biological.properties.beyond.the.occurrence. in.conventional.plums.subjected. to.mixed.virus. infection.121.This.also.applies. to. the. risks. on. nontarget. organisms.121. It. is. doubtful. that. transencapsida-tion.could.occur.to.a.meaningful.level.in.transgenic.plum.line.C5,.because.of.unde-tectable.levels.of.PPV.coat.protein.115–117.This.also.casts.doubt.on.whether.the.coat.protein.is.expressed.at.a.meaningful.level.to.have.human.health.impacts.differing.significantly.from.those.seen.in.PPV-infected.non-transgenic.plums.

Based.on.the.information.from.the.transgenic.tomato.and.sweet.pepper,.there.is.further.evidence.to.support.the.claim.that.gene.flow.is.not.a.major.concern.in.this.case.109. Most. significantly,. the. animal. feeding. studies. give. further. support. to. the.safety.of.virus-resistant.transgenic.crops.expressing.viral.coat.protein.genes.108,111

Similar.conclusions.on.the.risk.assessment.of.other.transgenic.horticultural.crops.have.been. reported..The.only.Bt.horticultural. crop.commercially.available. in. the.United.Stated.is.Bt.sweet.corn,.although.other.Bt.transgenic.vegetables.(i.e.,.cauli-flower,.cabbage,.and.eggplant).are.being.considered.for.commercialization.in.India.62.Studies. have. shown. that. Bt. sweet. corn. provides. consistently. excellent. control. of.lepidopteran.pests..This. technology.also.substantially. reduces. insecticide.applica-tions.and.better.preserves.predators.of.the.European.corn.borer.than.commonly.used.broad-spectrum. insecticides.62. Bt. sweet. corn,. like. virus-resistant. summer. squash.and.papaya,.are.consumed.in.the.United.States.with.no.ill.effects.reported.

In.summary,.transgenic.horticultural.crops.have.become.important.components.of. disease. and. pest. management. programs. in. the. United. States. and. the. People’s.Republic.of.China..Their.adoption.rate.is.constantly.increasing.since.their.first.release.

Page 293:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

279Virus-Resistant Transgenic Horticultural Crops

in.the.mid-1990s..Safety.issues.have.been.expressed.during.their.development.and.release,.but.most.of.these.risks.are.the.same.or.similar.to.those.posed.by.tradition-ally.bred.plants.with.host.resistance..Since.the.commercialization.of.virus-resistant.transgenic.squash.in.1996,.considerable.data.have.been.gathered.from.many.parts.of.the.world.on.the.effects.on.the.environment.and.human.health.of.virus-resistant.and.Bt.horticultural.crops..From.these.studies,.some.general.trends.have.emerged..Commercialized.summer.squash,.tomato,.sweet.pepper,.and.papaya.expressing.viral.coat.protein.genes,.and.Bt.sweet.corn.have.effectively.controlled.viruses.and.species.of.Lepidoptera,.respectively..Also,.extensive.research.has.been.published.showing.that.these.transgenic.crops.have.little.to.no.impact.on.the.environment.and.human.health.beyond.those.of.virus-infected.plants.in.natural.settings,.in.traditional.agricul-ture,.and.exposed.to.conventional.pest.management.strategies.2,14,45,62,121,122

PERSPECTIVES

IntroductIon

Since.the.initial.discovery.of.engineered.resistance.to.viruses.via.expression.of.the.TMV.coat.protein.gene.in.plants,16.pathogen-derived.resistance10.and.coat.protein-mediated.resistance.have.proven.to.be.effective.tools.to.control.viruses.in.horticul-tural.crops.17.As.discussed,.PRSV,.ZYMV,.CMV,.and.WMV.have.been.effectively.controlled.in.commercial.settings.of.transgenic.papaya,.summer.squash,.tomato,.and.sweet.pepper.with.the.use.of.coat.protein.genes..In.addition,. in.2007.alone,.more.than.25.field.trial.permits.for.resistance.against.other.viruses.were.granted.by.the.USDA-APHIS.123.Target.viruses.included.Tomato spotted wilt virus,.Beet necrotic yellow vein virus,. Sorghum mosaic virus,. Grapevine fanleaf virus,. Grapevine leafroll-associated virus 2,. Grapevine leafroll-associated virus 3,. Citrus tristeza virus,.Cassava mosaic virus,.Sugarcane mosaic virus,.Sugarcane yellow leaf virus,.Papaya leaf distortion mosaic virus,.PPV,.and.PVY.123

In. recent. years,. new. knowledge. of. the. mechanism. behind. engineered. virus.resistance. has. been. gained.. This. has. greatly. expanded. the. potential. for. utilizing.the.antiviral.pathways.of.RNA.silencing.to.control.plant.viral.diseases..Though.all.the.currently.available.commercial.virus-resistant.transgenic.crops.utilize.the.coat.protein-mediated.resistance,.recent.publications,.patents,.and.field.trial.data.reveal.that. there. are. many. alternative. approaches. currently. in. the. pipeline. to. engineer.virus.resistance.in.plants..Transgenes.incorporating.short.fused.sequences.derived.from.different.viral.strains.have.been.engineered.successfully.to.provide.resistance.to.several.virus.species.124.Other.methods.which,.unlike.the.RNA.silencing-based.approaches,.do.seem.to.depend.on.protein.production.have.also.been.shown.to.have.some.promise,.including.the.use.of.defective.viral.movement.protein.and.replicase.genes.25.The.risks.that.these.gene.constructs.pose.are.not.yet.fully.determined.and.are.likely.different.from.those.risks.already.discussed.with.regard.to.the.viral.coat.protein.gene..Though.the.risk.assessment.of.the.coat.protein.technology.has,.as.dis-cussed,.alleviated.most.of.the.concerns.of.this.technology,.questions.remain.about.the.new.technologies.that.are.becoming.available..Do.they.alleviate.any.of.the.prob-lems.of.the.existing.technology?.Do.they.raise.new.safety.issues.that.may.pose.their.

Page 294:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

280 Transgenic Horticultural Crops: Challenges and Opportunities

own.potential.risks?.Do.they.alleviate.a.previous.concern.that.was.no.longer.seen.as.a.problem.only.to.raise.new.issues.that.are.potentially.more.difficult.to.assess?.In.the.following.section,.we.will.describe.some.of.the.latest.approaches.toward.virus.resistance.in.transgenic.plants.and.discuss.if.and.how.these.technologies.alleviate.some.of.the.existing.concerns.

future trendS

Given. the. discovery. and. elucidation. of. the. antiviral. pathways. of. RNA. silencing,.many.new.approaches.have.been.used.to.develop.transgenes.more.likely.to.stimu-late.RNA.silencing.via.the.design.of.sophisticated.transgenes..Since.RNA.silencing.theoretically.is.stimulated.in.a.plant.cell.by.the.presence.of.dsRNA,.many.of.these.transgene.constructs.attempt.to. transcribe.RNA.molecules.that.are.more.likely.to.form.dsRNA.structures..One.strategy.for.accomplishing.this.is.the.use.of.inverted.repeats,. which. involves. the. creation. of. a. transgene. containing. two. copies. of. the.viral.target.complementary.DNA.(cDNA).sequence.separated.by.a.spacer.DNA.of.some.length.25,125.After.transcription,.it.is.thought.that.the.resulting.RNA.will.form.a.hairpin.with.the.inverted.RNA.forming.a.double-stranded.structure..The.use.of.introns.is.a.similar.approach.in.that.two.inverted.regions.of.viral-derived.cDNA.are.separated.by.an. intron.126.Once. the. intron. is.spliced.by.host.machinery. following.transcription,.a.dsRNA.structure.is.formed..Another.approach.consists.of.producing.two.complimentary.pieces.of.RNA.which.can.then.form.a.dsRNA.from.bidirectional.promoters.127.These.new.strategies.have.been.shown.to.produce.a.significantly.higher.proportion.of.virus-resistant.transgenic.plants.than.the.use.of.full-length.coat.protein.transgenes.25,125,126.In.addition,.they.hold.a.seeming.advantage.over.a.full-length.coat.protein.gene.in.the.sense.orientation.as.they.are.generally.unable.to.produce.a.func-tional.protein,.alleviating.concerns.arising.from.the.presence.of.the.coat.protein.in.plant.material..Coat.protein.expression.can.also.be.prevented.by.using. transgenic.approaches.involving.a.transgene.that.produces.an.RNA.product.which.is.untrans-latable,.either.because. it. lacks.the.necessary.translation.start.codon.for.ribosomal.processing.or.because.it.is.oriented.in.antisense.directions..It.should.be.noted.that.the.use.of.introns,.often.derived.from.plants.themselves,.potentially.poses.the.risk.of. silencing. host. genes. from. where. the. intron. was.derived,. if. the.RNA. silencing.machinery.incorrectly.processes.the.transgene.RNA..A.similar.concern.applies.to.the.siRNA.technology.overall.128

Another.approach.utilizing.the.knowledge.of.viral.silencing.is.to.produce.resis-tance.by.using.modified.plant.microRNA.(miRNA).cistrons.to.produce.a.range.of.artificial.antiviral.miRNAs.129,130.The.durability.of. this.approach.compared. to. the.use.of.longer.dsRNA.approaches.has.not.been.demonstrated.131

Some. nonviral. sources. of. virus. resistance. have. also. been. investigated.. These.would.theoretically.alleviate.concerns.about.synergism,.recombination,.and.transen-capsidation..These.include.the.transfer.of.host.resistance.genes.against.viruses.into.other.hosts.via.genetic.engineering,.or.the.silencing.of.host.genes.that.are.necessary.for.viral.replication.25.The.use.of.plant-generated.antibodies.against.viruses,.which.failed.to.progress.for.many.years.though.initially.perceived.as.promising,.has.recently.been.shown.to.be.effective.in.controlling.viruses.in.plants.expressing.the.transgenes.

Page 295:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

281Virus-Resistant Transgenic Horticultural Crops

for. the.production.of. these.antibodies.132.The.potential.risks.of. these. technologies.remain.largely.undiscussed.and.untested.

CONCLUSIONS

To.date.only.a.handful.of.horticultural.transgenic.crops,.including.vegetable.crops.(summer.squash,.sweet.pepper,.tomato,.and.sweet.corn).and.one.fruit.crop.(papaya).are.available.commercially..Most.of.these.crops.have.been.engineered.for.virus.resis-tance.(summer.squash,.sweet.pepper,.tomato,.and.papaya),.while.sweet.corn.has.been.developed.for.insect.tolerance..Noteworthy,.the.majority.of.virus-resistant.transgenic.crops.were.released.over.a.decade.ago..Why.have.not.more.transgenic.horticultural.crops. been. released?. Though. a. virus-resistant. transgenic. plum. has. been. deregu-lated.in.the.United.States,.why.have.transgenic.horticultural.crops.not.been.released.recently?.Can.safety.issues.be.held.accountable.for.the.limited.number.of.transgenic.horticultural.crops.released.commercially?.As.discussed.in.this.chapter,.extensive.research.on.risk.assessment.of.transgenic.horticultural.crops.has.been.carried.out.in.various.environments.and.varied.conditions.of.disease.and.pest.pressure.2,14,45,62,133.This.wealth.of.information.implies.that.safety.issues.should.not.hinder.the.release.of.new.horticultural.crops.that.are.engineered.based.on.the.identical.or.similar.technol-ogies.to.those.used.for.the.development.of.the.transgenic.horticultural.crops.already.released..Factors.other.than.safety.issues.(e.g.,.institutional,.policy,.and.economical.factors). are. apparently. playing. more. important. roles. worldwide. in. stymieing. the.adoption.of.transgenic.horticultural.crops.134–136

REFERENCES

. 1.. Fuchs,.M..and.Gonsalves,.D.,.Resistance.of.transgenic.squash.Pavo.ZW-20.expressing.the.coat.protein.genes.of.zucchini.yellow.mosaic.virus.and.watermelon.mosaic.virus.2.to.mixed.infections.by.both.potyviruses,.Biotechnology,.13,.1466,.1995.

. 2.. Fuchs,.M..and.Gonsalves,.D.,.Safety.of.virus.resistant. transgenic.plants. two.decades.after.their.introductions:.Lessons.from.realistic.field.risk.assessment.studies,.Annu. Rev. Phytopathol.,.45,.173,.2007.

. 3.. Tricoli,.D.M..et.al.,.Field.evaluation.of.transgenic.squash.containing.single.or.multiple.virus.coat.protein.gene.constructs.for.resistance.to.Cucumber mosaic virus,.Watermelon mosaic virus 2,.and.Zucchini yellow mosaic virus,.Biotechnology,.13,.1458,.1995.

. 4.. Fuchs,.M..et.al.,.Transgenic.melon.and.squash.expressing.coat.protein.genes.of.aphid-borne.viruses.do.not.assist.the.spread.of.an.aphid.non-transmissible.strain.of.Cucumber mosaic virus.in.the.field,.Trans. Res.,.7,.449,.1998.

. 5.. Ferreira,.S.A..et.al.,.Virus.coat.protein.transgenic.papaya.provides.practical.control.of.Papaya ringspot virus.in.Hawaii,.Plant Dis.,.86,.101,.2002.

. 6.. Gonsalves,.D.,.Control.of.Papaya ringspot virus. in.papaya:.A.case.study,.Annu. Rev. Phytopathol.,.36,.415,.1998.

. 7.. James,. C.,. Global. status. of. commercialized. biotech/GM. crops:. 2007.. ISAAA,. Brief.no. 37,.International.Service.for.the.Acquisition.of.Agri-Biotech.Applications,.Ithaca,.NY,.2008..http://www.isaaa.org/resources/Publications/briefs/37/default.html.(accessed.December.1,.2008).

. 8.. Kaniewski,.W.K..and.Thomas,.P.E.,.The.potato.story,.Agric. Biol. Forum,.7,.41,.2004.

. 9.. Stone,.R.,.China.plans.$3.5.billion.GM.crops.initiative,.Science,.321,.1279,.2008.

Page 296:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

282 Transgenic Horticultural Crops: Challenges and Opportunities

. 10.. Sanford,.J.C..and.Johnston,.S.A.,.The.concept.of.parasite-derived. resistance-deriving.resistance.genes.from.the.parasite’s.own.genome,.J. Theor. Biol.,.113,.395,.1985.

. 11.. Hammond,.J.,.Lecoq,.H.,.and.Raccah,.B.,.Epidemiological.risks.from.mixed.virus.infections.and.transgenic.plants.expressing.viral.genes,.Adv. Virus Res.,.54,.189,.1999.

. 12.. Robinson,.D.J.,.Environmental.risk.assessment.of.releases.of.transgenic.plants.containing.virus-derived.inserts,.Trans. Res.,.5,.359,.1996.

. 13.. Tepfer,.M.,.Risk.assessment.of.virus-resistant.transgenic.plants,.Annu. Rev. Phytopathol.,.40,.467,.2002.

. 14.. Shelton,.A.M.,.Zhao,.J.Z.,.and.Roush,.R.T.,.Economic,.ecological,.food.safety.and.social.consequences.of.the.deployment.of.Bt.transgenic.plants,.Annu. Rev. Entomol.,.47,.845,.2002.

. 15.. Romeis,. J.. et. al.,.Assessment.of. risk.of. insect-resistant. transgenic. crops. to.nontarget.arthropods,.Nat. Biotechnol.,.26,.203,.2008.

. 16.. Abel,. P.P.. et. al.,. Delay. of. disease. development. in. transgenic. plants. that. express. the.Tobacco mosaic virus.coat.protein.gene,.Science,.232,.738,.1986.

. 17.. Fuchs,. M.,. Plant. resistance. to. viruses:. Engineered. resistance.. In. Encyclopedia of Virology,. 3rd. edn.,. Mahy,. B.W.J.. and.Van. Regenmortel,. M.V.H.,. eds.,. Elsevier,. San.Diego,.2008,.vol..4,.pp..156–164.

. 18.. Lindbo,.J.A..and.Dougherty,.W.G.,.Plant.pathology.and.RNAi:.A.brief.history,.Annu. Rev. Phytopathol.,.43,.191,.2005.

. 19.. Lindbo,.J.A..et.al.,.Induction.of.a.highly.specific.antiviral.state.in.transgenic.plants:.Implications. for. regulation. of. gene. expression. and. virus. resistance,. Plant Cell,.5, 1749,.1993.

. 20.. Dietzen,. R.G.. and. Mitter,. N.,.Transgenic. gene. silencing. strategies. for. virus. control,.Austral. Plant Pathol.,.35,.605,.2006.

. 21.. Eamens,.A..et.al.,.RNA.silencing.in.plants:.Yesterday,.today.and.tomorrow,.Plant Physiol.,.147,.456,.2008.

. 22.. Lin,.S.-S..et.al.,.Strategies.and.mechanisms.of.plant.virus.resistance,.Plant Biotechnol. Rep.,.1,.125,.2007.

. 23.. Voinnet,.O.,.Induction.and.suppression.of.RNA.silencing:.Insights.from.viral.infections,.Nat. Rev. Gen.,.6,.206,.2005.

. 24.. Voinnet,.O.,.Post-transcriptional.RNA.silencing.in.plant–microbe.interactions:.A.touch.of.robustness.and.versatility,.Curr. Opin. Plant Biol.,.11,.464,.2008.

. 25.. Prins,.M..et.al.,.Strategies.for.antiviral.resistance.in.transgenic.plants,.Mol. Plant Pathol.,.9,.73,.2008.

. 26.. Kehr,. J.. and. Buhtz,.A.,. Long. distance. transport. and. movement. of. RNA. through. the.phloem,.J. Exp. Bot.,.59,.85,.2008.

. 27.. Díaz-Pendón,. J.A.. and. Ding,.S.-W.,.Direct. and. indirect. roles. of. viral. suppressors. of.RNA.silencing.and.pathogenesis,.Annu. Rev. Phytopathol.,.46,.303,.2008.

. 28.. Ding,. S.-W.. and. Voinnet,. O.,. Antiviral. immunity. directed. by. small. RNAs,. Cell,.130, 413,.2007.

. 29.. Moissiard,.G..and.Voinnet,.O.,.Viral.suppression.of.RNA.silencing.in.plants,.Mol. Plant Pathol.,.5,.71,.2004.

. 30.. Lakatatos,.L..et.al.,.Small.RNA.binding.is.a.common.strategy.to.suppress.RNA.silencing.by.several.viral.suppressors,.EMBO J.,.25,.2768,.2006.

. 31.. Callaway,.A..et.al.,.The.multifunctional.capsid.proteins.of.plant.RNA.viruses,.Annu. Rev. Phytopathol.,.39,.419,.2001.

. 32.. Fuchs,. M.,. Potential. for. recombination. and. creation. of. new. viruses. in. transgenic.plants. expressing. viral. genes:. Real. or. perceived. risk?. In. Biotechnology and Plant Disease Management,.Punja,.Z.K.,.DeBoer,.S.H.,.and.Sanfaçon,.H.,.eds.,.CABI.Press,.Wallingford,.U.K.,.2007,.pp..416–435.

. 33.. Falk,. B.W.. and. Bruening,. G.,.Will. transgenic. crops. generate. new. viruses. and. new.diseases?.Science,.163,.1395,.1994.

Page 297:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

283Virus-Resistant Transgenic Horticultural Crops

. 34.. Rubio,.T..et.al.,.Recombination.with.host.transgenes.and.effects.on.virus.evolution:.An.overview.and.opinion,.Mol. Plant–Microbe Interact.,.12,.87,.1999.

. 35.. Turturo,.C..et.al.,.Evaluation.of.potential.risks.associated.with.recombination.in.trans-genic.plants.expressing.viral.sequences,.J. Gen. Virol.,.89,.327,.2008.

. 36.. Fuchs,.M.,.Ferreira,.S.,.and.Gonsalves,.D.,.Management.of.virus.diseases.by.classical.and.engineered.protection,.Mol. Plant Pathol..On-line.http://www.bspp.org.uk/mppol./1997/0116fuchs,.1997.(accessed.April.20,.2011).

. 37.. Lecoq,.H.,.Control.of.plant.virus.diseases.by.cross-protection..In.Plant Virus Disease Control,.Hadidi,.A.,.Khetarpal,.R.K.,.and.Koganezawa,.H.,.eds.,.APS.Press,.St..Paul,.MN,.1998,.pp..33–40.

. 38.. Vigne,.E.,.Marmonier,.A.,.and.Fuchs,.M.,.Multiple.interspecies.recombination.events.within. RNA2. of. Grapevine fanleaf virus. and. Arabis mosaic virus,. Arch. Virol.,.153, 1771,.2008.

. 39.. Komar,.V..et.al.,.Cross-protection.as.control.strategy.against.Grapevine fanleaf virus.in.naturally.infected.vineyards,.Plant Dis.,.92,.1689,.2008.

. 40.. Ellstrand,.N.C.,.Prentice,.H.C.,.and.Hancock,. J.F.,.Gene.flow.and. introgression. from.domesticated.plants.into.their.wild.relatives,.Annu. Rev. Ecol. Syst.,.30,.539,.1999.

. 41.. Hoc,. P.S.. et. al.,. Hybridization. between. wild. and. domesticated. types. of. Phaseolus vulgaris.L..(Fabaceae).in.Argentina,.Gen. Res. Crop Evol.,.53,.331,.2006.

. 42.. Kirkpatrick,.D..and.Wilson,.H.,.Interspecific.gene.flow.in.Cucurbita:.C. texana.and.C. pepo,.Am. J. Bot.,.75,.519,.1988.

. 43.. Martínez-Castillo,.J..et.al.,.Gene.flow.and.genetic.structure.in.the.wild-weedy-domesticated.complex.of.Phaseolus lunatus.L..in.its.Mesoamerica.center.of.domestication.and.diversity,.Crop Sci.,.47,.58,.2007.

. 44.. Wilson,.H.D.,.Gene.flow.in.squash.species,.Bioscience,.40,.449,.1990.

. 45.. Keese,.P.,.Risks.from.GMOs.due.to.horizontal.gene.transfer,.Environ. Biosafety Res.,.7,.123,.2008.

. 46.. Tricoli,.D.,.Petition.for.determination.of.nonregulated.status:.Squash.containing.the.coat.protein.genes.from.Cucumber mosaic virus.(CMV),.Watermelon mosaic virus 2.(WMV 2).and. Zucchini yellow mosaic virus. (ZYMV),. 1995,. http://www.aphis.usda.gov/brs/aphisdocs/95_35201p.pdf.(accessed.April.20,.2011).

. 47.. Vigne,.E.,.Komar,.V.,.and.Fuchs,.M.,.Field.safety.assessment.of.recombination.in.trans-genic.grapevines.expressing.the.coat.protein.gene.of.Grapevine fanleaf virus,.Transgenic Res.,.13,.165,.2004.

. 48.. Lemaux,. P.G.,. Genetically. engineered. plants. and. foods:.A. scientist’s. analysis. of. the.issues.(Part.I),.Annu. Rev. Plant Biol.,.59,.771,.2008.

. 49.. Atherton,.K.T.,.Safety.assessment.of.genetically.modified.crops,.Toxicology,.181–182,.421,.2002.

. 50.. Lack,.G.,.Clinical.risk.assessment.of.GM.foods,.Toxicol. Lett.,.127,.337,.2002.

. 51.. Kuiper,.H.A..and.Kleter,.G.A.,.The.scientific.basis.for.risk.assessment.and.regulation.of.genetically.modified.foods,.Trends Food Sci. Tech.,.14,.277,.2003.

. 52.. Mills,.E.N.C..et.al.,.Food.allergens.of.plant.origin—Their.molecular.and.evolutionary.relationships,.Trends Food Sci. Tech.,.14,.145,.2003.

. 53.. Organization.for.Economic.Cooperation.and.Development.(OECD),.Safety.considerations.of.foods.derived.by.modified.biotechnology:.Concepts.and.principles..OECD,.Paris,.France,.1993..http://www.oecd.org/pdf/M00007000/M00007573.pdf.(accessed.December.1,.2008).

. 54.. Constable,.A..et. al.,.History.of.safe.use.as.applied. to. the.safety.assessment.of.novel.foods.and.foods.derived.from.genetically.modified.organisms,.Food Chem. Toxicol.,.45,.2513,.2007.

. 55.. Chassy,.B..et. al.,.Nutritional.and. safety.assessments.of. foods.and. feeds.nutritionally.improved.through.biotechnology:.An.executive.summary,.Compr. Rev. Food Sci. Food Saf.,.3,.25,.2004.

Page 298:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

284 Transgenic Horticultural Crops: Challenges and Opportunities

. 56.. Deng,. P.. et. al.,.Edible. safety. requirements. and. assessment. standards. for. agricultural.genetically.modified.organisms,.Food Chem. Toxicol.,.46,.1414,.2008.

. 57.. European.Food.Safety.Agency,.Report.of. the.GMO.Panel.Working.Group.on.animal.feeding.trials,.safety.and.nutritional.assessment.of.GM.plants.and.derived.food.and.feed:.The.role.of.animal.feeding.trials,.Food Chem. Toxicol.,.46,.S2,.2008.

. 58.. Craig,.W..et.al.,.An.overview.of.general.features.of.risk.assessments.of.genetically.modi-fied.crops,.Euphytica,.64,.853,.2008.

. 59.. Fuchs,.R.L..et.al.,.Safety.assessment.of.the.neomycine.phosphotransferase.II.(NPTII).protein,.Biotechnology,.11,.1543,.1993.

. 60.. Gilissen,.L.J.W..et.al.,.Biosafety.of.E. coli.β-glucuronidase.(GUS).in.plants,.Transgenic Res.,.7,.157,.1998.

. 61.. Ramessar,. K.. et. al.,. Biosafety. and. risk. assessment. framework. for. selectable. marker.genes. in. transgenic. crop. plants:. A. case. of. the. science. not. supporting. the. politics,.Transgenic Res.,.16,.261,.2007.

. 62.. Shelton,.A.M.,. Fuchs,. M.,. and. Shotkoski,. F.A.,.Transgenic. vegetables. and. fruits. for.control. of. insects. and. insect-vectored. pathogens.. In. Integration of Insect-Resistant Genetically Modified Crops within IMP Programs,. Romeis,. J.,. Shelton,. A.M.,. and.Kennedy,.G.G.,.eds.,.Springer,.Dordrecht,.the.Netherlands,.2008,.pp..249–272.

. 63.. Novak,. W.K.. and. Haslberger,. A.G.,. Substantial. equivalence. of. antinutrients. and.inherent.plant. toxins. in.genetically.modified. foods,.Food Chem. Toxicol.,. 38,.473,.2000.

. 64.. Koenig,.A..et.al.,.Assessment.of.the.safety.of.foods.derived.from.genetically.modified.(GM).crops,.Food Chem. Toxicol.,.42,.1047,.2004.

. 65.. Fitch,.M.M.M..et.al.,.Stable.transformation.of.papaya.via.microprojectile.bombardment,.Plant Cell Rep.,.9,.189,.1990.

. 66.. Cai,. W.Q.. et. al.,.A. protocol. for. efficient. transformation. and. regeneration. of. Carica papaya.L.,.In Vitro Cell. Dev. Biol. Plant,.35,.61,.1999.

. 67.. Chen,.G..et.al.,.Cloning.of.the.Papaya ringspot virus.(PRSV).replicase.gene.and.genera-tion.of.PRSV.resistant.papayas.through.the.introduction.of.the.PRSV.replicase.gene,.Plant Cell Rep.,.20,.272,.2001.

. 68.. Tennant,.P.,.Ahmad,.M.H.,.and.Gonsalves,.D.,.Transformation.of.Carica papaya L..with.virus.coat.protein.genes.for.studies.on.resistance.to.Papaya ringspot virus.from.Jamaica,.Trop. Agric.,.79,.105,.2002.

. 69.. Dahleen,.L.S..and.Manoharan,.M.,.Recent.advances.in.barley.transformation,.In Vitro Cell. Dev. Biol.,.43,.493,.2007.

. 70.. Shewfelt,.R.L.,.Sources.of.variation.in.the.nutrient.content.of.agricultural.commodities.from.the.farm.to.the.consumer,.J. Food Qual.,.13,.37,.1990.

. 71.. Hileman,.R.E..et.al.,.Bioinformatic.methods.for.allergenicity.assessment.using.a.com-prehensive.allergen.database,.Int. Arch. Allergy Immunol.,.128,.280,.2002.

. 72.. Herman,.R.A.,.Storer,.N.P.,.and.Gao,.Y.,.Digestion.assays.in.allergenicity.assessment.of.transgenic.proteins,.Environ. Health Persp.,.114,.1154,.2006.

. 73.. Roberts,. M.. et. al.,. Assessment. of. compositional. changes. during. ripening. of. trans-genic.papaya.modified.for.protection.against.papaya.ringspot.virus,.J. Sci. Food Agri.,.88, 1911,.2008.

. 74.. Bau,.H.-J..et.al.,.Potential.threat.of.a.new.pathotype.of.Payapa leaf distortion mosaic virus.infecting.transgenic.papaya.resistant.to.Papaya ringspot virus,.Phytopathology,.98,.848,.2008.

. 75.. Zagrai,.I..et.al.,.Plum pox virus.silencing.of.C5.transgenic.plums.is.stable.under.chal-lenge.inoculation.with.heterologous.viruses,.J. Plant Pathol.,.90,.S1.63,.2008.

. 76.. McDonald,.B.A..and.Linde,.C.,.The.population.genetics.of.plant.pathogens.and.breed-ing.strategies.for.durable.resistance,.Euphytica,.124,.163,.2002.

Page 299:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

285Virus-Resistant Transgenic Horticultural Crops

. 77.. García-Cano,. E.. et. al.,. Synergistic. interaction. between. Tomato chlorosis virus. and.Tomato spotted wilt virus.results.in.breakdown.of.resistance.in.tomato,.Phytopathology,.96,.1263,.2006.

. 78.. Tennant,.P..et.al.,.Papaya ringspot virus.resistance.of.transgenic.Rainbow.and.SunUp.is.affected.by.gene.dosage,.plant.development,.and.coat.protein.homology,.Eur. J. Plant Pathol.,.107,.645,.2001.

. 79.. De.Haan,.P..et.al.,.Characterization.of.RNA-mediated.resistance.to.Tomato spotted wilt virus.in.transgenic.tobacco.plants,.Biotechnology,.10,.1133,.1992.

. 80.. Tripathi,.S..et.al.,.The.ability.of.Papaya ringspot virus.strains.overcoming.the.transgenic.resistance.of.papaya.conferred.by. the.coat.protein.gene. is.not.correlated.with.higher.degrees. of. sequence. divergence. from. the. transgene,. Eur. J. Plant Pathol.,. 110,. 871,.2004.

. 81.. Bau,.H.-J..et.al.,.Broad-spectrum.resistance.to.different.geographic.strains.of.Papaya ringspot virus.in.coat.protein.gene.transgenic.papaya,.Phytopathology,.93,112,.2003.

. 82.. Thakur,.R.P.,.Host.plant.resistance.to.diseases:.Potential.and.limitations,.Ind. J. Plant Protect.,.35,.17,.2007.

. 83.. Klas,. F.E.,. Fuchs,. M.,. and. Gonsalves,. D.,. Comparative. spatial. spread. overtime. of.Zucchini yellow mosaic virus.(ZYMV).and.Watermelon mosaic virus.(WMV).in.fields.of. transgenic. squash. expressing. the. coat. protein. genes.of.ZYMV. and.WMV,.and. in.fields.of.nontransgenic.squash,.Transgenic Res.,.15,.527,.2006.

. 84.. Fuchs,.M.,.Chirco,.E.M.,.and.Gonsalves,.D.,.Movement.of.coat.protein.genes.from.a.commercial.virus-resistant.transgenic.squash.into.a.wild.relative,.Environ. Biosafety Res.,.3,.5,.2004.

. 85.. Fuchs,.M..et.al.,.Comparative.fitness.of.a.wild.squash.species.and.three.generations.of.hybrids.between.wild.x.virus.resistant.transgenic.squash,.Environ. Biosafety Res.,.3,.17,.2004.

. 86.. Quemada,. H.. et. al.,. Population. size. and. incidence. of. virus. infection. in. free-living.populations.of.Cucurbita pepo, Environ. Biosafety Res.,.7,.185,.2008.

. 87.. Fuchs,.M.,.Gal-On,.A.,.Raccah,.B.,.and.Gonsalves,.D.,.Epidemiology.of.an.aphid.nontransmissible. potyvirus. in. fields. of. nontransgenic. and. coat. protein. transgenic.squash,.Transgenic Res.,.99,.429,.1999.

. 88.. Lin,.H.X..et.al.,.Genetic.diversity.and.biological.variation.among.California.isolates.of.Cucumber mosaic virus,.J. Gen. Virol.,.84,.249,.2001.

. 89.. Davis,. M.J.. and.Ying,. Z.T.,. Development. of. papaya. breeding. lines. with. transgenic.resistance.to.Papaya ringspot virus,.Plant Dis.,.88,.353,.2004.

. 90.. Fermin,. G.. et. al.,. Engineered. resistance. against. PRSV. in.Venezuelan. transgenic.papayas,.Plant Dis.,.88,.516,.2004.

. 91.. Hautea,. R.,. Chan,.Y.K.,.Attathom,. S.,. and. Krattiger,.A.,. The. papaya. biotechnology.network.of.Southeast.Asia:.Biosafety.considerations.and.papaya.background.informa-tion.. ISAAA,.Brief. no..11,. International.Service. for. the.Acquisition.of.Agri-Biotech.Applications,.Ithaca,.NY,.1999.

. 92.. Lines,.R.E..et.al.,.Genetically.engineered.immunity.to.Papaya ringspot virus.in.Australia.papaya.cultivars,.Mol. Breeding,.10,.119,.2002.

. 93.. Sakuanrungsirikul,. S.. et. al.,. Update. on. the. development. of. virus-resistant. papaya:.Virus-resistant.transgenic.papaya.for.people.in.rural.communities.of.Thailand,.Food Nutr. Bull.,.26,.422,.2005.

. 94.. Souza,.M.T..Jr.,.Nickel,.O.,.and.Gonsalves,.D.,.Development.of.virus.resistant. trans-genic. papayas. expressing. the. coat. protein. gene. form. a. Brazilian. isolate. of. Papaya ringspot virus,.Fitopathol. Bras.,.30,.357,.2005.

. 95.. Manshardt,.R.M.,.‘UHRainbow’.papaya,. in.University.of.Hawaii.College.of.Tropical.Agriculture.and.Human.Resources.Germplasm..P.G1-2,.1998.

Page 300:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

286 Transgenic Horticultural Crops: Challenges and Opportunities

. 96.. Mutsuga,.M..et.al.,.Comparison.of.carotenoid.components.between.GM.and.non-GM.papaya,.J. Food Hyg. Soc. Jpn.,.42,.367,.2001.

. 97.. Chan,.J.T..et.al.,.Sugar.composition.of.papayas.during.fruit.development,.Hortic. Sci.,.14,.140,.1979.

. 98.. Bari,.L..et.al.,.Nutritional.analysis.of.two.local.varieties.of.papaya.(Carica papaya.L.).at.different.maturation.stages,.Pak. J. Biol. Sci.,.9,.137,.2006.

. 99.. Yamamoto,. H.Y.,. Comparison. of. the. carotenoids. in. yellow-. and. red-fleshed. Carica papaya,.Nature,.201,.1049,.1964.

.100.. Umoh,.I.B.,.Commonly.used.fruits. in.Nigeria..In.Nutritional Quality of Plant Foods,.Osagie,.A.U..and.Eka,.O.U.,.eds.,.Post.Harvest.Research.Unit,.Dept..of.Biochemistry,.University.of.Benin,.Benin.City,.Nigeria,.1998,.p..134.

.101.. Xiangdong,.W..et.al.,.Analysis.on.virus.resistance.and.fruit.quality.for.T4.generation.of.transgenic.papaya,.Front Biol. China,.2,.284,.2007.

.102.. Powell,. M.. et. al.,. Effects. of. subchronic. exposure. to. transgenic. papayas. (Carica papaya.L.).on.liver.and.kidney.enzymes.and.lipid.parameters.in.rats,.J. Sci. Food Agr.,.88,.2638,.2008.

.103.. Caribbean.Food.and.Nutrition.Institute.(CFNI),.Food.composition.tables.for.use.in.the. English. speaking. Caribbean. supplement.. Pan.American. Health. Organization..J7, 5,.2000.

.104.. World. Health. Organization/Environmental. Monitoring. System/Food. Contamination.Monitoring.and.Assessment.Programme.(WHOGEMS)/Food,.Regional.diets,.Regional.per. capita. consumption. of. raw. and. semi-processed. agricultural. commodities/Global.Environment. Monitoring. System/Food. Contamination. Monitoring. and. Assessment.Programme..World.Health.Organization,.Geneva,.Switzerland,.2003,.pp..1–27.

.105.. Hsieh,.Y.-T.. and. Pan,. T.-M.,. Influence. of. planting. Papaya ringspot virus. resistant.transgenic.papaya.on.soil.microbial.biodiversity,.J. Agric. Food Chem.,.54,.130,.2006.

.106.. Wei,.X.D.. et. al.,. Field. released. papaya. affects. microbial. communities. and.enzyme.activities.in.soil,.Plant Soil,.285,.347,.2006.

.107.. Lo,. C.-C.,. Chen,. S.-C.,. and.Yang,. J.-Z.,. Use. of. real-time. polymerase. chain. reaction.(PCR).and.transformation.assay.to.monitor.the.persistence.and.bioavailability.of.trans-genic. genes. released. from. genetically. modified. papaya. expressing. nptII. and. PRSV.genes.in.the.soil,.J. Agric. Food Chem.,.55,.7534,.2007.

.108.. Chen,.Z.-L..et.al.,.Safety.assessment.for.genetically.modified.sweet.pepper.and.tomato,.Toxicology,.188,.297,.2003.

.109.. Garcia-Arenal,. F.. and. Palukaitis,. P.,. Cucumber mosaic virus.. In. Encyclopedia of Virology,. 3rd. edn.,. Mahy,. B.W.J.. and. Van. Regenmortel,. M.V.H,. eds.,. Elsevier,. San.Diego,.2008,.vol..1,.pp..614–619.

.110.. Ming,.X.T..et.al.,.Field.release.and.biosafety.assessment.of.transgenic.plants,.JIRCAS-Int. Symp. Ser.,.5,.279,.1997.

.111.. Cai,. W.Q.. et. al.,. Development. of. CMV-. and. TMV-resistant. chili. pepper:. Field.performance.and.biosafety.assessment,.Mol. Breeding,.11,.25,.2003.

.112.. Capote,.N..et.al.,.A.review.of.Plum pox virus,.Bulletin OEPP/EPPO,.36,.201,.2006.

.113.. Ravelonandro,.M..et.al.,.The.use.of.transgenic.fruit.trees.as.a.resistance.strategy.for.virus.epidemics:.The.plum.pox.(sharka).model,.Virus Res.,.71,.63,.2000.

.114.. Scorza,.R..et.al.,.Transgenic.plums.(Prunus domestica.L.).express.the.Plum pox virus.coat.protein.gene,.Plant Cell Rep.,.14,.18,.1994.

.115.. Scorza,.R..et.al.,.Post-transcriptional.gene.silencing.in.plum.pox.virus.resistant.transgenic.European.plum.containing.the.plum.pox.potyvirus.coat.protein.gene,.Transgenic Res.,.10,.201,.2001.

.116.. Kundu,.J.K..et.al.,.Role.of.the.25–26.nt.siRNA.in.the.resistance.of.transgenic.Prunus domestica.graft.inoculated.with.Plum pox virus,.Virus Genes,.36,.215,.2008.

Page 301:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

287Virus-Resistant Transgenic Horticultural Crops

.117.. Hily,.J.-M..et.al.,.Stability.of.gene.silencing-based.resistance.to.Plum pox virus.in.trans-genic.plum.(Prunus domestica.L.).under.field.conditions,.Transgenic. Res.,.13,.427,.2004.

.118.. Polák,.J..et.al.,.Behaviour.of.transgenic.Plum pox virus-resistant.Prunus domestica.L..clone.C5.grown.in.the.open.field.under.a.high.and.permanent.infection.pressure.of.the.PPV-Rec.strain,.J. Plant Pathol.,.90,.S1.33–S1.36,.2008.

.119.. Malinowski,.T..et.al.,.Field. trials.of.plum.clones.and. transformed.with. the.Plum pox virus.coat.protein.(PPV-CP).gene,.Plant Dis.,.90,.1012,.2006.

.120.. Scorza,.R.,.Application.for.determination.of.non-regulated.status.for.C5.(‘HoneySweet’).resistant.to.Plum.pox.virus,.2004,.http://www.aphis.usda.gov/brs/aphisdocs/04_2641p.pdf.(accessed.December.1,.2008).

.121.. Capote,.N..et.al.,.Assessment.of.the.diversity.and.dynamics.of.Plum pox virus.and.aphid.populations.in.transgenic.European.plums.under.Mediterranean.conditions,.Transgenic Res.,.17,.367,.2008.

.122.. Widmer,.F.,.Assessing.effects. of. transgenic. crops.on. soil. microbial. communities,.Adv. Biochem. Engin./Biotechnol.,.107,.207,.2007.

.123.. Information.Systems.for.Biotechnology.(ISB)..Field.test.release.application.in.the.USA,.National. resource. in. agbiotech. information,. 2008,. http://www.isb.vt.edu/. (accessed.December.1,.2008).

.124.. Bucher,.E.C..et.al.,.Multiple.virus.resistance.at.a.high.frequency.using.a.single.transgene.construct,.J. Gen. Virol.,.87,.3697,.2006.

.125.. Waterhouse,.P.M.,.Graham,.M.W.,.and.Wang,.M.-B.,.Virus.resistance.and.gene.silenc-ing.in.plants.can.be.induced.by.simultaneous.expression.of.sense.and.antisense.RNA,.Proc. Natl. Acad. Sci. USA,.95,.13959,.1998.

.126.. Smith,.N.A..et.al.,.Total.silencing.by.intron-spliced.hairpin.RNAs..Nature,.407,.319,.2000.

.127.. Li,.Z.T.,.Jayasankar,.S.,.and.Gray,.D.J.,.Bi-directional.duplex.promoters.with.duplicated.enhancers.significantly.increase.transgene.expression.in.grape.and.tobacco,.Transgenic Res,.13,.143,.2004.

.128.. Snove,.J..and.Holen,.T.,.Many.commonly.used.siRNAs.risk.off-target.activity,.Biochem. Biophys. Res. Commun.,.319,.256,.2004.

.129.. Niu,.Q.-W..et.al.,.Expression.of.artificial.microRNAs.in.transgenic.Arabidopsis thaliana.confers.virus.resistance,.Nat. Biotechnol.,.24,.1420,.2006.

.130.. Qu,.J.,.Ye,.J.,.and.Fang,.R.X.,.Artificial.microRNA-mediated.virus.resistance.in.plants,.J. Virol.,.81,.6690,.2007.

.131.. Garcia,. J.A.. and. Simón-Mateo,. C.,. A. micropunch. against. plant. viruses:. Artificial.microRNAs.show.promise.for.combating.viral.infections.in.plants,.Nat. Biotechnol.,.24,.1358,.2006.

.132.. Nölke,.G.,.Fischer,.R.,.and.Shillberg,.S..Antibody-based.pathogen.resistance.in.plants,.J. Plant Pathol.,.86,.5,.2004.

.133.. Fuchs,.M..et.al.,.Safety.assessment.of.transgenic.plums.and.grapevines.expressing.viral.coat. protein. genes:. New. insights. into. real. environmental. impact. of. perennial. plants.engineered.for.virus.resistance,.J. Plant Pathol.,.89,.5,.2007.

.134.. Davidson,. S.N.,. Forbidden. fruit:. Transgenic. papaya. in. Thailand,. Plant Physiol.,.147,.487,.2008.

.135.. Fermin,.G..et.al.,.Comparative.development.and.impact.of.transgenic.papayas.in.Hawaii,.Jamaica. and. Venezuela.. In. Methods in Molecular Biology,. 286,. Transgenic. Plants:.Methods.and.Protocols,.Peña,.L.,.ed.,.Humana.Press,.Totowa,.NJ,.2004,.pp..399–430.

.136.. Gonsalves,.C.,.Lee,.D.R.,.and.Gonsalves,.D.,.The.adoption.of.genetically.modified.papaya.in.Hawaii.and.its.implications.for.developing.countries,.J. Dev. Stud.,.43,.177,.2007.

Page 302:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,
Page 303:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

289

14 Molecular Approaches for Transgene Containment and Their Potential Applications in Horticultural Crops

Yi Li and Hui Duan

CHALLENGES TO TRANSGENIC HORTICULTURAL CROPS

Horticultural.crops.were.the.first.commercialized.transgenic.plants.in.the.United.States.. From. 1994. to. 1995,. Flavr. Savr. tomato,. Endless. Summer. tomato,. and.virus-resistant.squash.were.marketed.1,2.A. tomato.paste.(puree).produced.from.a. transgenic.processing. tomato.was. the.best-selling.paste. in.1999.and.2000. in.the.United.Kingdom..Despite.these.early.commercial.successes,.the.number.of.transgenic. horticultural. crops. currently. marketed. in. the. United. States. is. very.small,. limited. to.papayas,. sweetcorn,. squash,. and. carnations.1,2.Also,. the. eco-nomic.impact.of.transgenic.horticultural.crops.is.minimal..Except.papaya,.trans-genic.horticultural.crops.have.had.very.small.market.shares.3,4.The.well-known.estimate.that.70%.of.food.products.in.U.S..supermarkets.contain.transgenic.crop.ingredients.is.due.to.the.widespread.use.of.transgenic.corn,.canola,.and.soybean.products.in.virtually.all.processed.foods.1

CONTENTS

Challenges.to.Transgenic.Horticultural.Crops........................................................ 289Candidate.Molecular.Strategies.Addressing.Concerns.over.Transgenic Horticultural.Crops...............................................................................290

Male.and.Female.Sterility..................................................................................290Genesafe.Technologies....................................................................................... 293Parthenocarpy.Technology.................................................................................294Chloroplast.Transformation............................................................................... 295Gene.Deletor.Technology...................................................................................296

Prospectives............................................................................................................299Acknowledgments...................................................................................................299References...............................................................................................................299

Page 304:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

290 Transgenic Horticultural Crops: Challenges and Opportunities

There.are.a.number.of.challenges.for.commercialization.of.transgenic.horticultural.crops..The.biggest.obstacle.is.probably.high.costs.associated.with.food.and.environ-mental. safety. testings. required. by. federal. agencies.. While. traditionally. bred. crop.plants.are.not.subjected.to.any.testing.or.regulations,.testing.required.for.a.deregula-tion.approval.of.a.transgenic.crop.is.extensive,.and.can.cost.$10–20.million.per.novel.gene.in.a.crop.variety.5.Because.each.horticultural.plant.species.has.many.varieties.and.each.variety. represents.a.small.market.value,. recovering.high.costs.associated.with.the.required.testing.can.be.a.challenge..As.a.consequence,.commercial.horticultural.companies.are.not.enthusiastic.to.pursue.transgenic.horticultural.crops.1

Another.hurdle. for. commercialization.of. transgenic.horticultural. crops. is.envi-ronmental.and.food.safety.concerns.4.One.example.is.transgenic.glyphosate-resistant.creeping.bentgrass..The.herbicide-resistant.bentgrass.should.make.weed.control.more.effective.and.also.enhance.the.uniformity,.quality,.aesthetics,.and.playability.of.golf.course. turf.6. Studies. by. the. U.S.. Department. of. Agriculture. (USDA). Animal. and.Plant.Health.Inspection.Service.(APHIS).suggest.that.(1).there.appear.no.major.unin-tended.effects.resulting.from.the.introduction.of.the.glyphosate.resistance.gene.into.the.creeping.bentgrass.genome,.(2).the.transgenic.bentgrass.is.not.sexually.compatible.with.any.federally.acknowledged.threatened.or.endangered.species.or.with.any.spe-cies.on.the.federal.noxious.weed.list,.and.(3).the.transgenic.bentgrass.does.not.differ.in.pest.and.pathogen.susceptibility.or.resistance.from.its.parent.7.However,.Watrud8.reported.that.pollen.of.the.herbicide-resistant.transgenic.creeping.bentgrasses.trav-eled.up.to.21.km.and.the.pollen.could.fertilize.wild.bentgrasses.and.a.close.relative,.redtop. (Agrostis gigantean).. Reichman9. detected. nine. herbicide-resistant. creeping.bentgrass.plants.that.were.found.up.to.3.8.km.beyond.the.control.area,.and.they.there-fore.concluded.that.there.were.both.seed.dispersal.and.pollen-mediated.crossing.with.wild.creeping.bentgrass..Although.the.herbicide-resistant.creeping.bentgrass.displays.no.increase.in.vegetative.spread.or.relative.fitness,10.the.public.opposition.to.dereg-ulation.of. the.herbicide-resistant.bentgrass. is.strong.. It.appears. that. the. transgenic.herbicide-resistant.bentgrass.has.a.long.way.to.go.before.it.is.marketed.6

CANDIDATE MOLECULAR STRATEGIES ADDRESSING CONCERNS OVER TRANSGENIC HORTICULTURAL CROPS

Gene-based.technologies.that.can.reduce.environmental.and.food.safety.concerns.over.transgenic.plants.could.facilitate.commercialization.of.transgenic.horticultural.crops..A.number.of.transgene.containment.technologies.that.may.reduce.gene.flow.have.been.reported.11–15.Some.of.these.technologies.should.also.be.useful.to.address.food.safety.concerns.on.transgenic.horticultural.crops..In.this.chapter,.we.will.pro-vide.a.brief.review.on.some.of.these.molecular.technologies.and.discuss.their.poten-tial.applications.and.limitations.in.horticultural.crops.

male and female SterIlIty

Male.sterility.is.defined.as.the.inability.of.pollen.to.fertilize.the.ovum,.and.female.sterility. is.defined.as. the. inability.of. the. female.organ. to.be.pollinated.or. to.pro-duce.seeds.upon.pollination..In.both.cases,.sterility.can.be.caused.by.inadequacy.in.

Page 305:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

291Molecular Approaches for Transgene Containment

structure.or.function.of.the.genital.organs..To.create.sterility.in.higher.plants,.male.and.female.organs.have.been.targeted.for.manipulation..Several.types.of.male.and.female.sterility.technologies.have.been.developed.14,16,17

The.first.group.of.sterility.genes. is.cytotoxin.genes..Cytotoxin.genes.used.for.creating. sterility. include. ribonuclease. genes. such. as. the. bacterial. barnase. gene.cloned.from.a.soil.bacterium,.Bacillus amyloliquefaciens,16,18–24.diptheria. toxin.A.chain. (DTA;. ADP-ribosyl-transferase),25,26. and. the. ribosome. inactivating. protein.(RIP).27.Mariani.et.al.23.used.a.tobacco.tapetum-specific.gene.promoter.(TA29).to.control.the.expression.of.the.bacterial.barnase.gene.in.tobacco.and.oilseed.plants.and. induced. male. sterility..Expression. of. the. barnase. gene. destroyed. the. tapetal.cells.and.successfully.prevented.pollen.formation,. thereby.producing.male-sterile.plants..Because. the.expression.of. the.barnase.gene.was.restricted. to. tapetum.tis-sues,.vegetative.growth.and.floral.development.of. the.transgenic.plants.were.nor-mal.. Similarly,. female. sterility. has. been. achieved. using. the. same. barnase. gene..Goldman28.used.a.stigmatic.secretory.zone-specific.gene.promoter.sequence,.the.5′.untranslated.region.of.the.STIG1.gene.cloned.from.tobacco.plants,.to.drive.the.expression.of.the.barnase.gene..The.pistils.of.transgenic.plants.that.expressed.the.STIG1::barnase.gene.underwent.normal.development.but.lacked.the.stigmatic.secretory.zone.and.therefore.became.female.sterile..The.pollen.grains.of.the.trans-genic.plants.could.germinate.on.the.ablated.stigmatic.surface.although.they.failed.to.penetrate.the.transmitting.tissue.of.the.style,.suggesting.that.pollen.was.normal..Using.a.developing.seed-specific.gene.promoter,. the.FBP7.gene.promoter.cloned.from. petunia,. to. control. the. expression. of. the. barnase. gene. in. tobacco. plants,.Colombo.et.al.29.were.able.to.generate.transgenic.plants.that.produced.no.ovules.or.seeds..The.FBP7.promoter.was.specifically.active.in.the.coat.of.developing.seeds.and. is.completely. silent. in. the.gametophytically.derived. tissues..Because.normal.seeds.were.produced.if.wild-type.plants.were.pollinated.with.transgenic.plants,.the.pollen.of.the.FBP7::barnase.plants.was.fertile.

A.large.body.of.experimental.evidence.has.demonstrated.that.the.bacterial.bar-nase.gene.is.highly.effective.to.produce.sterile.plants.when.expressed.in.reproductive.organs..However,.barnase.expression.sometimes.also. results. in.deleterious.effects.on.vegetative.growth.of.transgenic.plants.if.its.expression.is.leaky.and.affects.non-target.organs.30.The.bacterial.barstar.protein,.a.potent.inhibitor.of.barnase,.has.been.used. successfully. to. restore. fertility. of. barnase-mediated. sterility23. although. the.efficacy.of. the.barstar.gene.can.vary.30,31.Also,. there.are.concerns. that. the.bacte-rial.barnase.protein.may.be.toxic.to.humans.and.animals.because.barnase.can.be.a.poison.for.human.and.animal.cells.32–34.Even.though.it.is.unclear.whether.minute.amounts.of.the.bacterial.barnase.protein.present.in.transgenic.crops.can.be.of.harm.to.humans.and.animals,.the.use.of.a.barnase.gene.in.edible.horticultural.crops.should.be.avoided..For.nonedible.horticultural.crops.in.which.seeds.or.fruits.are.not.used.for.human.and.animal.consumption,.the.barnase.gene.would.provide.an.outstanding.tool.for.inducing.sterility.

A.second.group.of.genes.that.can.be.used.to.produce.sterility.is.one.involved.in.specific.metabolic.pathways. in.higher.plants..For.example,. inhibition.of.pyruvate.dehydrogenase.production.in.mitochondria.resulted.in.male.sterility.35.Tissue-specific.repression.of.an.extracellular.invertase,.Nin88,.caused.male.sterility.21.Disruption.of.

Page 306:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

292 Transgenic Horticultural Crops: Challenges and Opportunities

flavonoid.biosynthesis.through.manipulation.of.chalcone.synthase.gene.expression.could.lead.to.male.sterility.36,37.Overexpression.of.β-ketothiolase.via.integration.of.the.transgenes.into.the.chloroplast.genome.of.tobacco.plants.produced.male.sterile.phenotype.38.Expression.of.a.bacterial.enoyl-CoA.hydratase/lyase.enzyme,.which.led.to. re-routing. of. the. phenylpropanoid. pathway,. and. an. unedited. atp9. gene,. a. pro-tein.involved.in.the.proton.channel.of.ATP.synthase,.also.caused.male.sterility.39–43.Compared.to.the.use.of.the.barnase.gene,.food.safety.concerns.over.transgenic.plants.can.be.minimized.if.these.metabolic.genes.are.used.to.create.sterility..However,.the.effectiveness.of.using.metabolic.genes.to.create.sterility.is.much.lower.than.that.of.using.the.barnase.gene..Also,.the.efficacy.of.the.metabolic.genes.can.be.plant.spe-cies.dependent..Pilot.studies.to.test.the.effectiveness.of.a.chosen.metabolic.gene.to.produce.sterility.in.a.plant.species.of.interest.should.always.be.carried.out.before.it.is.used.as.a.sterile.gene.tool.in.that.particular.crop.

The.third.group.of.useful.genes.to.create.sterility.involves.hormone.biosynthesis,.catabolism.or.signaling.pathways.in.higher.plants..Plant.hormones.play.an.important.role.in.the.reproductive.organ.development.and.altering.expression.of.genes.involved.in. hormone. levels. or. response. in. reproductive. organs. often. can. lead. to. sterility..For. instance,. an. inhibition. of. expression. of. an. ethylene-forming. enzyme,. l-ami-nocyclopropane-l. carboxylate. oxidase,. in. pistils. was. effective. in. disrupting. ovule.development. and. therefore. caused. female. sterility.44. Transgene-mediated. reduc-tion. in. jasmonic.acid.concentration. in.anthers. led. to.male. sterility.due. to.defects.in. anther. and. pollen. development.45,46. Expression. of. the. rolC. gene,. cloned. from.Agrobacterium rhizogenes,. resulted. in.male. sterility. and. reduced. female. fertility,.presumably.due.to.the.RolC-mediated.changes.in.hormone.sensitivity.or.concentra-tion.in.reproductive.organs.47.Tissue-specific.overexpression.of.a.cytokinin.oxidase.(CKX1).gene.involved.in.cytokinin.degradation.in.transgenic.maize.(Zea.mays).also.produced.male-sterile.plants.48.Similarly,.expression.of.a.mutant.version.of.a.gibber-ellins.receptor.gene.(gai).in.anthers.and.pollen.of.tobacco.and.Arabidopsis.caused.the.abortion.of.these.reproductive.organs.48.Male.infertility.or.abnormal.male.organ.development.as.a.result.of.expression.of.the.CKX1.could.be.restored.by.applications.of.exogenous.cytokinins..Similar.to.the.Group.2.genes.discussed.earlier,.using.hor-mone-related.genes.should.be.more.acceptable.by.the.public.regarding.food.safety.issues..However,.the.effectiveness.of.these.hormone.genes.can.vary.from.one.plant.species.to.another,.and.may.be.further.influenced.by.environmental.factors.

A.fourth.group.of.genes.that.can.be.used.to.produce.sterility.is.homeotic.genes,.important.for.floral.organ.development..Genetic.and.molecular.studies.demonstrate.that.homeotic.genes.act.alone.and. together. to.specify. the.fate.of.floral.organ.pri-mordia.in.higher.plants.(see.reviews.by.Ferrandiz,49.Lohmann.and.Weigel,50,51.Ma,52.Weigel.and.Meyerowitz,53.and.Zik.and.Irish.54)..Sterility.can.be.achieved.by.ectopic.expression.of.homeotic.genes..For.example,.overexpression.of. the.Brassica napus AGAMOUS.gene,.which.regulates.the.development.of.stamens.and.pistils,.leads.to.the.conversion.of.stamens.into.carpel-like.structures.in.transgenic.tobacco.plants.55.Expression. of. a. tobacco. AGAMOUS. homolog,. TAG1,. resulted. in. the. replacement.of. stamens. with. petaloid. organs. and. the. conversion. of. pistils. to. nonreproductive.organs.56. In.both. cases,. the. transgenic.plants. produced.were.male. sterile..On. the.other.hand,.Mitsuda.et.al.57.used.a.Chimeric.REpressor.Gene-Silencing.Technology.

Page 307:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

293Molecular Approaches for Transgene Containment

(CRES-T).to.repress.expression.of.four.transcription.factor.genes,.namely.APETALA3,.AGAMOUS,.LEAFY,.and.AtMYB26.that.are.involved.in.the.control.of.floral.mer-istem. and. organ. identities,. and. the. regulation.of. anther. dehiscence,. respectively..Transgenic.plants.expressing.each.chimeric.silencer.gene.construct.were.sterile,.and.resembled.the.loss-of-function.phenotype.of.each.corresponding.gene..One.advan-tage.of.using.these.floral.organ.genes.to.create.sterility.is.that.the.products.of.floral.organ. development. genes. have. no. toxic. effects. on. human. and. animal. health. and.therefore.there.should.be.few.concerns.if.used.in.edible.horticultural.crops..However,.ectopic.expression.of.floral.organ.development.genes.frequently.leads.to.alterations.in.floral.morphology..For.horticultural.crops,.alteration.in.floral.organ.morphology.can.be.desirable.or.undesirable.depending.on.plant.species.and.applications.

GeneSafe technoloGIeS

Genesafe. technologies,. also. called. genetic. use. restriction. technologies. (GURTs),.involve.the.use.of.genetic.switch.mechanisms.to.control.expression.of.a.toxin.gene.in.seeds.(see.review.by.Kausch.et.al.14)..It.is.an.extension.of.sterility.technologies.discussed.in.the.“Male.and.female.sterility”.section.of.this.chapter..The.best.example.of. the.genesafe. technologies. is. the.one. invented.by.Oliver.et.al.,58.many.called. it.the.“terminator”.seed.technology..The.strategy.uses.a. late.embryogenesis.specific.gene.promoter.to.control.the.expression.of.a.lethal.gene,.the.bacterial.barnase.gene..However,.the.barnase.gene.is.interrupted.by.a.short.blocking.DNA.sequence.so.that.it.is.inactive..The.blocking.DNA.sequence.is.flanked.by.two.loxP.sequences.in.the.same.orientation..LoxP.is.the.recognition.sequence.of.the.Cre.recombinase.from.the.bacteriophage.P1. loxP/Cre.DNA.recombination.system.59,60.The. interrupted. lethal.gene.is.introduced.into.one.parental.plant.line..The.Cre.gene.that.is.under.the.control.of.a.chemically.induced.gene.promoter.such.as.the.tetracycline.inducible.promoter.is.introduced.into.another.parental.line..Both.of.these.plant.lines.can.produce.viable.seeds.if.self-pollinated..If. the.lethal/barnase.line.and.the.Cre. line.are.hybridized,.their.progeny.should.contain.both.the.chemically.inducible.Cre.gene.and.the.inter-rupted.barnase.gene. that. is.under. the.control.of.a. late-embryogenesis.active.gene.promoter..If.hybrid.seeds.produced.from.the.cross.of.these.two.plant.lines.are.treated.with.the.chemical.inducer,.the.Cre.enzyme.will.be.produced.in.seeds.and.the.interrupt-ing.DNA.sequence.should.be.deleted..As.a.consequence,.excision.of.the.interrupting.DNA.sequence.should.make.the.barnase.gene.functional.in.mature.embryos.during.the.seed.development..If.these.resulting.seeds.are.used.for.planting,.when.the.plants.derived.reach.the.reproductive.stage,.the.lethal.gene.should.be.expressed.specifically.in.mature.embryos..The.barnase.gene.expression.in.mature.embryo.will.cause.the.death.of.embryo.and.thus.prevent.seed.germination.

Similar. to. the. “terminator”. seed. technology,. Kuvshinov. et. al.61. described. a.“recoverable.block.of.function”.(RBF).technology..A.lethal.gene,.also.the.barnase.gene,.was.driven.by.a.germination-specific.promoter,.and.the.barstar.(an.inhibitor.of.barnase).gene.was.placed.under.the.control.of.a.heat-shock.promoter..Under.natural.conditions,. the. barnase. gene. will. be. expressed. during. seed. germination. but. the.barstar.gene.will.be.inactive.because.the.heat-shock.promoter.is.not.induced..The.expression.of.the.barnase.gene.in.germinating.seeds.will.prevent.seed.germination..

Page 308:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

294 Transgenic Horticultural Crops: Challenges and Opportunities

However,. when. needed,. seed. germination. and. seedling. growth. can. be. restored.through.a.heat.shock.treatment.of.germinating.seeds..Thus,.the.RBF.system.could.be.a.useful.tool.to.reduce.seed-mediated.escape.of.transgenes.

As.represented.by.the.“terminator”.seed.and.RBF.systems,.genesafe.technologies.are.conditional.seed.sterility.technologies..For.the.“terminator”.seed.technology,.one.important.requirement.is.high.efficiencies.of.the.chemical-induced.removal.of.the.blocking.DNA.sequence.from.the.barnase.gene..On.the.other.hand,.high.efficiency.of. the. barstar. gene. in. the. RBF. system. is. not. critical.. Regarding. the. food. safety.concerns,.it.should.be.noted.that.the.barnase.gene.used.in.the.two.genesafe.systems.discussed.in.“Male.and.female.sterility”.section.may.be.replaced.with.a.gene.whose.product.is.nontoxic.to.humans.or.animals.

parthenocarpy technoloGy

Parthenocarpy.(seedlessness).is.the.production.of.normal-sized.fruits.without.fertil-ization.and.the.fruit.produced.contains.no.embryo.and.endosperm..Fruit.development.in.higher.plants.normally.requires.pollination,.fertilization,.and.seed.development.that.stimulate.cell.division.of.specific.floral.and.fruit.tissues..Traditionally,.parthe-nocarpic.fruits.are.produced.from.mutants,. triploid.plants,.or.flowers.treated.with.exogenous. growth. regulators.62. Transgenic. parthenocarpy. was. reported. in. auxin-overproducing. transgenic. petunia63. and. in. tobacco. plants64. using. the. iaaM. gene.cloned.from.Agrobacterium tumefaciens.63.With.ovary-.or.fruit-specific.gene.pro-moters. to. direct. expression. of. the. iaaM. gene. or. RolB. gene,. seedless. fruits. were.produced.from.eggplant,.tobacco,.tomato,.and.watermelon.65–69

Rotino69.reported.that.transgenic.tobacco.and.eggplants.that.expressed.the.coding.region.of.the.iaaM.gene.from.Pseudomonas syringae pv. savastanoi,.driven.by.an.ovule-specific.DefH9.gene.promoter.from.Antirrhinum majus,.produced.partheno-carpic.fruits..If.flowers.were.emasculated,.seedless.fruits.were.produced.from.these.transgenic.plants..If.pollinated,.the.plants.produced.fruits.containing.seeds..In.the.case.of.eggplant,.the.expression.of.the.iaaM.transgene.enabled.fruit.set.and.growth.under. environmental. conditions.where.no. fruit. setting. was. observed. in. the.wild-type.control.plants..Under.normal.growth.conditions,.the.transgenic.plants.produced.marketable.fruits.from.pollinated.or.unpollinated.transgenic.flowers,.but.the.control.plants.produced.fruits.of.marketable.size.only.if.flowers.were.fertilized.69

We. have. used. two. types. of. gene. promoters. to. control. the. expression. of. the.Agrobacterium iaaM.gene..One.is.the.auxin.inducible,.ovary.active.GH3.promoter.cloned.from.soybean70,71.and.another.is.the.ovary.specific.AGL5.promoter.72.Using.these.two.iaaM.fusion.genes,.we.produced.transgenic.Arabidopsis,.tobacco,.tomato,.and.watermelon.plants.68.Transgenic.plants.that.expressed.the.GH3.promoter::iaaM.or. AGL5. promoter-iaaM. gene. were. capable. of. producing. seedless. fruits.. Also,.because.overproduction.of.auxin.in.the.transgenic.plants.was.restricted.to.the.ovary.and.developing.fruit,.no.obvious.side.effects.were.evident..The.seedless.tomato.and.watermelon.fruits.produced.from.the.transgenic.plants.contained.similar. levels.of.acids.and.sugars,.vitamins,.and.other.nutrients.relative.to.the.seeded.fruits.produced.from.control.plants..Furthermore,.the.seedless.tomatoes.and.watermelons.were.nor-mal. in. size. or. sometimes. were. significantly. larger. than. those. produced. from. the.

Page 309:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

295Molecular Approaches for Transgene Containment

wild-type.control.plants.grown.under.identical.conditions,.although.fruit.productivity.per.plant.was.not.significantly.altered.

Seeds.can.be.produced.from.many.naturally.or.transgenically.produced.seedless.fruit.plants.if.pollination.is.enforced..To.have.a.total.sterility.of.seedless.fruit.plants,.we.have.also.constructed.a.number.of.gene.cassettes.that.can.lead.to.both.male.and.female.sterility.and.also.production.of.normal.sized.fruits.with.no.seeds.67.We.used.reproductive.organ-specific.gene.promoters.to.control.the.expression.of.a.cytotoxin.gene,. the. bacterial. barnase. gene. for. the. initial. testing,. to. achieve. both. male. and.female. sterility..We. used.an. ovary-specific. gene. promoter. to. control. overproduc-tion.of.auxin.for.seedless.fruit.production.68.With.a.combination.of.the.male-.and.female-sterility.gene.and.the.seedless.fruit.gene,.we.have.demonstrated.that.trans-genic.tobacco.and.tomato.plants.are.totally.sterile.(both.male.and.female.sterile).and.also.capable.of.producing.normal.sized.fruit.with.no.seeds.67

Nonhormonal. genes. have. also.been. shown. to. be. capable. of. producing. seedless.fruits..For.example,.Yao.et.al.73.have.shown.that.the.loss.of.function.mutation.in.the.MdPI.MADS-box.transcription.factor,.a.homolog.of.Arabidopsis.mutant.pistillata,.con-fers.parthenocarpic.fruit.development.in.apple.plants..Ampomah-Dwamena74.reported.that. repression.of. a. tomato.MADS.box. gene,.TM29,. using. either. cosuppression.or.antisense.techniques,.resulted.in.infertile.stamens.and.ovaries.and.subsequently.led.to.the.production.of.parthenocarpic.fruits..However,.these.transgenic.tomato.plants.also.produced.aberrant.flowers.with.morphogenetic.alterations.in.the.organs.of.the.inner.three.whorls.. Ito.and.Meyerowitz75. reported. that.overexpression.of. the.cytochrome.P450.gene.could.lead.to.production.of.parthenocarpic.fruits..Wild-type.Arabidopsis.fruits.developed.to.normal.size.only.if.the.ovules.were.fertilized..When.expression.of. the. cytochrome. P450. gene. was.hyperactivated,. fruits. grew. without. fertilization.and. reached. nearly. normal. size.. When. wild-type. pollen. was. used. to. pollinate. the.cytochrome.P450.overexpressing.plants,.the.pollinated.fruits.became.more.than.10%.longer.and.40%.wider.than.wild-type.fruits.but.they.produced.very.few.seeds.

Seedless.fruit.technologies.can.be.used.to.reduce.seed-mediated.transgene.escape.from.horticultural.crops.if.seeds.of.these.plant.species.are.of.little.value..Since.seeds.can.be.produced.from.seedless.fruit.plants.if.pollination.is.enforced,.seedless.fruit.technologies.can.be.used.in.both.vegetatively.and.sexually.propagated.crops..Further,.the.use.of.a.seedless.fruit.technology.should.lead.to.improvement.of.fruit.quality.and.productivity.68,69,76

chloroplaSt tranSformatIon

Chloroplasts.of.higher.plants.are.semiautonomous.organelles.with.a.small,.highly.polyploid. genomes. and. their. own. transcription–translation. machinery.77. In. most.flowering.plants,.chloroplasts.are.inherited.from.their.female.parents.although.for.some.plant. species. such.as. pines. their. chloroplasts. are. inherited. from. pollen.78,79.For. the.plant. species. whose. chloroplasts. are. inherited. only. from. the. female,. if.transgenes.are. intergrated.into.the.chloroplast.genome,.pollen.produced.from.the.resulting.transgenic.plants.should.be.transgene.free..In.the.case.of.tobacco.plants.with. transgenes. inserted. into. chloroplast. gemone,. for. instance,. only. three. out. of.1,000,000.pollen.grains.contain.transgenes.78

Page 310:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

296 Transgenic Horticultural Crops: Challenges and Opportunities

Chloroplast. transformation.offers.several.advantages.77,80–82.First,.each.plant.cell.contains.a.large.number.of.chloroplasts,.with.some.having.up.to.100.chloroplasts.per.cell.83.Also,.each.chloroplast.contains.50–100.or.more.copies.of.its.own.genome84..As.a.consequence,.if.a.trait.gene.is.incorporated.into.the.chloroplast.genome,.the.gene.can.be.enriched.up.to.100,000.copies.per.each.cell..High.copy.number.of.transgenes.per.cell.leads.to.high.expression.levels..For.example,.47%.leaf.total.proteins.were.the.Bt.cry2Aa2.protein.if.the.Bt.cry2Aa2.gene.was.introduced.into.the.choloroplast.genome.of. tobacco.85. Second,. transgene. expression. via. chloroplast. transformation. is. more.stable.because.gene.silencing.that.can.affect.expression.of.nuclear.transgenes.appears.to.have.little.effect.on.transgenes.that.are.introduced.into.the.chloroplast.genome.86.Third,.for.plant.species. in.which.chloroplasts.are.inherited.exclusively.through.the.female.line,.chloroplast.transformation.can.provide.an.effective.means.of.preventing.transgenes.from.transferring.to.non-transgenic.crops.or.wild.relatives.through.pollen.

In. spite. of. the. technical. challenges. in. transforming. chloroplasts,. stable. incor-poration.of.trait.genes.into.chloroplast.genomes.has.been.reported.in.Arabidopsis thaliana,.cotton,.poplar,.rice,.and.soybean.87,88.Also,.chloroplast.transformation.has.been.described.in.a.number.of.horticultural.crops.such.as.cabbage,89.cauliflower,90.carrot,91.egg.plant,92.lettuce,93,94.bladderpod,95.petunia,96.tobacco,97–100.potato,101.and.tomato.102–104.Genetic.transformation.of.chloroplasts.should.provide.an.effective.tool.to.reduce.pollen-mediated.transgene.flow.in.these.horticultural.species.whose.chlo-roplasts.are.inherited.from.female.parents..On.the.other.hand,.problems.associated.with.the.seed-mediated. transgene.escape.will.not.be.addressed.with.a.chloroplast.transformation.strategy.

Gene deletor technoloGy

Gene.deletor.technology.refers.to.techniques.that.can.eliminate.all.transgenes.in.a.particular.organ.or. in. the.entire.plant.when. transgene.functions.are.completed.or.the.transgene.presence.is.of.concern.105–108.The.principle.of.the.gene.deletor.technol-ogy.is.illustrated.in.Figure.14.1..All.transgenes,.such.as.trait.and.selection.marker.genes,.are.placed.within.the.two.loxP-FRT.hybrid.sites..In.addition,.the.FLP.or.Cre.recombinase.gene.under.the.control.of.a.conditionally.active.(e.g.,.organ-.or.tissue-specific,.or.developmental.stage.specific).gene.promoter.sequence.is.inserted.into.the.two.loxP-FRT.sites..If.a.pollen.and.seed-specific.gene.promoter.such.as.PAB5.from.Arabidopsis109. is.used. to.control. the.expression.of. the.FLP.gene,. the.FLP.protein.will.be.produced.only.in.pollen.and.seed..We.have.shown.that.transgenic.plants.have.transgenes.present.and.functional.in.all.organs.during.the.plant.life.cycle.except.in.seed. and. pollen.. Because. of. pollen-. and. seed-specific. FLP. expression,. all. trans-genes.except.an.86-bp.nonprotein.encoding.loxP-FRT.fusion.sequence.are.excised.from.pollen.and.seed..The.excised.DNA.sequence,.consisting.of.one.loxP-FRT.site,.the.trait.gene,.the.selection.marker.gene,.and.the.FLP.gene.should.be.destroyed.by.nonspecific.nucleases.in.the.cell.110,111

Site-specific.recombination.systems.(e.g.,.bacterial.phage.Cre/loxP.and.Saccha-romyces cerevisiae FLP/FRT). function. through. interactions.of.a. recombinase.with.its.specific.recognition.sites.112–115.Recombinase-mediated.excision.between.directly.oriented.recognition.sites.results.in.removal.of.the.intervening.DNA.leaving.one.

Page 311:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

297Molecular Approaches for Transgene Containment

recognition.site. intact;116–120.FLP/FRT.and.Cre/loxP. function. through. interactions.of.a.recombinase.with.its.specific.recognition.sites.116–120.Traditionally,.site-specific.DNA.recombination.systems,.such.as.bacterial.phage.Cre/loxP.and.Saccharomyces cerevisiae FLP/FRT. systems,. have. been. used. to. excise. marker. genes. or. short.spacer.sequences.in.higher.plants.114,121.Recombinase.recognizes.these.flanking.rec-ognition.sites.and.excises.any.intervening.DNA..Further,.in.addition.to.DNA.recom-bination.systems,.other.site-specific.DNA.excision.systems.can.also.be.used.in.the.gene.deletor.technology.

With.a.combined.use.of.loxP.and.FRT.sequences.as.the.flanking.sites.for.FLP.or. Cre. recombinase,. we. have. observed. high. efficiency. for. deleting. all. functional.

Non-transgenic plant Transformation using

trait genes and agene deletor cassette

Integration of genedeletor system andtrait genes into host

plant genome

All transgenes includingthe gene deletor systemare deleted from pollen

and seed if FLP isexpressed in pollen and

seed speci�cally

All transgenes includingthe gene deletor system

are deleted from theentire plant if FLP is

conditionally expressedin all cells

Organ-speci�c orconditionally inducible

expression of FLP

Transgenic plant hosting traitgene and a gene deletor system

Host plant genome

Host plantgenome

Host plantgenome

Deletion of all transgenesin cells where FLP is

expressed

Excised transgenesdestroyed in the cell

Host plant genomewith transgenes deletedin FLP expressed cells

Pollen and seedreverted back tonon-transgenic

Entire plantreverted back tonon-transgenic

loxP-FRT loxP-FRT

FIGURE 14.1 (See color insert.).Schematic.illustration.of.the.principle.of.the.gene.deletor.technology..On.the.left,.an.application.of.the.gene.deletor.technology.to.generate.non-transgenic.pollen,.seed,.or.plant.from.a.transgenic.plant.is.illustrated..The.schematics.presented.on.the.right.show.an.FLP-mediated.transgene.deletion.at.the.DNA.level..Any.transgenes,.such.as.trait.genes,.selection.marker.gene,.and.FLP.or.Cre.recombinase.gene.that.have.been.inserted.into.the.two.loxP-FRT.sites.(86.bp.in.length),.will.be.deleted.from.any.cell,.in.which.the.FLP.recombinase.is.expressed..When.a.pollen-.and.seed-specific.gene.promoter.is.used.to.control.recombinase.expression,.all.functional.transgenes.are.deleted.from.these.specific.organs..If.a.conditionally.inducible.gene.promoter,.such.as.chemically.or.high-temperature.inducible,.is.used.to.control.recombinase.expression,.the.system.will.delete.all.transgenes.throughout.the.plant.upon.induction..(Modified.from.Luo,.K..et.al.,.Plant Biotechnol. J.,.5,.263,.2007;.Moon,.H.S..et.al.,.Trends Biotechnol.,.28,.3,.2010.)

Page 312:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

298 Transgenic Horticultural Crops: Challenges and Opportunities

transgenes.from.pollen.and/or.seed.of.transgenic.tobacco.plants.105.Based.on.analysis.of.more.than.25,000.progeny.for.each.representative.transgenic.event,.efficiencies.for.automatic.deletion.of.all. transgenes.from.pollen.and/or.seed.are.as.high.as.100%.under. greenhouse. conditions.. Also,. we. have. demonstrated. that. the. high. excision.efficiency.trait.remained.stable.in.vegetatively.propagated.progeny.plants..The.cur-rent.version.of.the.gene.deletor.technology.is.readily.applicable.to.address.the.pollen-.and.seed-mediated.transgene.flow.problems.of.vegetatively.propagated.plants. that.are.important.to.the.agricultural,.forestry,.bioenergy,.ornamental,.and.paper/pulping.industries..This.technology.can.also.be.used.directly.in.sexually.propagated.crops.if.artificial.seeds.(i.e.,.no.pollination.or.fertilization.is.needed).are.used.for.the.propa-gation.of.these.crops..Artificial.seeds.have.been.produced.from.many.major.agricul-tural.crops.122

A.modified.version.of.the.current.gene.deletor.technology.could.be.used.in.sexu-ally.propagated.horticultural.crops.such.as.tomato,.lettuce,.eggplants,.etc..One.pos-sible.strategy.is.to.introduce.a.chemically.inducible.RNAi-FLP.gene.cassette.into.the.gene.deletor.system..Application.of.a.chemical. inducer.at. the.correct. time.would.prevent.the.deletion.of.transgenes.in.pollen.and.seeds..For.instance,.the.ethanol.induc-ible.ALCR/alcA.(alc).two-component.system123.could.be.used.to.control.RNAi-FLP.gene.expression..With. the.ALCR/alcA (alc). system,.application.of. ethanol.during.pollen/seed.development.would.activate.the.RNAi-FLP.gene..RNAi-FLP.represses.the.pollen/seed-specific.expression.of.FLP.recombinase..As.a.result,.all.transgenes.will.remain.in.the.pollen.or.seeds.during.that.generation..However,.if.the.inducer.is.not.applied.in.a.subsequent.generation,.FLP.will.be.expressed..Consequently,.FLP.expression.will.lead.to.deletion.of.all.functional.transgenes.in.pollen.and.seeds.

The.gene.deletor.technology.may.be.extended.to.generate.non-transgenic.edible.parts. from. transgenic. plants. to. mitigate. consumer. concerns. over. the. presence. of.transgenes. in. food. products.. For. instance,. in. the. case. of. the. transgenic. process-ing.tomatoes.grown.in.California,.the.final.products,.tomato.paste,.ended.up.being.exported. to. many. countries. around. the. world.2. Approvals. prior. to. exporting. the.tomato.paste.to.these.countries.had.to.be.obtained.from.each.of.these.countries..If.the.processed.product.contains.viable.seeds,.environmental. studies.and.approvals.are.then.required.in.the.importing.country,.even.if.the.importation.is.intended.only.for.food.consumption..A.fruit-specific.gene.deletor.system.to.eliminate.all.transgenes.from.fruit.tissues.might.help.to.simplify.some.of.these.procedures.and.thus.reduce.associated.costs..With.desirable.organ-.and.tissue-specific.gene.promoters.or.devel-opmental.stage.specifically.or.conditionally.inducible.gene.promoters.to.control.the.FLP.gene.expression,.it.is.possible.to.obtain.non-transgenic.organs.from.transgenic.plants.or.to.revert.the.transgenic.plants.back.to.“non-transgenic”.plants.when.needed.

Volunteer.crops.are.plants.growing.from.seeds. that.are. left. in. the.field.from.a.previous.planting..Volunteer. transgenic.plants.are.a.source.of.perceived.or.actual.environmental.risks.and.have.resulted.in.lawsuits.from.neighboring.farms.or.seed.companies..Because. the.gene.deletor. technology.can. remove.all. functional. trans-genes. from.pollen.and.seeds,.volunteer.plants. in.subsequent. seasons.will. then.be.non-transgenic.

Deleting.all.transgenes.from.pollen,.seeds.or.other.organs.once.their.functions.are.completed.probably.is.one.of.the.best.transgene.containment.concepts,.but.efficiency.

Page 313:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

299Molecular Approaches for Transgene Containment

of. the. gene. deletor. systems. under. field. environments. and. in. agricultural. crops.remains. to.be.demonstrated..While.the.gene.deletor. technology.should.be.readily.used.in.vegetatively.propagated.crops,.its.application.in.sexually.propagated.plants.requires.further.modifications.and.refinements.

PROSPECTIVES

Transgenic.technology.will.undoubtedly.play.an.important.role.in.genetic.improve-ment.of.horticultural.crops.in.the.future..As.discussed.earlier.even.though.transgenic.horticultural.crops.are.among.the.first.group.of.commercialized.transgenic.crops,.the.market.values.of.transgenic.horticultural.crops.is.insignificant.1,2.In.recent.years,.the. potential. utilities. of. many. trait. genes. have. been. well. demonstrated. in. plants.including.in.some.horticultural.crops.(see.other.chapters.of.this.book);.their.applica-tions.in.horticultural.plants.remain.uncertain.because.of.high.costs.associated.with.deregulation.approvals.and.environmental.and. food.safety.concerns.. If. the. safety.concerns.over.transgenic.horticultural.crops.can.be.reduced.and.if.the.costs.associ-ated.with.the.regulatory.approval.for.deregulation.of.a.transgenic.horticultural.crop.can.also.be.reduced,.commercialization.of.transgenic.horticultural.crops.should.be.accelerated..Thus,.it.is.crucial.to.develop.and.use.highly.reliable.gene-based.technol-ogies.to.help.minimize.transgene.flow.or.food.safety.concerns.over.transgenic.horti-cultural.crops.and.to.help.reduce.costs.associated.with.their.deregulation.approvals.

Finally,.we.would.like.to.end.this.chapter.with.quotation.from.a.report.by.The.National.Research.Council124.on.biological.confinement.of.genetically.engineered.organisms:.“Making.biosafety.a.primary.goal.from.the.start.of.any.project.will.be.a.more.effective.and.efficient.way.to.prevent.safety.failures.and.it.will.increase.com-mercial. investment. ratings. and. reduce. financial. risks. posed. by. possible. liability.claims. and. loss. of. consumer. confidence.”. “Each. (gene. containment). method. has.its.strengths.and.weaknesses,.and.all.vary.in.efficacy.depending.on.circumstances..No.one.method.will.achieve.100%.confinement.in.the.real.world.”.“Therefore,.it.is.sometimes.necessary.to.employ.more.than.a.single.method..In.many.technological.applications,. the. principle. of. redundancy. reduces. the. occurrence. of. predictable.hazards.while.achieving.the.benefits.of.technological.application.”

ACKNOWLEDGMENTS

The.work.described. in. the.Yi.Li.Laboratory.at. the.University.of.Connecticut.has.been.supported.by.grants.from.USDA,.DOE,.New.England.Invasive.Plant.Center,.and.the.Storrs-Connecticut.Agriculture.Experiment.Station..The.authors.would.like.to.thank.K..S..Cao.for.his.help.in.editing.references.cited.in.this.chapter.

REFERENCES

. 1.. Clark,.D.,.Klee,.H.,.and.Dandekar,.A..Despite.benefits,.commercialization.of.transgenic.horticultural.crops.lags..Calif. Agric.,.58,.89,.2004.

. 2.. Redenbaugh,.K..and.McHughen,.A..Regulatory.challenges.reduce.opportunities. for.horticultural.biotechnology..Calif. Agric.,.58,.106,.2004.

Page 314:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

300 Transgenic Horticultural Crops: Challenges and Opportunities

. 3.. Alston,. J.,. Bradford,. K.,. and. Kalaitzandonakes,. N.. The. economics. of. horticultural.biotechnology..J. Crop Improv.,.18(1/2),.413,.2006.

. 4.. Bradford,. K.. J.. et. al.. Challenges. and. opportunities. for. horticultural. biotechnology..Calif. Agric.,.58(2),.68,.2004.

. 5.. Bradford,.K..J..et.al..Regulating.transgenic.crops.sensibly:.Lessons.from.plant.breeding,.biotechnology.and.genomics..Nat. Biotechnol.,.23,.439,.2005.

. 6.. Jones,.P..B..C..Approval.for.genetically.engineered.bentgrass.creeps.through.agency.turfs..ISB.News.Report,.http://isb.vt.edu/articles/jan0504.htm,.2005..(Accessed.January.31,.2011).

. 7.. Meilan,. R.. Challenges. to. commercial. use. of. transgenic. plants.. J. Crop Improv.,.18(1/2),.433,.2006.

. 8.. Watrud,.L..S..et.al..Evidence.for.landscape-level,.pollen-mediated.gene.flow.from.genet-ically.modified.creeping.bentgrass.with.CP4.EPSPS.as.a.marker..Proc. Natl. Acad. Sci. USA,.101,.14533,.2004.

. 9.. Reichman,.J..R..et.al..Establishment.of.transgenic.herbicide-resistant.creeping.bentgrass.(Agrostis stolonifera L.).in.nonagronomic.habitats..Mol. Ecol.,.15,.4243,.2006.

. 10.. Gardner,.D..S.,.Danneberger,.T..K.,.and.Nelson,.E..K..Lateral. spread.of.glyphosate-resistant. transgenic.creeping.bentgrass.(Agrostis stolonifera).lines.in.established.turf-grass.swards..Weed Technol.,.18,.773,.2004.

. 11.. Daniell,.H..Molecular.strategies.for.gene.containment.in.transgenic.crops..Nat. Biotechnol.,.20,.581,.2002.

. 12.. Gressel,.J..and.Al-Ahmad.,.H..Molecular.containment.of.genes.within.crops,.prevention.of.gene.establishment.in.volunteer.offspring.and.feral.strains..In.Gressel,.J.,.ed..Crop Ferality and Volunteerism..CRC.Press,.Boca-Raton,.FL,.pp..371,.2005.

. 13.. Hills,.M..J..et.al..Genetic.use.restriction.technologies.(GURTs):.Strategies.to.impede.transgene.movement..Trends Plant Sci.,.12,.177,.2007.

. 14.. Kausch,.A..P..et.al..Transgenic.perennial.biofuel.feedstocks.and.strategies.for.biocon-finement..Biofuels,.1(1),.163,.2010.

. 15.. Stewart,.C..N..Jr..Biofuels.and.biocontainment..Nat. Biotechnol.,.25,.283,.2007.

. 16.. Goldberg,.R..B.,.Beals,.T..P.,.and.Sanders,.P..M..Anther.development:.Basic.principles.and.practical.applications..Plant Cell,.5,.1217,.1993.

. 17.. Schnable,.P..S..and.Wise,.R..P..The.molecular.basis.of.cytoplasmic.male.sterility..Trends Plant Sci.,.3,175,.1998.

. 18.. Hartley,.R..W..Barnase.and.Barstar:.Expression.of.its.cloned.inhibitor.permits.expres-sion.of.a.cloned.ribonuclease..J. Mol. Biol.,.202(4),.913,.1988.

. 19.. De.Block,.M..and.Debrouwer,.D..RNAN–RNA.in.situ.hybridization.using.digoxigenin-labeled. probes:. The. use. of. high-molecular-weight. polyvinyl. alcohol. in. the. alkaline.phosphatase.indoxyl-nitroblue.tetrazolium.reaction..Anal. Biochem.,.215,.86,.1993.

. 20.. Denis,.M..et.al..Expression.of.engineered.nuclear.male.sterility. in.Brassica napus.L..genetics,. morphology,. cytology. and. sensitivity. to. temperature.. Plant Physiol.,. 101,.1295, 1993.

. 21.. Goetz,.M..et.al.. Induction.of.male.sterility. in.plants.by.metabolic.engineering.of. the.carbohydrate.supply..Proc. Natl. Acad. Sci. USA,.98,.6522,.2001.

. 22.. Lemmetyinen,.J..et.al..Prevention.of.flower.formation.in.dicotyledons..Mol. Breeding,.7,.341,.2001.

. 23.. Mariani,.C..et.al..Induction.of.male.sterility.in.plants.by.a.chimaeric.ribonuclease.gene..Nature,.347,.737,.1990.

. 24.. Zhan,.X..Y.,.Wu,.H..M.,.and.Cheung,.A..Y..Nuclear.male.sterility.induced.by.pollen-specific.expression.of.a.ribonuclease..Sex. Plant Reprod.,.9,.35,.1996.

. 25.. Kandasamy,.M..K..et.al..Ablation.of.papillar.cell.function.in.Brassica.flowers.results.in.the.loss.of.stigma.receptivity.to.pollination..Plant Cell,.5,.263,.1993.

. 26.. Thorsness,.M..K..et.al..A.Brassica.S-locus.gene.promoter.targets.toxic.gene.expression.and.cell.death.to.the.pistil.and.pollen.of.transgenic.Nicotiana..Dev. Biol.,.143,.173,.1991.

Page 315:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

301Molecular Approaches for Transgene Containment

. 27.. Cho,.H..J..et.al..Production.of. transgenic.male.sterile. tobacco.plants.with. the.cDNA.encoding.a.ribosome.inactivating.protein.in.Dianthus.sinensis.L..Mol. Cells,.11,.326,.2001.

. 28.. Goldman,.M..H.,.Goldberg,.R..B.,.and.Mariani,.C..Female.sterile. tobacco.plants.are.produced.by.stigma-specific.cell.ablation..EMBO J.,.13,.2976,.1994.

. 29.. Colombo,.L..et.al..Downregulation.of.ovule-specific.MADS.box.genes. from.petunia.results.in.maternally.controlled.defects.in.seed.development..Plant Cell,.9,.703,.1997.

. 30.. Mourgues,.F.,.Brisset,.M..N.,.and.Cheveau,.E..Strategies.to.improve.plant.resistance.to.bacterial.diseases.through.genetic.engineering..Trends Biotechnol.,.16,.203,.1998.

. 31.. Wei,.H..et.al..Transgenic.sterility.in.populus:.Expression.properties.of.the.poplar.PTLF,.Agrobacterium NOS.and.two.minimal.35S.promoters.in.vegetative.tissues..Tree Physiol.,.26,.401,.2006.

. 32.. Ilinskaya,.O..N..and.Vamvakas,.S..Nephrotoxic.effects.of.bacterial.ribonucleases.in.the.isolated.perfused.rat.kidney..Toxicology,.120,.55,.1997.

. 33.. Leuchtenberger,.S..et.al..Conditional.cell.ablation.by.stringent.tetracycline-dependent.regulation.of.barnase.in.mammalian.cells..Nucleic Acids Res.,.29,.E76,.2001.

. 34.. Prior,.T..I.,.Kunwar,.S.,.and.Pastan,.I..Studies.on.the.activity.of.barnase.toxins..Bioconjug. Chem.,.7,.23,.1996.

. 35.. Yui,.R..et.al..Antisense.inhibition.of.mitochondrial.pyruvate.dehydrogenase.E1a.subunit.in.anther.tapetum.causes.male.sterility..Plant J.,.34,.57,.2003.

. 36.. van.Tunen,.A.. J.. et. al..Cloning.of. the. two.chalcone.flavanone. isomerase.genes. from.Petunia. hybrida:. Coordinate,. light-regulated. and. differential. expression. of. flavonoid.genes..EMBO J.,.7,.1257,.1988.

. 37.. van. der. Meer,. I.. M.. et. al..Antisense. inhibition. of. flavonoid. biosynthesis. in. petunia.anthers.results.in.male.sterility..Plant Cell,.4,.253,.1992.

. 38.. Ruiz,.O..N..and.Daniell,.H..Engineering.cytoplasmic.male.sterility.via.the.chloroplast.genome.by.expression.of.{beta}-ketothiolase..Plant Physiol.,.138,.1232,.2005.

. 39.. Hernould,.M..et.al..Male-sterility.induction.in.transgenic.tobacco.plants.with.an.uned-ited.atp9.mitochondrial.gene.from.wheat..Proc. Natl. Acad. Sci. USA,.90(6),.2370,.1993.

. 40.. Hernould,.M..et.al..Impairment.of.tapetum.and.mitochondria.in.engineered.male-sterile.tobacco.plants..Plant Mol. Biol.,.36,.499,.1998.

. 41.. Mayer,. J.. The. golden. rice. controversy:. Useless. science. or. unfounded. criticism?.Bioscience,.55,.726,.2005.

. 42.. Tsuchiya,.T..et.al..Tapetum-specific.expression.of.the.gene.for.an.endo-beta-1,3-glucanase.causes.male.sterility.in.transgenic.tobacco..Plant Cell Physiol.,.36,.487,.1995.

. 43.. Worrall,.D..et.al..Premature.dissolution.of.the.microsporocyte.callose.wall.causes.male.sterility.in.transgenic.tobacco..Plant Cell,.4,.759,.1992.

. 44.. De. Martinis,. D.. and. Mariani,. C.. Silencing. gene. expression. of. the. ethyleneforming.enzyme. results. in.a. reversible. inhibition.of.ovule.development. in. transgenic. tobacco.plants..Plant Cell,.11,.1061,.1999.

. 45.. Park,.J..H..et.al..A.knock-out.mutation.in.allene.oxide.synthase.results.in.male.sterility.and.defective.wound.signal.transduction.in.Arabidopsis.due.to.a.block.in.jasmonic.acid.biosynthesis..Plant J.,.31,.1,.2002.

. 46.. Sanders,.P..M..et.al..The.Arabidopsis.DELAYED.DEHISCENCE.1.gene.encodes.an.enzyme.in.the.jasmonic.acid.synthesis.pathway..Plant Cell,.12,.1041,.2000.

. 47.. Schmulling,.T..et.al..Restoration.of.fertility.by.antisense.RNA.in.genetically.engineered.male.sterile.tobacco.plants..Mol. Gen. Genet.,.237,.385,.1993.

. 48.. Huang,.C..Y..et.al..Direct.measurement.of.the.transfer.rate.of.chloroplast.DNA.into.the.nucleus..Nature,.422,.72,.2003.

. 49.. Ferrandiz,.C.,.Pelaz,.S.,.and.Yanofsky,.M..F..Control.of.carpel.and.fruit.development.in.Arabidopsis..Annu. Rev. Biochem.,.68,.321,.1999.

. 50.. Lohmann,.J..U..and.Weigel,.D..Building.beauty:.The.genetic.control.of.floral.patterning..Dev. Cell,.2,.135,.2002.

Page 316:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

302 Transgenic Horticultural Crops: Challenges and Opportunities

. 51.. Lohmann,.J..U..and.Weigel,.D..From.tough.nuts.to.touch-me-nots..Cell,.116,.763,.2004.

. 52.. Ma,.H..Molecular.genetic.analyses.of.microsporogenesis.and.microgametogenesis. in.flowering.plants..Annu. Rev. Plant Biol.,.56,.393,.2005.

. 53.. Weigel,.D..and.Meyerowitz,.E..M..The.ABCs.of.floral.homeotic.genes..Cell,.78,.203,.1994.

. 54.. Zik,.M..and.Irish,.V..F..Flower.development:.Initiation,.differentiation,.and.diversifica-tion..Annu. Rev. Cell Dev. Biol.,.19,.119,.2003.

. 55.. Mandel,.M..A..et.al..Manipulation.of.flower.structure. in. transgenic.tobacco..Cell,.71,.133,.1992.

. 56.. Pnueli,. L.. et. al.. Isolation. of. the. tomato.AGAMOUS. gene. TAG1. and. analysis. of. its.homeotic.role.in.transgenic.plants..Plant Cell,.6,.163,.1994.

. 57.. Mitsuda,.N..et.al..Efficient.production.of.male.and.female.sterile.plants.by.expression.of.a.chimeric.repressor.in.Arabidopsis.and.rice..Plant Biotechnol. J.,.4,.325,.2006.

. 58.. Oliver,.M..J..et.al..Control.of.plant.gene.expression..U.S..Patent,.5,.723,.1998.

. 59.. Austin,.S.,.Ziese,.M.,.and.Sternberg,.N..A.novel.role.for.site-specific.recombination.in.maintenance.of.bacterial.replicons..Cell,.25,.729,.1981.

. 60.. Sauer,.B..Identification.of.cryptic.lox.sites. in. the.yeast.genome.by.selection.for.Cre-mediated.chromosome.translocations.that.confer.multiple.drug.resistance..J. Mol. Biol.,.223,.911,.1992.

. 61.. Kuvshinov,.V..V..et.al..Molecular.control.of.transgene.escape.from.genetically.modified.plants..Plant Sci.,.160,.517,.2001.

. 62.. Varoquaux,.F..et.al..Less.is.better:.New.approaches.for.seedless.fruit.production..Trends Biotechnol.,.18,.233,.2002.

. 63.. Klee,.H..J..et.al..The.effects.of.overproduction.of.two.Agrobacterium.tumefaciens.TDNA.auxin.biosynthetic.gene.products.in.transgenic.petunia.plants..Genes Dev.,.1,.86,.1987.

. 64.. Guilfoyle,.T..J..et.al..Auxin-regulation.transcription..Aust. J. Plant Physiol.,.20,.489,.1993.

. 65.. Acciarri,.N..et.al..Genetically.modified.parthenocarpic.eggplants:.Improved.fruit.pro-ductivity.under.both.greenhouse.and.open.field.cultivation..BMC Biotechnol.,.2,.4,.2002.

. 66.. Carmi,.N..et.al..Induction.of.parthenocarpy.in.tomato.via.specific.expression.of.the.rolB.gene.in.the.ovary..Planta,.217,.726,.2003.

. 67.. Chen,. Y.. et. al.. Biotech. approach. to. neutralize. the. invasiveness. of. burning. bush.(Euonymus alatus),.a.progress.report.on.development.of.its.genetic.transformation.sys-tem.and.functional.analysis.of.sterile.genes..Acta Hort.,.769,.10,.2008.

. 68.. Li,.Y..Transgenic.seedless.fruit.and.methods..U.S..Patent,.6,.268,.552,.1998.

. 69.. Rotino,.G..L..et.al..Genetic.engineering.of.parthenocarpic.plants..Nat. Biotechnol.,.15,.1398,.1997.

. 70.. Hagen,. G.. et. al..Auxin-induced. expression. of. soybean. GH3. promoter. in. transgenic.tobacco.plants..Plant Mol. Biol.,.17,.567,.1991.

. 71.. Li,.Y..et.al..Expression.of.the.GH3/GUS.gene.as.a.molecular.marker.for.auxin.physiology..Plant Cell Physiol.,.40,.675,.1999.

. 72.. Sieburth,.L..E..and.Meyerowitz,.E..M..Molecular.dissection.of.the.AGAMOUS.control.region.shows. that.cis.elements. for. spatial. regulation.are. located. intragenically..Plant Cell,.9,.355,.1997.

. 73.. Yao,.J.,.Dong,.Y.,.and.Morris,.B..A..Parthenocarpic.apple.fruit.production.conferred.by.transposon.insertion.mutations.in.a.MADS-box.transcription.factor..Proc. Natl. Acad. Sci. USA,.98,.1306,.2001.

. 74.. Ampomah-Dwamena,. C.. et. al.. Down-regulation. of. TM29,. a. tomato. SEPALLATA.homolog,.causes.parthenocarpic.fruit.development.and.floral.reversion..Plant Physiol.,.130,.605,.2002.

. 75.. Ito,.T..and.Meyerowitz,.E..M..Overexpression.of.a.cytochrome.P450,.CYP78A9,.induces.large.and.seedless.fruit.in.Arabidopsis..Plant Cell,.12,.1541,.2000.

. 76.. Pandolfini,.T.,.Molesini,.B.,.and.Spena,.A..Molecular.dissection.of.the.role.of.auxin.in.fruit.initiation..Trends Plant Sci.,.12,.327,.2007.

Page 317:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

303Molecular Approaches for Transgene Containment

. 77.. Maliga,.P..Plastid.transformation.in.higher.plants..Annu. Rev. Plant Biol.,.55,.289,.2004.

. 78.. Ruf,.S.,.Karcher,.D.,.and.Bock,.R..Determining.the.transgene.containment. level.pro-vided.by.chloroplast.transformation..Proc. Natl. Acad. Sci. USA,.104.(17),.6998,.2007.

. 79.. Stegemann,.S.,.Hartmann,.S.,.Ruf,.S.,.and.Bock,.R..High-frequency.gene.transfer.from.the.chloroplast.genome.to.the.nucleus..Proc. Natl. Acad. Sci. USA,.100,.8828,.2003.

. 80.. Bock,.R..Transgenic.plastids.in.basic.research.and.plant.biotechnology..J. Mol. Biol.,.312,.425,.2001.

. 81.. Grevich,. J.. J.. and. Daniell,. H..Chloroplast. genetic. engineering:. Recent. advances. and.future.perspectives..Crit. Rev. Plant Sci.,.24,.83,.2005.

. 82.. Sharma,. K.. K.,. Bhatnagar,. P.,. and.Thorpe,.T..A.. Genetic. transformation. technology:.Status.and.problems..In Vitro Cell Dev. Biol. Plant,.41,.102,.2005.

. 83.. Martin,.W..and.Borst,.P..Secondary.loss.of.chloroplasts. in. trypanosomes..Proc. Natl. Acad. Sci. USA,.100,.765,.2003.

. 84.. Franklin,.S..E..and.Mayfield,.S..P..Prospects.for.molecular.farming.in.the.green.alga.Chlamydomonas..Curr. Opin. Plant Biol.,.7,.159,.2004.

. 85.. De.Cosa,.B..et.al..Overexpression.of. the.Bt.cry2Aa2.operon. in.chloroplasts. leads. to.formation.of.insecticidal.crystals..Nat Biotechnol.,.19,.71,.2001.

. 86.. van.Bel,.A..J..E..et.al..Novel.approach.in.plastid.transformation..Curr. Opin. Biotechnol.,.12,.144,.2001.

. 87.. Koop,.H..U..et.al..The.genetic.transformation.of.plastids..Top. Curr. Genet.,.19,.457,.2007.

. 88.. Wang,.H..H.,.Yin,.W..B.,.and.Hu,.Z..M..Advances.in.chloroplast.engineering..J. Genet. Genomics,.36,.387,.2009.

. 89.. Liu,.C..W..et.al..Stable.chloroplast.transformation.in.cabbage.(Brassica oleracea.L..var. capitata.L.).by.particle.bombardment..Plant Cell Rep.,.26,.1733,.2007.

. 90.. Nugent,.G..D..et.al..Nuclear.and.plastid. transformation.of.Brassica oleracea.var..Botrytis.(cauliflower).using.PEG-mediated.uptake.of.DNA.into.protoplasts..Plant Sci.,.170,.135,.2006.

. 91.. Kumar,.S.,.Dhingra,.A.,.and.Daniell,.H..Plastid-expressed.betaine.aldehyde.dehydro-genase.gene.in.carrot.cultured.cells,.roots,.and.leaves.confers.enhanced.salt.tolerance..Plant Physiol.,.136,.2843,.2004b.

. 92.. Singh,.S.,.Verma,.S.,. and.Bansal,.K..C..Plastid. transformation. in.eggplant. (Solanum melongena.L.)..J. Transgenic Res.,.19,.113,.2010.

. 93.. Lelivelt,.C..et.al..Stable.plastid.transformation.in.lettuce.(Lactuca sativa.L.)..Plant Mol. Biol.,.58,.763,.2005.

. 94.. Kanamoto,.H..et.al..Efficient.and.stable.transformation.of.Lactuca.sativa.L..cv..Cisco.(lettuce).plastids..Transgenic Res.,.15,.205,.2006.

. 95.. Skarjinskaia,.M.,.Svab,.Z.,.and.Maliga,.P..Plastid.transformation.in.esquerella.Fendleri,.an.oilseed.brassicacea..Transgenic Res.,.12,.115,.2003.

. 96.. Zubko,. M.. K.. et. al.. Stable. transformation. of. petunia. plastids.. Transgenic Res.,.13, 523,.2004.

. 97.. Koop,.H..U..et.al..Integration.of.foreign.sequences.into.the.tobacco.plastome.via.poly-ethylene.glycol-mediated.protoplast.transformation..Plants,.199,.193,.1996.

. 98.. O’Neillt,.C..et.al..Chloroplast.transformation.in.plants:.Polyethylene.glycol.(PEG).treat-ment.of.protoplasts.is.an.alternative.to.biolistic.delivery.systems..Plant J.,.3,.729,.1993.

. 99.. Svab,.Z.,.Hajdukiewicz,.P.,.and.Maliga,.P..Stable.transformation.of.plastids.in.higher.plants..Proc. Natl. Acad. Sci. USA,.87,.8526,.1990.

.100.. Svab,.Z..and.Maliga,.P..High-frequency.plastid.transformation.in.tobacco.by.selection.for.a.chimeric.aadA.gene..Proc. Natl. Acad. Sci. USA,.90,.913,.1993.

.101.. Sidorov,.V..A..et.al..Technical.advance:.Stable.chloroplast.transformation.in.potato:.Use.of.green.fluorescent.protein.as.a.plastid.marker..Plant J.,.19,.209,.1999.

.102.. Ruf,.S..et.al..Stable.genetic.transformation.of.tomato.plastids.and.expression.of.a.foreign.protein.in.fruit..Nat. Biotechnol.,.19,.870,.2001.

Page 318:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

304 Transgenic Horticultural Crops: Challenges and Opportunities

.103.. Nugent,.G..D..et.al..Plastid.transformants.of.tomato.selected.using.mutations.affecting.ribosome.structure..Plant Cell Rep.,.24,.341,.2005.

.104.. Wurbs,.D.,.Ruf,.S.,.and.Bock,.R..Contained.metabolic.engineering.in.tomatoes.by.expres-sion.of.carotenoid.biosynthesis.genes.from.the.plastid.genome..Plant J.,.49,.276,.2007.

.105.. Luo,.K..et.al..GM-gene-deletor:.Fused. loxP-FRT.recognition.sequences.dramatically.improve.the.efficiency.of.FLP.or.CRE.recombinase.on.transgene.excision.from.pollen.and.seed.of.tobacco.plants..Plant Biotechnol. J.,.5,.263,.2007.

.106.. Li,.Y.,.Duan,.H.,.and.Smith,.W..Gene-deletor:.A.new.tool.to.address.concerns.over.GE.crops..USDA.Information.Systems.for.Biotechnology.News.Report,.June.2007.

.107.. Mlynarova,. L.,. Conner,. A.. J.,. and. Nap,. J.. P.. Directed. microspecific. recombination.of. transgenic. alleles. to. prevent. pollen-mediated. transmission. of. transgenes.. Plant Biotechnol. J.,.4,.445,.2006.

.108.. Moon,.H..S.,.Li,.Y.,.and.Stewart,.C..N..Keeping.the.genie.in.the.bottle:.Transgene.bio-containment.by.excision.in.pollen..Trends Biotechnol.,.28,.3,.2010.

.109.. Belostotsky,.D..A..and.Meagher,.R..B..A.pollen-,.ovule-,.and.early.embryo-specific.poly.(A).binding.protein.from.Arabidopsis.complements.essential.functions.in.yeast..Plant Cell,.8,.1261,.1996.

.110.. Wilson,.C..M..Plant.nucleases..Annu. Rev. Plant Physiol.,.26,.187,.1975.

.111.. Srivastava,.V..and.Ow,.D..W..Rare. instances.of.Cre-mediated.deletion.product.main-tained.in.transgenic.wheat..Plant Mol. Biol.,.52,.661,.2003.

.112.. Chen,.Y..and.Rice,.P..A..New.insight.into.site-specific.recombination.from.Flp.recombi-nase-DNA.structures..Annu. Rev. Biophys. Biomol. Struct.,.32,.135,.2003.

.113.. Lyznik,. L..A.,.Gordon-Kammm,.W.. J.,. and.Taom,.Y.. Site-specific. recombination. for.genetic.engineering.in.plants..Plant Cell Rep.,.21,.925,.2003.

.114.. Ow,.D..W..Recombinase-directed.plant.transformation.for.the.post-genomic.era..Plant Mol. Biol.,.48,.183,.2002.

.115.. van.Duyne,.G..D.,.A.structural.view.of.cre-loxP.site-specific.recombination..Annu. Rev. Biophys. Biomol. Struct.,.30,.87,.2001.

.116.. Bayley,.C..C..et.al..Exchange.of.gene.activity.in.transgenic.plants.catalysed.by.the.Cre-lox.site.specific.recombination.system..Plant Mol. Biol.,.18,.353,.1992.

.117.. Dale,.E..C..and.Ow,.D..W..Gene.transfer.with.the.subsequent.removal.of.the.selection.gene.from.the.host.genome..Proc. Natl. Acad. Sci. USA,.88,.10558,.1991.

.118.. Gilbertson,.L..Cre-lox.recombination:.Cre-active.tools.for.plant.biotechnology..Trends Biotechnol.,.21,.550,.2003.

.119.. Odell,.J..et.al..Site-directed.recombination.in.the.genome.of.transgenic.tobacco..Mol. Gen. Genet.,.223,.369,.1990.

.120.. Russell,.S..H.,.Hoopes,.J..L.,.and.Odell,.J..T..Directed.excision.of.a.transgene.from.the.plant.genome..Mol. Gen. Genet.,.234,.49,.1992.

.121.. Ow,.D..W..GM.maize. from.site-specific. recombination. technology,.what.next?.Curr. Opin. Biotechnol.,.18,.115,.2007.

.122.. Fujii,.J..A..et.al..Artificial.seeds.for.plant.propagation..Trends Biotechnol.,.5,.335,.1987.

.123.. Caddick..M..X..et.al..An.ethanol-inducible.gene.switch.for.plants.used.to.manipulate.carbon.metabolism..Nat. Biotechnol.,.16,.177,.1998.

.124.. National.Research.Council,.Biological Confinement of Genetically Engineered Crops..Washington,.DC:.The.National.Academies.Press,.2004.

Page 319:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

305

15 Prospects for the Commercialization of Transgenic Ornamentals

Michael S. Dobres

INTRODUCTION

Over. the.past.20.years,. there.has.been. an. explosion. in. the. range. of. technologies.available.to.breeders.of.commodity.crops..This.has.included.the.use.of.molecular.markers1.and. transgenic. technologies2. to.bring.about. significant. increases. in.crop.yields..Despite.this.availability.and.a.significant.amount.of.academic.and.industrial.experimentation,.these.technologies.have.not.been.effectively.applied.to.the.develop-ment.and.commercialization.of.ornamental.plants..This.essay.seeks.to.explain.the.commercial.and.business.reasons.behind.this.apparent.missed.opportunity.

In.the.United.States,.the.entire.wholesale.value.of.the.ornamental.market.exceeds.$8.billion.annually.3.The.market.can.be.divided.into.several.major.product.sectors.including.cut.flowers,. potted.plants,. as.well.as.all. categories.of.garden.and. land-scape.plants.(trees,.shrubs.and.herbaceous.annuals,.and.perennials)..In.the.nursery.and.landscape.industry,.there.is.significant.consumer.and.grower.demand.for.low-maintenance.plants..This.includes.plants.with.improved.disease.resistance,.drought.tolerance,.and.cold.and.heat.tolerance.as.well.as.plants.with.an.extended.seasonal.flowering.period..Disease.and.insect.resistance.traits.have.the.potential.to.reduce.the.environmental.and.human.health.impact.of.gardening.and.landscaping.in.terms.of.reduced.pesticide.and.chemical.input,.as.has.been.reported.for.the.use.of.transgenic.commodity. crops.4,5. Traits. such. as. compact. habit. and. improved. branching. could.reduce.the.time.and.labor.needed.to.maintain.landscaped.areas.

Compared.to.the.achievements.of.conventional.breeders,.genetic.engineers.have.a.tough.act.to.follow..For.centuries,.breeders.of.ornamental.plants.have.pursued.genet-ics.that.confer.improved.disease.resistance,.improved.habit,.more.flowers,.extended.

CONTENTS

Introduction.............................................................................................................305Patents,.Plants,.and.Costs........................................................................................307Field.Testing.and.Deregulation...............................................................................309Global.Distribution.and.Deregulation..................................................................... 311Consumer.Acceptance............................................................................................. 313References............................................................................................................... 314

Page 320:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

306 Transgenic Horticultural Crops: Challenges and Opportunities

flowering.time.range,.increased.branching,.and.better.shelf.life..However,.once.created,.these.improvements.are.almost.always.restricted.to.the.genus,.sometimes.restricted.to.the.species,.and.occasionally.restricted.to.the.variety.in.which.they.are.bred.

Commercial.examples.of.shrubs.and.herbaceous.perennials.displaying.some.of.the.above.listed.traits.have.been.and.continue.to.be.developed.by.conventional.breed-ing..These.include.The.Knock.Out®.Rose.(U.S..patent.PP11836),.Endless.Summer.Hydrangea.(U.S..plant.patent.15298),.and.Salvia.‘May.Night.’.The.Knock.Out.Rose.is.highly.resistant.to.black.spot,.is.drought.tolerant,.and.flowers.from.early.summer.to. fall..Endless.Summer.Hydrangea.blooms. throughout. the.summer. into. late. fall,.and.Salvia.‘May.Night’.is.repeat.blooming.and.highly.drought.tolerant..The.market.success.of.these.examples.demonstrates.that.there.is.indeed.a.strong.demand.market.for.these.traits..At.the.same.time,.it.emphasizes.that.the.technology.used.to.develop.new.varieties.needs.to.be.comparable.in.cost.to.conventional.approaches.or.needs.to.confer.traits.unobtainable.by.conventional.breeding.

Transgenic.technology.is.unique.among.other.breeding.tools.in.its.ability.to.pre-cisely.move. single. traits. over. large.genetic. distances.. Although.crossing. the. spe-cies.and.the.genus.barrier.has.been.achieved.by.conventional.breeding.on.numerous.occasions,6,7.genetic.engineering.differs.in.its.ability.to.move.specific.genes.across.greater. distances:. between. families,. between. divisions,. and. between. kingdoms..Transferring.genes.for.color,.fragrance,.and.other.desirable.traits.to.species.devoid.of.such.traits.represents.a.prime.target.for.genetic.engineering.8

To. date,. only. Suntory. has. commercialized. a. transgenic. ornamental. in. the. form.of.cut.carnations.in.the.United.States,.Europe,.and.Japan9.and.more.recently.lavender-colored. “blue”. cut. roses. in. Japan.10.Given. the.dearth.of. commercial. exploitation. in.ornamentals,.it.is.ironic.that.one.of.the.first.published.examples.of.a.transgenic.plant.involved.petunia.11.Since.then,.there.has.been.considerable.excitement.about.the.pros-pect. for. improving. ornamental. crops. and. other. specialty. food. and. nonfood. crops.through.genetic.engineering..Several.companies.were.founded.either.partially.or.solely.on.the.concept.of.developing.and.commercializing.genetically.engineered.ornamen-tal. plants.. Companies. included. NovaFlora. Inc.,. Sanford. Scientific,. Calgene. Pacific,.and.Florigene.NV..Many.established.companies.formed.their.own.genetic.engineering.groups..These.included.Scotts,.Ball.Seeds,.Syngenta,.Suntory,.and.Kirin..Corporate.and.university-based.activity.in.genetic.engineering.can.be.tracked.by.examining.the.online.United.States.Department.of.Agriculture-Animal.and.Plant.Health.Inspection.Service-Biotechnology.Regulatory.Service.(USDA-APHIS-BRS).movement.and.release.permit.database.(www.aphis.usda.gov/biotechnology)..More. than.91.movement.permits.and.73.release.permits.(field.trials).for.ornamental.genera.have.been.issued..Permits.were.issued.equally. to.both.corporations.and.university.and.government.institutions..The.targets.cover.more.than.10.genera.of.bedding.plants,.foliage.plants,.and.shrubs.

In.the.history.of.technology,.this.spurt.of.corporate.and.entrepreneurial.interest.in.a.new.technology.is.fairly.common..Similar.entrepreneurial.bursts.have.been.seen.in.the.advent.of.electrical,.automotive,.photographic,.computer,.and.medical.technology.industries..As.with.other.new.technologies,.the.growth.of.commercial.interest.was.matched.with.skepticism.and.sometimes.fear..This.has.been.true.for.the.automotive.industry,. the. computer. industry. as.well. as.biotechnology.and.genetic. engineering..Some.of.the.above-mentioned.“ornamental.biotech”.companies.are.still.in.existence..

Page 321:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

307Prospects for the Commercialization of Transgenic Ornamentals

Others.have.long.since.gone.out.of.business.or.have.been.absorbed.into.larger.corpora-tions.or.have.curtailed.or.terminated.their.in-house.programs..The.main.reason.were.cost.of.patents.and. increased.regulatory.oversight.12.Although. there.are.significant.costs.in.the.development.and.introduction.of.conventionally.bred.ornamentals,.these.do.not.carry.with.them.the.same.administrative.and.legalistic.burden.associated.with.the.testing.and.government.approval.of.transgenic.ornamental.crops..These.issues.are.described.in.more.detail.in.the.following.paragraphs..Despite.the.decrease.in.corpo-rate.expenditures,.university.and.government.funds.are.still.used.at.a.significant.level.for.research.centered.around.the.development.of.genetically.engineered.ornamentals..This.includes.research.on.fragrance,.flower.form,.and.flower.color.13,14

PATENTS, PLANTS, AND COSTS

For.genetic.engineering,.like.any.new.and.innovative.technology,.its.success.and.per-sistence. in. the.marketplace.centers.around. the.patent.protection.of.new. inventions.and.discoveries..The.ornamental.industry.is.no.stranger.to.the.legal.protection.of.new.inventions..Since.1930,.new.varieties.of.trees,.shrubs,.and.herbaceous.plants.generated.as.spontaneous.or.induced.mutations,.or.by.cross-hybridization.have.been.protected.by.Plant.Patents.15.The.Plant.Patent.Act.provides.patent.protection.for.such.clonally.prop-agated.varieties..This.includes.varieties.propagated.by.grafting.of.scions.onto.root-stock,.the.direct.rooting.of.cuttings,.or.the.division.of.plants.or.bulbs..For.recalcitrant.varieties.that.are.difficult.or.slow.to.propagate,.this.can.also.be..performed.by.tissue.culture.micropropagation..Others.can.breed.with.these.varieties.but.cannot.propagate.them.without.a.license.from.the.patent.owner..For.the.past.90.years,.this.method.of.protection.has.provided.a.simple,.affordable,.and.enforceable.means.of.protecting.the.inventive.endeavors.of.hobby.breeders,.university.researchers,.and.corporations.alike..Ornamental.varieties.that.are.produced.and/or.propagated.by.seed.can.potentially.be.protected.under.the.Plant.Variety.Protection.(PVP).Act.16.In.practice,.however,.novel.ornamental.F1.hybrids.are.not.protected.by.their.inventors..Instead.the.F1.parents.are.held.by.the.inventors.as.a.trade.secret..Since.a.novel.F1.variety.will.not.breed.true,.the.breeder.has.little.to.fear.from.a.competitor.or.consumer.who.attempts.to.produce.the.new.variety.through.seed..Most.of.the.varieties.protected.as.PVPs.are.pure.breeding.open.pollinated.varieties.of.grasses.and.vegetables.(http://www.ars-grin.gov/cgi-bin/npgs/html/pvplist.pl)..The.developer.of.F1.hybrid.seed.avoids.the.cost.of.patent.pro-tection,.but.in.turn.invests.more.in.the.development.of.the.genetics.required.to.develop.true.breeding.parent.lines.needed.for.large.scale.F1.seed.production..Production.of.hybrid.seed.is.also.more.technically.demanding.and.less.predictable.than.asexually.propagated.varieties..In.general,.the.ornamental.industry.has.shifted.away.from.F1.hybrid.seed.production.and.more.and.more.towards.vegetative.propagation.

Outside. of. the. United. States,. new. plant. varieties. can. be. protected. under. the.International.Convention.for.the.Protection.of.New.Varieties.of.Plants.(UPOV).in.any.country.that.is.a.signatory.of.the.1991.convention.17.There.are.currently.67.mem-ber.states,. including.countries. in.Europe,.Asia,.Africa,.and. the.Americas..UPOV.provides.a.codified.system,.whereby.a.developer.can.seek.protection.in.parallel.in.multiple.member.states..This.greatly.simplifies.the.protection.for.a.developer.seek-ing.to.produce,.distribute,.and.market.new.varieties.in.multiple.member.states.

Page 322:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

308 Transgenic Horticultural Crops: Challenges and Opportunities

At.first.sight.transgenic.technology.represents.a.rapid.and.simple.way.of.modifying.plant.traits.for.the.development.of.novel.patentable.varieties..At.its.simplest.level,.it.allows.the.modification.of.traits.by.transfer.of.specific.trait.genes.to.a.targeted.vari-ety..If.the.gene.brings.about.a.change.in.a.protected.variety,.for.example.petal.color,.a.plant.patent.in.the.United.States.could.potentially.protect.that.variety..However,.in.UPOV.countries,.the.new.variety.would.be.viewed.as.essentially.the.same.as.the.par-ent.variety,.or.“essentially.derived.”.The.developer.of.the.transgenic.variety.would.require.a.license.from.the.owner.of.the.original.variety.before.commercialization.

In. practice,. however,. transgenic. technology. has. proven. to. be. both. technically.demanding.and.expensive,.especially.when. the. full. range.of. intellectual.property.issues.are.considered..Unlike.other.breeding.technologies,.the.transgenic.approach.requires.use.of.multiple.novel. technologies,.genes,.and.vectors.each.of.which.can.be.covered.by.a.utility.patent.restricting.the.use.of.that.technology.in.one.or.more.territories..These.patent-related. issues.have.been.discussed. in.detail. in.a.previous.review.12.In.short,.the.breadth.and.strength.of.a.patent.can.vary.greatly..For.exam-ple,.engineering.novel.petal.color.might. involve. the.use.of.a.coding.sequence.for.an.enzyme.involved.in.the.formation.of.a.novel.pigment..In.a.hypothetical.case,.a.broad.patent.covering.all.uses.of.the.coding.sequence.to.modify.pigment.formation.may.cover.this.coding.sequence..In.other.cases.the.breadth.of.the.patent.might.be.restricted.to.a.narrower.subset.of.uses..For.example,.claims.may.only.be.granted.for.use.of.the.coding.sequence.for.its.use.in.color.modification.of.petals.of.a.specific.species..The.developer.and.his/her.patent.counsel.need.to.carefully.read.the.patent,.its.claims,.and.the.prosecution.history.to.fully.understand.the.breadth.of.a.patent..If. the. developer’s. use. of. the. coding. sequence. falls. outside. the. granted. claims. of.the.patent,. the.developer’s. legal.counsel.may.determine.that.no.license.is.needed..Conversely,.the.patent.may.be.sufficiently.broad.to.make.commercialization.without.a. license.from.the.patent.holder. impossible..In.such.cases,. the.developer.needs.to.negotiate.with.the.patent.holder.for.a.license..Licenses.may.also.be.required.for.the.use.of.promoter.and.other.regulatory.sequences,.as.well.as.for.selectable.marker.cas-settes.and.vectors.used.in.the.plant.transformation.process.

In. addition. to. those. covering. trait. gene. technology,.patents. exist. for. all. of. the.commonly. used. plant. transformation. methods.. Although. many. of. the. major. pat-ents.have.recently.expired,.or.are.close.to.expiring,.the.existence.of.even.a.few.patents.for.which.licenses.are.required.can.add.significantly.to.the.cost.of.developing.and.commercializing.a.transgenic.ornamental..Even.if.the.dominant.patent.for.a.given.transformation. method. has. expired,. there. may.be. genus. specific. transformation.patents.covering.the.use.of.a.specific.transformation.method.in.a.particular.genus..The.situation.is.further.complicated.by.complexities.of.patent.law.and.the.complex.way.in.which.a.patent.is. issued.and.defined.or.claimed..In.some.cases.a.patent. is.so.narrowly.claimed.that.it.is.possible.to.easily.circumvent.the.patent..However,.to.do.this.often.requires.engaging.services.of.a.skilled.patent.lawyer.familiar.with.the.technology.field.in.hand..A.full.legal.opinion.can.add.tens.of.thousands.of.dollars.to.the.cost.of.product.development..Future.prospects.are,.however,.not.quite.so.gloomy..Thus,.within.the.next.decade.or.so,.most.of.the.key.enabling.patents.should.expire.and.fall.into.the.public.domain.and.the.prospect.for.developing.transgenic.orna-mentals. should. improve.. In.addition,.university.and.non-profit.efforts.such.as. the.

Page 323:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

309Prospects for the Commercialization of Transgenic Ornamentals

Public.Sector.Intellectual.Property.Resource.(PIPRA).(www.pipra.org).and.Cambia.(www.cambia.org).should.help.facilitate.access.to.the.technology.needed.to.develop.transgenic.ornamentals.and.other.specialty.crops.

FIELD TESTING AND DEREGULATION

In. addition. to. the. complex. intellectual. property. issues. discussed. above,. an. orna-mental.breeder.needs.to.consider.the.increased.burden.associated.with.field-testing.a. transgenic. variety.. For. conventionally. bred. varieties,. the. focus. during. field-testing.involves.evaluation.of.such.characteristics.as:.phenotypic.stability,.hardiness,.flowering.time.and.length,.diseases.resistance,.and.in.some.cases.invasiveness..The.breeder.needs.to.ensure.that.the.variety.will.perform.as.expected.in.the.market.place..Ornamentals.released.in.the.United.States.have.to.perform.well.in.a.wide.variety.of.conditions.that.range.from.the.hot.humid.summers.and.cold.damp.winters.of.the.East.Coast.to.the.year-round.arid.conditions.of.the.Southwest..For.this.reason,.developers.often.test.in.multiple.locations..In.some.cases,.this.is.organized.through.grower.orga-nizations.such.as. the.All.America.Rose.Selections.(AARS,.http://www.rose.org/)..The.AARS.organizes.multi-site.testing.for.new.varieties.developed.by.its.members..New.varieties.are.ranked.based.on.disease.resistance,.ease.of.care,.and.beauty..The.best.varieties.are.awarded.the.prestigious.AARS.winners.certificate..The.developer.uses.the.award.to.promote.the.variety.to.the.trade.and.consumers..Before.entering.an.AARS.trial,.developers.perform.their.own.evaluations.for.several.years..Such.field.tests.for.conventionally.bred.ornamentals.are.often.conducted.under.tight.security.to.ensure.the.public.and.competitors.cannot.gain.access.to.commercially.valuable.varieties.before.they.are.released.or.undergo.industry.trials..Transgenic.landscape.plants.would,.in.addition.to.the.private.and.public.field.evaluations,.need.to.undergo.studies.on.trans-gene.flow.and.impact.on.insect.populations..These.studies.would.significantly. add. to. the. size.and.complexity.of. the.field.evaluations..Such.studies.are.aimed.at.understanding. the.ecological.benefits.and/or.risks.of. introducing.the.transgenic.crop..For.large.acreage.commodity.crops,.a.great.deal.of.scientific.effort.and.literature.has.been.devoted.to.the.subject.of.gene.flow.and.impact.on.nontarget.organisms.18.Such.data.is.used.in.the.compilation.and.review.of.regulatory.packages..The.garden.and.landscape.industry.represents.a.special.case..Plants.are.produced.on.a.much.smaller.scale.than.commodity.crops..For.a.popular.perennial.or.shrub,.this.could.be.in.the.range.of.100,000.to.a.million.plants.covering.0.5–10.ha..The.final.end.use.in.the.landscape.might.range.from.a.single.specimen.plant.to.a.few.hundreds.in.a.large.municipal.landscape.planting..Hybridization.and.gene.flow.between.native.species. is. a.naturally.occurring. event..Spontaneous. interspecific.hybrids. are.well.documented.in.numerous.ornamental.genera.19.The.exact.level.and.frequency.of.out-crossing.from.a.cultivated.variety.(whether.transgenic.or.not).will,.however,.likely.vary.from.species.to.species,.and.variety.to.variety..A.2005.study.in.Germany.docu-mented.the.level.of.outcrossing.from.non-transgenic.hybrid.roses.to.wild.roses.20.The.study.made.use.of.microsatellite.markers.to.follow.gene.flow..The.authors.concluded.that.the.frequency.of.outcrossing.from.cultivated.to.wild.roses.was.rare..A.develop-ing.body.of.similar.literature.is.helping.to.define.the.level.of.regulatory.oversight.needed.for.transgenic.ornamentals.21

Page 324:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

310 Transgenic Horticultural Crops: Challenges and Opportunities

Studies.on.gene.flow.and. impact.on.flora.and.fauna. for.a.new. transgenic.crop.are.compiled.and.submitted.as.a.petition. for.deregulation.by. the.USDA.. In.addi-tion. to. the. detailed. molecular. and. ecological. studies. required. by. the. USDA,. the.Environmental.Protection.Agency.(EPA).requires.registration.of.what.it.defines.as.Plant.Incorporated.Protectants.(PIP).12.A.PIP.is.a.“pesticidal.substance.that.is.pro-duced.in.a.living.plant.and.the.genetic.material.necessary.for.the.production.of.the.substance,.where.the.substance.is.intended.for.use.in.the.living.plant.”.This.definition.does.not.include.genes.moved.into.a.variety.through.conventional.breeding.or.cell.culture.techniques,.but.only.covers.genes.transferred.to.a.variety.by.genetic.engi-neering..It.also.does.not.cover.pesticidal.genes.transferred.from.closely.related.spe-cies..To.conduct.the.necessary.field.experiment.prior.to.filing.for.EPA.approval.and.registration.of.a.PIP.containing.variety,.a.developer.must.obtain.an.Experimental.Use.Permit.(EUP).in.addition.to.the.USDA-APHIS.permit..Final.registration.requires.a.commitment.to.post-registration.monitoring.and.stewardship..For.commodity.crops.registered.to-date,.this.has.included.preparation.of.an.Insect.Resistance.Management.Plan.(IRM).including.the.use.of.non-transgenic.refuges.to.reduce.the.potential.for.insects.resistant.to.the.PIP..There.are.currently.no.examples.of.EPA.approved.PIPs.in.ornamental.crops,.and.it.is.unclear.what.refuge.and.stewardship.requirements.would.be.required.for.transgenic.ornamentals..Natural.refuges.would.exist.in.all.other.non-transgenic.plants.in.the.surrounding.landscape..Furthermore,.EPA.PIP.registration.for.commodity.crops.is.valid.for.about.3–5.years..This.would.not.be.practical.for.plants.used.in.a.garden.or.landscape.environment..Would.the.consumer.be.expected.to.discard.his/her.aphid-resistant.rose.bush.after.5.years?

Perhaps.one.of.the.most.significant.differences.in.design.of.transgenic.and.non-transgenic.field.tests.is.that.conventional.field.tests.and.trials.are.conducted.in.par-allel. on. hundreds. of. candidate. varieties.. Commercial. field-tests. typically. contain.several.hundred.distinct.varieties..Each.variety.may.differ.in.one.or.more.traits..It.is.fairly.common.for.a.developer.to.include.lines.selected.from.a.broad.array.of.parents.that.exhibit.wide.variation. in.color. range,.habit,. and.disease.resistance. traits. in.a.single.field-test.location..In.contrast,.for.transgenic.varieties,.gene.flow.studies.and.insect. impact.population.studies.are.typically.conducted.on.one.variety.at.a. time..In.some.cases,.multiple.lines.each.carrying.a.distinct.gene.insertion.event.may.be.characterized.in.parallel..This.greatly.increases.the.cost.per.variety.for.transgenic.varieties.compared.to.non-transgenic.varieties.

Many. of. the. genes. proposed. for. use. in. ornamentals. are. derived. from. plants..These.include.genes.involved.in.pigment.biosynthesis.and.genes.conferring.altered.plant.habit.8.The.consequences.of.gene.flow.between.related.species.of.ornamentals.will. probably. depend. on. the. exact. transgene. in. question.. In. a. hypothetical. case,.would.a.gene.derived. from.Arabidopsis. and.conferring.dwarf.phenotype22.confer.any.selective.advantage.if.transferred.from.a.transgenic.hybrid.rose.to.a.multiflora.rose?. Would. it. make. a. difference. if. the. gene. were. derived. from. rose. instead. of.Arabidopsis?. Indeed.in.2007,. the.USDA.proposed.a. tiered.regulatory.structure. in.which. certain. low-risk. transgenics. are. regulated. less. stringently. than. higher. risk.transgenics.23.In. this.context,. technical.refinements.may.help.lower.the.regulatory.cost.and.burden..The.development.of.native.selectable.markers,24.positive.selection.systems,25,26.marker. removal. systems,27. and.marker-free. systems. is.one. approach..

Page 325:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

311Prospects for the Commercialization of Transgenic Ornamentals

The.development.of.cisgenic.technology,.in.which.all.genes.used.in.the.gene.transfer.process.are.derived.from.the.same.genus.as.the.target.genus,.is.another.approach.28,29

Other.approaches.that.could.be.adopted.by.a.breeder.to.mitigate.risk.and.reduce.costs.include.the.careful.selection.of.parental.breeding.lines..One.approach.would.be.to.introduce.the.transgene.into.male.and/or.female.sterile.lines..Many.varieties.or.ornamentals.have.been.bred.by.conventional.means. to.have.full.flowers.with.multiple.whorls.of.petals.but.no.male.or.female.reproductive.organs..Commercial.examples.include.Impatiens.‘Cameo.Pink.Surprise’.(U.S..patent.13,.308),.Petunia.‘Condowhite’.(U.S..patent.14,.509),.and.Begonia.‘Double.White’.(U.S..patent.12,.674).. Such. transgenic. versions. of. these. sterile. ornamentals. would. be. unable. to.hybridize.with.wild.or.other.related.cultivated.species,.and.would.be.unable.to spread.by.seed.dispersal..This.approach,.however,.might.be.expensive.from.a.regulatory.approach,.since.every.new.variety.would.need.to.be.separately.deregulated..Thus,.the.U.S..system.regulates.transformation.“events.”.By.first.introducing.the.trans-gene.into.a.good.parent.or.breeding.line,.a.high-expressing.stable.transgenic.line.can. be. characterized. and. deregulated. and. used. as. a. parent. line. for. subsequent.breeding.and.development.of.new.varieties.in.accordance.with.conventional.breed-ing.and.evaluation.practices..The.two.approaches.could.be.potentially.combined.if.the.final.variety.created.by.the.breeder.were.rendered.sterile.through.use.of.male.sterile.lines.or.parents.of.different.ploidy.levels..Even.if.issues.related.to.gene-flow.could.be.addressed,.there.would.still.be.costs.related.to.monitoring.and.post-dereg-ulation.stewardship.that.could.add.significant.costs.to.field.trials.and.commercial.release.of.transgenic.varieties.

GLOBAL DISTRIBUTION AND DEREGULATION

Difficulties.also.arise.in.the.way.that.different.regions.and.countries.regulate.trans-genic.crops..Thus,.although.many.countries.are.signatories.of.the.Cartagena.Protocol.on.Biosafety,30.significant.differences.exist.in.the.exact.way.in.which.regulatory.pol-icy.is.practiced.and.enforced..For.example,.in.the.European.Economic.Community.(EEC),.transgenic.crops.are.not.regulated.based.on.the.insertion.events,.but.based.on. the. variety.31,32. Thus,. the. EEC. must. separately. approve. two. or. more. varieties.derived.from.a.single.transformation.event..Such.differences.in.regional.and.national.regulatory.practices.add.a.further.level.of.cost.and.complexity.to.the.development.and.commercialization.of.transgenic.ornamentals.and.can.impact.the.prospects.for.international.distribution..This.is.discussed.in.more.detail.below.

Varieties.of.bedding.plants,.perennials,.shrubs,.and.cut.flowers.are.produced,.dis-tributed,.and.sold.to.consumers.in.many.different.regions.and.countries..The.supply.chain.for.a.new.bedding.plant.variety.typically.starts.in.a.low-cost.production.region.such.as.Africa.or.Central.America..From.there,.cuttings.are.shipped.to.rooting.sta-tions.in.Europe,.North.America,.or.Asia..These.rooting.stations,.in.turn,.sell.plant.plugs.to.growers.within.that.country.or.region..The.grower.then.sells.finished.plants.to.garden.centers.and.large.chain.retailers..Similarly,.the.supply.chain.for.cut.flowers.starts. in.South.America.or.North.Africa. for. the.United.States.or.Europe,. respec-tively..Cut.flowers.are.harvested.and.shipped.by.overnight.air-freight.to.major.distri-bution.centers.in.the.United.States.and.Europe..At.this.point.commercial.brokers.are.

Page 326:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

312 Transgenic Horticultural Crops: Challenges and Opportunities

instrumental.in.distributing.products.to.large.regional.wholesalers..The.wholesalers.distribute.products.to.local.florists.and.supermarkets..There.are.some.exceptions.to.these.general.patterns..For.example,.a.few.internet-direct. importers.of.cut.flowers.allow.florists.to.ship.directly.from.farms.in.South.America.to.destinations.in.Europe.and.the.United.States..Some.of.the.large.chain.retailers.control.their.own.distribu-tion.chain.directly.from.Africa.or.South.America.to.the.United.States.or.Europe..Certain. locations,. such.as.California.or.Holland,.have.either. favorable. climate.or.favorable.infrastructure.that.allow.for.the.production.of.cut.flowers.in.the.Northern.Hemisphere.

For. international. trade.of. conventionally.bred.varieties,. growers. routinely.deal.with.the.phytosanitary.regulations.required.for.the.export.and.import.of.plant.mate-rial..These.are,.for.the.most.part,.fairly.similar.from.country.to.country..They.are.mainly.written.and.enforced.to.ensure.that.plant.material.is.pest.and.disease.free.as.it.travels.from.one.country.to.another..For.a.transgenic.variety,.however,.a.developer.would.need.to.apply.for.government.approval.and.permission.to.import.and.distribute.in.each.member.state.or.region.of.the.supply.chain..A.considerable.amount.of.time.and.effort.would.be.required.to.identify.the.appropriate.government.agency,.under-stand.the.authorization.process,.liaise.with.the.appropriate.government.officials,.and.prepare.the.appropriate.application.documents.required.for.government.approval.

For.example,.in.a.hypothetical.case,.starting.in.Costa.Rica,.a.developer.of.a.trans-genic.petunia.would.need. to.gain.approval. for. import.and.growth.of. stock.plants.from. the. Costa. Rican. government.. Costa. Rica. is. one. of. the. largest. producers. of.un-rooted.cuttings.for.the.North.American.bedding.plant. industry..In.Costa.Rica,.the. National. Technical. Biosafety. Commission. (NTBC). regulates. the. production.of.transgenic.crops.33.The.NTBC.has.approved.the.production.of.transgenic.cotton.and.soybean.seeds.and.would.presumably.be.amenable.to.the.production.of.trans-genic.cuttings.of.ornamentals..Imports.of.such.cuttings.into.the.United.States.would.require.that.the.developer.files.a.petition.for.deregulation.with.USDA-APHIS-BRS.and.the.EPA,.if.the.variety.contained.a.PIP.

If.the.developer.wanted.to.ship.transgenic.petunia.cuttings.to.Europe,.he.would.be.required.to.file.and.obtain.approval.for.release.of.the.variety.throughout.the.EEC.31,32.In.theory,.a.developer.can.file.for.approval.in.a.single.member.state..If.the.variety.is.approved.in.that.member.state.(e.g.,.Holland).and.no.other.member.state.objects,.the.variety.can.be.released.and.commercialized.in.all.member.states..Even.if.one.member.state.objects,.an.opinion.is.sought.from.the.European.Food.Safety.Authority.(EFSA).and.used.by.the.European.Commission.to.approve.or.reject.the.application.

For. cut. flower. production. and. import. into. the. United. States,. Columbia. and.Ecuador.are.the.two.main.sites.of.production..The.regulatory.system.in.Columbia.is. more. accommodating. for. the. production. of. transgenic. crops. than. Ecuador’s.34.A.2006.law.in.Ecuador.prohibits. the. trade,.use,.and.handling.of. transgenic.prod-ucts. for. human. consumption.. Though. limited. quantities. of. transgenic. carnations.have.been.produced.in.Ecuador,. transgenic.cotton. is.widely.planted. in.Columbia,.and.the.government.and.agricultural.industry.appear.to.be.generally.supportive.of.biotechnology.35

Similar.technology.driven.import.barriers.exist.for.countries.such.as.Japan36.and.China.37.Thus.import.of.cutting.material.for.growth.and.sale.in.Japan.would.require.

Page 327:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

313Prospects for the Commercialization of Transgenic Ornamentals

approval. by. the. Plant. Safety. Division. of. the. Food. Safety. and. Consumer. Affairs.Bureau.of. the.Japanese.Ministry.of.Agriculture,.Forestry,.and.Fisheries.(MAFF)..Due.to.consumer.and.industry.resistance,.no.transgenic.crops.have.been.commer-cially.cultivated.in.Japan..This.is.despite.the.approval.for.import.of.more.than.90.transgenic.crop-derived.products.. In.China,. the.application.process.appears. to.be.more.complicated.than.in.most.other.countries..There.are.only.two.application.dead-lines.per.year..Before.applying.for.approval. in.China,. the.transgenic.variety.must.first. be. approved. in. the. country. of. origin.. Thereafter,. it. must. be. retested. for. the.Chinese.application.

Overall.a.company.seeking.to.commercialize.a.transgenic.crop.in.one.or.more.of.the.major.markets.of.the.developed.world.has.to.deal.with.the.regulatory.agencies.not.only.in.the.country.where.the.crop.will.be.sold.but.also.in.any.country.in.which.the.crop.is.produced..This.presents.a.significant.challenge.in.terms.of.the.resources.needed. to.compile. the. regulatory.packages.and.communicate.with. the. regulatory.agencies.in.each.of.these.countries.

In.some.respects,.the.regulatory.process.is.just.as.much.about.managing.the.per-ception.of.risk.and.the.perception.of.benefits.as.it.is.about.managing.the.risks.and.benefits. themselves.. In. this. regard.effective.communication.between. industry,. the.regulatory.agencies,.and.the.public.is.important..Furthermore,.the.effectiveness.of.the.regulatory.process.will.be.aided.by.the.growing.body.of.literature.on.the.ecologi-cal.consequences.and.extent.of.gene.flow.for.transgenic.and.non-transgenic.crops..Additional.funding.to.support.basic.research,.and.the.dispersal.of.this.research.to.industry.and.the.public.could.substantially.increase.the.prospects.for.the.develop-ment.of.transgenic.ornamentals.for.garden.and.landscape.use.

In.the.attempt.to.reduce.the.impact.of.the.regulatory.process.on.the.development.of.ornamentals.and.other.specialty.crops.the.Specialty.Crop.Regulatory.Assistance.consortium. (SCRA).was. formed. in.2005..SCRA. is. a.public–private. effort. that. is.modeled.somewhat.on.the.Federal.Drug.Administration’s.successful.Orphan.Drug.Program..It.plans.to.work.alongside.the.existing.regulatory.agencies.and.their.exist-ing.regulatory.framework.to.facilitate.passage.of.transgenic.specialty.crops.through.the.regulatory.process..This. is.expected. to. include.clear.delineation.of. regulatory.requirements.for.specific.crop-trait.combinations,.assistance.in.compiling.regulatory.packages,.and.general.guidance.for.navigating.the.regulatory.process.(http://www.specialtycropassistance.org).. The. effort. is. currently. seeking. industry. and. govern-ment. funding. to. run.and.maintain. the.necessary.support.programs.. If. successful,.this.effort.could.significantly.increase.the.prospects.for.the.development.and.com-mercialization.of.transgenic.ornamentals.and.other.specialty.crops.

CONSUMER ACCEPTANCE

Genetically.engineered.carnations,.sold.as.cut.flowers,.have.been.marketed.in.Europe,.the.United.States,.and.Japan.for.many.years.9.There.has.been.little.adverse.public.reaction.to.these.varieties..This.bodes.well.for.the.marketing.of.transgenic.landscape.plants..Indeed,.a.2004.survey.of.602.Master.Gardeners.in.Tennessee.revealed.that.73%.of. respondents. reported.an. interest. in.buying. transgenic.ornamentals,. if. and.when.they.become.available.38.Overall.respondents.perceived.slight.environmental.

Page 328:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

314 Transgenic Horticultural Crops: Challenges and Opportunities

and. human. health. benefits. due. to. transgenic. ornamentals.. Respondents. were.particularly.interested.in.modifications.that.confer.increased.disease.resistance,.pest.resistance,.plant.longevity,.and.increased.flowering.time..When.asked,.respondents.indicated.a.strong.preference.for.the.labeling.of.transgenic.ornamentals..The.authors.of.the.study.suggest.that.the.results.indicate.that.developers.should.emphasize.the.benefits.gained,.not.the.technology.used.to.develop.new.varieties.

Consumer. and. grower. acceptance. will. also. be. influenced. by. any. added. cost.related. to. the. regulatory. and.patent. hurdles. discussed. above.. Will. there.be. suffi-cient.added.value.to.justify.the.increased.cost.and.can.the.developer.pass.the.cost.on.to.the.grower.and/or.the.consumer?.If.so,.how.will.this.be.done?.In.commodity.crops,.such.as.herbicide-tolerant.soybeans,.this.has.been.successfully.accomplished.by.use.of. a. technology. fee..The. farmer.buys. the. seed. and.pays.an.additional. fee.in.consideration.of.the.additional.cost.and.benefits.of.the.herbicide.tolerance.gene.technology.contained.within.the.seed.39.It.is.unlikely.that.such.a.fee-based.system.would.be.necessary.or.be.practical.for.transgenic.landscape.plants..However,.if.the.value.added.can.be.clearly.demonstrated.to.the.grower.and.consumer,.it.is.possible.that.transgenic.landscape.plants.could.be.marketed.at.a.premium.relative.to.existing.varieties..Indeed,. in.the.ornamental.sector,. it. is.not.uncommon.for.new.improved.varieties.(developed.by.conventional.breeding).to.carry.a.higher.wholesale,.royalty,.and.retail.price.than.older.established.varieties.

The.changing.structure.of.the.industry.itself.may.eventually.favor.the.development.of.transgenic.landscape.plants..The.past.few.years.have.seen.tremendous.consolida-tion.in.the.ornamental.industry.40.As.a.result.of.these.consolidations,.the.number.of.breeding.companies.has.decreased.while.their.size.has.increased..This.does.not.nec-essarily.change.the.likelihood.that.the.remaining.large.companies.will.adopt.trans-genic.technologies..Most.of.the.major.ornamental.companies.have.experimented.with.genetic.engineering.and.most.have.shelved.their.efforts.in.transgenic.ornamentals..Only. Suntory. has. commercialized. a. transgenic. product. in. the. form. of. cut. carna-tions. in. the.United.States,.Europe,.and.Japan9.and.more.recently. lavender-colored.“blue”.cut.roses.in.Japan.10.In.other.words,.the.size.of.a.company.does.not.necessarily.change.the.fundamental.economics.of.commercializing.transgenic.ornamentals.

Currently,. the. main. factors. influencing. the. prospects. for. the. development. of.transgenic.ornamentals.are.those.related.to.regulatory.oversight.and.those.related.to.freedom.to.operate..Additional.streamlining.of.the.regulatory.process.and.additional.research.aimed.at.a.further.assessment.of.the.risks.and.benefits.associated.with.trans-genic.ornamentals.will.help.facilitate.the.commercialization.and.public.acceptance.of.transgenic.ornamentals.21,41.At.the.same.time,.the.expiration.of.key.enabling.patents.and.the.activities.of.organizations.such.as.Cambia.and.PIPRA.should.help.facilitate.access.by.breeders.to.the.necessary.technology.

REFERENCES

. 1.. Bernardo,.R.,.Molecular.markers.and.selection.for.complex. traits. in.plants:.Learning.from.the.last.20.years,.Crop Sci..48(5),.1649,.2008.

. 2.. Castle,. L..A.. and.McElroy,.D.,.Agricultural. input. traits:. Past,. present. and. future,.Curr. Opin. Biotechnol..17,.105,.2006.

Page 329:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

315Prospects for the Commercialization of Transgenic Ornamentals

. 3.. Jerado,.A.,.Floriculture.and.nursery.crops.outlook,.Report.No..FLO-05,.2006..United.States.Department.of.Agriculture,.Washington,.DC.

. 4.. Cattaneo,.M.. G.. et. al.,. Farm-scale. evaluation. of. the. impacts. of. transgenic. cotton.on.biodiversity,.pesticide.use,.and.yield,.Proc. Nat. Acad. Sci. USA.103(20),.7571,.2006.

. 5.. Matin,.Q..and.Greg,.T.,.Roundup.ready.soybeans.in.Argentina:.Farm.level.and.aggregate.welfare.effects,.Agric. Econ..32(1),.73,.2005.

. 6.. Adams,. R.. P.,. Rushforth,. K.,. and.Trimble,. S.. N.,.The. origins. of. Leyland’s. cypreses.(XCupressocyparis leyandii).based.on.DNA.data,.Phytologia.88(1),.1,.2006.

. 7.. Furutaa,. H.. et. al.,. Production. of. intergeneric. somatic. hybrids. of. chrysanthemum.[Dendranthema.×.grandiflorum.(Ramat.).Kitamura].and.wormwood.(Artemisia sieversiana J..F..Ehrh..ex..Willd).with.rust.(Puccinia horiana.Henning).resistance.by.electrofusion.of.protoplasts,.Plant Sci..166(3),.695,.2004.

. 8.. Tanaka,.Y..et.al.,.Genetic.engineering.in.floriculture,.Plant Cell Tissue Organ Cult..80,.1,.2005.

. 9.. Chandler,.S.,.Genetic.modifications.in.floral.crops:.Research.to.marketplace,.Acta Hort..738,.37,.2007.

. 10.. Westcott,.K.,.My. love. is. like.a.blue,.blue. rose..Online.at:.http://news.bbc.co.uk/2/hi/asia-pacific/8318511.stm,.2009.(accessed.January.21,.2011).

. 11.. Horsch,.R..B..et.al.,.A.simple.and.general.method. for. transferring.genes. into.plants,.Science.227,.1229,.1985.

. 12.. Dobres,.M.,.Barriers. to.genetically.engineered.ornamentals:.An. industry.perspective,.in.Floriculture, Ornamental and Plant Biotechnology,.Teixera.da.Silva,.J..(ed.).Global.Science.Books,.London,.U.K.,.2008,.pp..1–14.

. 13.. Muñoz-Bertomeu,.J.,.Ros,.R.,.Arrillaga,.I.,.and.Segura,.J.,.Expression.of.spearmint.limo-nene.synthase.in.transgenic.spike.lavender.results.in.an.altered.monoterpene.composition.in.developing.leaves,.Metab. Eng..10(3–4),.166,.2008.

. 14.. Verdonk,.J..C..et.al.,.Flower-specific.expression.of.the.Agrobacterium tumefaciens.iso-pentenyltransferase.gene.results.in.radial.expansion.of.floral.organs.in.Petunia hybrida,.Plant Biotechnol. J..6(7),.694,.2008.

. 15.. Plant.Patent.Act,.in.USC.Title.35,.Chapter.15,.1930..Online.at:.http://uscode.house.gov/download/pls/35C15.txt.(accessed.January.21,.2011).

. 16.. The.Plant.Variety.Protection.Act,.in.USC.Title.7,.Chapter.57,.1970..Online.at:.http://uscode.house.gov/download/pls/07C57.txt.(accessed.January.21,.2011).

. 17.. Act. of. the. international. convention. for. the. protection. of. new. varieties. of. plants..International.union.for.the.protection.of.new.varieties.of.plants..Online:.http://www.upov.int/en/publications/conventions/1991/act1991.htm,.2009.(accessed.January.21,.2011).

. 18.. Chandler,.S..and.Dunwell,.J.,.Gene.flow,.risk.assessment.and.the.environmental.release.of.transgenic.plants,.Crit. Rev. Plant Sci..27(1),.25,.2008.

. 19.. Auer,.C.,.Ecological.risk.assessment.and.regulation.for.genetically.modified.ornamental.plants,.Crit. Rev. Plant Sci..27,.255,.2008.

. 20.. Debener,. T.,. The. probability. of. outcrosses. between. cultivated. and. wild. roses,. in.GMO Safety Federal Ministry of Education and Research,.Germany,.2005..Online.at:.http://www.gmo-safety.eu/database/900.probability-outcrosses-between-.cultivated-wild-roses.html,.2009.(accessed.January.21,.2011).

. 21.. Snow,.A..A..et.al.,.Genetically.engineered.organisms.and.the.environment:.Current.sta-tus.and.recommendations,.Ecol. Appl..15(2),.377,.2005.

. 22.. Peng,.J..et.al.,.‘Green.revolution’.genes.encode.mutant.giberellin.response.modulators,.Nature.400,.256,.1999.

. 23.. Introduction.of.genetically.engineered.organisms..Draft.environmental.impact.Statement—July.2007,.Report,.2007..USDA-APHIS.Marketing.and.Regulatory.Programs.

. 24.. Hsiao,.P..et.al.,.Plant.native.tryptophan.synthase.beta.1.gene.is.a.non-antibiotic.selection.marker.for.plant.transformation,.Planta.225(4),.897,.2007.

Page 330:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

316 Transgenic Horticultural Crops: Challenges and Opportunities

. 25.. Chen,.I..C..et.al.,.Lysine.racemase:.A.novel.non-antibiotic.selectable.marker.for.plant.transformation,.Plant Mol. Biol..72(1–2),.153,.2010.

. 26.. Haldrup,.A.,.Petersen,.S..G.,.and.Okkels,.F..T.,.Positive.selection:.A.plant.selection.principle.based.on.xylose.isomerase,.an.enzyme.used.in.the.food.industry,.Plant Cell Rep..18(1),.76,.1998.

. 27.. Yoder,. J.. and. Lassner,. M.,.Biologically. safe. plant. transformation. system. using. a. Ds.transposon..U.S..Patent.5225341,.1993.

. 28.. Rommens,.C..M..et.al.,.The.intragenic.approach.as.a.new.extension.to.traditional.plant.breeding,.Trends Plant Sci..12(9),.397,.2007.

. 29.. Schouten,.H..J.,.Krens,.F..A.,.and.Jacobsen,.E.,.Cisgenic.plants.are.similar.to.traditionally.bred.plants,.EMBO Reports.7(8),.750,.2006.

. 30.. Cartagena. protocol. on. biosafety. to. the. convention. on. biological. diversity:. Text. and.annexes.. Secretariat. of. the. Convention. on. Biological. Diversity,. Montreal,. Quebec,.Canada,.2000.

. 31.. Directive.2001/18/EC.of.the.European.Parliament.and.of.the.council.off.12.March.2001.on.the.deliberate.release.into.the.environment.of.genetically.modified.organisms.and.repeal-ing.council.directive.90/220/EEC,.Off. J. Eur. Union L.106,.1,.2001.

. 32.. Regulation. (EC). No. 1829/2003. of. the. European. Parliament. and. of. the. council. of.22 September.2003.on.genetically.modified.food.and.feed,.Off. J. Eur. Union L.268,.1,.2003.

. 33.. Gonzalez,.V.,.Costa.Rica,.Biotechnology,.annual.report,.GAIN.report.CS7011,.USDA.Foreign.Agricultural.Service,.Washington,.DC,.2007.

. 34.. Alarcon,.R..A.,.Ecuador,.Biotechnology,.Ecuador.standing.biotechnology.report,.2006,.GAIN.report.EC6007,.USDA.Foreign.Agricultural.Service,.Washington,.DC,.2006.

. 35.. Uribe,.A..and.Restrep,.A.,.Colombia,.biotechnology,.agricultural.biotechnology,.2006,.GAIN.report.CO7014,.USDA.Foreign.Agricultural.Service,.Washington,.DC,.2006.

. 36.. Hamamoto,.T.,.Japan,.Biotechnology,.agricultural.biotechnology.report,.GAIN.report.JA5038,.2005,.USDA.Foreign.Agricultural.Service,.Washington,.DC,.2006.

. 37.. Cino,.A.,.Latner,.K.,.and.Bugang,.W.,.China,.Peoples.Republic.of,.biotechnology,.agri-cultural.biotechnology.report,.2005,.GAIN.report.CH5069,.USDA.Foreign.Agricultural.Service,.Washington,.DC,.2005.

. 38.. Klingeman,. W.,. Babbit,. B.,. and. Hall,. C.,. Master. gardener. perception. of. genetically.modified.ornamental.plants.provides.strategies.for.promoting.research.products.through.outreach.and.marketing,.HortScience.41(5),.1263,.2006.

. 39.. Lence,.S..H..and.Hayes,.J..D.,.Technology.fees.versus.GURTs.in.the.presence.of.spill-overs:.World.welfare. impacts,.AgbioForum. 8(2&3),.172–186..Online.at:.http://www.agbioforum.org/v8n23/v8n23a14-lence.pdf,.2005.(accessed.January.21,.2011).

. 40.. Onofrey,.D.,.Big.get.bigger.in.breeding,.Greenhouse Grower.(Mid-September),.8,.2009.

. 41.. Romeis,.J.,.Lawo,.N..C.,.and.Raybould,.A.,.Making.effective.use.of.existing.data.for.case-by-case.risk.assessments.of.genetically.engineered.crops,.J. Appl. Entomol..133(8),.571,.2009..

Page 331:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

317

16 Genetic Engineering of Grapevine and Progress toward Commercial Deployment

Dennis J. Gray, Sadanand A. Dhekney, Zhijian T. Li, and John M. Cordts

CONTENTS

Introduction............................................................................................................. 318Grape.Genetic.Transformation................................................................................ 318

Culture.Systems................................................................................................. 319Methods.of.Gene.Insertion................................................................................. 319Marker.Genes..................................................................................................... 319Functional.Genes................................................................................................ 319Field.Tests.......................................................................................................... 320

Issues.Related.to.Commercialization.of.Transgenic.Grapevines............................ 322Native.Species.and.Gene.Flow........................................................................... 322

Grape.Speciation.and.Range......................................................................... 322Potential.for.Environmental.Risk.................................................................. 322

Potential.Impacts.of.Transgene.Flow.in.Grapevine........................................... 323Potential.for.Transgene.Pollen.Flow.into.Non-GE.Vineyards....................... 323Potential.for.Contamination.of.Commercial.Vineyards.via.Seed.................. 324Potential.for.Transgene.Movement.into.Native.Vitis.Populations................. 324

Mitigating.Environmental.Risks.via.Cisgenics.Engineering............................. 324Endogenous.Genes........................................................................................ 324Marker-Free.Plants........................................................................................ 326Rootstocks..................................................................................................... 327

Conclusion.............................................................................................................. 327References............................................................................................................... 327

Page 332:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

318 Transgenic Horticultural Crops: Challenges and Opportunities

INTRODUCTION

Grapevine.is.the.world’s.most.valuable.fruit.crop.due.to.its.multipurpose.uses.for.fresh. fruit,.wine,.and.other.processed.products..While.many.species.of.grape-vine. exist,. as. described. below,. the. predominant. species. used. in. commerce. is.Vitis vinifera.L..This.species.originated.in.the.Middle.East.and.is.adapted.to.a.Mediterranean. environment.. It. has. diversified. into. hundreds. of. varieties. since.antiquity.. Major. production. areas. in. the. world. tend. to. be. those. possessing.Mediterranean. climatic. conditions.. Despite. widespread. consumption. of. grape.products,.attempts.to.grow.V. vinifera.in.climates.that.are.too.cold.or,.especially,.too.humid.have.met.with. failure.. It.would.be.advantageous. to.have.V. vinifera.varieties.with.more.resistance.to.diseases.caused.by.bacteria,.fungi,.and.viruses.in. order. to. foster. more. widespread. production. and. thus. address. local. market.needs.and.opportunities.

While.V. vinifera.has.been.hybridized.with.native.species.to.create.land.races.for.suboptimal.regions,.this.approach.has.met.with.limited.success.due.to.the.consum-er’s.strict.preference.for.the.exact.phenotypic.characteristics.of.well-known.varieties..This.is.because.grapevine.is.genetically.self-incompatible,.making.it.impossible.to.create.inbred.lines.needed.to.introgress.desirable.traits.from.resistant.native.species.into.existing.elite.varieties..Although.clonal.selection.of.randomly.occurring.muta-tions.has.been.successful. in.creating.new.varieties,. it. is.a.haphazard.process.and.cannot.produce.grapevines.with.desirable.resistance.traits.1

Genetic.transformation.offers.an.alternate.method.for.adding.specific.traits.into.otherwise.desirable.varieties..Presumably,.varieties.altered.only.by.the.addition.of.genes. for. resistance. (or.other. traits).would. retain. their. elite. characteristics.2.Only.recently.has.genetic.transformation.technology.matured.for.grapevine,.such.that.it.is.now.commonplace.in.certain.laboratories.to.insert.genes.and.produce.transgenic.ver-sions.of.popular.varieties.3–6.It.now.remains.to.study.grapevines.containing.various.transgenes.for.their.performance,.which.includes.expression.of.new.desirable.traits.as.well.as.whether.the.high.level.of.clonal.fidelity.demanded.of.grape.is.maintained.in.transgenic.vines.

This. chapter. will. review. the. progress. in. genetic. transformation. of. grapevine,.including. discussion. of. the. most. recent. methods. and. procedures. that. have. led. to.successful.transformation..Status.of.field.tests.and.issues.related.to.environmental.release.of.transgenic.grapevines.will.be.presented.

GRAPE GENETIC TRANSFORMATION

Significant. progress. in. grapevine. transformation. has. been. made.1–3,5,6. Genetic.transformation. has. become. relatively. routine. for. ‘Chardonnay’,. ‘Merlot’,.‘Superior.Seedless’,. and. ‘Thompson.Seedless’. (=‘Sultana’,. ‘Sultanina’),. among.others..However,.several.fundamental. technologies.were.required.before.trans-formation.of.grapevine.could.be.studied..These. included.regenerative.cell.cul-ture.systems,.methods.for.gene.delivery,.and.then.advances.in.molecular.genetic.techniques.to.identify.useful.genes.and.place.them.into.functional.DNA.cassettes.that.could.be.tested.

Page 333:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

319Genetic Engineering of Grapevine

culture SyStemS

Somatic.embryogenesis.is.well.documented.for.grapevine.7–9.Most.successful.exam-ples. of. transformation. have. utilized. such. embryogenic. culture. systems. because.embryogenic.cells.are.capable.of.being.genetically.transformed.and.can.be.induced.to.regenerate.into.plants.1,2.Thus,.once.a.cell.is.stably.transformed,.a.transgenic.plant.can.be.produced..A.drawback.to.use.of.embryogenic.cultures.is.that.they.have.been.difficult. to.obtain.for.many.varieties..However,. this.obstacle.is.slowly.being.over-come.through.experimentation.and.refinement.of.culture.techniques.7,10

Cells. of. the. shoot. apical. meristem. obtained. through. in. vitro. micropropagation.were.considered.as.a.potential.alternative. to.embryogenic.cells. for. transformation..The.ease.of.producing.and.maintaining. in.vitro.micropropagation. cultures. from.a.large.number.of.cultivars11,12.makes.development.of.a.shoot.tip-based.transformation.system.attractive..However,.use.of.shoot.apical.meristems.for.transformation.has.met.with.limited.success.in.grapevine.13.Problems.that.inhibit.their.use.likely.include.a.rel-atively.low.number.of.totipotent.cells.in.the.shoot.apex.to.be.transformed,.when.com-pared.to.embryogenic.cultures,.and.the.propensity.for.chimeric.plants.to.be.recovered.

methodS of Gene InSertIon

As.reviewed.by.Gray.et.al.,1.the.two.commonly.used.methods.of.gene.insertion,.biolistic-mediated.and.Agrobacterium-mediated.transformation,.have.been.successfully.utilized.for.grape..Biolistic.bombardment.resulted.in.intense.transient.beta-glucuronidase.(GUS).expression.in.somatic.embryos.of.V. vinifera.‘Thompson.Seedless’14.and.has.been.used.to.produce.transgenic.plants.from.embryogenic.suspension.cultures.of.‘Chardonnay’,.‘Merlot’,.and.‘Chancellor’.15,16.However,.Agrobacterium-mediated.transformation.has.been.utilized.more.frequently.and.currently.appears.to.be.the.transformation.system.of.choice.for.grape.(see.Dhekney.et.al.3–5.and.Li.et.al.6.for.recent.examples).

marker GeneS

Development.of.transformation.protocols.for.grape.has.been.greatly.facilitated.by.refinement.of.genetic.vectors.that.efficiently.express.various.reporter.genes..Visible.reporter.genes. inserted. in.grape.include.GUS,14.green.fluorescent.protein.(GFP),17.and. luciferase.18.The. selectable.marker. genes,. phosphinothricin. acetyl. transferase.(PAT,.or.BAR.for.Bialaphos. resistance).gene,19. hygromycin.B.phosphotransferase.(HPH).gene,19. and.neomycin.phosphotransferase. (NPTII).gene,17. have.been.used,.with.the.latter.being.most.common.

functIonal GeneS

Establishment. of. reproducible. transformation. protocols. has. enabled. the. insertion. of.transgenes.for.quality.trait.improvement.including.fungal,.bacterial,.and.viral.resistance.in. elite. grapevine.varieties..Genes. encoding. pathogenesis-related. (PR). proteins. have.been.widely.tested.to.enhance.grapevine.fungal.resistance..‘Thompson.Seedless’.grape-vines.transformed.with.an.endogenous.thaumatin.like.protein.(VVTL-1).gene.exhibited.significant.resistance.to.powdery.mildew.(Uncinula necator).and.black.rot.(Guignardia bidwellii).in.greenhouse.and.field.tests.20,21.Berries.of.‘Shiraz’.grapevines.transformed.

Page 334:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

320 Transgenic Horticultural Crops: Challenges and Opportunities

with.an.endogenous.proprietary.Vitis.gene.(EG2).exhibited.significantly.lower.devel-opment.of.powdery.mildew.(Uncinula necator).compared. to.control.grapevines.22–24.Resistance. to. fungal.diseases. in.grapevines. transformed. with. other. PR.proteins. has.also.been.reported.25,26.Low.molecular.weight.chain.antimicrobial.peptides,.also.known.as.lytic.peptides,.have.been.widely.tested.to.impart.bacterial.resistance.in.grapevines..Transgenic. ‘Chardonnay’,.carrying.an.antimicrobial.peptide.magainin,.exhibited.sig-nificant.reduction.in.crown.gall.symptoms.caused.by.Agrobacterium vitis.27.‘Merlot’,.‘Shiraz’,. and. ‘Thompson. Seedless’. grapevines. transformed. with. proprietary. hybrid.lytic.peptides,.LIMA-A.and.LIMA-B,.exhibited.enhanced. resistance. to.Pierce’s.dis-ease.(Xylella fastidiosa).in.greenhouse.tests.28.Field.tests.are.currently.underway.to.test.resistance.of.a.number.of.transgenic.Vitis.varieties.and.rootstocks.to.Pierce’s.disease.29,30.Virus. resistant. transgenic. grapevines. have. also. been. developed. using. virus-derived.genetic.elements..Grapevine.varieties.and.rootstocks.carrying.the.coat.protein.for.grape.fan.leaf.virus.(GFLV).and.grape.leaf.roll.virus.(GLRV).have.been.produced31–34.and.tests.are.under.way.to.study.the.response.of.vines.to.virus.infection.under.field.conditions.

fIeld teStS

Field.trials.of.GE.grapevines.(Vitis vinifera.and.other.Vitis.species).have.been.con-ducted.worldwide.since.the.mid-1990s.(Table.16.1)..Early.trials.in.Colmar,.France,.consisted. of. gene. constructs. for. resistance. to. GFLV.. Other. trials. in. the. United.States.(several.locations),.Canada,.and.Germany.were.designed.to.evaluate.resis-tance. to. fungal.diseases. (powdery.mildew.and.botrytis,.primarily)..Those. trials.included. a. number.of.different.genes. including.chitinases/endochitinases,. glu-canases,.a. ribosome.inactivating.protein,.a.polygalacturonase. inhibiting.protein,.lytic. peptides,. antimicrobial. peptides,. a. lignin. biosynthesis. protein,. and. endog-enous.grape.genes..Field.trials.that.have.ended.include.work.in.Canada.by.Chateau.des. Charmes. to. develop. both. fungal. resistance. and. improved. cold. tolerance. in.vines. (Cordts,. personal. communication);. work. by. AgriVitis/GenApps. in. the.United.States.to.develop.resistance.to.GFLV,.GLRV,.and.crown.gall.(http://www.isb.vt.edu/cfdocs/fieldtests1.cfm);. research. in. Italy. to. improve.berry.number. and.size. (http://www.gmo-compass.org/eng/database/plants/73.grape_vine.html)35;.research.by.SUNY/Geneseo.to.develop.mildew.resistant.V. labrusca.(http://www.isb.vt.edu/cfdocs/fieldtests1.cfm);. and. trials. by. the. University. of. California. and.Anton.Caratan.&.Son.for.fungal.resistance.and.improved.product.quality.(http://www.isb.vt.edu/cfdocs/fieldtests1.cfm).

Current.field. trials.of. Vitis. species. worldwide. are. being.conducted. by. Cornell.University,. the. University. of. Florida,. and. by. the. Commonwealth. Scientific. and.Industrial.Research.Organisation.(CSIRO).(http://www.isb.vt.edu/cfdocs/fieldtests1.cfm,. http://www.ogtr.gov.au/internet/ogtr/publishing.nsf/Content/ir-1).. The. Cornell.vines. have. been. developed. to. evaluate. resistance. to. GFLV,. GLRV,. crown. gall.disease,. fungal. pathogens,. and. Xylella fastidiosa. (http://www.isb.vt.edu/cfdocs/fieldtests1.cfm)..The.University.of.Florida.vines.are.being.evaluated.for.resistance.to.Xylella.and.fungal.diseases..CSIRO.is.evaluating.vines.for.a.number.of.traits.includ-ing.alterations. to. tannins,.anthocyanins,.sugars,.browning,.and.various.flowering/fruiting.parameters.(Table.16.1).

Page 335:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

321Genetic Engineering of Grapevine

TABLE 16.1Field Tests of Transgenic Grapevine

Country Species Traits Tested

Australia

CSIRO.(1999–2009),.http://www.ogtr.gov.au/internet/ogtr/publishing.nsf/Content/ir-1

V. vinifera Expression.of.modified.color,.sugar.composition,.flowering.and.fruit.development/improved.product.quality.(ppo,.sh4,.ufgt,.dfr,.inv,.ARMGs,.GFP,.GUS).browning,.flowers,.anthocyanins,.tannins,.sugars

Canada

Chateau.des.Charmes,.Ontario,.Canada (ended.2001)

V. vinifera Fungal.tolerance,.cold.tolerance

France

INRA,.Colmar,.France.(1994,.1999,.2004).(DeFrancesco36;.http://www.gmo-compass.org/eng/database/plants/73.grape_vine.html)

V. vinifera GFLV.resistance.using.viral.coat.proteins.(VCPs)

Germany

Bundesanstalt.fur.Zuchtungsforschung,.Germany.(2000).(DeFrancesco36;.http://www.gmo-compass.org/eng/database/plants/73.grape_vine.html)

V. vinifera Improved.product.quality.(fungal.resistance—chitinase,.glucanase,.ribosome.inactivating.protein)

Italy

Universita.degli.Studenti.Ancona,.Italy.(1999).(DeFrancesco36;.http://www.gmo-compass.org/eng/database/plants/73.grape_vine.html)

V. vinifera Fecundity.(Increased.auxin,.increased.tryptophan-2-mono-oxygenase).Def.H9-iaaM.designed.to.increase.fruit.size,.number35

United States of America

Cornell.(2007–2009) Vitis.rootstock.species

GFLV,.GVLR.resistance.based.on.coat.protein.gene.insertions

University.of.Florida.(2006–2009) V. vinifera Xylella.resistant.and.powdery.mildew.resistant.(lytic.peptides.and.endogenous.grape.genes)

Cornell.(2000–2009) V. vinifera Crown.gall.resistant,.Xylella.resistant,.Botrytis.resistant,.powdery.mildew.resistant.(antimicrobial.peptides,.chitinases,.endochitinases)

SUNY/Geneseo.(1999–2007) V. labrusca Powdery.mildew.resistant.(lignin.biosynthesis.protein,.glucanase)

. University.of.California/Davis.(2004+) V. vinifera Fungal./.bacterial.resistance.(polygalacturonase.inhibiting.protein)

(continued)

Page 336:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

322 Transgenic Horticultural Crops: Challenges and Opportunities

No.submissions.for.regulatory.approvals.for.unconfined.release.of.GE.grapevines.have.been.noted.from.current.sources.

ISSUES RELATED TO COMMERCIALIZATION OF TRANSGENIC GRAPEVINES

natIve SpecIeS and Gene flow

Because.several.species.of.grapevine.are.endemic.to.temperate.and.tropical.areas.of.the.world,.genetic.modification.to.adapt.V. vinifera. into.such.regions.should.be.studied.for.environmental.impact.on.native.flora.

Grape Speciation and RangeVitis. is.divided.into. two.subgenera,.Euvitis.Planch,. the.bunch.grape.species. that.all.contain.38.somatic.chromosomes,.and.Muscadinia.Planch,.the.muscadine.grapes.with.40.somatic.chromosomes.37,38.Species.in.each.subgenus.are.interfertile.but.are.only.par-tially.fertile.between.subgenera..Estimates.of.the.number.of.Euvitis.species.range.from.28.to.43..These.are.separated.into.an.American.group.of.18–28.species,.an.Asian.group.of.10–15.species,.and.a.European.or.central.Asian.group.of.one.species.(V. vinifera).37.Muscadinia.contains.three.species;.V. munsoniana.and.V. rotundifolia.are.native.to.the.southeastern.United.States.and.V. popenoeii.Fennell.is.native.to.Central.America..With.the.exception.of.muscadine.cultivars,.most.cultivated.grapes.are.either.pure.strains.or.hybrids.of.V. vinifera..Two.wild.subspecies.of.V. vinifera,.ssp..sylvestris.Gmel..and.ssp..caucasis.Vav.,.and.one.cultivated.subspecies,.ssp..sativa.D.C.,.are.recognized.37

Potential for Environmental RiskTransgenic.grapevines.that.contain.genes.to.make.them.resistant.to.diseases,.much.like.native.species,.could.pose.the.possibility.of.environmental.risk.if.they.became.invasive..It.is.important.to.consider.whether.there.is.potential.for.adverse.environ-mental. impacts. from. field. release. of. genetically. modified. disease-resistant. grape-vines..Research.should.be.accomplished.to.determine.the.characteristics,.rates,.and.methods.of.gene.transfer.that.may.occur.between.genetically.engineered.non-native.grapevines.and.cross-fertile.wild.and.agricultural.species.currently.in.the.environ-ment.to.determine.if.the.GE.vines.or.progeny.produced.by.cross-fertilization.could.

TABLE 16.1 (continued)Field Tests of Transgenic Grapevine

Country Species Traits Tested

AgriVitis/GenApps.(1997–2000) Rootstocks GLRV,.GFLV,.crown.gall.resistant.(based.on.VCPs.and.other)

Anton.Caratan.&.Son.(2000+) V. vinifera Improved.product.quality

South Africa

University.of.Stellenbosch,.South Africa

V. vinifera Traits.to.be.tested.unclear

Page 337:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

323Genetic Engineering of Grapevine

become.invasive.pests..Because.transgenes.are.dispersed.from.genetically.engineered.vines.by.pollination.and/or.seed.production,.certain.aspects.of.grape.reproductive.biology.should.be.evaluated..Molecular.methods.using.marker.genes.for.detection.of.transgenes.and.transproteins.in.grape.seed/fruit.tissues.to.monitor.movement.of.such.genes.through.sexually.produced.progeny.are.readily.available..In.addition.to.gene.movement,. the. relative.vigor.and.adaptation,. including.survivability.of. transgenic.progeny,.must.be.determined.to.assess.their.potential.to.become.invasive.pests.

Gene Flow via PollenIn.varieties.with.perfect.flowers,.the.calyptrate.flower.structure.and.arrangement.of.many.flowers.on.a.panicle.favor.self-pollination.37.The.extent.to.which.natural.cross-pollination.occurs. in.grape. is.controversial..Natural.hybridization.among.native. species.has.been.detected.39.Grape.has.been.considered.to.be.wind-pollinated,.with.pollen.flow.occurring.no.further.than.20.ft..from.the.source.40.However,.cross-pollination.has.been.suggested.to.be.enhanced.by.insect.pollinators.in.certain.instances..For.example,.in.muscadine.grape.vineyards.composed.of.female.(self-sterile).vines.that.require.pollinator.vines,.fruit.set.has.been.enhanced.by.incorporation.of.honeybee.hives.(reviewed.by.McGregor41)..However,.in.a.controlled.study,.vines.isolated.from.wind-blown.pollen.by.cages.did.not.produce.appreciatively.more.fruit.when.bee.hives.were.added.42.Airborne.pollen.yields.have.been.accurately.measured.in.order.to.predict.seasonal.fruit.yield.43,44.The.latter.studies.described.airborne.pollen.loads,.but.did.not.address.hybridization/gene.flow..Thus,.the.maximum.distance.that.viable.pollen.moves.from.one.grapevine.to.another.and/or.the.frequency.of.hybridization.resulting.from.such.movement.have.not.been.adequately.documented..This.issue.has.taken.on.new.importance.with.the.advent.of.genetically.GE.grapevine.

Gene Flow via SeedThe.possibility.for.gene.flow.via.seed.dispersal.from.transgenic.vines.would.be.low.if.seeds.result.from.selfs,.as.mentioned.above,.and.because.grape.has.a.high.level.of.inbreeding.depression.45.Therefore,.the.resulting.selfed.plants.lack.vigor.and.tend.not.to.survive..For.example,.of.plants.grown.from.over.one.thousand.selfed.seeds,.none.were.able.to.survive.to.flowering.when.planted.in.a.research.vineyard.at.Leesburg,.Florida.(Gray,.personal.observation)..Further,.when.seedless.varieties.are.used,.there.is.no.opportunity.for.seed.dispersal..Thus,.frequency.of.natural.self.versus.cross-fertilization.should.be.investigated.

potentIal ImpactS of tranSGene flow In GrapevIne

Potential for Transgene Pollen Flow into Non-GE VineyardsTransgene. movement. into. non-GE. vineyards. as. a. consequence. of. pollen. flow.should.have.minimal. impact..This. is.because.only. the. embryo.and.endosperm,.which.are.encased.in.a.non-transgenic.hard,.durable.seed.coat,.can.become.trans-formed. by. pollen. from. a. transgenic. vine.. Our. current. research. using. the. GFP.marker.system.confirms.this..Grape.seed.is.discarded.whether.fruit.is.used.fresh.or. for. processed. products,. with. the. exception. of. use. for. oil. extraction.46. Thus,.if. seed. is. properly. disposed,. there. is. little-to-no. risk. of. transgene. movement..

Page 338:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

324 Transgenic Horticultural Crops: Challenges and Opportunities

Furthermore,.seedless.varieties.used.for.fruit,.raisins,.or.other.processing.contain.abortive.ovules.without.embryos.47,48

Potential for Contamination of Commercial Vineyards via SeedSeeds.could.be.distributed.from.transgenic.vines.into.non-transgenic.vineyards.via.animals.or.unintentionally.by.workers..However,.as.discussed.above,.the.selfed.seeds.that.typically.would.result.lack.vigor.and.plants.from.them.do.not.mature.to.flower-ing..Regardless,.even.if.selfed.or.hybrid.seeds.capable.of.flowering.were.produced,.the.plants.would.tend.to.be.out.of.place.and.discarded.in.the.normal.practices.of.a.commercial.vineyard.

Potential for Transgene Movement into Native Vitis PopulationsThere.are.native.species.and.feral.vines.of.Euvitis.grape.that.are.cross.fertile.with.transgenic. varieties.. The. possibility. that. transgenes. may. be. transferred. to. native.populations.of.Vitis.centers.both.on.the.frequency.of.selfing.versus.out.crossing.that.naturally.occurs.and.the.dynamics.of.pollen.flow..If.only.selfed.seeds.are.produced,.inbred. progeny. transferred. from. transgenic. plants. into. the. wild. will. tend. to. lack.sufficient.vigor.to.survive..How.frequently.hybridization.occurs,.how.far.viable.pol-len.moves,.and.whether.hybrid.progeny.containing.transgenes.for.disease.resistance.have.a.competitive.advantage.in.the.ecosystem.are.issues.that.should.be.considered..For.example,.if.out.crossing.occurs.to.produce.hybrid.seed.among.transgenic.vines,.or.if.transgenes.are.detected.in.seeds.of.outlying.vines,.or.progeny.are.more.vigorous.in.nature.than.their.parents,.more.stringent.management.schemes.might.be.required.than.if.transgene.flow.is.found.to.be.restricted.or.its.consequences.benign.

mItIGatInG envIronmental rISkS vIa cISGenIcS enGIneerInG

The.advancements.in.molecular.genetics.and.its.application.now.allow.a.genetic.engi-neering. approach. that. utilizes. only. grape-derived. genes. (cisgenes). and.genetic. ele-ments.23.Such.a.cisgenic.approach.to.genetic.engineering.solves.issues.related.to.the.release.of.foreign.genes.into.the.environment.and.should.overcome.reluctance.to.GM.foods,.which.normally.contain.foreign.genes.and.gene.products.36.There.are.a.number.of.grape-derived.(endogenous).genes.already.available. for. testing..Furthermore,. the.common.use.of.grafting.in.viticulture.may.allow.transgenic.rootstocks.to.be.utilized.to.which.non-transgenic.scions.could.be.grafted.

Endogenous GenesCertain. concerns. about. implementation. of. GE. technology. might. be. allayed. if.endogenous. genes. from. the. grape. genome. itself. were. used. for. genetic. improve-ment.through.overexpression.strategies..Recent.advances.in.plant.molecular.biology.including. whole. genome. sequencing,. rapid. cloning,. and. efficient. gene. expression.techniques.have.greatly.facilitated.efforts.to.exploit.plant.genes.associated.with.agro-nomic.traits.based.on.manipulation.of.native.endogenous.genes.already.existing.in.a.plant’s.genome.49.Manipulation.of.endogenous.genes.includes.removal.of.introns.and.codon.optimization.to.increase.efficiency..Endogenous.genes.may.be.placed.in.a.construct.with.a.promoter.chosen. to.modify.expression.characteristics.and. then.

Page 339:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

325Genetic Engineering of Grapevine

reinserted.into.the.plant..Such.genes.often.modify.metabolism.in.a.manner.similar.to.natural.or.induced.mutations.without.causing.genetic.contamination.49.The.improve-ments.achieved.via.use.of.such.endogenous.genes.should.be.qualitatively.similar.to.those.obtained.via.traditional.breeding.approaches,.but.significantly.more.precise,.due.to.the.ability.to.overexpress.desired.proteins,.both.temporally.and.spatially..In.addition,.endogenous/homologous.transgenes.can.be.defined.and.regulated.differen-tially.as.compared.to.use.of.foreign.transgenes.for.crop.genetic.engineering.50.It.is.possible.that.transgenic.modification.of.native.genes.tends.to.inherently.balance.the.selection.process.and.maintain.natural.variance.49

PR ProteinsA.number.of.genes,.commonly.known.as.PR.(pathogenesis.related).protein.genes,.have. been. cloned. from.and. expressed. in. the. plant. species. from. which. they. were.cloned..They.have.been.grouped.(PR.1–PR.5).based.on. their.structure.and.mode.of.action.51.A.number.of.PR.proteins.exhibit.antifungal.properties,.which.variously.cause.inhibition.of.fungal.cell.wall.synthesis.and/or.a.disruption.in.cell.wall.struc-ture.leading.to.cell.lysis.52.PR.proteins.are.classified.into.different.groups.including.cysteine.rich.antimicrobial.peptides,53–57.glucanases.and.chitinases,52.chitin.binding.proteins53,58.and.thaumatin.like.(TL).proteins.52

The.PR.5,.or.TL.proteins,.share.significant.amino.acid.homology.to.thaumatin.52.TL.proteins.inhibit.a.wide.range.of.plant.pathogens.in.vitro52.and.have.been.cloned.from.several.plant.species.59–62.TL.proteins.are.known.to.be.differentially.expressed.in. reproductive. tissues. such. as. pistils. and. ripening. fruits.63–66. The. University. of.Florida/Institute.of.Food.and.Agricultural.Sciences.(UF/IFAS).grape.biotechnology.laboratory.cloned.V. vinifera.thaumatin-like.protein.(VVTL-1).gene.from.grapevines.derived.from.embryogenic.cultures.that.were.subjected.to.in.vitro.selection.with.the.culture. filtrate. of. Elsinoe ampelina,. the. causal. agent. of. grapevine. anthracnose.67.Protein.produced.from.VVTL-1.significantly.inhibited.E. ampelina.spore.germina-tion.and.hyphal.growth.in.vitro..Plants.regenerated.from.in.vitro-selected.cultures.similarly.inhibited.fungal.growth.in.leaf.assays..Similar.results.have.been.obtained.with.VVTL-2.cloned.from.grape,.which.was.expressed.in.leaves.and.ripening.berries.in.response.to.powdery.mildew.infection68,69.and.exhibited.antifungal.properties.70

Seed ProteinsSeeds.contain.a.wide.array.of.antimicrobial.compounds.that.can.be.expressed.in.a.constitutive.or.inducible.manner.71.Although.2S.albumins.are.generally.considered.as. storage. proteins,. they. also. inhibit. growth. of. pathogenic. fungi. in. part. by. per-meabilization.of.hyphal.plasmalemma.72,73.2S.albumin.genes.have.been.cloned.from.sunflower,74.Brazil.nut,75.grape,76.and.other.crop.plants..In.grape,.we.have.cloned.the.entire.2S.albumin.gene.along.with.the.coding.sequence.and.promoter.elements76.and.we.are.evaluating.its.expression.(Li.et.al.,.unpublished.data).

Stilbene SynthasePhytoalexins. are. low.molecular.weight. antimicrobial.compounds. that. are. synthe-sized.by.and.accumulate.in.plants.in.response.to.biotic.and.abiotic.stresses..Stilbenes.and.their.derivatives.have.been.regarded.as.phytoalexins.that.contribute.to.defense.

Page 340:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

326 Transgenic Horticultural Crops: Challenges and Opportunities

against.fungal.infection.77.Stilbene.synthase.is.the.key.enzyme.that.catalyzes.the.formation.of.resveratrol.via.phenolic.substrates.in.the.shikimic.acid.pathway..Stilbene.biosynthesis.only.specifically.requires.the.presence.of.stilbene.synthase..The.family.of.stilbene.synthase.genes.have.been.cloned.and.characterized.from.grape.78.Studies.with.transgenic.apple,79.papaya,80.rice,81.tobacco,77.wheat,.and.barley82.overexpress-ing.the.STS.1.gene.from.grape.reported.enhanced.resistance.to.various.fungal.dis-eases.like.blast,.fruit,.root,.and.stem.rot.

Polyphenol OxidasePolyphenol. oxidases. (PPOs). are. nuclear-encoded. enzymes. of. almost. ubiquitous.distribution. in.plants.and.are.known. to.catalyze. the.oxygen.dependent.oxidation.of. phenols. to. quinones.83. Systemic. induction. of. PPO. in. response. to. wounding.and. pathogen. attack. may. protect. plants. against. further. attack. by. pathogens. and.insects.84.PPOs.have.been.cloned.from.a.number.of.plant.species.including.grape,85.potato,86.tomato,87.and.Vicia.species.88.Transgenic.plants.overexpressing.PPO.were.found.to.exhibit.enhanced.resistance.to.bacterial.diseases.caused.by.Pseudomonas synringae.89,90.Additionally,.an.antisense.downregulation.of.polyphenol.oxidase.in.transgenic.tomato.plants.resulted.in.increased.disease.susceptibility.as.compared.to.non-transgenic.controls.90.Although.only.bacterial.resistance.has.been.specifically.demonstrated,.PPOs.are.considered.to.have.broad.antimicrobial.activity.

Marker-Free PlantsGenetic.transformation.requires.a.method.to.separate.transformed.cells.from.non-transformed.cells.and.typically.is.achieved.by.expression.of.a.marker.gene.that.pro-vides.a.growth.advantage.to.transformed.cells.in.a.selection.medium.(reviewed.by.Dutt.et.al.91)..In.the.absence.of.a.selectable.marker.gene,.transformed.cells.tend.to.be.at.a.competitive.disadvantage.compared.to.nontransformed.cells.and.die.out..The.marker.gene.is.needed.only.for.selection.of.transgenic.cells.and.typically.is.linked.to.a.gene.of. interest..Thus,.selection.for.ability. to.proliferate. in. the.presence.of.a.selective.agent. results. in. isolation.of. transgenic. cells.containing.both. the.gene.of.interest.and.the.marker.gene..However,.once.a.desired.plant.is.selected.from.trans-genic. cells,. the. marker. gene. is. no. longer. needed.. The. presence. of. marker. genes.may. complicate. future. commercialization. due. to. concerns. regarding. their. effects.on.ecosystems.and/or.human.health.91.For.example,.one.concern. is. that.selectable.marker.genes.could.become.transferred.to.other.organisms,.leading.to.the.creation.of.antibiotic.resistant.bacterial.strains.(from.antibiotic.resistance.markers).or.new,.aggressive.weedy.plant.species.(from.herbicide.resistance.markers)..Development.of.transgenic.plants.without.marker.genes.alleviates.such.concerns..Dutt.et.al.91.used.a.cotransformation.treatment.to.demonstrate.production.of.transgenic.grapevines.free.of.the.selectable.marker.gene(s).that.are.typically.required.only.for.initial.identifica-tion.and.selection.of.transgenic.cells..Transgenic.V. vinifera.‘Thompson.Seedless’.plants.containing.only.a.single.stably.integrated.gene.of.interest.and.not.a.selective.marker.gene.were.produced..The.system.provided.the.possibility.of.producing.plants.that.contain.only.a.gene.of.practical.use.while.preventing.the.formation.of.genetic.chimeras.that.might.occur.through.meristem.transformation..The.technique.can.be.

Page 341:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

327Genetic Engineering of Grapevine

used.readily.to.produce.grapevines.with.a.range.of.other.nonselectable.genes.and.may.be.adapted.for.use.in.other.vegetatively.propagated.crops.as.well.

RootstocksGrafting.of.scion.to.a.rootstock.is.commonly.used.for.grapevine.in.most.production.areas..The.possibility.of.using.a.transgenic.rootstock.that.resists.soil.stresses.and/or.transmits. a. useful. substance. into. the. scion. is. intriguing. for. several. reasons.. For.example,.only.the.non-transgenic.scion.would.reproduce.pollen.or.seed,.so.that.there.would.be.no.possibility.for.transgene.flow.to.occur,.and.virtually.any.scion.could.be.grafted.onto.a.transgenic.rootstock,.thus.reducing.the.number.of.transgenic.variet-ies.to.be.developed.and.tested..Rootstocks.that.produce.lytic.peptides.to.inhibit.the.xylem-limited.bacterium.that.caused.Pierce’s.disease.of.grapevine.are.in.field.tests.92.The.direct.vascular.connection.of.rootstock.to.scion.allows.lytic.peptide.produced.and.accumulated.in.rootstock.xylem.to.be.transported.into.the.scion.93

CONCLUSION

Genetic.transformation.of.grape.is.no.longer.an.obstacle.to.progress.in.development.of.improved.transgenic.grapevines..However,.it.is.difficult.to.predict.when.a.trans-genic.grape.product.will.become.commercially.available..While.it.is.now.possible.to.insert.virtually.any.gene.of.interest.into.an.increasingly.wide.range.of.elite.grape.varieties,.field. testing.has.been. insufficient. to.prove. the.expected.efficacy.of.new.traits;.one.problem.being.the.time.required.to.evaluate.such.a.perennial.fruit.crop..Also,.needs.to.conduct.risk.assessment.studies.and.develop.consumer.acceptance.of.any.transgenic.crop.have.proven.to.be.costly.and.difficult..One.alternate.approach.to.reducing.the.concerns.associated.with.transgenic.plants.is.to.adopt.the.aforemen-tioned.cisgenics.approach.to.crop.development.wherein.only.genes.and.other.genetic.elements. taken.directly. from.grapevine. are.used..Such.a.green.approach. is.more.akin.to.“precision.breeding”.inasmuch.as.it.disrupts.the.plant.genome.even.less,.and.is.more.predictable,. than.conventional.breeding..Similarly,. the. implementation.of.transgenic.rootstocks.to.combat.diseases.in.the.scion.could.have.a.similar.impact..We.believe.that.grapevines.developed.in.this.manner.to.have.improved.disease.resistance.and.quality.attributes.will.be.desirable.to.growers.and.be.accepted.by.consumers.

REFERENCES

. 1.. Gray,.D.J.,.Jayasankar,.S.,.and.Li,.Z.,.Vitaceae.(Grape.Vitis.spp.),.in.Biotechnology of Fruit and Nut Crops,.Biotechnology.in.Agriculture.Series,.No..29,.Litz,.R.E.,.ed.,.CAB.International,.Wallingford,.U.K.,.2005,.Chap..22,.pp..672–706.

. 2.. Gray,.D.J..et.al.,.Transgenic.Grapevines,.in.Transgenic Plants,.Khachatourians,.G.G..et.al.,.eds.,.Marcel.Dekker,.New.York,.2002,.Chap..27,.pp..397–405.

. 3.. Dhekney,.S.A..et.al.,.Factors.influencing.genetic.transformation.and.plant.regeneration.of.Vitis,.Am. J. Enol. Vitic.,.60,.285,.2009.

. 4.. Dhekney,.S..A..et.al.,.Agrobacterium-mediated.transformation.of.embryogenic.cultures.and. regeneration.of. transgenic.plants. in.Vitis rotundifolia.Michx.. (muscadine.grape),.Plant Cell Rep.,.77,.865,.2008.

Page 342:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

328 Transgenic Horticultural Crops: Challenges and Opportunities

. 5.. Dhekney,.S.A..et.al.,.Overcoming.obstacles.to.genetic.transformation.in.Vitis,.In Vitro Cell. Dev. Biol.,.44,.S40,.2008.

. 6.. Li,.Z.T..et.al.,.Optimizing.Agrobacterium-mediated.transformation.of.grapevine,.In Vitro Cell. Dev. Biol. Plant.,.42,.220,.2006.

. 7.. Dhekney,.S.A..et.al.,.Optimizing.initiation.and.maintenance.of.Vitis.embryogenic.cultures,.HortScience,.44,.1400,.2009.

. 8.. Li,. Z.T.. et. al.,.An. improved. protocol. for. Agrobacterium-mediated. transformation. of.grapevine,.Plant Cell Tiss. Organ Cult.,.93,.311,.2008.

. 9.. Gray,.D.J.,.Grape,.in.Somatic Embryogenesis in Woody Plants,.Jain,.S.M.,.Gupta,.P.K.,.and.Newton,.R.J.,.eds.,.Kluwer.Academic.Publishers,.Dordrecht,.the.Netherlands,.1995,.Vol..2,.p..191.

. 10.. Jayasankar,.S..et.al.,.Comparative.anatomy.and.morphology.of.Vitis vinifera.(Vitaceae).somatic.embryos.from.solid.and.liquid.culture.systems,.Am. J. Bot.,.90,.973,.2003.

. 11.. Gray,.D.J..and.Benton,.C.M.,.In.vitro.micropropagation.and.plant.establishment.of.mus-cadine.grape.varieties,.Plant Cell Tiss. Org. Cult.,.27,.7,.1991.

. 12.. Gray,.D..J..and.Fisher,.L.C.,.In vitro.shoot.propagation.of.grape.species,.hybrids.and.cultivars,.Proc. Fla. State Hort. Soc.,.98,.172,.1985.

. 13.. Dutt,.M..et.al.,.Transgenic.plants.from.shoot.apical.meristems.of.Vitis vinifera.Thompson.Seedless.via.Agrobacterium-mediated.transformation,.Plant Cell Rep.,.26,.2101,.2007.

. 14.. Gray,. D.J.,. Songstad,. D.D.,. and. Compton,. M.E.,. Expression. of. GUS. in. bombarded.grape.somatic.embryos.and.cells,.In Vitro Cell. Dev. Biol.,.65,.29A,.1993.

. 15.. Kikkert,.J.R..et.al.,.Transgenic.plantlets.of.‘Chancellor’.grapevine.(Vitis.sp.).from.biolistic.transformation.of.embryogenic.cell.suspensions,.Plant Cell Rep.,.15,.311,.1996.

. 16.. Kikkert,.J.R..et.al.,.Expression.of.a. fungal.chitinase. in.Vitis vinifera.L.. ‘Merlot’.and.‘Chardonnay’.plants.produced.by.biolistic.transformation,.in.Proceedings of the VIIth International Symposium on Grapevine Genetics and Breeding (Acta Hort.),.Bouquet,.A..and.Boursiquot,.J.M.,.eds.,.International.Society.for.Horticultural.Sciences,.Montpellier,.France,.2000,.pp..528,.297.

. 17.. Li,.Z.,.Jayasankar,.S.,.and.Gray,.D.J.,.Expression.of.a.bifunctional.green.fluorescent.protein.(GFP).fusion.marker.under.the.control.of.three.constitutive.promoters.and.enhanced.derivatives.in.transgenic.grape.(Vitis vinifera),.Plant Sci.,.160,.877,.2001.

. 18.. Hanson,.B..et.al.,.A.simple.method.to.enrich.an.Agrobacterium-transformed.population.of.plants.containing.only.T-DNA.sequences,.Plant J.,.19,.727,.1999.

. 19.. Perl,.A..et.al.,.Establishment.of.an.Agrobacterium-mediated.transformation.system.for.grape.(Vitis vinifera.L.):.The.role.of.antioxidants.during.grape-Agrobacterium.interactions,.Nat. Biotechnol.,.14,.624,.1996.

. 20.. Dhekney,. S.A.. et. al.,. Disease. resistant. transgenic. grapevine. constitutively. expresses.Vitis vinifera.thaumatin-like.protein,.In Vitro Cell. Dev. Biol.,.42,.3021,.2006.

. 21.. Dhekney,.S..A..et.al.,.Greenhouse.screening.and.field.testing.of.transgenic.grapevine.for.fungal.resistance,.In Vitro Cell. Dev. Biol.,.43,.S40,.2007.

. 22.. Dhekney,.S.A..et.al.,.Using.endogenous.genes.for.producing.disease.resistant.transgenic.grapevines,.In Vitro Cell. Dev. Biol.,.45,.S38,.2009.

. 23.. Gray,.D..J..et.al.,.Green.genetic.engineering.technology:.The.use.of.endogenous.genes.to.cre-ate.fungal.disease-resistant.grapevines,.in.Proceedings of the Caribbean Food Crops Society 44th Annual Meeting,.Miami,.FL 2008,.Caribbean.Food.Crops.Society,.2009,.p..44.

. 24.. Gray,.D.J..et.al.,.Green.genetic.engineering.technology:.Rearrangement.of.endogenous.functional. genetic. elements. to. create. improved. grapevines,. In Vitro Cell. Dev. Biol.,.45:S39,.2009.

. 25.. Yamamato,. T.. et. al.,. Transgenic. grapevine. plants. expressing. a. rice. chitinase. with.enhanced.resistance.to.fungal.pathogens,.Plant Cell Rep.,.19,.639,.2000.

. 26.. Augero,.C.B..et.al.,.Evaluation.of.Pierce’s.disease.and.Botrytis.in.transgenic.plants.of.Vitis vinifera.L..expressing.the.pear.PGIP.gene,.Mol. Plant Pathol.,.6,.43,.2005.

Page 343:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

329Genetic Engineering of Grapevine

. 27.. Vidal,.J.R..et.al.,.Evaluation.of.transgenic.‘Chardonnay’.(Vitis vinifera).containing.magainin.genes.for.resistance.to.crown.gall.and.powdery.mildew,.Transgenic Res.,.15,.69,.2006.

. 28.. Gray,. D.J.. et. al.,. Transgenic. grapevines. resistant. to. Pierce’s. disease,. HortScience,.40,1104,.2005.

. 29.. Gray,.D.J..et.al.,.Field.testing.of. transgenic.grapevines.for.bacterial.and.fungal.resis-tance,.HortScience,.42,.858,.2007.

. 30.. Gray,.D.J..et.al.,.Field.testing.of.transgenic.grapevines.for.disease.resistance,.In Vitro Cell. Dev. Biol.,.44,.S40,.2008.

. 31.. Krastanova,.S..et.al.,.Transformation.of.grapevine.rootstocks.with.the.coat.protein.of.grapevine.fanleaf.nepovirus,.Plant Cell Rep.,.14,.550,.1995.

. 32.. Krastanova,. S.. et. al.,. Development. of. transgenic. grapevine. rootstocks. with. genes.from. grapevine. fanleaf. virus. and. grapevine. leafroll. associated. closterovirus. 2. and. 3,.in. Proceedings of the VIIth International Symposium on Grapevine Genetics and Breeding (Acta Hort.),.Bouquet,.A..and.Boursiquot,.J.M.,.eds.,.International.Society.for.Horticultural.Sciences,.Montpellier,.France,.2000,.pp..528,.367.

. 33.. Xue,.B..et.al.,.Transformation.of.five.grape.rootstocks.with.plant.virus.genes.and.a.vir—E2.gene.from.Agrobacterium tumefaciens,.In Vitro Cell. Dev. Biol. Plant,.35, 226,.1999.

. 34.. Gambino,.G.. et. al.,.Molecular. characterization.of. grapevine. plants. transformed. with.GFLV.resistance.genes,.Plant Cell Rep.,.24,.655,.2005.

. 35.. Mezzetti,.B.,. et. al.,.Genetic. transformation.of.Vitis vinifera. via.organogenesis..BMC Biotechnol.,.2,.18,.2002.

. 36.. DeFrancesco,.L.,.Vintage.genetic.engineering,.Nat. Biotechnol.,.26,.261,.2008.

. 37.. Einset,.J..and.Pratt,.C.,.Grapes,.in.Advances in Fruit Breeding,.Janick,.J..and.Moore,.J.N.,.eds.,.Purdue.University.Press,.West.Lafayette,.IN,.1975,.p..130.

. 38.. Winkler,.A.J..et.al.,.General Viticulture,.revised.edition,.University.of.California.Press,.Berkeley,.CA,.1974.

. 39.. Olmo,.H.P..and.Koyama,.A.,.Natural.hybridization.of.indigenous.Vitis californica.and.V. girdiana.in.California,.in.Proceedings of the 3rd International Symposium on Grape.Breeding,.UCD.Press,.Davis,.CA.,.32,.1980.

. 40.. Reisch,. B.,. Grape Breeding Procedures,. 2001.. http://www.nysaes.cornell.edu/hort/.faculty/reisch/breeding/crossing1.html,.2001..(Accessed.January.28,.2011).

. 41.. McGregor,.S.E.,.Insect Pollination of Cultivated Crop Plants,.Virtual.online.version.updated.continuously.. http://afrsweb.usda.gov/SP2UserFiles/Place/53420300/Online.Pollination.Handbook.pdf,.1976..(Accessed.April.20,.2011).

. 42.. Sharples,.G.C..et.al.,.The.importance.of.insects.in.the.pollination.and.fertilization.of.the.cardinal.grape,.Proc. Am. Soc. Hort. Sci.,.86,.321,.1965.

. 43.. Cristofolini,.F..and.Gottardini,.E.,.Concentration.of.airborne.pollen.of.Vitis vinifera.L..and.yield.forecast:.A.case.study.at.S..Michele.all.Adige,.Trento,.Italy,.Aerobiologia,.16,.125,.2000.

. 44.. Ribeiro,. H.I.. et. al.,. Aeropalynological. study. of. Vitis vinifera. in. the. Braga. region.(1999–2003),.Aerobiologia,.21,.131,.2005.

. 45.. Alleweldt,. G.. and. Possingham,. J.V.,. Progress. in. grapevine. breeding,. Theor. Appl. Genet.,.75,.669,.1988.

. 46.. Gray,. D.J.. et. al.,. Tracking. pollen-mediated. gene. flow. in. transgenic. grapevine,.HortScience,.43,.1156,.2008.

. 47.. Gray,.D.J..et.al.,.Comparison.of.methodologies.for.in.ovulo.embryo.rescue.of.seedless.grape.cultivars,.HortScience,.22,.1334,.1987.

. 48.. Gray,.D.J.,.et.al.,.Ovule.culture.to.obtain.progeny.from.hybrid.seedless.grapes,.J. Am. Soc. Hort. Sci.,.115,.1019,.1990.

. 49.. Strauss,. S.H.,. Genomics,. genetic. engineering. and. domestication. of. crops,. Science,.300,.61,.2003.

Page 344:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

330 Transgenic Horticultural Crops: Challenges and Opportunities

. 50.. Strauss,.S.H.,.Application.of.biotechnology.to.study.of.trees.and.forests,.in.Proceedings of the Symposium on Ecological and Societal Aspects of Transgenic Plantations,.Strauss,.S.H..and.Bradshaw,.H.D.,.eds.,.July.22nd–24th,.Stevenson,.WA,.2001,.p..7.

. 51.. Punja,.Z.,.Genetic.engineering.of.plants. to.enhance.resistance. to.fungal.pathogens—.A review.of.progress.and.future.prospects,.Can. J. Plant Pathol.,.23,.216,.2001.

. 52.. Seliterennikoff,.C.P.,.Antifungal.proteins,.Appl. Environ. Microbiol.,.67,.2883,.2001.

. 53.. Broekaert,.W.F..et.al.,.Plant.defensins:.Novel.antimicrobial.peptides.as.components.of.host.defense.systems,.Plant Physiol.,.108,.1353,.1992.

. 54.. Cammue,.B.P..et.al.,.A.potent.antimicrobial.protein.from.onion.seeds.shows.sequence.homology.to.plant.lipid.transfer.proteins,.Plant Physiol.,.109,.445,.1995.

. 55.. Epple,.P.,.Apel,.K.,.and.Bohlmann,.H.,.Overexpression.of.an.endogenous.thionin.enhances.resistance.of.Arabidopsis.against.Fusarium oxysporium,.Plant Cell,.9,.509,.1997.

. 56.. Thevissen,.K..et.al.,.Specific.binding.sites.for.an.antifungal.plant.defensin.from.Dahlia.(Dahlia merckii).on.fungal.cells.are.required.for.antifungal.activity,.Mol. Plant Microbe. Interact.,.13,.54,.2000.

. 57.. Nielsen,.K.K..et.al.,.Characterization.of.a.new.antifungal.chitin-binding.peptide.from.sugar.beet.leaves,.Plant Physiol.,.113,.83,.1997.

. 58.. Van.Damme,.E.J..et.al.,.A.gene.encoding.a.heavein.like.protein.from.elderberry.fruits.is.homologous.to.PR-4.and.class.V.chitinase.genes,.Plant Physiol.,.119,.1547,.1999.

. 59.. Huynh,.Q.K.,.Borgmeyer,.J.R.,.and.Zobel,.J.F.,.Isolation.and.characterization.of.a.22.kDa.protein.with.antifungal.properties.from.maize.seeds,.Biochem. Biophys. Res. Commun.,.182:1,.1992.

. 60.. Hu,.X..and.Reddy,.A.S.,.Cloning.and.expression.of.a.PR-5.like.protein.from.Arabidopsis,.Plant Physiol.,.107,.305,.1997.

. 61.. Cheong,.N.E..et.al.,.Purification.and.characterization.of.an.antifungal.PR.5.protein.from.pumpkin.leaves,.Mol. Cells,.7:214,.1997.

. 62.. Koiwa,.H..et.al.,.Crystal.structure.of.tobacco.PR.5d.protein.at.1.8A.resolution.reveals.a.conserved.acidic.cleft.structure.in.antifungal.thaumatic.like.proteins..J. Mol. Biol.,.286,.1137,.1998.

. 63.. Neale,.A.D..et.al.,.Chitinase,.β-1,3-glucanase,.osmotin,.and.extensin.are.expressed.in.tobacco.explants.during.flower.formation,.Plant Cell,.2,.673,.1990.

. 64.. Vu,.L..and.Huynh,.Q.K.,.Isolation.and.characterization.of.a.27.kDa.antifungal.protein.from.the.fruits.of.Diospyros texana,.Biochem. Biophy. Res. Commun.,.202,.666,.1994.

. 65.. Fils-Lycaon,.B.R..et.al.,.A.cherry.protein.and.its.gene,.abundantly.expressed.in.ripening.fruit.have.been.identified.as.thaumatin.like.protein,.Plant Physiol.,.111,.269,.1996.

. 66.. Barre,.A..et.al.,.Purification.and.structural.analysis.of.an.abundant.thaumatin.like.protein.from.ripe.banana.fruits,.Planta,.211,.791,.2000.

. 67.. Jayasankar,.S.,.Li,.Z.,.and.Gray,.D.J.,.Constitutive.expression.of.Vitis vinifera.thaumatin.like.protein.after.in vitro.selection.and.its.role.in.anthracnose.resistance,.Funct. Plant Biol.,.30,.1105,.2003.

. 68.. Jacobs,. A.K.. et. al.,. Induction. of. different. pathogenesis-related. cDNAs. in. grapevine.infected.with.powdery.mildew.and.treatment.with.ethephon,.Plant Pathol.,.48,.325,.1999.

. 69.. Tattersall,.B.D..et.al.,.Identification.and.characterization.of.a.fruit-specific,.thaumatin-like.protein.that.accumulates.at.very.high.levels.in.conjunction.with.the.onset.of.sugar.accumulation.and.berry.softening.in.grapes,.Plant Physiol.,.114,.759,.1997.

. 70.. Salzman,.R.A..et.al.,.Coordinate.accumulation.of.antifungal.proteins.and.hexoses.con-stitutes.a.developmentally.controlled.defense.response.during.fruit.ripening.in.grape,.Plant Physiol.,.117,.465,.1998.

. 71.. Cammue,.B.P.A..et.al.,.Isolation.and.characterization.of.a.novel.class.of.plant.antimicro-bial.peptides.from.Mirabilis jalapa.L..seeds,.J. Biol. Chem.,.267,.2228,.1992.

. 72.. Terras,.F.R..et.al.,.A.new.family.of.basic.cysteine-rich.plant.antifungal.proteins.from.Brassicaceae.species,.FEBS Lett.,.316,.233,.1993.

Page 345:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

331Genetic Engineering of Grapevine

. 73.. Polya,.G.M.,.Chandra,.S.,.and.Condron,.R.,.Purification.and.sequencing.of.radish.seed.calmodulin. antagonists. phosphorylated. by. calcium-dependent. protein. kinase,. Plant Physiol.,.101,.545,.1997.

. 74.. Allen,.R.D..and.Cohen,.E.A.,.Sequence.and.expression.of.a.gene.encoding.an.albumin.storage.protein.in.sunflower,.Mol. Gen. Genet.,.210,.211,.1987.

. 75.. Gander,.E.S.. et. al.,. Isolation,. characterization. and.expression.of. a.gene.coding. for. a.2S albumin.from.Bertholletia excelsa.(Brazil.nut),.Plant Mol. Biol.,.16,.437,.1991.

. 76.. Li,.Z.,.and.Gray,.D.J.,.Isolation.by.improved.TAIL-PCR.and.characterization.of.a.seed-specific.2S.albumin.gene.and.its.promoter.from.grape.(Vitis vinifera.L.),.Genome,.48, 312,.2005.

. 77.. Hain,.R..et.al.,.Expression.of.a.stilbene.synthase.gene.in.Nicotiana tabacum.results.in.synthesis.of.the.phytoalexin.resveratrol,.Plant Mol. Biol.,.15,.325,.1990.

. 78.. Melchior,. F.. and. Kind,. H.,. Coordinate. and. elicitor-dependent. expression. of. stilbene.synthase.and.phenylalanine.ammonia-lyase.genes.in.Vitis.cv..Optima,.Arch. Biochem. Biophys.,.288,.552,.1991.

. 79.. Szankowski,. I.. et. al.,. Transformation. of. apple. (Malus domestica. Borkh.). with. the.stilbene.synthase.gene.from.grapevine.(Vitis vinifera.L.).and.a.PGIP.gene.from.kiwi.(Actinidia deliciosa),.Plant Cell Rep.,.22,.141,.2003.

. 80.. Zhu,.Y.J..et.al.,.Expression.of.the.grapevine.stilbene.synthase.gene.VST1.in.papaya.pro-vides.increased.resistance.against.diseases.caused.by.Phytophthora palmivora,.Planta,.220,.241,.2004.

. 81.. Stark-Lorenzen,.P.B..et.al.,.Transfer.of.a.grapevine.stilbene.synthase.gene.to.rice.(Oryza sativa.L.),.Plant Cell Rep.,.16,.668,.1997.

. 82.. Leckband,.G..and.Lorz,.H.,.Transformation.and.expression.of.a.stilbene.synthase.gene.from.Vitis vinifera.L..in.barley.and.wheat.for.increased.fungal.resistance,.Theor. Appl. Genet.,.96,.1004,.1998.

. 83.. Mayer,.A.M.,.Polyphenol.oxidases.in.plants—Recent.progress,.Phytochemistry,.26, 11,.1987.

. 84.. Constabel,.C.P.,.Bergey,.D.R.,.and.Ryan,.C.,.Systemin.activates. synthesis.of.wound-inducible.tomato.leaf.polyphenol.oxidase.via.the.octadecanoid.defense.signaling.pathway,.Proc. Natl. Acad. Sci. USA,.92,.407,.1995.

. 85.. Dry,. I.B..and.Robinson,.H.B.,.Molecular.cloning.and.characterization.of.grape.berry.polyphenol.oxidase,.Plant Mol. Biol.,.26,.495,.1994.

. 86.. Hunt,.M.D..et.al.,.cDNA.cloning.and.expression.of.potato.polyphenol.oxidase,.Plant Mol. Biol.,.21,.59,.1993.

. 87.. Thipyapong,.P..and.Steffens,.J.C.,.Tomato.polyphenol.oxidase.(differential. response.of. the.polyphenol.oxidase.F.promoter.to.injuries.and.wound.signals),.Plant Physiol.,.115,.409,.1997.

. 88.. Cary,.J.W.,.Lax,.A.R.,.and.Flurkey,.W.H.,.Cloning.and.characterisation.of.cDNAs.cod-ing.for.Vicia faba.polyphenol.oxidase,.Plant Mol. Biol.,.20,.245,.1992.

. 89.. Li,. L.. and. Steffens,. J.,. Overexpression. of. polyphenol. oxidase. in. transgenic. tomato.plants.results.in.enhanced.bacterial.disease.resistance,.Planta,.215,.239,.2002.

. 90.. Thipyapong,.P.,.Hunt,.M.D.,.and.Steffen,.J.C.,.Antisense.downregulation.of.polyphenol.oxidase.results.in.enhanced.disease.susceptibility,.Planta,.220,.105,.2004.

. 91.. Dutt,.M.. et.al.,.A.co-transformation.system. to.produce. transgenic.grapevines. free.of.marker.genes,.Plant Sci.,.175,.423,.2008.

. 92.. Dhekney,.S.A..et.al.,.Transgenic.grapevine. rootstocks. for.Pierce’s.disease. resistance,.HortScience,.43,.1155,.2008.

. 93.. Dutt,.M..et.al.,.Transgenic.rootstock.protein.transmission.in.grapevines,.in.Proceedings of the International Symposium on Biotechnology of Temperate Fruit Crops and Tropical Species (Acta Hort.),.Litz,.R.E..and.Scorza,.R.,.eds.,.International.Society.for.Horticultural.Sciences,.Leuven,.Belgium,.2007,.pp..738,.749.

Page 346:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,
Page 347:  · Transgenic HorTiculTural crops EditEd by Beiquan Mou and ralph scorza Challenges and Opportunities Agriculture As the world debates the risks and benefits of plant biotechnology,

Transgenic HorTiculTural

crops

EditEd by

Beiquan Mou and ralph scorza

Challenges and Opportunities

Agriculture

As the world debates the risks and benefits of plant biotechnology, the proportion of the global area of transgenic field crops has increased every year, and the safety and value continue to be demonstrated. Yet, despite the success of transgenic field crops, the commercialization of transgenic horticultural crops (vegetables, fruits, nuts, and ornamentals) has lagged far behind. Transgenic Horticultural crops: challenges and opportunities examines the challenges for the creation and commercialization of horticultural biotechnology and identifies opportunities, strategies, and priorities for future progress.

A “must read” for anyone working in the fields of genetic engineering or plant breeding, for policy makers, educators, students, and anyone interested in the issues of genetic engineering of fruits, vegetables and ornamentals, this book covers:

• Past achievements, newest developments, and current challenges in transgenic fruit, nut, vegetable, ornamental, and pharmaceutical crops • Reviews transgenic horticultural crops in the U.S., Europe, Africa, and Asia • Hurdles to the commercialization of transgenic technology in economics and the marketplace, consumer acceptance, intellectual property rights protection, public–private partnership, and regulation • Critical evaluation of the benefits and risks of genetically engineered horticultural crops, including risk assessment and transgene containment • Presents case studies and an industry perspective on transgenic horticultural crops

The production and commercialization of transgenic horticultural crops are enormous tasks—their progress and realization require an informed research community, horticultural industry, government, and body of consumers. To aid in this effort, this book provides facts, analyses and insights by leading experts in this field to inform a wide audience of students, agricultural and genetic professionals, and the interested public. Part of the global conversation on the pros and cons of transgenic foods, Transgenic Horticultural crops aims to stimulate more interest and discussion on the subject and to promote the development of safe and sustainable genetically modified horticultural crop varieties.

w w w . c r c p r e s s . c o m

93789

w w w. c rc p r e s s . c o m

an informa business

6000 Broken Sound Parkway, NWSuite 300, Boca Raton, FL 33487711 Third AvenueNew York, NY 100172 Park Square, Milton ParkAbingdon, Oxon OX14 4RN, UK

93789_Cover_mech.indd 1 4/12/11 4:16 PM