transforming synthesis, enabling sciencegeneric.wordpress.soton.ac.uk/dial-a-molecule/wp... ·...

52
Roadmap for www.Dial-a-Molecule.org Transforming synthesis, Dial-a-Molecule Dial-a-Molecule An EPSRC Grand Challenge network enabling science synthesis in the 21 Century st

Upload: others

Post on 17-Jun-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Transforming synthesis, enabling sciencegeneric.wordpress.soton.ac.uk/dial-a-molecule/wp... · Roadmap for Transforming synthesis, Dial-a-MoleculeDial-a-Molecule An EPSRC Grand Challenge

   

   

Roadmap for

www.Dial-a-Molecule.org

Transforming synthesis,

Dial-a-MoleculeDial-a-MoleculeAn EPSRC Grand Challenge network

enabling science

synthesis in the 21 Centuryst

Page 2: Transforming synthesis, enabling sciencegeneric.wordpress.soton.ac.uk/dial-a-molecule/wp... · Roadmap for Transforming synthesis, Dial-a-MoleculeDial-a-Molecule An EPSRC Grand Challenge

 

Contents   Page  2    

 

 

 

 

 

Contents  1   INTRODUCTION   3  

1.1   The  Dial-­‐a-­‐Molecule  Network   3  

1.2   Definition  of  the  Grand  Challenge   3  

1.3   Current  State  of  the  Art   4  

1.4   Impact  of  the  Grand  Challenge   6  1.4.1   Economic  impact   6  1.4.2   Societal  impact   7  1.4.3   Academic  impact   8  1.4.4   Impact  in  government   8  

1.5   Purpose  of  the  Roadmap   9  

1.6   Guide  to  the  Roadmap   9  

2   ROADMAP  FOR  SYNTHESIS  IN  THE  21ST  CENTURY   10  

2.1   Overview   10  

2.2   Lab  of  the  Future  and  Synthetic  Route  Design   17  2.2.1   Optimum  reaction  and  route  design   18  2.2.2   The  smart  laboratory   23  2.2.3   Next  generation  reaction  platforms   26  2.2.4   Rapid  reaction  analysis   30  

2.3   A  Step  Change  in  Molecular  Synthesis   35  2.3.1   1000  Click  reactions  –  stepwise  perfection   36  2.3.2   Holistic  approach  to  molecular  synthesis   39  

2.4   Catalytic  Paradigms  for  100%  Efficient  Synthesis   42  2.4.1   New  reactivity:  target-­‐driven  catalysis   43  2.4.2   Intervention-­‐free  synthesis  by  phase-­‐distinct,  multi-­‐dimensional  catalysis   46  2.4.3   Engineering  control  through  fundamental  mechanistic  understanding   48  

3   CONCLUSION   50  

4   ACKNOWLEDGEMENTS   51  

Page 3: Transforming synthesis, enabling sciencegeneric.wordpress.soton.ac.uk/dial-a-molecule/wp... · Roadmap for Transforming synthesis, Dial-a-MoleculeDial-a-Molecule An EPSRC Grand Challenge

 

Introduction   Page  3  

“Dial-­‐a-­‐Molecule  represents  a  fantastic  opportunity  for  the  UK’s  scientific  community  to  come  together  and  really  understand  how  synthesis  related  opportunities  can  be  understood,  explored  and  exploited.    The  improvement  in  profile  that  Dial-­‐a-­‐Molecule  gives  the  community  for  its  capability,  successes  and  challenge  is  crucial  and  as  momentum  builds  this  profile  will  grow.  Dial-­‐a-­‐molecule  will  give  the  UK  funding  bodies  confidence  to  fund  in  the  key  areas  and  equally  importantly  will  improve  the  UK’s  European  profile,  to  allow  European  funding  to  be  secured  by  members  of  the  network.    The  network  strongly  benefits  both  academia  and  industry  and  will  allow  strong,  collaborative  relationships  to  develop.”  

Dr  Steve  Hillier,  Chemistry  Innovation  KTN  

1 Introduction  1.1 The  Dial-­a-­Molecule  Network  The  Dial-­‐a-­‐Molecule  network  was   funded  by   the  

EPSRC  as  a  result  of  an  extensive  consultative  and  competitive   exercise   initiated   in   collaboration  with   the   Chemistry   Innovation   Knowledge  

Transfer  Network,  The  Royal  Society  of  Chemistry  and   the   Institution   of   Chemical   Engineers   to  identify   the   next   Grand   Challenges   in   Chemistry  

and   Chemical   Engineering.   The   remit   of   the  network   is   to   define   a   path   to   the   Grand  Challenge   (the   roadmap)   and   to   establish   the  

cross-­‐disciplinary  community  needed  to  tackle  it.      

The  network  has  employed  a  highly   consultative  strategy   involving   a   community   and   end-­‐user  driven   approach   to   define   the   key   research  

problems.  It  has  built  a  community  of  more  than  400  researchers  with  around  38%  from   industry.  Of   the   academics   56%   are   drawn   from   outside  

the   synthetic   chemistry   /   catalysis   community.  The  steering  group,  industrial  advisory  board  and  launch   meeting   (200   participating)   defined   and  

structured  the  challenge.    Six  themed  workshops  followed,  each  attended  by  around  30  people,  to  examine   separate   strands   of   the   problem   in  

detail   and  offer  possible   solutions   that   form   the  basis   of   this   roadmap.   Wider   community  involvement   and   consultation   has   been   through  

an  interactive  website  (www.dial-­‐a-­‐molecule.org),  email   lists,   monthly   newsletters   and   social  networking.  

Dial-­‐a-­‐Molecule   has   broken   down   barriers  

between   disciplines   and   is   being   strongly  

supported   by   industry.   It   has   created   a   high  profile   in   the   UK,   which   is   already   generating  

considerable  interest  in  Europe  and  the  USA.    

1.2 Definition   of   the   Grand  Challenge    

Dial-­‐a-­‐Molecule   is   a   Grand   Challenge   defined   at  its  conception  by  the  vision:  

In   20-­‐40   years,   scientists   will   be   able   to  deliver   any   desired   molecule   within   a  timeframe  useful  to  the  end-­‐user,  using  safe,  economically   viable   and   sustainable  processes.    

Page 4: Transforming synthesis, enabling sciencegeneric.wordpress.soton.ac.uk/dial-a-molecule/wp... · Roadmap for Transforming synthesis, Dial-a-MoleculeDial-a-Molecule An EPSRC Grand Challenge

 

Introduction   Page  4  

Molecules   are   collections   of   atoms   connected  together   in   a   specific   way.   Even   constrained   to  

those   elements  most   used   (C,  N,  H,  O,   P,   S)   the  number   of   possible  molecules,   even   using   small  numbers   of   atoms,   is   vast   (Figure   1),   and   every  

molecule   has   different   properties.   It   is  unsurprising  then  that  much  of  modern   life   (and  life   itself)   is   based   on   molecules   with   specific  

structures   and   properties   (e.g.   as  pharmaceuticals,   agrochemicals,   plastics,   liquid  crystals).   The   task   of   making   molecules   is  

challenging  -­‐  an  organic  molecule  containing  just  a   few   dozen   atoms   (e.g.   TaxolTM,   Figure   2)   can  take  many  man-­‐years  of  effort   to  complete.  The  

result   is   that  many   of   the  molecules  we  use  

are   compromises  -­‐   the   easiest   to  make   that   have  

acceptable  function,   rather  

than   being   the  best  for  the  job.    

The   aim  of   the  Dial-­‐a-­‐Molecule  Grand  Challenge  is   to   remove   synthesis   as   a   constraint   to   timely  

access   to   a   given   molecule,   thus   greatly  empowering  researchers   in  many  fields.  A   linked  aim   is   to  drive  a  step-­‐change   in   the  efficiency  of  

synthesis,   both   in   terms   of   waste   produced  (which   can   currently   be   hundreds   of   times   the  mass   of   product   for   pharmaceuticals)   and   the  

energy  consumed  in  production.  

The   importance   and   difficulty   of   the   challenge  can   be   appreciated   by   comparison   with  

oligonucleotide   synthesis.   Automated  oligonucleotide   synthesis   has   had   a  transformative   impact   on  molecular   biology   and  

enabled   the  human  genome  project.   The   impact  of   a   similar   level   of   efficiency   and   predictability  applied  to  any  desired  class  of  synthetic  molecule  

would   revolutionise   problem   solving   across  diverse   disciplines   such   as   biology,  pharmaceuticals/agrochemicals,  effect  chemicals,  

molecular  materials,  nanomaterials  etc.    

The  scale  of  the  Grand  Challenge  becomes  clear,  however,   when   one   considers   that  oligonucleotide  synthesis:  

involves   only   three   basic   types   of  chemistry,  

is   carried   out   on   a   very   narrow   and  

functionally  similar  set  of  building  blocks,   though   extremely   high   yielding,   is  

massively   inefficient   in   terms   of   waste  

and  atom  economy,   required   20   years   of   effort   to   reach   this  

level  of  sophistication.  

Therefore   to   be   able   to   make   any   complex  molecular   system,   with   the   additional   focus   on  economics  /  efficiency  /  sustainability,  is  going  to  

require  a  step-­‐change  in  approach.  

1.3 Current  State  of  the  Art  To   contextualise   the   roadmap   that   follows,   it   is  helpful   to   consider   the   state   of   the   art   in  

synthesis  at  the  inception  of  the  Grand  Challenge.  

Synthesis  

Gilbert   Stork,   one   of   the   pioneering   chemists   of  the   20th   century,   posed   the   question   over   25  years   ago   “why   can’t   a   20-­‐step   synthesis   be  

completed   in  20  days?”   to  which  one  might   add  “and   does   it   need   20   steps!”.   The   synthesis   of  many   complex   molecules   has   been   achieved   in  

the   last   30   years,   but   even   modest   target  molecules  still  require  many  man-­‐years  to  deliver  

 

Figure   1.   A   molecule  

estimated   to   have   more  than  3*1011  stable  isomers  

 

Figure  2.  Structure  of  TaxolTM  

Page 5: Transforming synthesis, enabling sciencegeneric.wordpress.soton.ac.uk/dial-a-molecule/wp... · Roadmap for Transforming synthesis, Dial-a-MoleculeDial-a-Molecule An EPSRC Grand Challenge

 

Introduction   Page  5  

despite  dramatic  advances  in  the  number,  power  and   scope   of   available   reactions   (asymmetric  

synthesis   and   transition   metal   mediated  transformations   being   most   notable).   Making  even   simple   molecules   with   an   efficiency   and  

robustness   to   allow   commercialisation   is   a  considerable   challenge.   Synthesis   is   still   largely  constrained  (by  thinking,  training  and  equipment)  

to   step-­‐wise   manipulations   using   reactions   and  work-­‐up  procedures  with  ‘accepted’  inefficiencies  (be   these   in   respect   of   yield,   by-­‐products,   poor  

catalyst   turnover,   high   cost   etc.).   An   illustration  of   the   limitations   is   that   pharmaceutical  development   is   aimed   at   the   simplest   molecule  

to   achieve   the   required   activity,   with   cross-­‐activity  a  frequent  result.  

Synthetic  route  design  

With   the   exception   of   the   availability   of   on-­‐line  reaction  databases,  little  has  changed  in  the  way  

organic   chemists   plan   synthesis   since   the  introduction   of   retrosynthetic   analysis   over   40  years   ago.   Even   the   way   on-­‐line   databases   are  

used   has   changed   little   since   their   widespread  introduction  15  -­‐  20  years  ago.  

The   first   programs   for   computer   aided   design,  

Computer  Aided  Organic  Synthesis  (CAOS)  and  its  better   known   successor   Logic   and   Heuristics  Applied  to  Synthetic  Analysis  (LHASA)  are  over  40  

years  old1.  Many  other  attempts  have  been  made,  and   some   are   still   under   active   development2,3,  but   none   have  made   a   significant   impact   in   the  

design  of  synthesis.  

Increasing   computer   power   and   the   use   of  Density   Function   Theory   methods   have   brought  computational  chemistry  to  the  point  where   it   is  

a   very   useful   tool   with   predictive   value   for  synthetic   chemists   developing   reactions.                                                                                                                            1  M  H.  Todd,  Chem.  Soc.  Rev.,  2005,  34,  247-­‐266  2  J.  Law,  Z.  Zsoldos,  A.  Simon,  D.  Reid,  Y.  Liu,  S.  Y.  Khew,  A.   P.   Johnson,   S.   Major,   R.   A.   Wade,   H.   Y.   Ando,   J.  Chem.  Inf.  Model.,  2009,  49,  593–602  3  A.   Tanaka,   H.   Okamoto,   M.   Bersohn,   J.   Chem.   Inf.  Model.,  2010,  50,  327–338  

However,   it   is   still   a   long   way   from   providing  quantitative   results  on   reaction  outcomes  under  

realistic  conditions.    

However,  there  are  many  reasons  to  think  that  it  is  timely  for  computer-­‐based  methods  to  make  a  big   impact   on   synthetic   route   design.   Electronic  

Lab   notebooks   are   becoming   the   norm   in  industry,  potentially  allowing  efficient  capture  of  detailed   reaction   information.   Automated  

methods   for   extracting   chemical   information  from   text,   and   ways   of   embedding   chemical  information   in   text   in   an   easily   computer  

searchable   form   (for  example  Chemical  Mark-­‐up  Language  -­‐  CML)  have  been  developed.    

Reaction  optimisation  and  analytical  methods  

Reaction   optimisation   is   often   time   consuming.  Automated  reactors  and  statistical  methods  (e.g.  

Design   of   Experiments   (DoE),   principal  component   analysis   (PCA))   are   gaining   ground,  but   are  not   yet  widely  used.  Capture  of  data  on  

reaction   conditions   and   outcomes   (i.e.   journal  papers)   is   arguably   inferior   to   30   years   ago,  

though   volume   is   much   greater!   Analytical  methods,   particularly   MS   techniques   (e.g.  ionisation   of   compounds   from   solution   without  

fragmentation),   have   advanced   dramatically   in  the   last   10   years   to   the   point   at  which   dynamic  reaction   monitoring   and   analysis   is   viable.  

Integration  with  other  analytical  techniques  such  as   IR   and   NMR   and   their   use   for   real   time  reaction  optimisation  are  little  used.  Extraction  of  

component   signals   from   complex   mixtures   is   a  highly   refined   subject   in   the   area   of   signal  analysis   but   has   seen   very   limited   application   in  

reaction  monitoring.  

Catalysis  

New   modes   of   reactivity   are   constantly   being  

realised   (e.g.   C−H   activation)   that   approach   the  

paradigm   for   atom   efficiency   but   the   cost,  selectivity   and   efficiency   of   these   processes   is  often   far   removed   from   the   necessary   position  

(e.g.   the   levels   of   efficiency   possible   in   some  

Page 6: Transforming synthesis, enabling sciencegeneric.wordpress.soton.ac.uk/dial-a-molecule/wp... · Roadmap for Transforming synthesis, Dial-a-MoleculeDial-a-Molecule An EPSRC Grand Challenge

 

Introduction   Page  6  

enzymatic   systems   or   petrochemical  transformations).   Additionally,   cross-­‐

compatibilities   between   processes   are   not   at   a  stage   where   modular   telescoped   processes   are  routinely   applicable.   Correlation   between   active  

catalyst  structure  and  catalytic  activity,  selectivity,  and   lifetime   are   important.   Invention   and  development  of  catalysts   is   still  predominantly  a  

trial  and  error  process.  

Technology  

Synthetic   chemistry   is   still   driven   to   fit   available  kit   and   new   chemical   processes   are   largely  designed   and   executed   without   taking   into  

consideration   the   best   reactor   configuration   or  importantly   scalability   for   pilot   or   market   scale  production.   Despite   the   recent   surge   of   interest  

in   flow   reactors   they   are   still   very   little   used   at  the   moment   and   by   a   small   number   of  laboratories4.  A  number  of  other  lab  scale  reactor  

designs  have  been  proposed  but   their  use   is  still  very   limited.   Furthermore,   configurations   in  current   research   efforts   are   largely   ad   hoc   and  

focused   on   specific   conditions   of,   for   example,  temperature   and   pressure   and   therefore   do   not  

easily  permit  wider  access  to  the  chemical  space  for   exploration,   optimal   route   selection   and  reaction   optimisation,   without   redesign   and  

assembly.   Additional   kit   is   also   required   for  monitoring,   probing,   measuring,   data   collection  etc.   that   must   be   integrated   into   the   reactor.  

Finally,   replication   of   reported   reactions   across  laboratories   is   challenging  due   to  generally  poor  control   and   reporting   of   precise   reaction  

conditions.  Field  effects  (photochemical,  extreme  thermal,   electrochemical,   microwave)   are   also  underused   due   to   limitations   of   the   available  

equipment.    

1.4 Impact  of  the  Grand  Challenge                                                                                                                            4  C.   Jimenez-­‐Gonzalez,   P.   Poechlauer,   Q.   B.  Broxterman,   B.-­‐S.   Yang,   D.   am   Ende,   J.   Baird,   C.  Bertsch,   R.   E.   Hannah,   P.   Dell’Orco,   H.   Noorman,   S.  Yee,   R.   Reintjens,   A.   Wells,   V.   Massonneau   and   J.  Manley,  Org.  Process  Res.  Dev.,  2011,  15,  900–911  

Progress   towards   Dial-­‐a-­‐Molecule’s   goals   will  provide   the   academic   and   industrial   community  

with   the   capability,   mind-­‐set   and   networks   to  deliver   new   and   innovative   products   and  technologies,  which  both  push  the  boundaries  of  

academic   research   and   generate   strong  commercial   value.     The   control   of   molecular  structure   and   function   on   a   greatly   accelerated  

time   frame,  will   generate   huge   benefit   for   both  the  established  and  emerging  sectors.    

1.4.1 Economic  impact  The   UK   is   one   of   the   world’s   top   chemical-­‐producing   nations,   with   a   high-­‐performance  industry   achieving   outstanding   levels   of   growth,  

exports,   productivity   performance   and  international   investment.   The   chemical   industry  is  also  a  significant  provider  of  jobs  and  creator  of  

wealth   for   the   UK   with   a   turnover   in   excess   of  £50   billion   and   an   annual   trade   surplus   of   £5  billion5,6.    

Dial-­‐a-­‐Molecule  matches  a  strong  industrial  drive  

towards   processes   which   are   as   sustainable,  efficient  and  economically  viable  as  possible.  The  

agrochemical   and   pharmaceuticals   sectors  comprise   the   third   most   profitable   economic  activity  (after  tourism  and  finance)  in  the  UK  and  

are   immediate   beneficiaries   of   any   increase   in  speed  and  efficiency  of  synthesis.    For  example,  a  recent   pan-­‐industry   report   on   synthetic  

chemistry   in   the   healthcare   environment7  stated  that   “when   synthetic   enablement   is   lacking,   we  see   projects   stall,   even   those   with   the   best  

biological   or   clinical   rationale”.   Emerging  challenges   in   next-­‐generation   healthcare   pose  

                                                                                                                         5  The   Chemistry   Innovation   Knowledge   Transfer  Network’s   Sustainable   technologies   roadmap    http://www.chemistryinnovation.co.uk/stroadmap/index.htm  6 (a)   Oxford   Economics,   The   economic   benefits   of  chemistry  research  to  the  UK,  September  2010  (b)   Chemical   Industries   Association,   Annual   Review  2009  7  D.   Fox,   T.   Wood,   P.   Leeson,   D.   Lathbury,   D.  Hollinshead,  S.  Macdonald,  P.  Jones,  L.  Castro,  D.  Rees,  K.  Jones,  Chemistry  World,  December  2008,  p  39  

Page 7: Transforming synthesis, enabling sciencegeneric.wordpress.soton.ac.uk/dial-a-molecule/wp... · Roadmap for Transforming synthesis, Dial-a-MoleculeDial-a-Molecule An EPSRC Grand Challenge

 

Introduction   Page  7  

synthetic  problems  that  are  beyond  the  scope  of  existing  technologies.  Examples  are:  

• expansion  of  accessible  chemical  space  to  

facilitate   highly   specific   small   molecule  interactions   with   any   genomic   protein  

(chemical  genomics/pharmaceuticals);    

• next-­‐generation   biological   drugs  

(integrated   synthetic   chemistry   and  synthetic  biology);    

• Personalised   medicine   (compounds  tuned  to  an  individual’s  genetic  make-­‐up).  

It   is   economically   vital   that   the   UK   retains   a  

vibrant   presence   in   this   sector   in   the   face   of  growing   pressures   from   competitors   in   the  emerging   economies,   and   this   can   only   be  

achieved  by   leading   in   the  area  of  generation  of  new  intellectual  property,  be  that   in  the  form  of  determining   which   marketable   molecules   are  

made  or  how  they  are  made.  

Chemistry   underpins   many   other   industries,  estimated  to  contribute  21%  of  the  U.K.  economy  (£258  billion  in  global  sales  and  employing  over  6  

million  people).5    Examples  of  challenges  in  these  areas   which   require   the   advances   proposed   by  

Dial-­‐a-­‐Molecule  include:    

• organic   electronics   and   solar   energy  capture;    

• non-­‐invasive   monitoring   tools   (markers,  imaging  agents);    

• security-­‐related   products   (smart-­‐dyes  

etc).  

1.4.2 Societal  impact    The   recent  Royal  Society  of  Chemistry   roadmap8  

“Chemistry  for  Tomorrow’s  World”  articulates  the  role   that   chemistry   can   play   across   seven   key  areas  of  societal  challenge  (Energy,  Food,  Future  

Cities,   Human   Health,   Lifestyle   &   Recreation,  

                                                                                                                         8  Royal  Society  of  Chemistry  roadmap  “Chemistry  for  

Tomorrow’s  World”  

http://www.rsc.org/scienceandtechnology/roadmap/index.asp  

Raw   Materials   &   Feedstocks,  Water   &   Air).   A  recent   report   from   EuCheMS9  highlighted   8   key  

areas   in   the   chemical   sciences   vital   if  we   are   to  meet   the   global   challenges   facing   the   society,  one   of   which   was   synthesis.   In   these   challenge  

areas,   fields   such   as   (nano)materials,   polymers,  and   chemical   biology/medicinal   chemistry   pose  synthetic  problems  that  are  limited  by  the  scope  

of  existing  technologies.    

The  synthesis  of  new  molecules  underpins  these,  yet  because  of  cost  and  speed  constraints,  “what  is  made”  is  limited  by  “what  can  be  easily  made”.    

To  deliver  the  necessary  solutions  for  society  in  a  useful   timeframe   will   require   a   step-­‐change   in  the   efficiency   (both   speed   and   resource)   of  

chemical  synthesis.  If  it  was  possible  to  make  any  molecule   on   demand   at   reasonable   cost  (monetary   and   environmental)   it   would   lead   to  

the  faster  delivery  of  new  medicines  and  medical  technologies,  increased  yields  in  food  production,  sustainable   new   materials,   next   generation  

electronics,  improved  forensic  determination  and  security   devices   etc.   Moreover,   it   underpins  

futuristic   technologies,   being   essential   to   the  development   of   useful   nano-­‐machines   and   next  generation   post-­‐silicon   super-­‐computers.   To   this  

must   be   added   the   combined   challenges   posed  by  a  year-­‐on-­‐year  increase  in  consumer  demand,  the  world's   finite   natural   resources   and   a   public  

ever  more  conscious  of  its  environmental  legacy  -­‐  it   is   unsustainable   (and   unethical)   to   simply  transfer   the   burden   of   low-­‐cost   production   and  

waste   generation   to   other   countries.   The  outcomes  of   this  Grand  Challenge  will   allow   the  UK   to   take   a   lead   in   reducing   environmental  

impact  while  providing  the  next  generation  drugs,  materials  and  products  that  society  demands  and  requires.    

 

                                                                                                                         9  EuChem   roadmap   “Chemistry.   Developing   solutions  in  a  changing  world”  http://www.euchems.eu/fileadmin/user_upload/highlights/Euchems_Roadmap_gesamt_final2.pdf  

Page 8: Transforming synthesis, enabling sciencegeneric.wordpress.soton.ac.uk/dial-a-molecule/wp... · Roadmap for Transforming synthesis, Dial-a-MoleculeDial-a-Molecule An EPSRC Grand Challenge

 

Introduction   Page  8  

1.4.3 Academic  impact  The   Grand   Challenge   provides   the   UK   academic  community   with   an   opportunity   to   focus   on   a  truly   transformative   problem   and   to   be   creative  

and   outward-­‐looking   in   respect   of   the   science  that   they   undertake.   It   encompasses   areas  highlighted   in   the   2009   international   (Klein)  

review10  as  critical  to  the  continued  health  of  UK  chemistry   and   addresses   a   number   of  weaknesses   identified   in   the   recent   EPSRC  

landscape   review   e.g.   the   potential   for   more  widespread   industry-­‐academic   partnerships   in  catalysis;   the   explicit   engagement   of   ECRs;   and  

the   need   for   synthetic   chemists   and   chemical  engineers   to   engage   more   in   multidisciplinary  research.  

Alongside   the   implicit   interactions   between  

synthetic   chemists   and   chemical   engineers,   the  Grand   Challenge   provides   a   mechanism   for  engagement   with   disciplines   as   diverse   as  

computer   science,   mechanical   and   electrical  engineering,   mathematics,   analytical   science,  

physics,  surface  science,  biotechnology,  chemical  biology,  medicine,  materials,  biochemistry,  nano-­‐materials   and   nano-­‐science.   The   opportunities  

for   academic   growth   and   the   development   of  new   research   paradigms   are   immense.   It   offers  UK  researchers   the  chance  to  engage   in  agenda-­‐

setting  collaborative  research  that  will  define  the  way   molecules   are   made   worldwide   for   the  foreseeable   future.   It   also   offers   clearly   visible  

benefits   of   global   importance   (e.g.   lower-­‐cost  healthcare,   energy   solutions,   cleaner/greener  processes)   that   will   serve   to   inspire   future  

generations  of  students  to  take  up  studies  in  the  chemical   sciences,   engineering   and   related  disciplines,   securing   the   future  supply  of  experts  

to  move  the  discipline  forward.  

For   all   scientists   involved   in   the   network   it  provides   the   opportunity   to   form   new   cross                                                                                                                            10  2009   International   Review   of   UK   Chemistry  Research  http://www.epsrc.ac.uk/newsevents/pubs/corporate/intrevs/2009ChemistryIR/Pages/default.aspx  

disciplinary   collaborations   to   compete   for  funding   in   areas   which   are   complementary   to  

their   existing   research   programs.   The  collaborations   established   will   also   enable  scientists   outside   of   chemistry/chemical  

engineering   to   enhance   their   own   science  through   interactions   with   the   key   commercial  and  intellectual  issues  in  chemistry.  The  difficulty  

and   complexity   of   the   problems   synthesis   poses  will  drive  advancement  in  these  other  fields.  

For  synthetic  chemists  Dial-­‐a-­‐Molecule  provides  a  framework   to   encourage   creativity   and  

adventure  in  developing  synthesis,  together  with  the   invigorating   effect   of   input   from   other  disciplines,   with   a   clear,   very   ambitious,   long  

term   goal.   It   should   also   provide   routes   to   the  widespread  adoption  of  tools  such  as  automated  reaction  platforms,  real  time  reaction  monitoring,  

Electronic   Lab   Notebooks,   theoretical   modelling  of   reactions,   and   smart   computer   assisted  synthetic  planning  in  academia.  

An   increase   in   the   speed   and   efficiency   of  

synthesis  will  have  a  direct  and  substantial  effect  on   the   numerous   academics   who   are   users   of  

molecules   whether   it   be   for   biological   or  materials  applications,  or  just  to  investigate  their  properties.  The  provision  of  molecules  is  the  rate  

limiting   step   in   many   of   these   pursuits   and  removal   of   this   constraint   will   allow   faster  progress  and  much  more  imagination  in  selecting  

molecules  to  provide  the  desired  function.    

1.4.4 Impact  in  government  As  well  as  the  economic  benefits  outlined  above,  

Dial-­‐a-­‐Molecule   addresses   the   ever-­‐present  dichotomy   between   wealth   creation   and  environmental   impact.   The   work   will   allow   UK  

government   to   take   a   lead   role   in   setting  international   standards   to   minimize   global  manufacturing   waste   and   emissions   and   in  

providing   low-­‐cost   healthcare   to   the   third  world  and  emerging  economies,  etc.  

 

Page 9: Transforming synthesis, enabling sciencegeneric.wordpress.soton.ac.uk/dial-a-molecule/wp... · Roadmap for Transforming synthesis, Dial-a-MoleculeDial-a-Molecule An EPSRC Grand Challenge

 

Introduction   Page  9  

1.5 Purpose  of  the  Roadmap    Dial-­‐a-­‐Molecule   has   undertaken   this   technology  roadmapping  study  to  develop  a  strategy  for  the  

research   and   development   of   technology   aimed  at  making  molecules  easily  available.  

The   technology   strategy   will   provide   key  decision-­‐makers   in   industry,   academia   and   the  

UK   government   with   a   clear   picture   of   the   role  that  synthetic  chemistry  can  play  in  developing  a  vibrant   and   sustainable   chemical   industry   in   the  

UK.  It  will  identify  the  opportunities,  the  gaps  and  the   key   actions   that   need   to   be   taken   to   make  sure   that   the   potential   of   synthetic   chemical  

technology   is   delivered.   The   roadmap   and  technology   strategy   are   documents   in   need   of  constant   review.   In   addition   to   this   report   a  

website   has   been   created   to   enable   all   users   of  molecules   to   explore   and   comment   on   the  roadmap  and  strategy.  

1.6 Guide  to  the  Roadmap  The  challenge  was  structured   into  three  themes.  For   each   theme   several   focus   areas   were  

identified:    

Lab  of  the  Future  and  Synthetic  Route  Selection  

Optimum  reaction  and  route  design   Smart   Laboratory   (data   collection   and  

automation)   Next   generation   reaction   platforms   (the  

technology  of  synthesis)  

Rapid  reaction  analysis  

A  Step  Change  in  Molecular  Synthesis.   Stepwise  perfection  (1000  Click  Reactions)   Holistic  approach  to  molecular  synthesis.  

Catalytic  Paradigms  for  Efficient  Synthesis  

New  reactivity:  target-­‐driven  catalysis   Intervention-­‐free  synthesis   Engineering   control   through  

understanding  

Each   focus   area   held   a   two   day   meeting   to  brainstorm   the   roadmap   as  well   as   describe   the  present  state-­‐of-­‐the-­‐art  and  investigate  potential  

collaborative   areas.   The   detailed   results   of   each  meeting   are   published   on   our   website.   The  results   for   the   roadmap   were   correlated   and  

after   refinement   through   consultation   are  presented  in  this  document.  

Page 10: Transforming synthesis, enabling sciencegeneric.wordpress.soton.ac.uk/dial-a-molecule/wp... · Roadmap for Transforming synthesis, Dial-a-MoleculeDial-a-Molecule An EPSRC Grand Challenge

 

Roadmap  -­‐  Overview   Page  10  

 

2 Roadmap  for  synthesis  in  the  21st  century  2.1 Overview  The   process   of   developing   a   roadmap   for   21st  century   synthesis   was   targeted   at   putting   the  

network,   and   its   constituent   groups   and  members,   in   a   position   to   make   a   meaningful  contribution   to   public   debate   on   issues   where  

the   discipline,   in   conjunction   with   others   as  appropriate,   can   play   a   significant   role   in  delivering  solutions.  

Using   a   highly   consultative   process   the   Dial-­‐a-­‐

Molecule   network   has   identified   a   series   of   key  barriers   that   need   to   be   overcome   for   the  successful  delivery  of   the  Grand  Challenge.  They  

are  summarised   in   this  document,   together  with  

key   recommendations   and   distinctive   research  areas   in   which   UK   has   the   strength   to   be  

distinctive  and  internationally  leading  in  the  next  five  years.    

The  key  challenges  and  barriers  to  delivery  of  the  Grand  Challenge,  shown  diagrammatically  below,  

were   identified   as:   the   need   to   make   synthesis  predictable,  developing  smart  synthesis  by  design  and   providing   a   sustainable   synthesis   to   answer  

the  needs  for  a  sustainable  future.  

To   address   these   issues   the   network   makes   a  series  of  key  recommendations  aimed  at  defining  the   path   to   success.   The   recommendations  

establish   how   to   manage   different   possible  approaches   in   organic   synthesis   and   how   to  identify  and  deliver  faster  the  best  results.  

 

   

Making  synthesis  predictable  

Smart  synthesis  by  design  

Sustainable  synthesis  for  a  sustainable  

future  

Key  barriers  

Key  recommendations  

Transforming  synthesis  

Building  a  mulqdisciplinary  community  to  tackle  the  Grand  Challenge  

Maximising  economic  benefit  from  tackling  the  Grand  Challenge  

Page 11: Transforming synthesis, enabling sciencegeneric.wordpress.soton.ac.uk/dial-a-molecule/wp... · Roadmap for Transforming synthesis, Dial-a-MoleculeDial-a-Molecule An EPSRC Grand Challenge

 

Roadmap  -­‐  Overview   Page  11  

 

 

 

 

 

 

 

 

 

Making  synthesis  predictable  

The   key   challenge   for   Dial-­‐a-­‐Molecule   is   to   be  able  to  reliably  predict  the  outcome  of  unknown  reactions11.   The   synthesis   of   other   than   trivial  

molecules   usually   requires   substantial  optimisation   of   reactions   and   exploration   of  alternative   routes   when   proposed   steps   fail  

resulting   in   slow   delivery   times.   If   we   could  choose   the   right   reactions   and   conditions   first  time  a  huge  step  would  have  been  taken  towards  

Dial-­‐a-­‐Molecule.   There   are   two   complementary  approaches:   use   of   data   and   theory   to   predict  reaction   outcomes;   and   developing   robust  

reactions  that  ‘always’  work.    

                                                                                                                         11  We   use   reaction   to   describe   the   combination   of   the  transformation   carried   out,   and   the   particular   reagents,  conditions,  etc  used  so  an  unknown  reaction  can  be  a  well-­‐known   transformation   under   unknown   conditions,   or   a  novel  substrate  under  known  conditions.  

Key  objectives  and  actions  

   (a)  Data  driven  approach  

Ø Need  better  quality  (complete)  data  on  reactions.  ü Establish   a   National   ELN   and   means   to  

access  the  data.  ü Equipment   to   allow   efficient   study   of  

reactions  

§ National   Service   for   the   Study   of  Reactions.  

§ How  to  equip  departments,  groups,  individual  workers.  

§ Develop  new  reaction  platforms  

§ Real  time  analysis  in  flow  and  batch  

• Develop   Low   cost   MS,  

NMR  etc.  

• Multi-­‐technique   probe   for  

batch  

• Automatic  identification  of  components.  

ü Incorporate  statistical  methods  as  routine.  ü Automated  full  re-­‐extraction  of  past  data.  

Ø Make  better  use  of  reaction  data.  ü Use   computed   properties   to   enhance  

observational  data.    

ü Use  of  statistical  and  AI  methods.  ü Virtual  centre  to  bring  together  chemists,  

statisticians,  mathematicians,  engineers,  and  computer  scientists.    

ü Systematic  study  of  substrate  structure  as  a  variable.  

Ø Computational   modelling   of   reactions   under   real  

conditions.  

   (b)  Better  reactions  approach.  Ø Need  fully  characterised  transformations  (toolbox).  

Ø Identify   which   we   need,   and   use   high   throughput  study.  

Ø Auto-­‐optimisation  of  reactions.  ü Real   time   analysis   in   flow   and   batch   (see  

above)  

Ø Reactions  which  are  ‘Perfect’  by  design.  ü Understanding   of   catalysis,   particularly  

organometallic  and  surface  reactions  ü Understanding  of  reactivity.  ü Understanding  solvent  effects  

Page 12: Transforming synthesis, enabling sciencegeneric.wordpress.soton.ac.uk/dial-a-molecule/wp... · Roadmap for Transforming synthesis, Dial-a-MoleculeDial-a-Molecule An EPSRC Grand Challenge

 

Roadmap  -­‐  Overview   Page  12  

 

 

 

 

 

 

 

 

 

Smart  synthesis  by  design  

To   deliver   complex   functional   molecules   many  reactions  need  to  be  carried  out  in  sequence.    

There  are  three  elements  to  this  challenge:   informed   selection   of   the   most   efficient  

route  (strategy-­‐level);     the  use  of  reactions  designed  for  efficient  

sequencing  (tactical-­‐level);    

the  integration  of  the  reaction  sequences  to   drive   up   efficiency   by   minimising  external  intervention  (delivery-­‐level).  

   

Key  objectives  and  actions  

(a)  Develop   algorithms   for   optimum   route  selection  subject  to  constraints.    

(b) Target   the   invention   of   transformations  identified   by   objective   (data   led)   means   as  having   most   impact   on   shortening   synthetic  

routes.    

(c) Develop  the  Holistic   (minimum  steps)  approach  

to  synthesis.    

(d) Efficient  sequencing  of  reactions.  

ü ‘Zero  emissions’  reactions  which  produce  no  interfering  by-­‐products  

ü Phase-­‐separable   catalysts   (solid-­‐tagged,  

liquid-­‐tagged,  heterogeneous)  with   retained  catalytic  activity  

ü Efficient   sequencing   of   reactions   with  

minimal  intervention  ü Engineered   solutions   for   phase  

separations/compartmentalisation  

(membranes,  reactor  design)  ü Integration   of   chemical   and   biotechnology  

steps.  ü Develop   flow   chemistry   for   routine  

application  

ü Integrating   flow   and   batch   steps   –  configurable  networks  of  reactors.  

ü In-­‐line  purification  methods.    

(e) Synthetic-­‐   and   Chemical-­‐biology   for   making  molecules.  ü Integrating  the  use  of  biological  systems  into  

routine  synthesis  ü Designing   artificial   enzymes   and   systems   to  

carry   out   molecule   and   site   specific  

transformations  ü Develop   artificial   systems   for   multi-­‐step  

synthetic  pathways.  

Page 13: Transforming synthesis, enabling sciencegeneric.wordpress.soton.ac.uk/dial-a-molecule/wp... · Roadmap for Transforming synthesis, Dial-a-MoleculeDial-a-Molecule An EPSRC Grand Challenge

 

Roadmap  -­‐  Overview   Page  13  

 

 

 

 

 

 

 

 

 

Sustainable  synthesis  for  a  

sustainable  future  

Cutting   across   all   of   the   above   is   the   necessary  focus  on  synthesis  that  is  “sustainable  by  design”  12.  A  “perfect”  reaction/route  eliminates  hazards,  

minimises   human   intervention   and   reduces  delivery  time.  This  manifests  itself  in  several  ways:    

minimising   the   amount   of   and   hazards  from   waste   streams   in   reactions  

(stoichiometric   to   catalytic;   benign   or  recyclable   outputs   from   catalytic  reactions);    

minimising   the   energy   demands   of  synthesis;   developing   chemistries   to  process   new   (renewable   or   waste)   non-­‐

petrochemical  feedstocks;     ensuring   that   reagents   and   catalysts  

comprise   components   that   are  

themselves  abundant  and/or  recyclable.  

                                                                                                                         12  C.   Jimenez-­‐Gonzalez,   P.   Poechlauer,   Q.   B.  Broxterman,   B.-­‐S.   Yang,   D.   am   Ende,   J.   Baird,   C.  Bertsch,   R.   E.   Hannah,   P.   Dell’Orco,   H.   Noorman,   S.  Yee,   R.   Reintjens,   A.   Wells,   V.   Massonneau   and   J.  Manley,  Org.  Process  Res.  Dev.,  2011,  15,  900–911  

 

   

Key  objectives  and  actions  

(a) Use  of  sustainable  synthesis.  ü ‘Waste-­‐free’   reactions   (by-­‐products  

intrinsically  or  decompose  to  benign)  

ü Catalytic  alternatives  to  current  reagents    ü Reagentless   reactions   (field   effects   –  

electro,  thermal,  photo)  

ü Minimal  energy  requirements.    

(b) Sustainable  feedstocks,  reagents  and  catalysts    

ü Re-­‐tooled   catalysis   for   renewable  feedstocks  

ü Accelerate   growth   in   biotechnological  

production  of  building  blocks  ü Integrating   biosynthesis   of   ‘complex’  

structures  with  target  synthesis  

ü Ultra-­‐low   loading/long   lifetime   catalysts  (homo  and  heterogenous)  

ü Catalysts  based  on  metal-­‐free  or  abundant  

metals    

Page 14: Transforming synthesis, enabling sciencegeneric.wordpress.soton.ac.uk/dial-a-molecule/wp... · Roadmap for Transforming synthesis, Dial-a-MoleculeDial-a-Molecule An EPSRC Grand Challenge

 

Roadmap  -­‐  Overview   Page  14  

 

 

 

 

 

 

 

Transforming  Synthesis  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Building  a  multidisciplinary  community  to  tackle  the  Grand  

Challenge  

   

• Synthesis   has   to   change   to   being   a   data  driven  discipline  –  the  information  output  from  carrying  out  a  reaction  must  be  seen  as   equal   in   importance   to   obtaining   the  product.   ⇒   Establish   a   national   ELN.  Define  a  common  format  for  data.    

• The   equipment   used   for   synthesis   must  change   to   that   which   allows   precise  repeatable  control  of  reaction  conditions,  and   maximises   information   output.   ⇒  Establish  a  National  Service   for   the  Study  of   Reactions.   Find   a   way   to   equip  synthetic   chemistry   laboratories  with   21st  century   equipment,   software   and  methods.  

 • Statistical   and   computational   methods  

need   to   be   integrated   with   the   routine  performance   of   synthesis.   ⇒   Build  collaborations  and  enhance  education.  

 • Encourage   a   focus   on   developing  

methods,   “zero-­‐emissions”   reactions   and  catalysts   identified  as  having  most   impact  on   the   pathway   to   Dial-­‐a-­‐Molecule.   ⇒  Form   an   industry/academic   group   to  identify   specific   challenges   and   establish  communities   to   address   them   through  objective  (data-­‐led)  methods.  

 

Recommendations  

• Continue   the   Dial-­‐a-­‐Molecule   network   to  ensure   transition   to   a   self-­‐sustaining  community   of   research   clusters  addressing   the   key   challenges   over   a   3-­‐4  year   period.   Provide   direct   funding   to  enable   critical   input   from   a   range   of  skilled   professionals   in   disciplines   not  previously   engaged   with   synthesis   (e.g.  computer   science,   mathematics,   biology,  medicine,  engineering).  

 • Engage   with   government   to   ensure  

sustained   and   focussed   support   for   the  three   key   research   areas:   Lab   of   the  future   and   synthetic   route   selection,   A  step  change   in  molecular   synthesis,  New  paradigms   in   catalysis,   as   detailed   in   the  roadmap,   through   responsive   mode   and  other  funding  mechanisms.  

Page 15: Transforming synthesis, enabling sciencegeneric.wordpress.soton.ac.uk/dial-a-molecule/wp... · Roadmap for Transforming synthesis, Dial-a-MoleculeDial-a-Molecule An EPSRC Grand Challenge

 

Roadmap  -­‐  Overview   Page  15  

 

Maximising  economic  benefit  from  tackling  the  Grand  Challenge.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Distinctive  areas  

Some  areas   in  which   the  UK  has   the   strength   to  be   distinctive   and   internationally   leading   in   the  next  five  years  are:    

Software   /   methods   for   prediction   of   the  outcome   of   reactions   using   both   data-­‐

driven  and  theoretical  approaches  (leading  to  computer  aided  synthetic  route  design).  

  Wide  spread  use  of  computer  methods  for  

mechanistic   understanding   and   route  design.  

 

The   development   of   flow   chemistry   and  automated   methods   for   laboratory   scale  

synthesis.     Development   of   low   cost,   small   size  

equipment  and  methods  for  in  situ  analysis  of  reactions.  

  Development   of   ‘zero   emissions’  

transformations   (including   using   phase  separated  catalysis)  suitable  for  sequencing.      

Understanding  of  complexity  and  its  impact  on  site  specific  and  holistic  reactivity.  

 

Combining   appropriate   “chemical”   and  enzymatic/whole   organism   catalysts   to  

achieve  synthetic  goals      

• Develop   mechanisms   to   facilitate   the  rapid   translation  of   important   reactions   /  technologies  from  academia  to  industry  to  maximise  impact  to  the  UK.  

 

• Build   interactive   industry/academia  networks/advisory   groups   to   ensure   that  the   types   of   transformations   and  molecules  of   potential   future  commercial  interest   are   prioritised   for   investment   by  key  stakeholders  to  maximise  return.  

 • Ensure   that   required   technologies   and  

software   are   developed   in   association  with   U.K.   companies   able   to   exploit   the  Intellectual  Property.  

 

• Work   with   industry   to   shorten   the  timeframe  for  the  discovery,  development  and   demonstration   (“the   3Ds   of  synthesis”)  of  new  step  change  reactions.  

Page 16: Transforming synthesis, enabling sciencegeneric.wordpress.soton.ac.uk/dial-a-molecule/wp... · Roadmap for Transforming synthesis, Dial-a-MoleculeDial-a-Molecule An EPSRC Grand Challenge

 

Roadmap  -­‐  Overview   Page  16  

 

Structure  of  the  roadmap  

The  roadmap  is  structured  around  the  theme  and  focus   areas   described   above.   For   each   area   a  table  is  provided  summarising  the  key  challenges  

and   suggested   actions   along   with   approximate  timescales.  The  timescales  are  described  as  short    (0-­‐5   years),     medium   (5-­‐10/15   years)   and   long  

(10/15-­‐20/30  years).  

 

 

 

 

 

 

Dial-­‐a-­‐Molecule  Grand  Challenge  –  key  challenges  

Lab of the Future/Synthetic Route Selection A Step Change in Molecular Synthesis

Catalytic Paradigms for Efficient Synthesis

Optimum Reaction and Route Design

The Smart Laboratory

Next Generation Reaction Platforms

Rapid Reaction Analysis

Stepwise perfection (1000 Click Reactions)

Holistic approach to molecular synthesis

New reactivity: target-driven

catalysis Intervention-

free synthesis Engineering

control through understanding

Need for high quality reaction data

Electronic Laboratory Notebooks

Reactor Platforms

Equipment development – into the lab.

Establish criteria for ‘perfection’

Tandem & telescoped reactions: generalising the concept

Efficient transformations across chemical space

Phase-separated catalysts

Rapid (self)-optimisation of reactions

New ways to analyse reaction data to predict unknown outcomes

Automated and high throughput equipment for synthesis

Intelligent Feedback Control

Software development – automation of expert tasks.

Establish an inventory of reactions required & with potential for automisation

Rational design & implementation of catalysts for multicompo-nent reactions

Complexity-building reactions

Mutually compatible catalysts

Full elucidation of catalytic mechanisms

Planning of synthetic routes subject to constraints

The intelligent fume cupboard

Microfluidics and Lab-on-a-chip

Equipping academia – overcoming the cost barrier.

Reagentless “zero-emissions” transformations (energy driven & catalytic)

Determining the reactions needed and priorities in targeting new chemical space

Sustainability: feedstocks

Switchable catalysts

Theoretical chemistry: through understanding to prediction

Theoretical prediction of reaction outcomes

Networks of reactors

Automatic identification of components of reactions

Understanding compatibility in complex systems

A framework to design redox-neutral processes

Sustainability: catalysts

Separation technology

Active Study and optimisation of reactions

Purification

Page 17: Transforming synthesis, enabling sciencegeneric.wordpress.soton.ac.uk/dial-a-molecule/wp... · Roadmap for Transforming synthesis, Dial-a-MoleculeDial-a-Molecule An EPSRC Grand Challenge

 

Roadmap  -­‐  Lab  of  the  Future  and  Synthetic  Route  Design   Page  17  

2.2 Lab  of  the  Future  and  Synthetic  Route  Design    

The  number  and  power  of  reactions  developed  in  

synthetic   chemistry   over   the   past   30   years   are  staggering,  particularly  in  the  area  of  asymmetric  synthesis   and   the   use   of   transition   metals.  

Despite   that,   the   time   and   effort   required   to  make   complex   molecules   has   not   dramatically  fallen.  The  key  reason  must  be  that  the  selection  

of  which  reactions  to  use  in  a  synthesis  has  fallen  behind.   Typically   for   reasonably   complex  molecules  the  ratio  between  the  number  of  steps  

in  a  successful  total  synthesis,  and  the  number  of  reactions   performed   to   achieve   that   synthesis  may   be   less   than   1:100.   Both   the   need   to   re-­‐

optimise  reactions  and  to   find  alternative  routes  when  proposed  steps  fail  contributes  to  the  poor  ratio.   If  we  could  choose   the   right   reactions  and  

conditions   first   time   a   huge   step   would   have  been   taken   towards  Dial-­‐a-­‐Molecule.   The   use   of  data   on   reaction   conditions   and   outputs   is   thus  

central  to  Dial-­‐a-­‐Molecule.  

Synthesis,  particularly   in  academia,   is  still   largely  carried  out  manually,  and  documented  in  a  paper  laboratory   notebook.   Analytical   data   is   still  

mostly   collected   ‘offline’   after   work-­‐up   of  reactions.   Automated   and   high   throughput  

equipment  is  not  generally  available.  

To   achieve   the   Dial-­‐a-­‐Molecule   goals   synthesis  needs   to   become   a   data   driven   discipline   that  makes  full  use  of  the  revolution  in  computing  and  

automation   that   has   taken   place   in   the   past   20  years.    

 

Lab  of   the  Future   is  about  how  synthesis  should  

be   performed,   and   Synthetic   Route   Selection   is  about   the   prediction   of   which   reactions   to   use.  The  two  are  so  closely   linked  that  they  are  dealt  

with   as  one   theme.   The   theme  was  divided   into  four  areas  to  allow  focused  discussion,  but  all  are  strongly  interdependent  and  indeed  many  of  the  

same   ideas   came   to   the   fore   in   each   group  although   below   they   are   generally   discussed   in  one.   Smart   Laboratory   is   principally   about  

collecting   and   making   available   data;   Optimum  Reaction  and  Route  Design  (ORRD)  is  about  how  to   use   data   to   predict   the   outcome  of   reactions  

and   hence   allow   optimum   synthetic   route  selection   as   well   as   the   data   analysis   side   of  reaction   optimisation;  Next   Generation   Reactor  

Platforms   (NGRP)   looked  at  how   the   technology  used   to   carry   out   synthesis   should   change   to  achieve   the   Dial-­‐a-­‐Molecule   goals   and   Rapid  

Reaction   Analysis   (RRA)   at   the   challenge   of  collecting  full  analytical  data  on  reactions.  

 

 

 

 

 

 

 

 

 

Page 18: Transforming synthesis, enabling sciencegeneric.wordpress.soton.ac.uk/dial-a-molecule/wp... · Roadmap for Transforming synthesis, Dial-a-MoleculeDial-a-Molecule An EPSRC Grand Challenge

 

Roadmap  -­‐  Lab  of  the  Future  and  Synthetic  Route  Design   Page  18  

 

2.2.1 Optimum  reaction  and  route  design  

Focus  area  definition  

The  aims  of  this  focus  area  were  to  examine  state  of   the   art   and  make   recommendations   in   three  

areas:    1. prediction   of   the   outcome   of   unknown  

reactions   under   particular   conditions  enabling   both   selection   of   the   best  reaction  and  optimum  conditions;    

2. selection  of  the  optimum  synthetic  route  to  a  target  molecule;    

3. statistical  and  mathematical  methods  for  

the   active   optimisation   of   reactions   and  multi-­‐step  routes.  

The  principle  reason  for  the  length  of  time  taken  for   molecular   synthesis,   and   hence   the   initial  

target   for   Dial-­‐a-­‐Molecule,   is   that   reactions   that  would  be  expected  to  work  based  on  precedents  from   the   literature,   do   not,   so   requiring  

optimisation  or  route  change.  The  problem  is  the  infinite   variety   of   potential   substrate   structures,  and  the  complex  and  unpredictable  way  that  the  

entire   structure   affects   reactions   at   particular  sites,  as  well  as   inadequacy  in  the  ways  in  which  experimental  procedures  are  reported.  

Overview  of  main  challenges  

Need   for  high  quality   reaction  data.  The   lack  of  complete   experimental   data   was   identified   as   a  

key   barrier   to   the   Dial-­‐a-­‐Molecule   goals.    Currently   the   available   databases   of   reaction  outcomes  have  been  largely  manually  abstracted  

from   the   primary   literature.   Only   selected  (positive)   data   is   published,   and   more   is  

discarded   in   the  abstraction  step.  Only   the  most  successful   examples   of   particular   reactions   get  

published,   and   failed   reactions   are   very   rarely  reported.  

There   is   a   huge   amount   of   data   available   in  journals,   patents   and   theses,   and   the   only  

practical   way   for   the   full   content   to   be   made  available  for  reaction  planning   is   for  data  mining  to   be   entirely   automated.   The   development   of  

software   to   allow   fully   automated   extraction   of  complete   data   from   text   and   images   is   thus  identified  as  an  important  goal.    

Much  more  useful  data  is  potentially  available  by  

collecting  at  source  (in  the  laboratory).  The  Smart  Laboratory  focus  area  is  promoting  the  adoption  of,   and   data   sharing   from,   Electronic   Laboratory  

Notebooks   (ELNs).   The   use   of   automated   and  high   throughput   equipment   to   carry   out  reactions   will   provide   a   valuable   source   of   data  

and   is   highlighted   in   both   the  Smart   Laboratory  and   Next   Generation   Reaction   Platform   focus  areas.    

An   action   identified   by   this   focus   area   is   to  develop   software   to   harvest   ELNs   and   related  experimental  data.  

New   ways   to   analyse   reaction   data.   The  

challenge   is   to   use   data   on   known   reactions   to  predict   the   outcome   of   unknown   ones   reliably,  and  as  a  consequence  the  optimum  conditions  to  

use.  

Reaction   substructure   searching   of   existing  databases  and  manual  examination  of   the  hitset  produced   for   close   analogues   of   the   desired  

transformation   is   currently   the   main   approach,  but   does   not   make   use   of   much   relevant  information.  Ways  of  visualising  the  results   from  

a   much   larger   dataset,   perhaps   in   combination  with  computationally  derived  information,  would  allow  the  chemist  to  make  better  choices,  and  is  

a  near-­‐term  target.  

Page 19: Transforming synthesis, enabling sciencegeneric.wordpress.soton.ac.uk/dial-a-molecule/wp... · Roadmap for Transforming synthesis, Dial-a-MoleculeDial-a-Molecule An EPSRC Grand Challenge

 

Roadmap  -­‐  Lab  of  the  Future  and  Synthetic  Route  Design   Page  19  

Optimum  Reaction  and  Route  Design     State-­‐of-­‐the-­‐

art  Short  term   Medium  term   Long  term   Goal  

Need  for  high  quality  

reaction  data  

Commercial  databases  

Develop  programs  to  harvest  

relevant  data  from  ELNs    

A  million  high  quality  

reactions/year  

 Systems  to  automatically  extract  information  from  text  sources  (Thesis,  patents,  papers,  lab  books)  

 

10  million  records  including  as  much  reaction  detail  as  

available.  

New  ways  to  analyse  

reaction  data  to  predict  unknown  outcomes  

Reaction  substructure  searching  with  human  interpretation.  

Improved  ways  to  present  data  from  reaction  databases  to  chemists    

   

Reliable  prediction  of  the  

outcome  of  unknown  reactions.  

Develop  ways  to  deal  with  high  dimensional  (many  parameters)  complex  geometry  reaction  space.  

 

Combine  theoretical  calculation  of  molecular  properties  with  reaction  data  –  Substrate  variability  as  a  continuous  variable  

 

Planning  of  synthetic  routes  

subject  to  constraints  

Human  generated  routes  checked  using  manual  reaction  substructure  search  of  steps.  

Develop  way  to  deal  with  complex  topology  of  reaction  space  (many  routes)  

 Computational  prediction  of  optimum  

synthetic  route  (subject  to  

constraints  such  as  feedstocks,  scale,  available  equipment,  cost,  time)  which  works  

1st  time.  A  universal  synthesiser  

Interactive  computer-­‐aided  route  finding  

Computational  generated  routes  essential  as  aid  to  chemist  

Use  of  computer  generated  routes  routine.  

Develop  measures  for  how  good  a  route  is.  

 

Theoretical  prediction  of  reaction  outcomes  

DFT  useful  for  predicting  trends.  Continuum  solvent  models  generally  used  

Embed  as  routine  tool  in  synthesis  planning.  

Multi-­‐scale  models  produce  useful  data  on  relative  rates  of  reactions  under  real  conditions.  

In  silico  prediction  of  reaction  

outcomes  and  design  of  new  reactions.  

Mechanism  used  by  chemists,  but  not  efficiently  computerised  yet  

Develop  automated  mechanism  or  modelling  based  algorithms  for  predicting  all  reasonable  products  from  a  reaction  –  exploring  potential  energy  surfaces  

 

Enables  automatic  structure  

assignment  from  analytical  data  

Active  Study  and  

optimisation  of  reactions  

Virtually  no  auto-­‐optimisation.  Off-­‐line  statistical  methods  available,  if  little  used.  

Statistical  methods  for  reaction  optimisation  in  routine  use  

Optimisation  over  multi-­‐step  routes  

Optimisation  of  reactions  within  

allowed  parameters  carried  out  

transparently    

Closed  loop  auto-­‐optimisation  of  reactions  

Only  narrow  studies  in  reaction  scope  have  been  reported  

Study  selected  reactions  in  sufficient  detail  that  optimum  conditions  and  outcome  can  be  predicted  for  any  substrate(s).  

 

A  toolbox  of  reactions  for  

which  outcome  can  be  predicted  for  any  substrate  

Page 20: Transforming synthesis, enabling sciencegeneric.wordpress.soton.ac.uk/dial-a-molecule/wp... · Roadmap for Transforming synthesis, Dial-a-MoleculeDial-a-Molecule An EPSRC Grand Challenge

 

Roadmap  -­‐  Lab  of  the  Future  and  Synthetic  Route  Design   Page  20  

The   challenge   is   to   develop   ways   to   deal   with  high   dimensional   (many   parameters)   complex  

geometry  reaction  space.  The  data  is  also  sparse,  subject   to   error,   and   noisy.   The   problem   is   one  that   will   challenge   the   most   advanced   data  

analysis   methods   and   we   suspect   require   the  invention  of  new  ones.  In  the  longer  term,  due  to  continually   increasing   computational   power   and  

refinements   in   theoretical   methodologies,  quantum   chemical   methods   may   play   a   role   in  predicting   reaction   outcomes   in   silico   where  

experimental   data   is   unavailable   (as   described  below).  

Whereas   methods   to   map   a   reaction   space   in  terms   of   continuous   variables   (temperature,  

concentration  etc)  are  well  developed,   those   for  discrete   variables   (substrate,   solvent,   catalyst,  and   reagent)   are   not.   The   substrates   are   the  

ultimate  discrete  variable  –  there  are  countless  of  them,  all  different.  

The   way   in   which   solvents   can   be   dealt   with   is  informative.   By   characterising   solvents   in   terms  

of   continuous   molecular   descriptors   (molecular  weight,   molecular   volume,   dipole,   polarisability  

etc)   screening   a   small   number   of   solvents   and  use  of  a  statistical  model  of  solvent  diversity  (e.g.  principal  component  analysis  –  developed  using  a  

large   set   of   solvents)   allows   the   optimum   to   be  picked  from  a  much  larger  set.  

The   challenge   is   thus   to   find   computationally  derived   molecular   descriptors   of   substrates   as  

well   as   reagents,   catalysts,   ligands,   etc   to  use   in  statistical  analysis  of  known  reaction  outcomes  in  order   to   provide   a   suitable   model   of   reactivity  

and   thus   reliable   prediction   of   outcomes   in  unknown  cases  and   the  precise  definition  of   the  limits   of   the   model.   Enhancement   of   existing  

reaction   databases   through   the   addition   of  calculated   molecular   descriptors   is   the   first  objective.  

A   close   collaboration   between   synthetic   and  

computational   chemists   and   statisticians   (and  

others)   is   required   and   we   recommend   that  these   are   brought   together   in   a   virtual   National  

Centre   for   the   Study   of   Reactions.   It   would   be  closely   associated   with   the   proposed   National  Service   for   the   Study   of   Reactions   described   in  

the  Smart  Laboratory  focus  area  providing  expert  advice  to  users  of  the  service,  and  a  proportion  of  service  time  would  be  used  to  generate  the  data  

needed  to  develop  the  ideas  above.  

Planning   of   synthetic   routes   subject   to  constraints   The   challenge   is   to   select   the   best  synthetic   route   to   a   target   from   the   myriad  

possibilities   subject   to   various   constraints  which  may   be   applied   in   different   situations,   for  example   minimum   cost,   fastest   delivery,   scale,  

available   equipment,   particular   feedstocks   etc.  Currently   a   chemist   will   typically   design   a   route  using   their   knowledge  and  experience,   and   then  

check   each   proposed   step   manually   by   carrying  out   reaction   substructure   searches   of   existing  databases   and   examining   the   dataset   produced.  

If   potential   problems   are   found,   an   alternative  route   may   be   investigated.   Computers   are  

intrinsically   much   better   than   humans   at   such  exhaustive  searches,  but  current  synthesis  design  programs   perform   poorly.   One   reason   is   the  

difficulty   in   rating   the   probability   of   a   particular  reaction  working  that  is  tackled  above.  Prediction  of   side   reactions   will   also   be   important   in  

assessing   the   suitability   of   proposed   steps.   The  second   requirement   is   to   be   able   to   rank   how  good  a  proposed  synthesis  is  and  developing  such  

a  measure   is   an   initial   aim.  With  both   individual  step   and  overall   route   ranking   available  ways   to  deal   efficiently   with   the   complex   topology   of  

reaction   space   (many   routes)   should   allow  effective   route   prediction.   Current   synthesis  design   programs   are   expert   systems   using   rules  

derived  from  known  reaction  outcomes  and  thus  use   directly   only   a   tiny   proportion   of   the  information   in   even   current   reaction   databases.  

Developing   methods   that   use   the   totality   of  information   available   thus   avoiding   the   rule  

Page 21: Transforming synthesis, enabling sciencegeneric.wordpress.soton.ac.uk/dial-a-molecule/wp... · Roadmap for Transforming synthesis, Dial-a-MoleculeDial-a-Molecule An EPSRC Grand Challenge

 

Roadmap  -­‐  Lab  of  the  Future  and  Synthetic  Route  Design   Page  21  

extraction   step   is   an   ideal,   but   probably  impossibly  slow.  

Early  stage  objectives  should  produce  tools  to  aid  

interactive   route   finding   with   a   chemist.   The  ultimate   aim,   when   coupled   with   suitable  hardware,   is   the   universal   synthesiser   that  

realises   the   Dial-­‐a-­‐Molecule   Grand   Challenge.  The   synthetic   route   design   software   and  techniques  developed  can  also  be  used  to  inform  

other   aspects   of   Dial-­‐a-­‐Molecule,   for   example  what   impact   a   proposed   new   transformation  would   have,   or   indeed   to   identify   novel  

transforms  which  would  have  maximum  effect  on  shortening  synthetic  routes.  The  prediction  of  all  reasonable   products   from   a   reaction   is   another  

application   of   the   techniques   described   above.  Even   if   relative   amounts   cannot   be   predicted  accurately   the   outcome   would   make   the  

automatic   identification   of   reaction   components  using   spectroscopic   and   analytic   methods  possible  (see  Rapid  Reaction  Analysis  focus  area).  

Theoretical  and  mechanism  based  prediction  of  

reaction   outcomes.   Theoretical   modelling   of  molecules,   and   even   transition   states,   has  

recently   developed   into   a   practical   tool   for  guiding  the  investigation  of  reactions  and  should  be  a  routine  tool  for  synthetic  chemists.  However,  

simplifications   of   the   system   are   nearly   always  required  for  such  studies.  The  detailed  effects  of  solvents,   for   example,   are   usually   treated   using  

approximations.  As  a  consequence  of  this  as  well  as  the  inherent  approximations  made,  calculation  of   absolute   activation   energies   for   reactions  

under   real   conditions   with   an   accuracy   that  would   allow   reliable   prediction   of   reaction  outcomes   is   a   distant   dream.   Most   chemically  

useful   information   comes   from   the   comparison  of   relative   activation   energies   that,   due   to   error  cancellation,   are   often  much  more   reliable   than  

absolute   energies.   It   is   possible   for   example   to  accurately   model   the   stereoselectivity   of   some  catalytic   reactions   where   competing   pathways  

are   only   separated   by   a   few   kJ  mol-­‐1.   Perhaps   a  bigger   problem   is   the   enormous   complexity   of  

the  possible  potential  energy  surfaces  for  realistic  reaction   systems.   How   we   go   about   mapping   a  

sufficient   proportion   of   these   to   make  predictions,   in   particular   by   automating   the  process,   is   a   challenge  we   should   start   to   tackle  

now.    

Active   development   of   multi-­‐scale   models   of  reaction  kinetics  is  an  important  part  of  the  Dial-­‐a-­‐Molecule   roadmap   as   even   partial   success  

could  have  a  huge  impact  on  in  silico  screening  of  possible   reactions,   including   the   prediction   of  currently  unknown  transformations.  

Another   important  outcome  would  be  to  predict  

all  reasonable  products  from  a  reaction  –  needed  for   the   Rapid   Reaction   Analysis   focus   area   as  described  above.  

Active   study   and   optimisation   of   reactions   and  

multi-­‐step  routes.    Distinct  from  the  above  areas  is  the  active  interaction  between  experiment  and  theory.   The   use   of   ‘Design   of   Experiments’   and  

other   statistical   methods   for   reaction  optimisation   is   well   established   in   process  

chemistry,  but  little  used  in  small  scale  ‘discovery’  chemistry   due   to   the   overhead   imposed   by   its  use,   together   with   unfamiliarity.   In   the   short  

term   a   priority   should   be   to   increase   the  familiarity   of   synthetic   chemists   with   the  techniques   used   in   process   chemistry   and  

process   engineering.     Embedding   Design   of  Experiments   and   other   statistical   methods   into  postgraduate  training  is  important  to  develop  the  

generation   of   chemists   who   will   be   responsible  for  developing  the  Dial-­‐a-­‐Molecule  idea.  

The   challenge   is   to   develop   methods   that   are  easy   to  use,  and   indeed  which  can  be  used  with  

automated   equipment   in   ‘closed   loop’   auto-­‐optimisation  without  intervention.  

The   aim   is   to   develop   and   apply   statistical  modelling   and   mathematical   optimisation  

approaches   to   identify   optimised   conditions   for  single   and   multi-­‐step   reactions,   subject   to  constraints.  This  is  challenging  due  to:  

Page 22: Transforming synthesis, enabling sciencegeneric.wordpress.soton.ac.uk/dial-a-molecule/wp... · Roadmap for Transforming synthesis, Dial-a-MoleculeDial-a-Molecule An EPSRC Grand Challenge

 

Roadmap  -­‐  Lab  of  the  Future  and  Synthetic  Route  Design   Page  22  

the   complex   nature   of   the   relationship  between   reaction   outputs   (yield,  

impurities,   …)   and   inputs   (temperature,  pressure,  time,  catalysts,  solvents,  …);  

the   high-­‐dimensionality   of   the   input  

space  (large  number  of  input  variables);   the   discrete   nature   of   the   input   space,  

with   large   numbers   of   discrete   solvents,  

catalysts  etc.  (where  we  need  to  develop  quantitative   descriptors   as   described  above);    

a  potentially   large  number  of  constraints  (e.g.  on  impurities  or  on  inputs)  that  may  result   in   complex,   non-­‐regular,   input  

spaces  with  many  infeasible  regions;     the   lack   of   mechanistic   or   theoretical  

models  to  describe  the  entire  process  for  

some  variables.    

An  extension  of  the  above  would  be  to  select  an  important   transformation   and   study   it   so  

thoroughly   using   high   throughput   techniques  that   the   optimum   conditions   and   outcome   can  then   be   predicted   for   any   substrate(s).   The  

National   Service   for   the   Study   of   Reactions  described   elsewhere   would   provide   the   ideal  environment   for   these   studies,   with   data   being  

provided   through   a   Virtual   Centre   for   the   Study  of   Reactions   to   statisticians,   computational  chemists,   cheminformaticians,   etc.   The   data  

analysis   techniques   described   in   ‘New   ways   to  analyse   data’   above,   particularly   the   use   of  calculated   molecular   descriptors,   will   be  

important   to   achieving   the   goal   with   minimum  experiments.   A   toolbox   of   reactions   that   have  been  characterised  in  this  way  enable  part  of  the  

‘Stepwise  Perfection’  approach  of  A  Step  Change  in  Molecular  Synthesis  theme.  

Page 23: Transforming synthesis, enabling sciencegeneric.wordpress.soton.ac.uk/dial-a-molecule/wp... · Roadmap for Transforming synthesis, Dial-a-MoleculeDial-a-Molecule An EPSRC Grand Challenge

 

Roadmap  -­‐  Lab  of  the  Future  and  Synthetic  Route  Design   Page  23  

 

 

 

 

 

 

2.2.2 The  smart  laboratory  

Focus  area  definition  

The  aim  of  the  area  is  to  examine  how  the  Lab  of  

the   Future   could   make   the   acquisition   and  sharing   of   high   quality   complete   reaction   and  process   data   a   low-­‐overhead   part   of   the  

synthesis   workflow.   It   also   looks   at   how  intelligent   automation   can   allow   the   chemist   to  be  more  productive.    

Overview  of  main  challenges  

At   the   launch   meeting   of   Dial-­‐a-­‐Molecule   an  often   repeated   theme   was   that   a   key   enabling  

step   would   be   to   collect   and   make   available  information  on  all  reactions  carried  out  (including  ‘failed’  reactions),  not  just  those  that  make  it  into  

publications,   or   even   theses.   The   necessity   for  more  complete  information  was  also  identified  as  a  contributory  factor  in  the  common  difficulty  to  

repeat   (or   at   least   to   require   substantial   re-­‐optimisation)  of   literature  reactions.  Data  is  thus  at  the  heart  of  tackling  the  Dial-­‐a-­‐Molecule  Grand  

Challenge,   and   collecting   it   ‘at   source’   is   crucial.  As   there   is   little   direct   benefit   to   the   individual  researcher   of   making   such   data   available   it   is  

essential   that   the   collection   and   (controlled)  distribution   requires   as   little   human   input   as  possible.    

Electronic   Laboratory   Notebooks   (ELNs)  

potentially   provide   an   excellent   means   of  collecting   reaction   data   at   source,   but   although  

now  well  established  in  industry,  are  little  used  in  academia.  We  recommend  that  moving  academic  

laboratories   to   the  use  of  ELNs  should  be  a  high  priority.   Apart   from   the   relevance   to   Dial-­‐a-­‐

Molecule   there  are  many  other  benefits   such  as  data   archiving   and   accessibility,   as   well   as  improved  productivity  of  users.  

Unfortunately  although  modern  ELNs  are  good  at  

collecting   data,   making   it   available   in   a   suitable  form   for   computerised   harvesting   of   reaction  data   is   less   well   developed.   We   propose   that  

standards   for   data   exchange   between  laboratories   (and   between   different   ELNs)   to  enable   automated   processing   of   data   across  

platforms   are   developed,   and   implementation  encouraged.  

For   the   Dial-­‐a-­‐Molecule   Grand   Challenge   data  from   many   laboratories   needs   to   be   combined.  

We   propose   that   a   national   framework   (which  should   eventually   extend   worldwide)   for   the  sharing   of   experimental   data   is   established.  

Protection   of   Intellectual   Property   is   of   course  essential,   but   there   needs   to   be   a   change   in  culture,  perhaps  driven  by  publishers  and  funders,  

to  one  where  sharing  of  all  data  is  expected.  

To   maximise   the   benefit   of   ELNs   for   collecting  reaction   processes   and   outcomes,   without  

increasing   the   users   workload,   automatic  reaction   data   collection   from   sensors   in   the  equipment   (e.g.   temperature,   stir   rate,   opacity,  

colour,   viscosity)   is   needed.     Simple   changes   to  basic   laboratory   equipment,   or   cheap   stand-­‐alone   units   would   allow   this   and   should   be  

developed  and  adoption  encouraged.      

Automated  and  High  throughput  equipment  for  synthesis.   A   drawback   of   reactions   carried   out  manually   is   that  capture  and  repeatability  of  the  

precise   process   is   limited.   A   necessary   step,   for  both   the   provision   of   high   quality   reaction  information,   and   eventually   for   carrying   out  

predicted   optimum   methods,   is   the   use   of  automated   equipment   (flow   and   batch).   When  these   are   married   to   automated   analysis   of  

reaction   mixtures   (see   Rapid   Reaction   Analysis  

Page 24: Transforming synthesis, enabling sciencegeneric.wordpress.soton.ac.uk/dial-a-molecule/wp... · Roadmap for Transforming synthesis, Dial-a-MoleculeDial-a-Molecule An EPSRC Grand Challenge

 

Roadmap  -­‐  Lab  of  the  Future  and  Synthetic  Route  Design   Page  24  

focus   area)   a   flood   of   information   results  which  will   enable   full   realisation   of   the   Optimum  

Reaction   and   Route   Design   focus   area   aims.  Furthermore   the   delivery   of   the  Dial-­‐a-­‐Molecule  will  require  multi-­‐step  synthesis  to  be  carried  out  

entirely   by   automated   systems   so   developing  chemistry   well   suited   to   such   equipment   is   a  necessary   preparation.   Even   in   the   short   and  

medium   term   such   equipment   should   allow   a  step  change  in  the  time  taken  to  synthesise  novel  targets.   Our   aspiration   for   a   Smart   Laboratory  

must   be   that   automated   equipment   becomes  standard,  but  unfortunately,  although  available  it  is   currently   too   expensive   to   appear   in   many  

laboratories,   and   as   a   result   the   skills   to   make  best  use  of  it  are  not  well  developed  in  academia.  The   development   and   prospects   for   much  

reduced   cost   of   such   equipment   are   considered  in   the  Next   Generation   Reaction   Platforms   and  Rapid  Reaction  Analysis  focus  areas.    

We  propose  the  following  steps:  

1. Establish  a  National  Service  for  the  Study  of  Reactions  to  provide  access  to  state  of  

the  art  equipment  and  skills   for   the  high  throughput   study  of   reactions   to  all  U.K.  academics   as   well   as   industry  

(particularly  SME’s).  2. Aim   for  basic   automated  batch  and   flow  

equipment   to   be   available   on   a   group  

basis,  and  high  throughput  equipment  on  a   departmental   basis   over   the   next   5  years.   This   will   require   special   funding  

from   government   and   requires   the   case  to   be   made   that   it   is   essential   to   the  competitiveness   of   UK   synthesis   on   the  

international   stage,   and   will   provide   a  substantial   benefit   to   the   UK   economy  via   industrial   users   of   synthesis   and  

producers  of  said  equipment.    

As   an   interim   step   developing   methods   to  maximise   the   use   of   such   equipment   as   is  available,   perhaps   via   the   EPSRC   equipment  

The  Smart  Laboratory  

 State-­‐of-­‐the-­‐art  

Short  term   Medium  term   Long  term   Goal  

Electronic  Laboratory  Notebooks  

Widely  used  in  large  companies.  Little  used  in  academia  

Establish  a  nationwide  ELN  

   

A  million  high  quality  reaction  descriptions/year  

Define  and  get  adopted  a  common  data  format  for  ELNs  

   

Establish  a  national  Framework  for  data  sharing  

Establish  worldwide  framework  for  data  sharing  

 

Automated  and  high  

throughput  equipment  

for  synthesis  

Is  available,  but  too  expensive  for  routine  use  in  academia  

Establish  and  maintain  a  National  Service  for  the  Study  of  Reactions  

 Step  change  in  productivity  of  

synthesis  research,  and  of  speed  of  

complex  molecule  synthesis.  

Shared  equipment  database  

Departmental  services  for  high  throughput  study  of  reactions  expected  

Widespread  adoption  of  basic  automated  flow  and  batch  equipment  by  individuals/groups.  

Automated  high  throughput  equipment  standard.  

The  intelligent  

fume  cupboard.  

‘AMI  project’  Computer  audio  and  vision  to  automatically  log  procedures  and  observations  

 Automatic  

recording  of  all  experiments.  

Page 25: Transforming synthesis, enabling sciencegeneric.wordpress.soton.ac.uk/dial-a-molecule/wp... · Roadmap for Transforming synthesis, Dial-a-MoleculeDial-a-Molecule An EPSRC Grand Challenge

 

Roadmap  -­‐  Lab  of  the  Future  and  Synthetic  Route  Design   Page  25  

database 13 ,   is   encouraged.   We   expect   that  advances  in  technology  mean  that  in  10-­‐20  years  

the  cost  will  be  such   that  automated  equipment  will  be  the  standard  way  to  carry  out  reactions.  

The   Intelligent   Fume   Cupboard.   Reducing   the  mundane  chore  of  writing  up  experiments,  while  

increasing   the   quantity   and   quality   of   data  recorded   while   using   current   (non   automated)  laboratory  equipment  is  likely  to  be  beneficial  for  

at  least  the  next  10  years.  Tracking  of  actions  and  experiments  via  suitable  computer  vision  system  so   that   operations   (e.g.   adding   a   reagent)   and  

observable   changes   (e.g.   colour,   precipitation)  can   be   automatically   logged   is   one   approach.  Voice   recognition   and   intelligent   interpretation  

to  allow  the  option  of  "literate  experimentation"  (from   literate   programming)   where   humans  annotate   the   experiment  while   it   is   executed,   is  

also   attractive.   Semi-­‐automated   analysis   of  collected  data  using   various  pattern   recognition,  data   mining   and   machine   learning   techniques,  

supported   by   human   annotation,   to   provide  summaries   of   important   information   should  

reduce   much   of   the   routine   part   of   experiment  documentation   whilst   increasing   the   quality   of  data  collected.  

   

                                                                                                                         13  http://equipment.epsrc.ac.uk/  

National  Service  for  the  Study  of  Reactions  

Mission:  To  provide  access  to  state-­‐of-­‐the-­‐art  equipment   and   skills   for   the   study   of  reactions  to  academia  and  industry.  

The   service   would   contain   state-­‐of-­‐the   art  automated   equipment   for   the   high-­‐throughput   study   of   reactions   (batch   and  

flow),   and   a   staff   to   manage,   run   and  maintain   them.   It   would   also   provide   access  to   expert   statistical   help   in   interpretation   of  

results.  

Uses   might   include   the   optimisation   of   a  particular   reaction,   or   the   high   throughput  

screening   of   a   wide   number   of   substrates  against  a  reaction  to  establish  scope.  

The  service  would  encourage  users  to  visit  to  

carry  out  the  work,  and  might  operate  a  loan  scheme  for  equipment.  

Page 26: Transforming synthesis, enabling sciencegeneric.wordpress.soton.ac.uk/dial-a-molecule/wp... · Roadmap for Transforming synthesis, Dial-a-MoleculeDial-a-Molecule An EPSRC Grand Challenge

 

Roadmap  -­‐  Lab  of  the  Future  and  Synthetic  Route  Design   Page  26  

 

2.2.3 Next  generation  reaction  platforms  

Focus  area  definition  

Synthetic   chemistry   is   still   driven   to   fit   available  kit   and   new   chemical   processes   are   largely  

designed   and   executed   without   taking   into  consideration   the   best   reactor   configuration   or  importantly   scalability   for   pilot   or   market   scale  

production.   Flow   reactors   are   used   very   little   at  the  moment.  A  number  of  other  lab  scale  reactor  designs  have  been  proposed  but  their  use  is  also  

very   limited.   Furthermore,   configurations   in  current   research   efforts   are   largely   ad   hoc   and  focused   on   specific   conditions   of   for   example  

temperature   and   pressure   and   therefore   do   not  easily  permit  wider  access  to  the  chemical  space  for   exploration,   optimal   route   selection   and  

reaction   optimisation,   without   redesign   and  assembly.   Additional   kit   is   also   required   for  monitoring,   probing,   measuring,   data   collection  

etc.   that   must   be   integrated   into   the   reactor,  which   is   typically   of   high   cost   and   requires  additional   effort   for   integration   and   calibration.  

Finally,   replication   of   reported   reactions   across  laboratories   is   not   easy   as   it   requires  

considerable  effort  and  trial  and  error.  

This   focus   area   is   seeking   to   advance   and  redefine   technology   that   is   used   in   chemical  synthesis.   In   particular,   the   aim   is   to   define   the  

near-­‐,   medium-­‐   and   long-­‐term   prospects   and  

impact   of   new   innovative   and   integrated  technology.    

During   consultation14     there  was   a   consensus   by  both   industry   and   the   academic   research  

community   on   the   future   requirements   for   next  generation   reaction   platforms.     It   has   been  recognised   that   today   a   chemist   spends   a  

disproportionate   amount   of   time   on   less   value  adding   activities   such   as   handling,   preparation  and   data   collection   and   not   on   value   adding  

activities   such   as   the   actual   reaction   and   the  subsequent  analysis  and  interpretation  of  results.  A   key   requirement   therefore   for   the   next  

generation   platforms   is   to   automate   non   value  adding   activities   to   the   greatest   extent   possible.  Furthermore,   several   other   challenges   were  

identified   and   are   summarised   in   the   figure  which   should   be   addressed   in   the   short   to  medium   term.   In   the   figure   the   specific  

challenges   for   flow  and  batch   type  synthesis  are  distinguished,   while   those   that   are   common   to  both  are  highlighted.  

The   consultation   led   to   the  main   challenges   for  

the  next  20-­‐40  years  given  below.  

Overview  of  main  challenges  

New   Modular   Reactor   Platforms.   The   design  requirements   for   reactors   that   are   applicable   to  flow,  batch,  stirred  tank  or  microfluidic  chemistry,  

including   models   for   selection   of   the   best  configuration   need   to   be   defined.   The  development   of   standard   modular   components  

with   standard   hardware   interfaces   so   that   the  

                                                                                                                         14  The   focus   area   champions   acknowledge   the  contributions   of   all   the   delegates   who   attended   the  NGRP  meeting  in  August  11th-­‐12th  at  GSK,  Stevenage.  

“Can we develop a universal reactor system that is modular, flexible, automated and can

synthesise a range of complex products from a given range of feedstocks under a wide

range of conditions?”

Page 27: Transforming synthesis, enabling sciencegeneric.wordpress.soton.ac.uk/dial-a-molecule/wp... · Roadmap for Transforming synthesis, Dial-a-MoleculeDial-a-Molecule An EPSRC Grand Challenge

 

Roadmap  -­‐  Lab  of  the  Future  and  Synthetic  Route  Design   Page  27  

best  configuration   for  particular  applications  can  be  used.  The  modules  should  have  heat  and  mass  

transfer   models   that   are   well   defined   and  understood   and   can   therefore   enable  repeatability   of   reaction   schemes.   Furthermore,  

the   modules   should   allow   control   of   reaction  conditions   that   can   be   routinely   (and  programmatically   via   software)   adjusted   on  

demand   or   by   algorithms   enabling   access   to   a  larger   chemical   space.   Ensuring   that   the   reactor  platforms   are   scalable,   meaning   that   processes  

developed  are  well  documented  and  understood  and   can   thus   be   replicable   and   transferable   to  

market   scale   production   with   minimal   effort,   is  important.   The   reaction   platforms   should   allow  deployment   of   multiphase   (gas/liquid,  

gas/liquid/solid,   liquid/solid)   with   a   similar   ease  as   liquid   phase   reactions.   Of   special   interest   is  handling  of   solids   in   flow  as   it  would  enable   the  

technique   for   much   wider   application.  Developing   modules   with   wide   operational  envelopes  (e.g.  High  Pressure,  High  Temperature)  

would   allow   more   of   reaction   space   to   be  accessed.   Modules   that   allow   parallel   reactions  to  enable  high  throughput  studies  are  important,  

as  is  the  ability  of  reactors  to  self-­‐clean.  Finally  it  is  important  that  the  modules  are  affordable  and  easy  to  use.  

Microfluidics,   Lab-­‐on-­‐a-­‐chip.   Microfluidic  

platforms  are  currently  costly,  particularly  if  they  

are   custom   made.   Their   inherent   low   volume  characteristics  make   them   suitable   for   discovery  

applications,  and   information  generation  such  as  kinetic   investigations.   Hydrodynamics   are   well-­‐characterised   for   single   phase   flow.   Multiphase  

microfluidics  contains  pockets  of   intense  current  investigation   (e.g.   droplet   microfluidics),   but   in  general   they   are   challenging   to   employ   and  

understand.   Application   of   alternative   energy  forms  (light,  microwaves,  ultrasound)  are  at  their  infancy.   To   harness   the   information   generation  

potential   of   microfluidics,   devices   need   to   be  multiplexed   with   intermediate   purification,  

separation   devices   (e.g.   gas   from   liquid)   with  capability  of  multiple  addition/withdrawal,  in-­‐line  analysis,   on-­‐line   control,   on-­‐line   optimisation.  

Strategies  for  seamless  evolution  from  microscale,  information   generation,   discovery   systems,   to  mesoscale,   g-­‐scale   synthesis,   development  

systems  are  required.  

Intelligent   Feedback   Control.   As   feedback   into  high   level   controllers   can   direct   reactions   into  more   desirable   or   optimal   regions   of   the  

chemical   space,   definition   and   specification   of  feedback   architectures   and   standard   interfaces  to  measuring  and  probing  devices   is   essential.  A  

challenge  here   is   for  measurements  and  probing  in  flow  chemistry  by  means  of  suitable  flow  cells  that   are   interchangeable,   reusable   and  

standardised.   For   batch   chemistry   the  

Figure:   Challenges   identified   at  Next  Generation  Reaction  Platform  

focus  group  meeting  

Page 28: Transforming synthesis, enabling sciencegeneric.wordpress.soton.ac.uk/dial-a-molecule/wp... · Roadmap for Transforming synthesis, Dial-a-MoleculeDial-a-Molecule An EPSRC Grand Challenge

 

Roadmap  -­‐  Lab  of  the  Future  and  Synthetic  Route  Design   Page  28  

development   of   a   small   multi-­‐technique   probe  was   identified   as   an   important   objective.   This  

area   links   strongly   with  Optimum   Reaction   and  Route   Design   focus   area  where   development   of  software   to   allow   automated   exploration   of  

reaction  space  and  optimisation  of  reactions  is  an  aim.    

Networks   of   reactors.   Linking   reactors   in  dynamically  reconfigurable  networks  can  provide  

a   step   change   in   capability.   What   are   the  characteristics   of   networked   reactors?   What  could  be  the  key  modules   in  the  network?  What  

can   be   the   standard   interfaces   to   link   such  reactors  together?  

Purification.   Design   requirements   and  specification   for   integrated   and   modular  

purification   systems   are   needed.    What   are   the  most   important   purification  methods?   Advances  in   purification   approaches/devices   need   to   be  

developed   to   move   from   single   to   multiple  transformations   (e.g.   microdistillation,  microextraction).   The   challenge   here   also  

includes   green   chemistry/sustainability  considerations  such  as  rapid  solvent  (and  catalyst)  

switching,  reuse  and  recycling.  

Data   collection   and  On-­‐Line  Reaction  Analytics.  Specifying   standards   and   standard   interfaces  between   the   reactor   and   sensors   and   collection  

and  manipulation  of  reaction  information  feeding  a  higher   level   system  are   important.   The   area   is  developed   more   fully   in   the   Reaction   Analysis  

focus  area.    

Information-­‐rich   experimentation.   Reaction  platforms   must   maximise   the   quality   and  quantity   of   information   from   the   experiments.  

The   area   is   developed   more   fully   in   Optimum  Reaction  and  Route  Design  focus  area.    

Widespread  adoption  of  new  reactor   technology  would   require   on-­‐going   research   support   that   is  

sustainable.   Therefore,   one   additional  consideration   has   been   included   in   the   Next  Generation  Reaction  Platform  area.  

Centre  of  Excellence.  Establishing  a  collaborative,  virtual  centre  of  excellence  for  the  development,  

extension,   prototyping,   training   and   promotion  of  next  generation  Reactor  Platform  Technology,  within   academia   and   industry,   nationally   and  

internationally.  

One   concern   that   has   been   expressed   by  equipment   vendors   engaging   with   the   Dial-­‐a-­‐Molecule   network   relates   to   the   different  

timescales   between   academic   outputs   and  commercial   exploitation   which   seem   somewhat  incompatible.  There   is  the  concern  that  research  

outputs   are   either   not   relevant   to   immediate  commercial   needs   or   are   too   far   away   from  commercial  exploitation  while   in  some  cases  are  

obsolete   as   commercial   offerings   are   already   at  advanced   stages   of   development.   Furthermore,  sometimes   equipment   developed   by   chemical  

groups   which   lack   engineering   expertise   or  market  knowledge  is  either  too  narrowly  focused  or   even   inferior   to   commercial   offerings   already  

in   existence.   This   could   be   translated   into  inefficient   use   of   public   funding.   It   has   been  

therefore   highlighted   by   equipment   suppliers  that  this  gap  between  academic  research  output  and  commercial  exploitation  must  be  bridged  as  

this   can   potentially   lead   to   commercially  exploitable   ideas   and   products   as   well   as  efficiency   in   public   funding   allocation.   It   is   such  

challenges   that   the   proposed   Centre   of  Excellence  will  be  addressing.  

Page 29: Transforming synthesis, enabling sciencegeneric.wordpress.soton.ac.uk/dial-a-molecule/wp... · Roadmap for Transforming synthesis, Dial-a-MoleculeDial-a-Molecule An EPSRC Grand Challenge

 

Roadmap  -­‐  Lab  of  the  Future  and  Synthetic  Route  Design   Page  29  

 

Page 30: Transforming synthesis, enabling sciencegeneric.wordpress.soton.ac.uk/dial-a-molecule/wp... · Roadmap for Transforming synthesis, Dial-a-MoleculeDial-a-Molecule An EPSRC Grand Challenge

 

Roadmap  -­‐  Lab  of  the  Future  and  Synthetic  Route  Design   Page  30  

 

 

 

 

 

 

 

2.2.4 Rapid  reaction  analysis  

Focus  area  definition  

The   problem   considered   is   the   rapid   generation  

of   both   qualitative   and  quantitative   data   on   the  products   from   experiments   designed   to   explore  and/or   optimise   reactions.     It   is   envisaged   that  

the   generation,   validation   and   reporting   of   such  data  does  not   cause  any  perturbations,   give   rise  to  unnecessary  experimental  delays  or  otherwise  

compromise   the   experiments.   It   is   further  envisaged  that  the  data  can  be  used  as  the  basis  of   an   automatic   feedback   system   whereby   the  

experimental   conditions   and/or   the   reagents  used  are   tuned.     The   time   taken   to  perform   the  measurements  (i.e.  from  "sampling"  to  reporting)  

is   in   the   range   of   seconds   to   minutes   with   this  time   generally   decreasing   in   the   longer   term.    The   required   fidelity   of   the   measurement   (i.e.  

limit  of  detection,  limit  of  quantitation,  degree  of  structural/conformational   proof)   is   an   important  consideration   that   affects   the   viability   of   the  

various   Rapid   Reaction   Analysis   approaches.    Although  the  ultimate  aim  is  clear  -­‐  full  automatic  identification   and   quantification   of   all  

components   in   a   reaction   mixture   –   it   is  important   this   does   not   detract   from   work  directed  towards   immensely   important  advances  

that   can   be   made   with   much   reduced  requirements   (e.g.   for   reaction   optimisation  identification  of  components  may  not  be  needed).    

 

Overview  of  the  main  challenges  

Modern   experimental   practices   can   incorporate  close  coupled  analytics,  for  example  open  access  UPLC/MS   or   NMR   instruments   and   in-­‐situ  

spectroscopy  for  reaction  monitoring.  Therefore,  several   aspects   of   this   particular   challenge   are  commercially   available.     However,   the   following  

elements  are  cause  for  general  concern:  

Method   Development   Time.   For  measurement   approaches   that   are  

dependent   upon   an   initial   chromatographic  separation   then   definition   of   the   method  conditions   should   be   minimised   or   generic  

methodologies  put  in  place.         Response   Time.   This   is   defined   as   the   time  

delay  between  “sampling”  (i.e.  the  taking  of  a  

physical   sample   or   the   illumination   of   the  chemistry   stream   by   an   optical   method   for  example   and   the   reporting   of   the   data).    

Generally,   the   response   time   should   be  minimised   and   any   method   through   which  this   can   be   reduced   are   considered   to   be   in  

scope  for  this  challenge.                   Dynamic  Range.  Of  particular   interest  to  this  

challenge   are   analytical   methods   that   can  

analyse   samples   that   contain   components  which   span   a   very   large   dynamic   range   e.g.  from  10’s  of  percent  to  ppm  of  an   individual  

sample.             Costs.   Currently,   the   (capital   and  

maintenance)   costs   associated  with   RRA   can  

be   prohibitively   large.     This   is   a   significant  concern   and   is   the   likely   to   be   limiting  implementation.    

Integration   /   Physical   Size.   There   are   some  examples   of   technique   integration   /  hyphenation   but   they   tend   to   be   bespoke  

and   generic   /  multi-­‐vendor   capabilities   offer  advantages.   Also,   the   footprints   of  sophisticated   analytical   techniques   are   very  

large   compared   to   the   size   of   the  experimental   equipment   generally   used   for  synthesis.    A   significant   reduction   in   the   size  

of   the  analytical  equipment  would  help  with  

Page 31: Transforming synthesis, enabling sciencegeneric.wordpress.soton.ac.uk/dial-a-molecule/wp... · Roadmap for Transforming synthesis, Dial-a-MoleculeDial-a-Molecule An EPSRC Grand Challenge

 

Roadmap  -­‐  Lab  of  the  Future  and  Synthetic  Route  Design   Page  31  

its   integration   with   the   experimental  equipment  required  for  the  chemistry.              

Sample   Heterogeneity.  Analytical   techniques  that  are  able   to  cope  with  mixed  phase   (e.g.  solid/liquid   and   liquid/liquid)   samples,   and  

are   able   to   analyse   each   phase   are   required  for  some  chemistries.        

Equipment  development.  

Mass   spectrometry.   Many   new   ionisation  techniques   have   been   developed   over   the   past  

10   years   providing   wide   application.   ‘Lab   on   a  chip’   HPLC/MS   and  GC/MS   are   already   available  (with   U.K.   companies   leading   the   field)   <  

www.microsaic.com>  and  although  currently  too  expensive  for  routine  deployment  there  seem  no  technical   barriers   to   low   cost,   very   small   size  

instruments  being  developed  and   this   should  be  a   high   priority.   Perhaps   a   bigger   challenge   is  automating  the  interpretation  of  data.  

Nuclear   Magnetic   Resonance.   Costs   and  

capabilities  of  high  field  solution  NMR  have  been  relatively   stable   for   the   past   20   years.   Recently  

there   has   been   a   breakthrough   in   the  development   of   small   lower   field,   lower  resolution   benchtop   instruments   using   non-­‐

cryogenically   cooled,   and   even   permanent  magnets 15  that   seem   ideal   for   monitoring  reactions,   particularly   under   flow   conditions.    

One  challenge  is  making  the  technology  routinely  available   –   cost,   and   demonstrated   applications  are   key.   Development   to   provide   higher  

resolution,   other   nuclei   (13C,   31P,   19F)   and  particularly   the   capability   to  perform  2D  NMR   is  needed.   The   use   of   diffusional   techniques   for  

resolving  mixtures   is  another   important  research  area.   Lab-­‐on-­‐a-­‐chip   detection   using   integrated  NMR,   or   by   spatially   resolved   NMR   (Magnetic  

resonance   imaging   techniques)   is   another  

                                                                                                                         15  (a)  www.picospin.com.  (b)  Kustner,  S.  K.;  Danieli,  E.;  Blumich,  B.;  Casanova,  F.  Phys.  Chem.  Chem.  Phys.,  2011,  13,  13172  

important   way   forward 16 .   Software   for  automated   analysis   of   results   is   likely   to   be  

important.  

IR,   Raman   and  UV.   Small   instruments,   relatively  small   probes,   and   flow   cells   are   available.   For  Raman   non-­‐invasive   monitoring   is   possible.   The  

main   application   is   likely   to   be   in   reaction  optimisation  rather  than  compound  identification.  The   challenge   is   to   reduce   the   cost   and  develop  

software   for   routine  multicomponent  analysis  of  changing   mixtures.   Fairly   advanced   multivariate  analysis   software   for   extraction   of   qualitative  

and/or   quantitative   information   from  overlapping  signals  is  available,  the  key  challenge  is  to  make  it  easier  to  use  by  non-­‐experts.  

Separation  techniques.  HPLC,  UHPLC,  and  GC  are  

effective,  but  large,  relatively  expensive,  and  run-­‐times   are   minutes.   Chip   based   methods  integrated   with   analytical   techniques   seem   the  

most  promising  ways  forward.  

Sampling.   (1)   Flow.   A   great   advantage  of   flow   is  that   it   is   ideally   suited   to   in   situ   reaction  

monitoring,  and  a  variety  of   techniques   (Raman,  IR,  UV,  NMR,  MS)  are  already  used.  The  challenge  is   to   reduce   the   cost   and   footprint   of   the  

equipment.   Combining   multiple   techniques   into  one  ‘box’  is  important.    

(2)  Batch.  Since  the  challenge  is  to  apply  methods  to   routine   (i.e.   small   scale)   synthesis   the  

development   of   small   multi-­‐technique   probes   is  needed.  Another  approach  is  to  use  an  extractive  sampling   system   which   uses   flow   to   transfer  

samples   of   the   reaction   mixture   to   analytical  tools,  and  perhaps  even  returns  them.  

Standard   data   and   interfaces.   Needs   a   common  format  (already  close),  but  also  ideally  a  standard  

interface   (hardware   and   software)   to   connect   a  variety  of  analytical  tools  to  computers.  

                                                                                                                         16  Harel,  E.  Prog.  Nucl.  Magn.  Reson.  Spect.  2010,  57,  293.  

Page 32: Transforming synthesis, enabling sciencegeneric.wordpress.soton.ac.uk/dial-a-molecule/wp... · Roadmap for Transforming synthesis, Dial-a-MoleculeDial-a-Molecule An EPSRC Grand Challenge

 

Roadmap  -­‐  Lab  of  the  Future  and  Synthetic  Route  Design   Page  32  

 

 

 

Rapid  Reaction  Analysis     State-­‐of-­‐the-­‐

art  Short  term   Medium  term   Long  term   Goal  

Equipment  Development  

Needed  equipment  is  generally  available,  but  too  expensive  and  often  too  large.  

Benchtop  (chip  based)  MS  for  reaction  monitoring  

 

Multi-­‐technique  (MS,  NMR,  IR  etc)  routine  for  

reaction  development  

  Integrate  MS,  NMR  in  lab-­‐on-­‐a-­‐chip  systems  

Small  multi-­‐techniquesprobes  and  

extractive  sampling  systems  for  monitoring  batch  reactions  

Scanning  Probe  microscopy  for  

compound  identification  and  

quantification  

Small  low  cost,  low  resolution  NMR  for  reaction  monitoring  

 

 Multi-­‐dimensional,  multi-­‐nuclear,  high  resolution  bench/flow  NMR  

Software  Development  

Software  for  non-­‐expert  use  lags  a  long  way  behind  equipment.    

Auto-­‐assignment  of  spectra  to  given  compound(s)  

 

Automatic  Identification,  quantification,  and  assignment  of  compounds.  

  Auto-­‐identification  of  compounds  

Combining  data  from  multiple  techniques  

 

Establish  centre  with  all  techniques  for  shared  use  by  groups  developing  methods  

 

Equipping  academia  

with  analytical  equipment  needed  for  reaction  analysis.  

Equipment  available  but  expensive  IR/Raman/UV  (£10-­‐20k),  MS  (£40k-­‐),  NMR  (£100k).  

National  Service  for  the  Study  of  Reactions.  Loan  pool  of  equipment.  More  sharing.  

 

Provide  access  to  equipment  to  allow  efficient  and  effective  investigation  of  

reactions.  

Promote  ‘bulk  order’  deals.  

Establish  as  expected  departmental  service.  

Equipment  standard  in  synthetic  laboratories  

Support  industry  to  produce  cheap  but  good  solutions  (see  Equip.  dev.)    

 

 Multiplexing  equipment  to  reactors  to  allow  shared  use  

Automatic  identification  

of  components  of  reactions  

O.K.  for  known  compounds  by  MS.  Little  for  unknown  

Combined  data  /  calculation  of  molecular  properties  (spectra  and  chromatography)  

 Automatic  

identification,  quantification,  and  assignment  of  complex  reaction  mixtures.  

Software  for  predicting  all  reasonable  products  from  a  reaction  

 

 Auto-­‐assignment  of  composition  of  reaction  mixtures  

Page 33: Transforming synthesis, enabling sciencegeneric.wordpress.soton.ac.uk/dial-a-molecule/wp... · Roadmap for Transforming synthesis, Dial-a-MoleculeDial-a-Molecule An EPSRC Grand Challenge

 

Roadmap  -­‐  Lab  of  the  Future  and  Synthetic  Route  Design   Page  33  

Equipment   for   rapid   analysis   for   reaction  optimisation.   There   are   two   distinct   advantages  

with   a   focus   on   reaction   optimisation   (1)  identification   of   components   is   probably   not  needed   (2)   the   relative   ratio  of   components  will  

vary   as   conditions   are   changed   allowing   multi-­‐component   analysis   techniques   to   be   used.   It   is  likely   that   lower   resolution   /   lower   sensitivity  

instruments  will  produce  the  answers  required  so  low  cost  solutions  should  be  possible  and  should  be   a   priority   to   develop.   Another   option   to  

reduce   cost   is   the   use   of   higher   resolution  instrumentation   but   with   a   limited   spectral  coverage.     Small   size   of   probe   (particularly   for  

batch),   or   the  use  of  non-­‐invasive  methods   (e.g.  Raman)   to   avoid   perturbing   the   reaction,   and  small  footprint  of  instrument  as  it  will  need  to  be  

located   close   to   the   reaction   vessel,   are   also  important.    

Software  development.  

In  general  software  development  for  analysis  lags  a   long   way   behind   the   equipment.   Companies  

generally   sell   equipment   not   solutions,   and  traditionally   have   sold   to   experts   in   the  

respective   fields.  For   the  applications  envisioned  herein   the   users   will   be   synthetic   chemists  without   expert   support.   For   MS   and   NMR  

(particularly   2D)   there   is   a   need   for   a   much  higher  degree  of  automation  of  interpretation  of  the  data.  The  amount  of  data  produced,  and  the  

wide   range   of   experiments   which   can   be  performed   imposes   an   excessive   peripheral  workload   on   someone   whose   expertise   is  

synthesis.   The   problem   is   particularly   severe  when  multi-­‐dimension  data  is  involved  (2D  NMR,  MS-­‐MS,   multi-­‐technique).   There   is   active  

commercial  development  in  the  area  but  there  is  a  continuing  need  for  academic  research.  

The   software   for   correlating  multiple   techniques  to  identify  components  and  /  or  assign  structures  

needs   development.   The   data   needed   to   allow  development   of   such   methods   might   be   best  obtained   by   establishing   a   centre   where   all   the  

needed   techniques   can   be   simultaneously   be  applied  to  samples  or  system.  The  expectation  is  

that   within   10-­‐15   years   the   cost   of   equipment  would   be   such   that   the   techniques   developed  would  be  central  to  a  chemist’s  workflow.  

Even   modest   steps   towards   the   aim   described  

above   are   important   –   the   user   of   synthesis  wants   answers   (which   compound,   how   much)  not  data  to  analyse.  

Reaction   optimisation.   The   key   developments  

needed  are  in  the  software  used  to  correlate  the  various  spectroscopic  /  analytical  data   to  extract  components,   and   in   more   distant   future   (see  

below)   identify   them.   The   chemist   just  wants   to  see   the   relative   amounts   of   components   in   the  mixture   and   how   they   change   with   conditions.  

The  eventual  aim   is   to  remove  the  chemist   from  the   loop   altogether   (closed   loop   optimisation   –  see   Next   Generation   Reaction   Platforms   (NGRP)  

and  Optimum  Reaction  and  Route  Design  (ORRD).  Software  for  reaction  optimisation  is  described  in  ORRD.  

Equipping   academia   and   SME’s   to   use   state-­‐of-­‐the   art   analytical   equipment   for   reaction  monitoring/investigation/optimisation   –  

overcoming  the  cost  and  acceptance  barrier.  

The  main   barrier   to   using   analytical   instruments  for   rapid   reaction  analysis   is   cost,  with   size,   lack  of  familiarity  and  training  in  use  also  significant.    

For   most   instruments   the   main   reason   for   the  

high   cost   is   the   small   market.   The   possibility   of  initiatives   to   overcome   this   through   planned  large-­‐scale  implementation  should  be  considered.  

Investing   in   academic   or   commercial   instrument  development   with   the   promise   to   drastically  reduce   costs   is   important.   The   U.K.   is   strong   in  

the   area   so   strategic   investment,   including  promoting   industry-­‐academic   partnerships   is  worthwhile.   It   does   need   to   be   establishing   if  

there   is   a   sufficient   market   for   cheap,   lower  resolution  and  sensitivity  instruments  specifically  for  study/optimisation  of  reactions.    

Page 34: Transforming synthesis, enabling sciencegeneric.wordpress.soton.ac.uk/dial-a-molecule/wp... · Roadmap for Transforming synthesis, Dial-a-MoleculeDial-a-Molecule An EPSRC Grand Challenge

 

Roadmap  -­‐  Lab  of  the  Future  and  Synthetic  Route  Design   Page  34  

In   the   short   term   a   national   service   to   allow  access   to   a   pool   of   equipment   and   expertise   is  

the  best  way  to  provide  U.K.  academia  and  SME’s  with   access   to   state-­‐of-­‐the-­‐art   equipment   for  reaction  study.  It  would  have  an  important  role  in  

increasing   the   familiarity   of   synthetic   chemists  with   rapid   reaction   analysis   techniques.   It   may  also   help   to   build   stronger   links   between  

synthesis   and   chemical   engineering   if   both  were  involved.     It   is   likely  that  this  would  be  the  same  as  the  National  Service  for  the  Study  of  Reactions  

described   in   the   Smart   Laboratory   focus   area  although   there   are   slight   differences   in  mission.  We   feel   that   a   loan   service   (similar   to   the   laser  

loan   pool)   should   also   be   established.   A   means  for   more   efficient   use   of   equipment   already  extant  should  be  developed.  

Techniques   for   efficiently   multiplexing  

instruments   so   that   they   can   serve   multiple  reactions   in   close   to   real   time   are   an   important  medium   term   step.   In   the   long   term   the  

expectation   is   that   size   and   cost   of   equipment  will   have   fallen   so   far   that   it  will   be   standard   in  

synthetic  laboratories.  

Automatic   identification   of   components   in   a  reaction  mixture.  

Although   identification   of   known   compounds   is  possible,   often   using   mass   spectrometry,   for  

unknown  compounds  the  only  significant  success  is   using  MS-­‐MS   techniques,   or   when   a   range   of  2D   NMR   techniques   are   used   requiring  

substantial  sample  and  time.  The  challenge  is  for  identification   and   quantification   of   components  to  be  entirely  automated  –  the  chemist  should  be  

able  to  concentrate  on  the  synthesis.  

We   propose   that   the   following   steps   could   lead  to  the  challenge:  

(1) Develop   methods   for   the   prediction   of   all  reasonable  products  from  a  reaction.    

(2) Much   better   prediction   of   molecular  properties.  

(3) Use   of   a   combination   of   separation   and  

spectroscopic   methods   to   obtain   data   on  components  of  a  reaction.  

Combination  of   (1)  and   (2)  with   (3)  should  allow  the  problem  to  be  solved.    

Point   (1)   is   dealt  with   in   the  Optimum  Reaction  

and  Route  Design  (ORRD)  focus  area.  

For  point   (2)   theoretical  calculation  of  molecular  properties   has   taken   great   strides,   but   currently  the   best   prediction   methods   use   databases   of  

properties   from   known   compounds   and   use  substructure   matching   algorithms.   We   suggest  that   the   best   route   forward   is   to   improve   the  

latter  method  by   correlating  observed  data  with  a  range  of  calculated  molecular  properties  rather  than   just   substructures.   Calculations   on  

suggested   structures   combined   with   the  correlations   derived   above   should   allow  

substantial   progress   on   point   (2).   A   similar  approach   has   been   proposed   for   the  enhancement   of   reaction   databases   in   the  

Optimum  Reaction  and  Route  Design  focus  area.    

The   technology  of   acquiring  data   for  point   (3)   is  largely  dealt  with  elsewhere.  For  identification  of  compounds   in   a   reaction   mixture,   given   the  

dynamic   range   of   quantities   of   components  involved,  a   separation  step  of   some  sort   is   likely  to   be   necessary   and   the   ability   to   predict  

chromatographic  retention  times  with  a  range  of  stationary   and   mobile   phases   is   particularly  important.      

   

Page 35: Transforming synthesis, enabling sciencegeneric.wordpress.soton.ac.uk/dial-a-molecule/wp... · Roadmap for Transforming synthesis, Dial-a-MoleculeDial-a-Molecule An EPSRC Grand Challenge

 

Roadmap  -­‐  A  Step  Change  in  Molecular  Synthesis   Page  35  

2.3 A  Step  Change  in  Molecular  Synthesis  It  is  recognised  that  a  step  change  in  our  ability  to  make   molecules   is   necessary   if   we   are   to   meet  the   aims   of   the   Grand   Challenge.   Though   we  

have  reached  a  stage  where  it  is  possible  to  make  most   molecules   if   given   sufficient   time   and  resource,   synthesis   remains   as   a   perennial  

bottleneck   in   key   disciplines   such   as   healthcare,  agrochemisty,   molecular   electronics   and   other  emerging   fields.   Two   contrastive   approaches   to  

the  problem  of  tackling  the  synthesis  of  any  given  molecule   have   emerged.   The   first,   with   the  working   title   ‘1000   Click   Reactions   –   Stepwise  

Perfection’,   is  based  on  a  simple  hypothesis  that  with   sufficient   ‘perfect’   and   utterly   reliable  

reactions,   we   would   be   able   to   build   even   the  most   complex   molecules   predictably   in   a  stepwise   fashion.   The   second   draws   on   past  

experience   in   recognising   that   the   first   synthesis  of   a   complex   target   is   seldom   the   best   -­‐   then  poses   the   question   ‘why   can’t   we   identify   the  

best   approach   to   a   synthetic   problem   from   the  outset?’   Thus,   the   ‘Holistic   Approach   to  Molecular   Synthesis’   seeks   the  most   direct   way  

of   moving   from   a   starting   material   to   the   end  product   by   regarding   both   as   parts   of   a   well-­‐defined  whole.    

 

 

 

 

 

The   societal   and   economic   benefits   that   follow  from   addressing   the   main   bottleneck   holding  back   the   development   of   next   generation  

medicines,   smart   materials,   pesticides,   next  generation  electronics,  sensors  etc.  are  legion.  In  addition,  an  ability  to  make  any  molecule  at  will,  

inexpensively  and  on  a  meaningful  timescale  will  unlock   hitherto   unimagined   opportunities   for  future  scientific  advance.    

Within   these   focus   areas,   several   themes  

emerged.  In  addition  to  those  highlighted  below,  it   was   recognised   that   advances   in   catalysis,   as  well  as  computational  and  technological  methods,  

will  have  a  huge  part  to  play.  If  mention  of  these  appears   scant   below,   it   is   solely   because   they  

have   emerged   as   Grand   Challenge   themes   in  their   own   right   and   given   fuller   consideration  elsewhere.  

   

Stepwise   Perfection   and   Holistic   Approach:  

The  two  extremes  of  synthesis  

Page 36: Transforming synthesis, enabling sciencegeneric.wordpress.soton.ac.uk/dial-a-molecule/wp... · Roadmap for Transforming synthesis, Dial-a-MoleculeDial-a-Molecule An EPSRC Grand Challenge

 

Roadmap  -­‐  A  Step  Change  in  Molecular  Synthesis   Page  36  

   

 

 

 

2.3.1 1000   Click   reactions   –   stepwise  perfection  

Focus  area  definition  

As   noted   above,   the   stepwise   perfection  approach   is   based   on   the   hypothesis   that   with  sufficient   ‘perfect’   and   utterly   reliable   reactions,  

we   would   be   able   to   build   even   the   most  complex   molecules   predictably   in   a   stepwise  fashion.   The   high   yield   associated   with   these  

reactions   greatly   reduces   the   effect   of   the  ‘arithmetic  demon’   allowing,   if   necessary,   longer  linear   sequences   than   is   usual.   In   essence,   we  

need   to   emulate   the   success   of   peptide   and  nucleic   acids   synthesis   for   ‘non-­‐polymeric’  molecular   structures.   Implicit   in   this   approach   is  

that   such   reactions   should   be   clean   with   the  aspiration   of   zero   waste   or,   at   worst,   facile  recycling   of  minimal  waste.   Achievement   of   this  

fundamental  goal  will  greatly  ease  sequencing  of  reactions   during   a   synthesis   and   facilitate  automation.   Low   purification   requirements   will  

allow   processes   to   run   24/7,  with   intermediates  in  a  synthetic  sequence  passing  directly  from  one  processing   phase   to   the   next.   Thus,   a   second  

strand  of  this  focus  area  is  to  develop  automation.  It  will  demand  significant  synergy  with  Lab  of  the  Future.   Progress   in   this   area   would   make   a  

substantial   contribution   toward   achieving   the  overall  goal  of  the  Grand  Challenge.    

Overview  of  main  challenges  

The   associated   challenges   are   legion   and   some  immediate   objectives   are   outlined   below.   First  

and  foremost  we  need  to:  

Define   ‘Perfection’   and   Identify   the   Reactions  Inventory  needed  to  address  the  Dial-­‐a-­‐Molecule  

Grand  Challenge.  The  latter  will  doubtless  include  i)   tried   and   trusted   reactions;   ii)   reactions   with  

some   precedent   that   are   underdeveloped;   iii)  reactions   as   yet   unknown   with   the   potential   to  be  transformative  and  iv)  niche  reactions  needed  

to  tackle  specific  problems  yet  are  unlikely  to  be  transformative.   Tried   and   trusted   reactions  would   need   to   be   assessed   against   emerging  

criteria   for   ‘perfection’   with   failings   widely  communicated   to   encourage   further  development.   We   envision   a   distinct   role   for  

informatics   in   helping   to   identify   transformative  reactions,  whether   they  are  precedented  or  not.  In  the  medium  to  long  term  we  envision  the  need  

for   the   development   of   niche   reactions.   In  respect   to   the   above   all   the   three   phases,  discovery,   development   and   demonstration   (the  

3D  approach  to  chemistry)  are  required  and  need  to   be   given   equal   merit.   Implicit   within   the  inventory   is   a   need   for   diversity,   as   the   Grand  

Challenge  will  not  be  solved  with  myriad  ‘perfect’  reactions  giving  the  same  outcome.      

In   parallel   we   need   to   establish   criteria   against  

which  ‘perfection’  can  be  judged  and  these  need  to  become  guiding  principles   for  practitioners  of  chemical   synthesis.   Examples   include   chemical  

yield,   solvent   compatibility,   by-­‐product  management,   functional-­‐group   tolerance,  selectivity   (chemo-­‐,   regio-­‐,   stereo-­‐,   enantio-­‐   and  

torquo-­‐selectivity),   waste   stream   management  (e.g.   Sheldon’s   E   factor),   suitability   for  sequencing,   and   compatibility   with   flow.   It   is  

recognised  that  priorities  will  change  as  we  move  towards   greater   automatisation   in   the   medium  and  longer  term.  Whether  automatisation  is  best  

achieved   through  mobilisation  or   immobilisation  of  the  substrate  remains  unclear  at  this  time.  To  increase  the  impact  of  each  reaction  we  need  to  

identify   a   range  of   useful   ‘first-­‐step’   conversions  from  each  product  e.g.  the  utility  of  the  Sharpless  asymmetric   epoxidation   was   greatly   enhanced  

following   publication   of   a   series   of   papers  transforming   the   hydroxy-­‐epoxide   into   other  functional  groups.  

Total  Synthesis  of  Sceptrin  

Page 37: Transforming synthesis, enabling sciencegeneric.wordpress.soton.ac.uk/dial-a-molecule/wp... · Roadmap for Transforming synthesis, Dial-a-MoleculeDial-a-Molecule An EPSRC Grand Challenge

 

Roadmap  -­‐  A  Step  Change  in  Molecular  Synthesis   Page  37  

 

 

 

1000  Click  Reactions  –  Stepwise  Perfection     State-­‐of-­‐the-­‐

art  Short  term   Medium  term   Long  term   Goal  

Define  ‘Perfection’  and  Identify  the  Reactions  Inventory  

   

Many  reactions  work  in  narrow  chemical  space  with  an  unacceptable  waste  stream  (<100%  efficient  and  giving  byproducts  etc.)  

Establish  ideals  for  ‘perfection’  and  criteria  against  which  any  reaction  can  be  judged  

Widespread  adoption  of  these  ideals  and  a  change  of  working  practice/culture  to  acknowledge  failings  

Critical  evaluation  of  new  chemical  reactions  or  advances  within  complex  systems  

Robust  reactions  that  can  be  relied  upon  in  a  

wide  area  of  chemical  space  

     

Ability  to  prepare  any  molecule  predictably  and  reliably,  including  those  in  hitherto  

unexplored  areas  of  chemical  space  

Define  and  refine  list  of  reactions  needed  for  GC  

 

A  Chemical  Inventory  of  

Perfect  Reactions  that  Deal  with  Complexity  

Current  inventory  of  reactions  is  insufficient  to  address  the  Grand  Challenge  

Assess  known  reactions  -­‐  ‘perfection’  &  ‘merit’  

Combining  perfect  reactions  to  achieve  complex  target  oriented  synthesis  

For  ‘known’  transformations  deemed  essential,  develop  low/no  waste  protocols  or  alternatives.  For  ‘unknown’  transformations  deemed  essential,  develop  protocols  to  achieve  them  

Develop  low/no  waste  protocols  for  emerging  transformative  reactions  

Many  reactions  are  fickle  –  sensitive  to  modest  changes  in  substrate  or  reaction  conditions  

Development  of  new  low/no  waste  chemical  reactions  that  are  broad  in  scope  and  robust    

 

Establish  robustness  and  practicability  as  other  important  ideals  

Routine  scoping  of  reactions  for  compatibility  (in  respect  of:  other  functional  groups,  solvents,  trace  water,  pH,  temperature  etc.)  

Reagentless  Transformations  

Many  methods  lack  practicability  and  have  failed  to  enter  the  mainstream  

Development  of  cheap,  robust  and  easy-­‐to-­‐use  instruments  for  photo-­‐,  sono-­‐,  electro-­‐  and  high  pressure  chemistry  &  potential  for  automisation  

Integrated  instruments  offering  ‘all-­‐in-­‐one'  sequencing  

Development  of  no-­‐waste  

stock  reactions  that  are  reliable,  robust  and  easy  to  

sequence.  

New  reactions  leading  to  new  understanding  

Avenues  to  new  areas  of  chemical  space  –  towards  complete  predictability  

Adding  practicable  procedures  to  the  chemical  inventory  

Addressing  compatibility  issues  between  these  techniques  and  extending  this  to  include  key  catalytic  procedures  

Integration  of  practice  and  theory  –  towards  in  silico  optimisation  Better  training  in  computational  methods  and  automisation  techniques  –  access  to  state  of  the  art  equipment  

Page 38: Transforming synthesis, enabling sciencegeneric.wordpress.soton.ac.uk/dial-a-molecule/wp... · Roadmap for Transforming synthesis, Dial-a-MoleculeDial-a-Molecule An EPSRC Grand Challenge

 

Roadmap  -­‐  A  Step  Change  in  Molecular  Synthesis   Page  38  

A   Chemical   Inventory   that   Deals   with  Complexity   is   one   of   the   greatest   challenges  

facing   the   stepwise   perfection   approach.   The  emerging   reactions   and  paradigms  must  be  able  to   perform   well   under   a   diverse   range   of  

conditions   and   within   molecules   with   diverse  functionality   and   structural   features.   Thus,   as  chemists   develop   the   chemical   inventory   they  

also   need   to   address   scoping   and   compatibility  issues  in  a  systematic  way  while  seeking  to  gain  a  fuller  understanding  of  key   reaction  parameters.  

We   can   predict   with   some   certainty   that   in   the  longer   term,   only   reactions   that   cope   with  complexity   and   give   reliable   access   to   new  

chemical  space  will  be  considered  transformative  and   find  widespread   adoption.   Attention   should  therefore   be   focussed   on   these   ideals   with  

researchers  encouraged  to  do  both  the  invention  of   new   chemical   reactions   and   the   associated  scoping  studies.    

Reagentless  Transformations   (field  effects:   light,  

heat,   pressure,   ultra   sound,   electricity,   etc.)   are  ideally   suited   to  automatisation  and  sequencing.  

They   produce   no   chemical   waste   stream   if  achieved  with  100%  efficiency  so,   in  conjunction  with  transformative  catalytic  processes  and  lab  of  

the  future  technologies,  they  are  likely  to  play  an  increasingly   significant   role   moving   forward.  These  processes  also  lend  themselves  particularly  

suitable   for   in   silico  modelling,   a   potential   quick  win  for  the  Grand  Challenge.  To  achieve  this  goal  we   need   to   develop   a   full   understanding   of  

existing   processes   to   make   them   utterly  predictable   in   complex   systems.   In   addition,  more   needs   to   be   done   to   identify   new  

reagentless   transformations   and   understand   the  underpinning   characteristics   of   each.   It   should  then   be   possible   to   use   in   silico   methods   to  

predict   new   and   useful   chemical   reactivity   for  development   into   ‘perfect   zero-­‐emission’  reactions   in   the   laboratory.   Thus,   a   framework  

needs   to   be   established   to   facilitate   greater  understanding   of   compatibility   issues   and   the  complementarity   of   processes   to   enable  

sequencing   with   other   perfect   reactions   in   an  automated  fashion.  

   

Page 39: Transforming synthesis, enabling sciencegeneric.wordpress.soton.ac.uk/dial-a-molecule/wp... · Roadmap for Transforming synthesis, Dial-a-MoleculeDial-a-Molecule An EPSRC Grand Challenge

 

Roadmap  -­‐  A  Step  Change  in  Molecular  Synthesis   Page  39  

 

 

 

 

 

 

2.3.2 Holistic   approach   to   molecular  synthesis  

Focus  area  definition  

The   holistic   approach   to   molecular   synthesis  seeks   to   change   the   way   synthesis   chemists  

assemble  molecules.  The  intention  is  to  develop  a  new   paradigm   for   the   construction   of   organic  structures  in  which  the  feedstock  (starting-­‐point)  

and  end  product  are  regarded  as  parts  of  a  well-­‐defined   whole,   rather   than   separate   entities   as  present.   Complex   molecular   syntheses   typically  

have   a   small   number   of   critical   staging   posts,  signposted   by   reactions   that   build   complexity.  These   are   linked   by   sequences   of   reactions   that  

achieve  little  other  than  to  prime  the  molecule  to  trigger   the   complexity-­‐generating   step.   The   goal  of  the  holistic  approach  to  synthesis   is  to  reduce  

the   number   of   priming   steps   to   a   minimum   so  that  targets  can  be  made  using  a  small  number  of  complexity-­‐generating   reactions.   In   this  way   the  

time   taken   to   accomplish   a   target-­‐synthesis   will  be   greatly   reduced   and   our   ability   to   access  useful  new  chemical  space  greatly  enhanced.  

Overview  of  main  challenges  

Knowing   where   to   start   –   New   Feedstocks.   A  classical   idea   when   planning   a   target-­‐oriented  

synthesis  is  to  start  from  ‘something  simple’.  This  usually   means   a   commercially   available  

substance   of   relatively   low   molecular   weight,  purchased  from  a  fine  chemicals  supplier.  But  the  hegemony   of   petrochemicals   in   defining  

feedstocks  is  being  challenged  by  the  emergence  of   biotransformations,   biomass   and  

bioengineering   as   rich   sources   of   highly  functional   starting   materials,   which   are   often  

stereochemically  defined.  

Telescoping  transformations.  When  planning  the  chemical   synthesis   of   a   molecule,   it   is   usual   to  

employ   the   principles   of   retrosynthetic   analysis.  However,  by   its  very  nature   this   leads   to  a  step-­‐intensive   synthesis   as   the   method   usually  

considers  each  C−C  bond  in  isolation  and  defines  

the  problem  in  terms  of  a  series  of  ‘logical’  bond  disconnections.   Each   disconnection   requires   the  appropriate  functional  groups  (FGs)  to  be  in  place.  

When   they  are  not,   they  must  be   introduced  by  manipulation  of  other  FGs  (FG  interconversions).  At   each   juncture,   every   FG   within   the   molecule  

must   be   considered   as   they   may   need   to   be  rendered  benign  (protecting  group  strategies),  to  prevent   unwanted   side   reactions.   These  priming  

steps   serve   no   purpose   other   than   to   facilitate  the   ‘complexity-­‐generating’   reaction.   The   recent  emergence  of  new  ‘no-­‐waste’/clean  catalytic  and  

reagentless   transformations   offers   immediate  potential   for   the   telescoping   of   such  transformations   –   i.e.   using   the   output   of   one  

chemical  reaction  directly  in  the  next.  Though  the  idea   is   not   new,   if   telescoping   is   to   become  routine   a   step   change   in   current   practice   is  

required.   We   will   need   to   establish   a   series   of  operating   parameters   for   every   clean  transformation   in   order   to   know  when   they   can  

and   can’t   be   telescoped.   In   addition,   new  complexity-­‐generating   clean   reactions   will   need  to   be   invented   and   linked   to   other   telescopic  

transformations.   It   will   change   the   synthesis  paradigm   from   relying   solely   on   precedent   to  embracing  the  unknown  with  confidence.  

Understanding   and  exploring   reactivity.  Despite  longstanding   global   activity   in   organic   synthesis,  only   recently   have   the   scientists   involved  

embraced   the   more   quantitative   aspects   of   the  discipline  and,  for  the  most  part,  this  has  been  in  the  context  of  catalysis.  Frequently,  considerable  

synthetic   effort   is   expended   to   overcome   a   lack  of  selectivity.  This  makes  product  isolation  more    

Page 40: Transforming synthesis, enabling sciencegeneric.wordpress.soton.ac.uk/dial-a-molecule/wp... · Roadmap for Transforming synthesis, Dial-a-MoleculeDial-a-Molecule An EPSRC Grand Challenge

 

Roadmap  -­‐  A  Step  Change  in  Molecular  Synthesis   Page  40  

difficult,   adds   by-­‐products   to   the   waste-­‐stream  and   in   some   cases   makes   it   necessary   to   use  protecting  groups  and/or  auxiliary  groups,  which  

are   inherently   wasteful.   With   a   fuller  understanding  of  key  processes  (e.g.  nucleophilic  versus   basic   behaviour;   steric   effects;  

regioselectivity;   effect   of   solvent   on   reactivity)  many   of   these   issues   could   be   foreseen   and  

resolved   at   the   planning   stage.   In   turn,   this   will  enable   the   development   of   improved   predictive  tools  and  lead  to  higher  synthetic  efficiency.  

Realising   a   wish   list   of   new   reactions.   Many  desirable   chemical   transformations   have   yet   to  be   discovered.   Although   most   transformations  

are  achievable   if  constraints  such  as  the  number  of   manipulations,   overall   yield   and   available  

Holistic  Approach  to  Synthesis     State-­‐of-­‐the-­‐

art  Short  term  

Medium  term  

Long  term   Goal  

New  Feedstocks  

Heavy  reliance  on  simple  petrochemicals.  Limited  by  catalogue  of  fine  chemicals  available  –  few  opportunities  to  exploit  other  sources  

Better  awareness  and  exploitation  of  biotransformations  

Widespread  appreciation  of  ‘state  of  the  art’  biotransformations  –  moving  away  from  catalogue  suppliers  as  a  first  resort  

Escaping  the  petrochemical  straightjacket  towards  more  appropriate  starting  materials.  

Improved  understanding  of  biotechnologists  capabilities  and  their  understanding  of  our  needs    

 

Telescoping  transformations  

Known  but  application  limited  by  issues  of  compatibility  and  poor  understanding  of  physical  parameters  

Better  understanding  of  operating  parameters  e.g.  solvent,  trace  H2O  tolerance,  temperature    

Design  of  new  ‘no  waste’/clean  reactions  with  good  tolerance  of  other  functionality  and  capable  of  working  in  diverse  situations  

Ability  to  sequence  complexity  generating  reactions  

predictably  and  without  human  intervention  

Integration  of  practice  and  theory  –  towards  in  silico  optimisation  

Routine  establishment  of  key  parameters  for  new  reactions.  Moving  away  from  case-­‐by-­‐case  development  towards  a  holistic  approach  

Understanding  and  exploring  reactivity  

We’re  getting  better  but  under-­‐developed  as  a  topic.  Opportunities  are  legion.  

Profound  understanding  of  solvent  effects  

Routine  sequencing  of  reactive  intermediates  to  trigger  the  controlled  manipulation  of  several  chemical  bonds  in  a  single  step  to  introduce  only  required  complexity.  

Rapid  access  to  target  

molecular  architectures  

Realising  a  wish  list  of  new  reactions  

Many  reactions  are  available  yet  few  have  found  widespread  use.  We  need  to  be  better  at  identifying  the  transformative  reactions.  

Development  of  in  silico  techniques  to  identify  reactions  with  transformative  potential  

Understanding  the  new  capabilities  

Development  of  an  armoury  of  complexity-­‐generating  chemical  

transformations  capable  of  

addressing  any  target  without  unnecessary  manipulation  

Development  of  new  reactions  with  transformative  potential.  Reactions  needed  are  wide-­‐ranging  

Towards  a  needs  driven  approach  and  away  from  a  perceived  needs  driven  approach  

Guidance  from  industry  to  achieve  quick  impact.  Also  to  help  identify  future  wealth-­‐generating  reactions  and  molecular/generic  targets  

Venturing  into  new  chemical  space  

Page 41: Transforming synthesis, enabling sciencegeneric.wordpress.soton.ac.uk/dial-a-molecule/wp... · Roadmap for Transforming synthesis, Dial-a-MoleculeDial-a-Molecule An EPSRC Grand Challenge

 

Roadmap  -­‐  A  Step  Change  in  Molecular  Synthesis   Page  41  

resource   are   removed,   there   is   a   growing  realisation  that,  with  a  relatively  small  set  of  new  

bond-­‐forming   reactions,   target-­‐oriented  synthesis   would   be   transformed.   The   new  reactions  would   need   to   be   complexity-­‐building,  

using  functionality  in  newer  and  smarter  ways.  As  indicated   above,   they   would   need   to   be   clean,  atom   efficient   and   selective   so   as   to   be   used   in  

sequence   with   other   catalytic   and   reagentless  transformations   without   need   for   protection.  

Examples   include   reductive   conversion   of   a  secondary  alcohol  into  a  carbon  nucleophile  with  

retention   of   configuration;   oxidative   coupling   of  unfunctionalised   sp3-­‐hybridised   carbon   atoms;  internal   redox   reactions   that   relay   reactive  

centres   around   a  molecule   as   desired,   etc.   New  ideas   for   identifying   transformative   reactions  need   development   (e.g.   examining   impact   by  

adding   ‘unknown’   reactions   in   computational  retrosynthetic  analysis  programmes).  

Page 42: Transforming synthesis, enabling sciencegeneric.wordpress.soton.ac.uk/dial-a-molecule/wp... · Roadmap for Transforming synthesis, Dial-a-MoleculeDial-a-Molecule An EPSRC Grand Challenge

 

Roadmap  -­‐  Catalytic  Paradigms  for  100%  Efficient  Synthesis   Page  42  

2.4 Catalytic  Paradigms  for  100%  Efficient  Synthesis    

Catalysis  will   clearly   be   central   to   any   efforts   to  address   the  Grand  Challenge.  Recent   years  have  

seen  phenomenal  advances   in   the  application  of  catalysis   to   complex   molecules,   with   recent  Nobel   prizes   recognising   contributions   in  

asymmetric   catalysis   (Knowles,   Noyori   and  Sharpless,   2001),   olefin   metathesis   (Chauvin,  Grubbs   and   Schrock,   2005)   and   cross-­‐coupling  

reactions  (Heck,  Negishi  and  Suzuki,  2010).    In  the  last   5-­‐10   years,   enormous   advances   have   been  made   in   the   long-­‐held   goal   of   selective   C-­‐H  

functionalization  (mainly  of  aromatic  molecules),  but   there   remain   significant   challenges   before  these   key   21st-­‐century   transformative   methods  

can   be   regarded   as   robust   or   mature.  Contemporaneously,   the   field   of   organocatalysis  has   been   clearly   established   as   a   new   paradigm  

for   non-­‐metal   catalysis,   offering   complementary  methods   with   advantages   for   sustainability   and  environmental   agendas.   The   issue   of  

sustainability  itself  presents  both  a  key  challenge  and  opportunity  for  the  development  of  modern  catalysis.   Enormous   strides   have   been   made   in  

commercial   biotechnology   (e.g.   directed  evolution  of  enzymes,  re-­‐engineered  biosynthetic  

pathways)   but   there   remain   (and   will   likely  always   remain)   key   constructs   and  transformations   which   are   beyond   the   scope   of  

biocatalysis,   especially   when   considering  formation  of  carbon-­‐carbon  bonds:    selecting  and  developing   the   most   appropriate   catalyst  

whether   man-­‐made   or   biological,   for   each   task,  and  dovetailing  these  catalytic  technologies  is  key.  Shifting   landscapes   in   terms   of   the   economics  

and   acceptability   of   petroleum-­‐based   versus  alternative   feedstocks   will   drive   new  

developments,   while   the   long-­‐term   security   of  precious   metal   supplies   creates   a   further  

challenge.    We  have  defined  three  broad  challenge-­‐led  focus  

areas  for  the  catalysis  theme.  

   

Page 43: Transforming synthesis, enabling sciencegeneric.wordpress.soton.ac.uk/dial-a-molecule/wp... · Roadmap for Transforming synthesis, Dial-a-MoleculeDial-a-Molecule An EPSRC Grand Challenge

 

Roadmap  -­‐  Catalytic  Paradigms  for  100%  Efficient  Synthesis   Page  43  

   

 

 

 

 

 

2.4.1 New   reactivity:   target-­driven  catalysis  

Focus  area  definition    

This   focus   area   addresses   the   issues   of   WHICH  strategic   new   catalytic   processes   will   enable  delivery  of   the  Dial-­‐a-­‐Molecule  goals,  and  WHAT  

the   key   catalysts/technologies   to   ensure   this  delivery  would  be.    It  is  clear  that  prioritisation  of  the   highest-­‐impact   strategic   new   catalytic  

reactions   overlaps   with   the   ‘holistic   synthesis’  focus  area.  

Overview  of  main  challenges    

Efficient  transformations  across  chemical  space:  A   significant   barrier   to   translation   of   new  technologies   to   GDP-­‐generating   products   of   the  

end-­‐user   community   is   the   lack   of   predictability  of  extrapolating  reactions  optimised  for  one  area  of   ‘chemical   space’   to   others   of   value:   for  

instance,   a   reaction   that   is   successful  with  polar  substrates,  products  and  reaction  media  does  not  necessarily  transfer  to  a  non-­‐polar  paradigm,  and  

vice  versa.      Understanding  and  agreeing  metrics  that   define   success   for   a   reaction   in   broadened  areas  of  chemical  space  will  provide  an  objective  

assessment   of   the   current   state   of   the   art,  accelerate   the   translation   of   new   methods   and  also   a   rationale   and   impetus   to   address   areas  

currently   lacking   robust/general   solutions.   A  predictivity   rubric   will   also   clearly   identify   high-­‐

impact   but   ‘difficult’   transformations   (e.g.  

selective   C−F   bond   formation)   for   immediate  

prioritisation.  

Complexity-­‐building   reactions:     A   productive  strategy   to   augment   overall   synthetic   efficiency  

would  consider   the   ‘functionality  balance’  of   the  reaction.    Even  robust  and  widely-­‐used  reactions  such   as   the   Suzuki   coupling   are   clearly   far   from  

perfect   by   such   an   analysis,   since   the   reaction  consumes   two   functional   groups   (an   organic  halide   and   an   organoboron   reagent)   to   form   an  

unreactive  (‘dead’)  carbon-­‐carbon  bond;  thus  this  Nobel-­‐winning   reaction   inexorably   leads   to   an  overall   loss   of   two   functional   groups.   Step-­‐

changes   in   efficiency   will   only   be   possible   by  focusing   on   reactions   that   at   least  maintain   but  preferably   engender   functionality   rather   than  

consume   it;   exemplar   processes   of   this   type  

include   C−H   activation   and   functional   group  

transfer   reactions.  Although   significant   advances  have   been   made   in   these   areas   recently,   many  

further  advances  are  required.    The  scope  (types  of  functionalisations)  and  especially  the  efficiency  (catalyst   loading,   burden   of   expensive/wasteful  

co-­‐reagents)   of   (hetero)aromatic  functionalisation   still   remain   far   from   optimal  and   should  be  optimised   in   the  next   5-­‐10   years.    

A   longer-­‐term   specific   challenge   is   the   selective  generation  and  functionalisation  of  3D  structures:  the  pharmaceutical  industry  in  particular  urgently  

needs   to   explore   this   space   more   completely  since   current   molecular   portfolios   (often  containing  high  proportions  of  aromatic  subunits)  

clearly  have  an  unsustainable  attrition  rate  in  the  drug  discovery  process.  

Sustainability:   feedstocks   While   the   availability  of  petrochemical  starting  materials  will  doubtless  

continue,   there   is   no   agreement   about   how  availability   will   be   maintained   and   there   are  accordingly   diverse   economic   and   consumer-­‐

market   driven   pressures   to   adapt   to   alternative  feedstocks.   For   instance,   such   pressures   are  already  manifesting  themselves  in  the  design  and  

implementation   of   engineered   biocatalytic  approaches   to   polymer   monomers.   The  engineering   of   biocatalysts   to   deliver   new  

functional   building   blocks   will   continue   to   be  

tetrakis(triphenylphosphine)  palladium(0)  

Page 44: Transforming synthesis, enabling sciencegeneric.wordpress.soton.ac.uk/dial-a-molecule/wp... · Roadmap for Transforming synthesis, Dial-a-MoleculeDial-a-Molecule An EPSRC Grand Challenge

 

Roadmap  -­‐  Catalytic  Paradigms  for  100%  Efficient  Synthesis   Page  44  

important   across   the   entire   period   of   the  challenge..      The  chemocatalysis  community  has  a  

vital   role   to   play   in   adapting   or   developing   new  catalytic  methods  to  process  renewable  (biomass  or   engineered)   feedstocks   (e.g.   selective  

functionalisation   of   polyoxygenated   products  such   as   carbohydrates   or   natural   hydrocarbon-­‐rich   products   such   as   fatty   acids).   The  

combination  of  sunlight  (photocatalysis)  with    

biomass   to   give   renewable   feedstocks  approaches   perfection.   The   integration   of  

chemocatalysis   with   biocatalysis   pathways   to  deliver   products   (either   providing   access   to  feedstocks   for   biocatalytic   processes   or  

functionalising   key   building   blocks   delivered   by  biotechnology)  will  be  a  crucial  enabling  interface,  recognising   that   certain   reaction  

types/functionalities   are   unlikely   ever   to   be  

New  reactivity:  target-­‐driven  catalysis     State-­‐of-­‐the-­‐art   Short  term   Medium  term   Long  term   Goal  

Efficient  transformations  across  chemical  

space  

Many  reactions  work  in  narrow  chemical  space    

Understand  &  agree  metrics  for  ‘broadened’  chemical  space  

  Robust  catalytic  

technologies  for  ‘any  bond,  any  substrate’  

Development  of  more  robust  catalysts  across  chemical  space  

 

Incomplete  catalytic  toolbox  

Define  key  ‘high  value’  missing  transformations  

Development  of  ‘difficult’  transformations  (e.g.  selective  C−H  to  C−F)  

Complexity-­‐building  reactions  

Reactions  consume  not  generate  functionality  

Optimise  (hetero)aromatic  functionalisation  

 Molecular  properties  

drive  synthesis,  

not  available  technologies  

C−H  functionalisation  as  emerging  field  

 Selective  generation  and  functionalisation    of  3D  structures  

Sustainability:  feedstocks  

Fine  chemicals  etc    mostly  from  petrochemicals  

New  catalytic  methods  to  process  biomass  or  engineered  feedstocks  

 Use  of  diverse,  

sustainable  range  of  feedstocks  

 Engineered  pathways  to  ‘advanced’  materials  

Engineered  biocatalysts  to  deliver  new  functional  building  blocks  Integration  of  chemo/biocatalytic  pathways  to  deliver  products  

Sustainability:  catalysts  

Many  processes  use  ‘at  risk’  precious  metals  

Ultra  low-­‐loading  precious-­‐metal  homo-­‐  and  heterogeneous  catalysts  

 

Catalysis  using  

economical,  sustainable  components  

 Non-­‐precious  metal  catalysts  for  ‘traditional’  transformations  

Organocatalysis  as  a  developing  field  

Continued  evolution  of  reaction  scope/efficiency  of  organocatalysis  

 

Biocatalysis  highly  successful  for  limited  substrate  scope  

Further  broadening  of  functional  scope  of  biocatalysis  

 

Page 45: Transforming synthesis, enabling sciencegeneric.wordpress.soton.ac.uk/dial-a-molecule/wp... · Roadmap for Transforming synthesis, Dial-a-MoleculeDial-a-Molecule An EPSRC Grand Challenge

 

Roadmap  -­‐  Catalytic  Paradigms  for  100%  Efficient  Synthesis   Page  45  

achievable  using  biocatalysis  alone.  

Sustainability:   catalysts    Much   catalysis   for   fine  chemical   synthesis   relies   upon   precious   metals  

which  are  nearing  depletion  (potentially  creating  excessively-­‐high   cost-­‐of-­‐goods   for   existing  processes,   rendering   them   uneconomical   or  

commercially  unfeasible).      This  will  drive  moves  towards   (a)   ultra-­‐low   loading/long-­‐lifetime  catalysts,   including   the   development   of   ‘next-­‐

generation’   heterogeneous   catalysts   capable   of  operation   for   fine   chemical   transformations;   (b)  the   development   of   catalytic   methods   using  

more   abundant   non-­‐precious   metals   e.g.   for  ‘traditional’   transformations   that   use   ‘at   risk’  metals;   (c)   the   continuing   evolution   and  

broadening   of   the   scope   and   efficiency   of  reactions   possible   through   organocatalysis;   and  (d)  further  broadening  of  the  functional  scope  of  

biocatalysis  for  fine  chemical  applications.  

   

Page 46: Transforming synthesis, enabling sciencegeneric.wordpress.soton.ac.uk/dial-a-molecule/wp... · Roadmap for Transforming synthesis, Dial-a-MoleculeDial-a-Molecule An EPSRC Grand Challenge

 

Roadmap  -­‐  Catalytic  Paradigms  for  100%  Efficient  Synthesis   Page  46  

 

 

 

   

 

 

2.4.2 Intervention-­free   synthesis   by  phase-­distinct,   multi-­dimensional  catalysis  

Focus  Area  Definition  

 This  area  addresses  the  long-­‐term  goal  of  driving  

up  process  efficiency  (maximum  speed,  minimum  waste)   by   sequencing   catalytic   reactions   with  minimal   human   intervention   (work-­‐ups,  

separations   etc).     Inspiration   can   be   taken   from  biosynthesis,   where   highly   efficient   and   specific  sequential   reactions   are   programmed   to   deliver  

complex  molecules:   in   these   cases   the   synthetic  efficiency   is   engendered   by   precise   and  predictive   control   of   the   operational   timing   of  

different   catalytic   reactions,   coupled   with   the  inherent   high   selectivity   of   biocatalysts.    Engineering   such   control   in   chemocatalysis  

systems   will   be   fundamental   to   achieving   this  goal.  

Overview  of  main  challenges  

Phase-­‐separated   catalysts:   The   spatial   and  temporal   separation   of   catalysts   with   different  activities   is   an   essential   component   of   reaction  

sequencing   in  biosynthesis.    The  current  state  of  the   art   for   (catalytic)   synthetic   reaction  sequencing  involves  flow  reactor  technology  with  

solution-­‐phase   reactants   and   solid-­‐phase  immobilised   catalysts.   However,   current  

methodology   brings   undesirable   compromises  (for   instance,   catalyst   immobilisation   frequently  results   in   lower   activity)   and   the   evolution   of  

diverse  new  phase-­‐tagging  methods  that  address  

this   (such   as   phase-­‐switchable   catalysts)   will   be  important.    The  development  of  next-­‐generation  

heterogeneous   catalysts   (e.g.   nanofabricated  integration   of   catalyst   function   within   support  structures)   for   complex   molecule   applications  

could  play  a  strong  role.  There  is  a  critical  role  for  selection   of   support   materials   in   terms   of  synergistic   effects.   Liquid-­‐liquid   phase   tagging   is  

used   for   catalyst   separation   in   some   bulk  chemical   processes,   and   if   integrated   with  engineering   solutions/new   reactor   designs   for  

efficient   phase   separation   could   facilitate  sequenced  synthesis.  

Mutually   compatible   catalysts:   A   second  approach   is   to  have  several  mutually  compatible  

catalysts   in   ‘one-­‐pot’,   each   of   which   performs   a  single   (or   multiple   repetitive)   task(s)   with  exquisite   selectivity.   Many   examples   where  

‘tandem’   (ie   two   sequential   processes)   are  carried   out   are   known,   and   a   short   to  medium-­‐term   goal   will   be   to   extend   this   to   elongated  

sequences.   The   full   integration   of   selective  chemocatalysts   and   of   bio-­‐/chemocatalysts   will  

be  a  powerful  technique.  

Switchable   catalysts:   A   third   approach   to   the  issue   of   selectivity   is   to   develop   ‘switchable’  catalysts  which  can  be  turned  on/off  in  response  

to  an  external  physical  or  chemical  stimulus  (e.g.  light,   temperature,   pH)   to   allow   externally  programmable   sequences   to   take   place  within   a  

single   unit   vessel.     The   switch   could   operate   by  one   of   several   mechanisms   –   e.g.   by   chemical  activation/deactivation,  or  by  control  of  access  to  

a   catalyst   active   site   (coordination   events   or  encapsulation).     In   the   short   to   medium   term,  research   to   develop   suites   of   technologies   for  

catalyst   switching   by   a   range   of   stimuli   will   be  important,  leading  to  the  longer  term  integration  into   programmable   sequences   of   catalytic  

reactions.  

Page 47: Transforming synthesis, enabling sciencegeneric.wordpress.soton.ac.uk/dial-a-molecule/wp... · Roadmap for Transforming synthesis, Dial-a-MoleculeDial-a-Molecule An EPSRC Grand Challenge

 

Roadmap  -­‐  Catalytic  Paradigms  for  100%  Efficient  Synthesis   Page  47  

Separation   technology:   Crucial   to   the  

achievement  of  these  will  be  the  development  of  improved  separation  technologies,  both  in  terms  of   reactor   design   (e.g.   for   high   performance  

liquid-­‐liquid   phase   separation)   and   membrane  technologies   for   compartmentalisation.  Improved   reactor   design   to   enable   the   routine  

integration   of   membrane   separations   into  standard   synthetic   sequences   will   deliver  immediate   benefits.     The   development   of   a  

broadened   range   of   selective   membrane  technologies   for   control   of   adduct/educt  ingress/egress   to   reactors   will   enable   novel  

strategic  approaches   to   reaction  sequencing  and  processing.   This   encompasses   both   ‘hard’  polymeric   membranes   and   ‘soft’   membrane  

assemblies   (e.g.  micellar  environments  similar  to  

biological  cells).  

   

Intervention-­‐free  Synthesis  by  Phase-­‐Distinct  Multi-­‐Dimensional  Catalysis  

  State-­‐of-­‐the-­‐art   Short  term  Medium  term  

Long  term   Goal  

Phase-­‐separated  catalysts  

Flow  synthesis  using  solid-­‐supported  catalysts  

Improved  activity  of  solid-­‐supported  catalysts  

 Readily  

integrated  and  configurable  reactions  and  reactor  units  for  efficient  continuous  multi-­‐step  synthesis  

Engineering  solutions  and  tools  for  efficient  phase-­‐separation  

 

Evolution  of  diverse  phase-­‐tagging  approaches  

Next-­‐generation  heterogeneous  catalysis  (inc.  nanofabricated):  bulk  chemical  levels  of  performance  on  fine  chemical  structures  

Mutually  compatible  catalysts  

Tandem  metal-­‐metal  catalysis  or  metal-­‐organocatalysis  

Move  beyond  ‘tandem’  to  multi-­‐step  approaches  

  One-­‐pot,  multi-­‐step  sequencing  as  standard    

Full  integration  of  chemo-­‐  and  biocatalysis  

Switchable  catalysts  

Catalysts  can  be  programmed  to  switch  on  (activation)  or  off  (poisoned)  but  not  reversibly  

Develop  suite  of  technologies  for  catalyst  switching  to  range  of  stimuli  

 Externally  

programmable  and  

controllable  multi-­‐step  synthesis  

 Integration  into  programmable  sequences  

Separation  technology  

Size  or  pH-­‐selective  polymeric  membranes  

Broadened  range  of  selective  membranes  

 

Intervention-­‐free  

separations;    

Towards  ‘chemical  cell’  manufacturing  

Reactor  design  for  routine  integration  of  membrane  separations  

 Soft  membrane  (cell-­‐like)  reactors  with  selective  ingress/egress  profiles  

Page 48: Transforming synthesis, enabling sciencegeneric.wordpress.soton.ac.uk/dial-a-molecule/wp... · Roadmap for Transforming synthesis, Dial-a-MoleculeDial-a-Molecule An EPSRC Grand Challenge

 

Roadmap  -­‐  Catalytic  Paradigms  for  100%  Efficient  Synthesis   Page  48  

 

 

 

 

 

 

 

 

 

2.4.3 Engineering   control   through  fundamental   mechanistic  understanding  

Focus  Area  Definition  

 This   area   addresses   both   the   acceleration   of  catalyst   discovery/optimisation   and   the  improvement  in  catalyst  performance  (selectivity,  

turnover   rates   and   numbers)   by   knowledge-­‐based   approaches   combining   data  gathering/mining,  experimental  determination  of  

mechanism,   and   theoretical   approaches.     In   the  early   phases,   this   will   deliver   predictability   and  robustness   to   catalytic   processes,   but   longer  

term  will  move   towards   predictive   science,  with  an   ultimate   goal   being   the   ability   to   design   a  priori   novel   and   selective   catalyst   species   for  

specific  transformations.    There  are  clear  links  to  the   requirements   outlined   in   the   focus   area  Rapid   Reaction   Analysis   and   the   goal   of  

establishing   a   National   Centre   for   the   Study   of  Reactions.  

Overview  of  main  challenges    

Rapid  (self)-­‐optimisation  of  reactions:  The  use  of  statistical   methods   (e.g.   Design   of   Experiment  (DoE)   analyses)   to   efficiently   optimise   reactions,  

coupled  with   improvements   in  automation,  have  led  to  rapid  improvements  in  the  development  of  

robust  reaction  systems.    This  will  continue  to  be  

a  key  driver  in  the  short  to  medium  term,  leading  to   the   (development   of   robust  

protocols/catalysts  for  standard  reactions  in  well-­‐defined   “compound   space”.     In   silico   prediction  of   ‘best   guess’   starting   points   for   reaction  

optimisation   by   DoE   through   efficient   database  searching   will   greatly   accelerate   this   process.  Self-­‐optimisation   of   catalytic   reactions   using   in  

situ   feedback   loops   has   been   demonstrated   in  some   exemplar   cases   by   international   research  groupings  and  such  self-­‐learning  approaches  will  

experience   a   step-­‐change   in   application   if  coupled   with   improved   analytical  instrumentation   and   intelligent   learning  

(integration  with  reaction  database).    

Full   elucidation   of   catalytic   mechanisms:   The  need   for   improved   ‘on   the   fly’   and   in  situ/operando   analytical   methods   has   been  

clearly   articulated   in   the   focus   area   of   Rapid  Complete  Reaction  Analysis  and  wider  adoption  of   such   ‘alternative’   analysis   tools   (ie   beyond  

standard   linked   chromatographies   and  spectroscopies)   will   accelerate   developments   in  

the   short   to   medium   term.   This   will   comprise  both   improvements   in   relatively   low-­‐cost   ‘local’  analytical   equipment   (e.g.   MS,   benchtop  

spectroscopic)  but  also  driving  the   increased  use  by   workers   in   complex   molecule   catalysis   of  larger   national   facilities   e.g.   Diamond.   The  

proposed   National   Centre   for   the   Study   of  Reactions,   described   in   the   Smart   Laboratory  focus  area,  has  a  role  to  play  in  coordinating  this    

activity   and   potentially   hosting   large-­‐scale  equipment.  

Theoretical  chemistry:  through  understanding  to  prediction:   Advances   in   theoretical   methods  

coupled   with   improvements   in   computational  power  will   ultimately   bring   the   rapid   analysis   of  transition   states   and   comparisons   of   multiple  

possible   pathways   (important   both   for   issues   of  selectivity   and   catalyst   deactivation)   for   a  much  broader   range   of   reactions   into   scope.     The  

ultimate   goal   will   be   the   in   silico   prediction   a  priori   of   new   catalyst   species   to   achieve  

Novel  Palladium-­‐Platinum  catalyst  

Source:  Sandia  National  Laboratory  

Page 49: Transforming synthesis, enabling sciencegeneric.wordpress.soton.ac.uk/dial-a-molecule/wp... · Roadmap for Transforming synthesis, Dial-a-MoleculeDial-a-Molecule An EPSRC Grand Challenge

 

Roadmap  -­‐  Catalytic  Paradigms  for  100%  Efficient  Synthesis   Page  49  

particular   transformations   (e.g.   unprecedented  

transformations,   selective   transformations   on  complex  molecules,  development  of  new    

reactions   on   sustainable   metals).     Development  

of   automated   theoretical   approaches   offers   the  possibility  of   integrating   computational  methods  into   experimental   mechanistic   analyses   and  

reaction  optimisation.  

 

Engineering  control  through  fundamental  mechanistic  understanding     State-­‐of-­‐the-­‐art   Short  term   Medium  term   Long  term   Goal  

Rapid  (self)-­‐optimisation  of  reactions  

Self-­‐learning  based  on  single  reactions  and  limited  reaction  output  data  

Improved  analytical  instrumentation  drives  step-­‐change  in  self-­‐learning  approaches  

 Self-­‐learning  approach  

becomes  widely  available  standard  technique  

DoE  techniques  available  but  need  well-­‐defined  ‘starting  point’  

In  silico  prediction  of  ‘best  guess’  starting  point  

 Standardisation  of  conditions  for  key  reactions  

Full  elucidation  of  

catalytic  mechanisms  

Limited  techniques  for  probing  low-­‐level  components  

Wider  adoption  of  ‘alternative’  analysis  tools  e.g.  development  of  real-­‐time/operando  methods  

 Analytical  

techniques  no  longer  a  

limitation  to  understanding  

In  line  and  in  situ  techniques  limited  in  scope  

Improved  scope  and  use  of  analytical  instrumentation  (local  and  larger  scale)  

 

Theoretical  chemistry:  through  

understanding  to  prediction  

Complex  calculations  possible  but  slow,  computationally  expensive  

Advances  in  theoretical  methods  for  complex  (esp.  metal-­‐containing)  transition  state  analysis  

 Theoretical  

chemistry  moves  from  

rationalisation  to  prediction  as  standard  

 In  silico  prediction  of  reaction  selectivity/new  reactivity/new  catalyst  species  

High-­‐level  calculations  only  possible  on  small  atom  number  reactions  

Page 50: Transforming synthesis, enabling sciencegeneric.wordpress.soton.ac.uk/dial-a-molecule/wp... · Roadmap for Transforming synthesis, Dial-a-MoleculeDial-a-Molecule An EPSRC Grand Challenge

 

Roadmap  -­‐  Conclusion   Page  50  

3 Conclusion  We  have  outlined  in  the  roadmap  document  challenges  and  areas  of  foreseeable  direct  relevance  to  achieving  Dial-­‐a-­‐Molecule.  However,  transformative  discoveries  are  often  unforeseen  and  success  in  

achieving  the  challenge  relies  as  much  on  the  strength  of  the  fundamental  science  that  underlies  it.  For  example  design  and  development  of   the  catalysts  with   the  properties   required  above  needs  a  much   deeper   understanding   than   currently   exists,   particularly   in   respect   of   mechanism   and   the  

effect  of   catalyst   structure  and  environment.  The  work  described   in  other   roadmaps   (e.g.   the  RSC  “Chemistry   for   Tomorrows   World”7   and   Landscapes11   documents,   Chemistry   Innovations   KTN’s  Sustainable  technologies  roadmap4)  is  important  in  maintaining  a  healthy  U.K.  scientific  community  

without  which  no  ‘directed  research’  can  hope  to  flourish.  

 

Page 51: Transforming synthesis, enabling sciencegeneric.wordpress.soton.ac.uk/dial-a-molecule/wp... · Roadmap for Transforming synthesis, Dial-a-MoleculeDial-a-Molecule An EPSRC Grand Challenge

 

Roadmap  -­‐  Acknowledgements   Page  51  

4 Acknowledgements  We   thank   the   hundreds   of   people   who   took   part   in   the   various   Dial-­‐a-­‐Molecule   meetings   and  workshops  that  provided  basis  for  the  roadmap.  

We  would  also  like  to  extend  all  our  thanks  to  EPSRC  for  the  all  the  financial  support  provided.  

We   are   particularly   grateful   to   the   people   who   championed   the   various   focus   areas   and   were  

directly   involved   in   constructing   the   roadmap.   Stephen   Hillier   (Chemistry   Innovation   KTN),   David  Hollinshead   (AstraZeneca),   Andrew   Russell   (University   of   Reading),   Joe   Sweeney   (University   of  Huddersfield),   Harris   Makatsoris   (Brunel   University),   Sean   Bew   (University   of   East   Anglia),   David  

Woods  (University  of  Southampton),  Frank  Langbein  (Cardiff  University),  Sophie  Schirmer  (Swansea  University),   Donald   Craig   (Imperial   College),   Asterios  Gavriilidis   (UCL),   Rebecca  Goss   (University   of  East  Anglia),  Robin  Bedford  (University  of  Bristol),  Alison  Nordon  (University  of  StrathClyde),  and  Ian  

Clegg  (Pfizer).    

However,  final  responsibility  for  errors  and  omissions  from  the  roadmap  rests  with  principle  authors  of   this   document:   Richard   Whitby,   David   Harrowven,   and   Bogdan   Ibanescu   (University   of  Southampton)  and  Steve  Marsden  (University  of  Leeds).    

   

Page 52: Transforming synthesis, enabling sciencegeneric.wordpress.soton.ac.uk/dial-a-molecule/wp... · Roadmap for Transforming synthesis, Dial-a-MoleculeDial-a-Molecule An EPSRC Grand Challenge

 

Roadmap  -­‐  Acknowledgements   Page  52    

www.Dial-a-Molecule.org

Dial-a-MoleculeDial-a-MoleculeAn EPSRC Grand Challenge network