towardsautomatedmodelreduction ...arrow.utias.utoronto.ca › ~myano › talks ›...

79
Towards automated model reduction: exact error bounds and simultaneous finite-element reduced-basis adaptive refinement Masayuki Yano University of Toronto Acknowledgment: Anthony Patera; COST EU-MORNET, AFOSR, ONR MoRePaS 2015 Trieste, Italy 14 October 2015

Upload: others

Post on 07-Feb-2021

8 views

Category:

Documents


0 download

TRANSCRIPT

  • Towards automated model reduction:exact error bounds and simultaneous

    finite-element reduced-basis adaptive refinement

    Masayuki Yano

    University of Toronto

    Acknowledgment:Anthony Patera;

    COST EU-MORNET, AFOSR, ONR

    MoRePaS 2015Trieste, Italy

    14 October 2015

  • Introduction

    MotivationModel problem

  • Introduction

    MotivationModel problem

  • Parametrized PDEs

    µPDE: given µ ∈ D ⊂ RP , find u(µ) ∈ V s.t. ∞ ops

    a(u(µ), v;µ) = `(v;µ) ∀v ∈ V

    and evaluate the output

    s(µ) ≡ `o(u(µ);µ).

    FE: given µ ∈ D, find uN (µ) ∈ VN ⊂ V s.t. O(N ·) ops

    a(uN (µ), v;µ) = `(v;µ) ∀v ∈ VN

    and evaluate the output

    sN (µ) ≡ `o(uN (µ);µ).

    1

  • Parametrized PDEs

    µPDE: given µ ∈ D ⊂ RP , find u(µ) ∈ V s.t. ∞ ops

    a(u(µ), v;µ) = `(v;µ) ∀v ∈ V

    and evaluate the output

    s(µ) ≡ `o(u(µ);µ).

    FE: given µ ∈ D, find uN (µ) ∈ VN ⊂ V s.t. O(N ·) ops

    a(uN (µ), v;µ) = `(v;µ) ∀v ∈ VN

    and evaluate the output

    sN (µ) ≡ `o(uN (µ);µ).

    1

  • Certified reduced basis (CRB) method [review: Rozza et al 08]

    CRB: introduce RB space N � N

    VN ≡ span {uN (µn)}Nn=1︸ ︷︷ ︸FE snapshots

    ⊂ VN ;

    given µ ∈ D, find uN(µ) ∈ VN s.t. O(N ·) ops

    a(uN(µ), v;µ) = `(v;µ) ∀v ∈ VN ,

    evaluate the outputsN(µ) ≡ `o(uN(µ);µ),

    and bound the error wrt FE output

    |sN (µ)− sN(µ)| ≤ ∆NN (µ).

    CRB provides rapid and reliable solution of µPDEassuming the “truth” space VN is well chosen.

    2

  • Certified reduced basis (CRB) method [review: Rozza et al 08]

    CRB: introduce RB space N � N

    VN ≡ span {uN (µn)}Nn=1︸ ︷︷ ︸FE snapshots

    ⊂ VN ;

    given µ ∈ D, find uN(µ) ∈ VN s.t. O(N ·) ops

    a(uN(µ), v;µ) = `(v;µ) ∀v ∈ VN ,

    evaluate the outputsN(µ) ≡ `o(uN(µ);µ),

    and bound the error wrt FE output

    |sN (µ)− sN(µ)| ≤ ∆NN (µ).

    CRB provides rapid and reliable solution of µPDEassuming the “truth” space VN is well chosen.

    2

  • Certified reduced basis (CRB) method [review: Rozza et al 08]

    CRB: introduce RB space N � N

    VN ≡ span {uN (µn)}Nn=1︸ ︷︷ ︸FE snapshots

    ⊂ VN ;

    given µ ∈ D, find uN(µ) ∈ VN s.t. O(N ·) ops

    a(uN(µ), v;µ) = `(v;µ) ∀v ∈ VN ,

    evaluate the outputsN(µ) ≡ `o(uN(µ);µ),

    and bound the error wrt FE output

    |sN (µ)− sN(µ)| ≤ ∆NN (µ).

    CRB provides rapid and reliable solution of µPDEassuming the “truth” space VN is well chosen.

    2

  • Issues

    ⇒ Objectives

    “Truth” space VN may betoo coarse ⇒ unreliable solution wrt exact µPDE;too fine ⇒ unnecessarily expensive offline “truth” solves.

    Goal: eliminate the issue of “truth” [cf. Ali, Steih, & Urban;Ohlberger & Schindler]

    1. provide error bounds wrt exact µPDE,

    |s(µ)− sN(µ)| ≤ ∆N(µ).

    2. provide adaptivity in physical and parameter spaces

    optimal VN and VN ⊂ VN .

    3. maintain O(N · � N ·) online complexity.

    3

  • Issues ⇒ Objectives

    “Truth” space VN may betoo coarse ⇒ unreliable solution wrt exact µPDE;too fine ⇒ unnecessarily expensive offline “truth” solves.

    Goal: eliminate the issue of “truth” [cf. Ali, Steih, & Urban;Ohlberger & Schindler]

    1. provide error bounds wrt exact µPDE,

    |s(µ)− sN(µ)| ≤ ∆N(µ).

    2. provide adaptivity in physical and parameter spaces

    optimal VN and VN ⊂ VN .

    3. maintain O(N · � N ·) online complexity.

    3

  • Introduction

    MotivationModel problem

  • Model problem

    Given µ ∈ D, find u(µ) ∈ V ≡ H10 (Ω) such that∫Ω

    ∇v · κ(µ)∇u(µ)dx︸ ︷︷ ︸a(u(µ), v;µ)

    =

    ∫Ω

    vf(µ)dx︸ ︷︷ ︸`(v;µ)

    ∀v ∈ V .

    Assumptions:1. coercivity: κ(µ)(x) > 0, ∀x ∈ Ω;2. affine parameter decomposition

    κ(µ) =

    Qκ∑q=1

    µ-dependent︷ ︸︸ ︷Θκq (µ) κq︸︷︷︸

    µ-independent

    , f(µ) =

    Qf∑q=1

    Θfq (µ)fq,

    κ−1(µ) ≡ c(µ) =Qc∑q=1

    Θcq(µ)cq (compliance tensor).

    4

  • Output bound: ingredients

    Norm: for δ > 0, ‖v‖2Vµ = (v, v)Vµ

    (w, v)Vµ ≡∫

    ∇v · κ(µ)∇wdx+ δ∫

    vwdx.

    Residual: linear form

    r(v; ũ;µ) ≡ `(v;µ)− a(ũ, v;µ)

    and the associated dual norm

    ‖r(·; ũ;µ)‖V ′µ ≡ supv∈V

    r(v; ũ;µ)

    ‖v‖Vµ(over V , not VN ).

    Stability constant:

    α(µ) ≡ infv∈V

    a(v, v;µ)

    ‖v‖2Vµ(over V , not VN ).

    5

  • Output bound

    Proposition. For an output estimate [Piece & Giles; . . . ]

    sN(µ) ≡ `o(uN(µ))︸ ︷︷ ︸“raw” output

    + rpr(ψN(µ);uN(µ);µ)︸ ︷︷ ︸adjoint correction

    ,

    the error is bounded by

    |s(µ)− sN(µ)| ≤1

    α(µ)︸ ︷︷ ︸stability

    ‖rpr(·;uN(µ);µ)‖V ′µ︸ ︷︷ ︸primal residual dual-norm

    ‖radj(·;ψN(µ);µ)‖V ′µ︸ ︷︷ ︸adjoint residual dual-norm

    .

    Agenda: provide

    1. rapidly computable upper bound of ‖rpr/adj(·; ũ;µ)‖V ′µ ;2. rapidly computable lower bound of α(µ);

    3. automatic spatio-parameter adaptivity.

    6

  • Output bound

    Proposition. For an output estimate [Piece & Giles; . . . ]

    sN(µ) ≡ `o(uN(µ))︸ ︷︷ ︸“raw” output

    + rpr(ψN(µ);uN(µ);µ)︸ ︷︷ ︸adjoint correction

    ,

    the error is bounded by

    |s(µ)− sN(µ)| ≤1

    α(µ)︸ ︷︷ ︸stability

    ‖rpr(·;uN(µ);µ)‖V ′µ︸ ︷︷ ︸primal residual dual-norm

    ‖radj(·;ψN(µ);µ)‖V ′µ︸ ︷︷ ︸adjoint residual dual-norm

    .

    Agenda: provide

    1. rapidly computable upper bound of ‖rpr/adj(·; ũ;µ)‖V ′µ ;2. rapidly computable lower bound of α(µ);

    3. automatic spatio-parameter adaptivity.

    6

  • Residual bound

    Bound formFinite dimensional approximations

  • Residual bound

    Bound formFinite dimensional approximations

  • Residual bound

    Introduce a “dual” (or “flux”) space

    Q ≡ H(div; Ω) ≡ {q ∈ (L2(Ω))d | ∇ · v ∈ L2(Ω)}.

    Define a bound form ‖ · ‖ ≡ ‖ · ‖L2(Ω)

    F (ũ, p;µ) ≡ ‖κ1/2(µ)∇ũ− c1/2(µ)p‖2︸ ︷︷ ︸constitutive relation

    +δ−1 ‖f(µ) +∇ · p‖2︸ ︷︷ ︸conservation law

    .

    Proposition. For any ũ ∈ V

    ‖r(·; ũ;µ)‖V ′µ ≤ (F (ũ, p;µ))1/2 ∀p ∈ Q.

    Remark: bound holds for any approximations ũ and p

    ⇒ may be used with FE and RB approximations.7

  • Residual bound: proof

    Proof. Note ∀p ∈ Q,

    r(v; ũ;µ)

    =

    ∫Ω

    vfdx−∫

    ∇v · κ∇ũdx+

    ≡ 0 by Green’s theorem︷ ︸︸ ︷∫Ω

    ∇v · pdx+∫

    v∇ · pdx

    =

    ∫Ω

    v(f +∇ · p)dx−∫

    ∇v · (κ∇ũ− p)dx

    ≤ (δ−1‖f +∇ · p‖2L2(Ω) + ‖κ1/2∇ũ− c1/2p‖2L2(Ω))1/2

    (δ‖v‖2L2(Ω) + ‖κ1/2∇v‖2L2(Ω))1/2

    = (F (ũ, p;µ))1/2‖v‖Vµ .

    It follows

    ‖r(·; ũ;µ)‖V ′µ ≡ supv∈V

    r(v; ũ;µ)

    ‖v‖Vµ≤ (F (ũ, p;µ))1/2.

    8

  • Bound form decomposition

    Bound form can be decomposed as

    F (w, p;µ) = A((w, p), (w, p);µ)︸ ︷︷ ︸quadratic

    +B((w, p);µ)︸ ︷︷ ︸linear

    + C(µ)︸ ︷︷ ︸constant

    ,

    where (·, ·) ≡ (·, ·)L2(Ω)

    A((w, p), (v, q);µ) = (κ1/2(µ)∇w, κ1/2(µ)∇v) + (c1/2(µ)p, c1/2(µ)q)

    − (∇w, q)− (p,∇v) + δ−1(∇ · p,∇ · q)

    B((w, p);µ) = 2δ−1(f(µ),∇ · p)

    C(µ) = δ−1(f(µ), f(µ)).

    Remark: forms A(·, ·;µ), B(·;µ), and C(µ) inheritaffine parameter decomposition.

    9

  • Residual bound

    Bound formFinite dimensional approximations

  • Minimum-residual mixed finite element method

    IntroduceVN ≡ {v ∈ V | v|κ ∈ Pp, κ ∈ Th},QN ≡ {q ∈ Q | q|κ ∈ RTp−1, κ ∈ Th}.

    Min-res: given µ ∈ D, find (uN (µ), pN (µ)) ∈ VN ×QN such that

    (uN (µ), pN (µ)) = arg infw∈VNVq∈QNQ

    F (w, q;µ).

    E-L: find (uN (µ), pN (µ)) ∈ VN ×QN such that N ×N SPD

    2A((uN (µ), pN (µ)), (v, q);µ) = B((v, q);µ)

    ∀(v, q) ∈ VNV ×QNQ .Built-in residual bound:

    ‖r(·;uN (µ);µ)‖2V ′µ ≤ F (uN (µ), pN (µ);µ).

    10

  • Minimum-residual mixed reduced basis method

    IntroduceVN ≡ span{uN (µn)}Nn=1QN ≡ span{qN (µn)}Nn=1.

    Min-res: given µ ∈ D, find (uN(µ), pN(µ)) ∈ VN ×QN such that

    (uN(µ), pN(µ)) = arg infw∈VNq∈QN

    F (w, q;µ).

    E-L: find (uN(µ), pN(µ)) ∈ VN ×QN such that 2N × 2N SPD

    2A((uN(µ), pN(µ)), (v, q);µ) = B((v, q);µ)

    ∀(v, q) ∈ VN ×QN .Built-in residual bound:

    ‖r(·;uN(µ);µ)‖2V ′µ ≤ F (uN(µ), pN(µ);µ).11

  • Offline-online computational decomposition

    Recall A(·, ·;µ) and B(·;µ) inherit affine parameter decomposition.

    Offline:

    Snapshots: VN = span{uN (µn)}Nn=1, QN = span{qN (µn)}Nn=1;Dataset: Aq(·, ·) and Bq(·) evaluated wrt VN ×QN .

    Operation count: O(N ·, N ·, Q·)

    Online:

    µ ∈ D → uN(µ)︸ ︷︷ ︸primal

    , pN(µ)︸ ︷︷ ︸dual

    , F (uN(µ), pN(µ);µ)︸ ︷︷ ︸built-in residual bound

    .

    Operation count: O(N3) +O(N2Q2)12

  • Stability constant

    Problem description and SCMLower bound of minimum eigenvalueFinite dimensional approximationsRelationship to complementary variational principle

  • Stability constant

    Problem description and SCMLower bound of minimum eigenvalueFinite dimensional approximationsRelationship to complementary variational principle

  • Preliminary

    Sketch: stability constant ⇒ least stable mode ⇒ eigenproblem.In our case ‖v‖2Vµ ≡ ‖κ

    1/2(µ)∇v‖2 + δ‖v‖2

    α(µ) ≡ infv∈V

    a(v, v;µ)

    ‖v‖2Vµ≥(

    1 +δ

    τ(µ)

    )−1where

    τ(µ) ≡ infv∈V

    ‖κ1/2(µ)∇v‖2

    ‖v‖2H1(over V , not VN ),

    which is the minimum (i.e. first) eigenvalue of∫Ω

    ∇v · κ(µ)∇zdx = λ1(µ)∫

    ∇v · ∇z + vzdx ∀v ∈ V .

    Goal: online-efficient evaluation of a lower bound of τ(µ) ≡ λ1(µ).13

  • Approach: exact Successive Constraint Method (SCM)

    Offline: ingredients [Huynh et al 2006; . . . ]1. Bounding boxes: ∀q = 1, . . . , Qκ,

    γq ≡ supv∈V

    |∫

    Ω∇v · κq∇vdx|‖v‖2H1

    (over V , not VN ).

    ⇒ evaluate ‖κq‖L∞(Ω) by inspection.

    2. Stability constant at select points

    τ(µ′) ≡ infv∈V

    ∫Ω∇v · κ(µ′)∇vdx‖v‖2H1

    (over V , not VN ).

    ⇒ need a lower bound of the minimum eigenvalue.

    Online: same as the standard SCM.

    14

  • Approach: exact Successive Constraint Method (SCM)

    Offline: ingredients [Huynh et al 2006; . . . ]1. Bounding boxes: ∀q = 1, . . . , Qκ,

    γq ≡ supv∈V

    |∫

    Ω∇v · κq∇vdx|‖v‖2H1

    (over V , not VN ).

    ⇒ evaluate ‖κq‖L∞(Ω) by inspection.

    2. Stability constant at select points

    τ(µ′) ≡ infv∈V

    ∫Ω∇v · κ(µ′)∇vdx‖v‖2H1

    (over V , not VN ).

    ⇒ need a lower bound of the minimum eigenvalue.

    Online: same as the standard SCM.

    14

  • Approach: exact Successive Constraint Method (SCM)

    Offline: ingredients [Huynh et al 2006; . . . ]1. Bounding boxes: ∀q = 1, . . . , Qκ,

    γq ≡ supv∈V

    |∫

    Ω∇v · κq∇vdx|‖v‖2H1

    (over V , not VN ).

    ⇒ evaluate ‖κq‖L∞(Ω) by inspection.

    2. Stability constant at select points

    τ(µ′) ≡ infv∈V

    ∫Ω∇v · κ(µ′)∇vdx‖v‖2H1

    (over V , not VN ).

    ⇒ need a lower bound of the minimum eigenvalue.

    Online: same as the standard SCM.

    14

  • Stability constant

    Problem description and SCMLower bound of minimum eigenvalueFinite dimensional approximationsRelationship to complementary variational principle

  • Eigenvalue bounds

    Given an approximate eigenpair (z̃, λ̃) ∈ V × R with ‖z̃‖H1 = 1,introduce residual

    r(v; z̃, λ̃;µ) ≡∫

    ∇v · κ∇z̃dx︸ ︷︷ ︸LHS of eigenproblem

    − λ̃∫

    ∇v · ∇z̃ + vz̃dx︸ ︷︷ ︸RHS of eigenproblem

    .

    Proposition. Closest eigenvalue is bounded by [Weinstein]

    minj|λj − λ̃| ≤ ‖r(·; z̃, λ̃;µ)‖(H1)′ ≡ sup

    v∈V

    r(v; z̃, λ̃;µ)

    ‖v‖H1.

    Observation: if |λ1 − λ̃| ≤ |λ2 − λ̃|, then

    λ̃− ‖r(·; z̃, λ̃;µ)‖(H1)′ ≤ λ1.

    15

  • Eigenvalue residual bound

    Introduce a “dual” (of “flux”) space Q ≡ H(div; Ω).

    Define an eigenvalue bound form

    G(z̃, λ̃, p;µ) ≡ ‖κ1/2(µ)∇z̃ − λ̃∇z̃ − p‖+ ‖λ̃z̃ +∇ · p‖.

    Proposition. For any (z̃, λ̃) ∈ V × R,

    ‖r(·; z̃, λ̃;µ)‖(H1)′ ≤ (G(z̃, λ̃, p;µ))1/2 ∀p ∈ Q.

    Remark: bound holds for any approximations (z̃, λ̃) and p

    ⇒ may be used with FE approximations.

    16

  • Eigenvalue residual bound: proof

    Proof. Note ∀p ∈ Q,

    r(v; z̃, λ̃;µ)

    =

    ∫Ω

    ∇v · κ(µ)∇z̃dx− λ̃∫

    ∇v · ∇z̃ − λ̃∫

    vz̃dx

    −∫

    ∇v · p−∫

    v∇ · pdx}≡ 0 by Green’s theorem

    =

    ∫Ω

    v(−λ̃z̃ −∇ · p)dx+∫

    ∇v · (κ∇ũ− λ̃∇z̃ − p)dx

    ≤ (‖λ̃z̃ +∇ · p‖2L2(Ω) + ‖κ1/2∇ũ− λ̃∇z̃ − p‖2L2(Ω))1/2

    (‖v‖2L2(Ω) + ‖∇v‖2L2(Ω))1/2

    = (G(z̃, λ̃, p;µ))1/2‖v‖Vµ .It follows

    ‖r(·; z̃, λ̃;µ)‖(H1)′ ≡ supv∈V

    r(v; ũ, λ̃;µ)

    ‖v‖H1≤ (G(z̃, λ̃, p;µ))1/2.

    17

  • Stability constant

    Problem description and SCMLower bound of minimum eigenvalueFinite dimensional approximationsRelationship to complementary variational principle

  • Finite element approximation

    Introduce FE spaces VN ⊂ V and QN ⊂ Q.

    Galerkin: find (zN , λN1 ) ∈ VN × R such that∫Ω

    ∇v · κ∇zNdx = λN1∫

    ∇v · ∇zN + vzNdx ∀v ∈ VN .

    Min-res: find pN ∈ QN such that

    pN = arg infq∈QN

    G(zN , λN , q;µ).

    Bounds: assuming |λN1 − λ1| < |λN1 − λ2|,

    λN1 − (G(zN , λN , pN ;µ))1/2︸ ︷︷ ︸lower bound: min-res

    ≤ λ1 ≤ λN1︸︷︷︸upper bound: Galerkin

    .

    18

  • Exact SCM: offline-online computational decomposition

    Offline:

    1. bounding boxesγq ≡ ‖κq‖L∞(Ω)

    2. stability constants: for µ′ ∈ ΞSCMtrain ,

    τLB(µ′) = λN1 (µ′)− (G(zN , λN , pN ;µ′))1/2.

    ⇒ Online SCM dataset.

    Online:

    µ ∈ D → τLB(µ) → αLB(µ) ≡(

    1 +δ

    τLB(µ)

    )−1.

    19

  • Stability constant

    Problem description and SCMLower bound of minimum eigenvalueFinite dimensional approximationsRelationship to complementary variational principle

  • Role of δ in ‖v‖2Vµ ≡ ‖κ1/2(µ)∇v‖2 + δ‖v‖2

    For δ = 0, “classical” complementary variational principle [Ladevèze 83]

    (u, p) = arg infw∈Vq∈Q̂µ

    ‖κ1/2∇w − c1/2p‖2︸ ︷︷ ︸constitutive relation

    where Q̂µ ≡ {q ∈ H(div; Ω) | f(µ) +∇ · q = 0︸ ︷︷ ︸exact conservation

    }.

    ⇒ α(µ) ≡ 1, but requires µ-dependent space Q̂µ (non-trivial RB).

    In practiceδ =

    1

    10minµ∈Ξ⊂D

    τLB(µ) > 0,

    to “relax” the dual-feasibility condition but to ensure αLB(µ) > 0.9.

    ⇒ pessimistic SCM bound of τ(µ) does not affect effectivity.

    20

  • Role of δ in ‖v‖2Vµ ≡ ‖κ1/2(µ)∇v‖2 + δ‖v‖2

    For δ = 0, “classical” complementary variational principle [Ladevèze 83]

    (u, p) = arg infw∈Vq∈Q̂µ

    ‖κ1/2∇w − c1/2p‖2︸ ︷︷ ︸constitutive relation

    where Q̂µ ≡ {q ∈ H(div; Ω) | f(µ) +∇ · q = 0︸ ︷︷ ︸exact conservation

    }.

    ⇒ α(µ) ≡ 1, but requires µ-dependent space Q̂µ (non-trivial RB).

    In practiceδ =

    1

    10minµ∈Ξ⊂D

    τLB(µ) > 0,

    to “relax” the dual-feasibility condition but to ensure αLB(µ) > 0.9.

    ⇒ pessimistic SCM bound of τ(µ) does not affect effectivity.20

  • Spatio-parameter adaptivity

    AlgorithmRemarks

  • Spatio-parameter adaptivity

    AlgorithmRemarks

  • Recap

    Given µ ∈ D, we compute

    uN ∈ VprN , pN ∈ QprN , (and ψN ∈ V

    adjN , qN ∈ Q

    adjN )

    and evaluate the output and an error bound

    |s(µ)− sN(µ)| ≤ ∆N(µ)

    ≡ 1αLB(µ)︸ ︷︷ ︸

    stability bound

    F pr(uN , pN ;µ)1/2︸ ︷︷ ︸

    primal residual bound

    F adj(ψN , qN ;µ)1/2︸ ︷︷ ︸

    adjoint residual bound

    .

    Goal: choose RB spaces VprN , QprN , (and V

    adjN , Q

    adjN ) that achieve

    rapid convergence.

    21

  • Spatio-parameter Greedy

    Input: initial FE space VNN=0error tolerance �toltraining set Ξtrain ⊂ D.

    Output: online dataset.

    For N = 1, . . . , Nmax1. Find least-well approximated parameter

    µN+1 = arg supµ∈Ξtrain⊂D

    ∆N(µ)

    2. Compute using adaptive FE

    uN (µN+1) ∈ VNN+1

    such that ∆N (µN+1) ≤ �tol.3. Augment the reduced basis space

    VN+1 = span{VN , uN (µN+1)}22

  • Step 2: finite element mesh adaptation

    Employ

    Solve→ Estimate→ Mark→ Refine.

    Solve: minimum residual mixed FEM.

    Estimate: built-in local error indicator

    ηκ(µ) ≡ ‖κ(µ)∇uN (µ)− pN (µ)‖2L2(κ) + δ−1‖f(µ) +∇ · pN (µ)‖2L2(κ) ;

    note F (uN (µ), pN (µ);µ) =∑

    κ∈Th ηκ(µ).

    Mark: top 5% of elements with largest ηκ(µ).

    Refine: quad-tree based adaptation.

    23

  • Step 3: quad-tree solution representation

    Two spaces: NN ≤ Nmaster,N1. Working mesh (NN): approximate current u(µN).2. Master mesh (Nmaster,N): represent all reduced-basis functions.

    Remark: rapid update of master mesh by a quad-tree structure.

    + →

    old master mesh working mesh new master mesh

    24

  • Spatio-parameter adaptivity

    AlgorithmRemarks

  • Remark

    ECRB provides in Online stage

    i. ∀µ ∈ D, exact error bound wrt u ∈ V (not uN ∈ VN );ii. ∀µ ∈ Ξtrain, exact error bound ∆N(µ) ≤ �tol wrt u (not uN ).

    ECRB is different from a two-step approach:

    1. perform the standard RB Greedy with error bounds wrt “truth”to identify the worst parameter;

    2. compute each snapshot using adaptive FEM.

    In Online stage, this approach only provide

    i. ∀µ ∈ D, bound wrt FE “truth”;ii. bound wrt exact PDE for snapshot parameters.

    25

  • Remark: ECRB 6= (RB with adaptive FE snapshots)

    ECRB provides in Online stage

    i. ∀µ ∈ D, exact error bound wrt u ∈ V (not uN ∈ VN );ii. ∀µ ∈ Ξtrain, exact error bound ∆N(µ) ≤ �tol wrt u (not uN ).

    ECRB is different from a two-step approach:

    1. perform the standard RB Greedy with error bounds wrt “truth”to identify the worst parameter;

    2. compute each snapshot using adaptive FEM.

    In Online stage, this approach only provide

    i. ∀µ ∈ D, bound wrt FE “truth”;ii. bound wrt exact PDE for snapshot parameters.

    25

  • Remark: generalizations

    1. More sophisticated RB selection

    Examples: hp (in parameter), two-stage, online adaptive, . . .

    2. More sophisticated FE mesh adaptivity

    Examples: hp (in space), anisotropic, . . .

    ...

    26

  • Numerical results: linear elasticity

    Problem descriptionUniform refinementAdaptive refinement

  • Numerical results: linear elasticity

    Problem descriptionUniform refinementAdaptive refinement

  • Linear elasticity problem with cracks

    Governing equation: linear elasticity.

    Parameter domain: D ≡ [0.25, 0.4]× [0.3, 0.7].Output: compliance

    ∫Γt · uds

    7271

    1

    1

    t = 1

    27

  • Linear elasticity problem with cracks

    Governing equation: linear elasticity.

    Parameter domain: D ≡ [0.25, 0.4]× [0.3, 0.7].Output: compliance

    ∫Γt · uds

    µ = (0.25, 0.3) µ = (0.4, 0.7)

    27

  • Numerical results: linear elasticity

    Problem descriptionUniform refinementAdaptive refinement

  • Setup

    Spatial mesh: P3-RT2 uniform meshes

    ⇒ ⇒

    Snapshot parameters: uniform over D

    0.25 0.3 0.35 0.471

    0.3

    0.4

    0.5

    0.6

    0.7

    72

    1 2

    3 4

    0.25 0.3 0.35 0.471

    0.3

    0.4

    0.5

    0.6

    0.7

    72

    1 2 3

    4 5 6

    7 8 9

    0.25 0.3 0.35 0.471

    0.3

    0.4

    0.5

    0.6

    0.7

    72

    1 2 3 4

    5 6 7 8

    9 10 11 12

    13 14 15 16

    Stability constant: αmin = 0.9 for δ = 10−4. (Deduced from SCM.)28

  • Uniform refinement

    Parameter refinement:

    exponential convergence with N (for N very large);spatial error limits convergence (N−1/2 ∼ h1).

    0 5 10 15 20 25 30N

    10-2

    10-1

    100

    101

    max

    72%"

    rel

    N(7

    )

    N = 1008N = 3744N = 14400N = 56448N = 223488

    29

  • Numerical results: linear elasticity

    Problem descriptionUniform refinementAdaptive refinement

    SetupSCM constructionRB constructionOnline

  • Numerical results: linear elasticity

    Problem descriptionUniform refinementAdaptive refinement

    SetupSCM constructionRB constructionOnline

  • Setup

    µ-training set: 1271 uniform points over D ≡ [0.25, 0.4]× [0.3, 0.7].

    Initial mesh: 16-elements P3-RT2 tensor mesh

    .

    Relative error tolerance: �reltol = 0.01.

    (Relative error bound: ∆relN (µ) ≡∆N(µ)

    JN −∆N(µ)).

    Remark: we need not worry about the fidelity of the “truth.”

    30

  • Numerical results: linear elasticity

    Problem descriptionUniform refinementAdaptive refinement

    SetupSCM constructionRB constructionOnline

  • Offline: N = 1

    Parameter: µ1 = (0.32, 0.50)Working mesh: N1 = 4606Master mesh: Nmaster,1 = 4606Resolution: hmin = 5× 10−4

    0.25 0.3 0.35 0.471

    0.3

    0.4

    0.5

    0.6

    0.7

    72 1

    102 103 104

    dof

    -0.01

    0

    0.01

    0.02

    =(7

    =(0

    .33,

    0.50

    ))upper boundlower bound

    31

  • Offline: N = 2

    Parameter: µ2 = (0.39, 0.57)Working mesh: N2 = 5592Master mesh: Nmaster,2 = 5592

    0.25 0.3 0.35 0.471

    0.3

    0.4

    0.5

    0.6

    0.7

    72 1

    2

    102 103 104

    dof

    -0.01

    0

    0.01

    0.02

    =(7

    =(0

    .39,

    0.57

    ))upper boundlower bound

    32

  • Offline: N = 3

    Parameter: µ3 = (0.40, 0.70)Working mesh: N3 = 7776Master mesh: Nmaster,3 = 7776Resolution: hmin = 1.2× 10−4

    0.25 0.3 0.35 0.471

    0.3

    0.4

    0.5

    0.6

    0.7

    72 1

    2

    3

    102 103 104

    dof

    -0.01

    0

    0.01

    0.02

    =(7

    =(0

    .40,

    0.70

    ))upper boundlower bound

    33

  • Offline: N = 11

    Parameter: µ11 = (0.25, 0.30)Working mesh: N11 = 3906Master mesh: Nmaster,11 = 8400

    0.25 0.3 0.35 0.471

    0.3

    0.4

    0.5

    0.6

    0.7

    72 1

    2

    3

    4

    5

    6 7

    8

    9

    10

    11

    102 103 104

    dof

    -0.01

    0

    0.01

    0.02

    =(7

    =(0

    .25,

    0.30

    ))upper boundlower bound

    34

  • Offline: N = Nmax = 40

    Final master mesh: Nmaster,40 = 8502Minimum τ : min

    µ∈Ξ⊂DτLB(µ) = 0.00188

    ⇒ choose δ = 10−4 to obtain αLBmin ≥ 0.95.

    lower bound (SCM) upper bound (Galerkin)

    35

  • Numerical results: linear elasticity

    Problem descriptionUniform refinementAdaptive refinement

    SetupSCM constructionRB constructionOnline

  • Offline: N = 1

    Parameter: µ1 = (0.40, 0.30)Working mesh: N1 = 12852Master mesh: Nmaster,1 = 12852Resolution: hmin = 2× 10−3

    Convergence: N−3 ∼ h6 0.25 0.3 0.35 0.471

    0.3

    0.4

    0.5

    0.6

    0.7

    72

    1

    103 104

    dof

    10-2

    10-1

    100

    101

    erro

    r(7

    =(0

    :40;

    0:3

    0))

    1%

    "NjJref ! JN j

    36

  • Offline: N = 2

    Parameter: µ2 = (0.25, 0.70)Working mesh: N2 = 12516Master mesh: Nmaster,2 = 13614

    0.25 0.3 0.35 0.471

    0.3

    0.4

    0.5

    0.6

    0.7

    72

    1

    2

    103 104

    dof

    10-2

    10-1

    100

    101

    erro

    r(7

    =(0

    :25;

    0:7

    0))

    1%

    "NjJref ! JN j

    37

  • Offline: N = 3

    Parameter: µ3 = (0.40, 0.70)Working mesh: N3 = 14676Master mesh: Nmaster,3 = 15810

    0.25 0.3 0.35 0.471

    0.3

    0.4

    0.5

    0.6

    0.7

    72

    1

    2 3

    103 104

    dof

    10-2

    10-1

    100

    101

    erro

    r(7

    =(0

    :40;

    0:7

    0))

    1%

    "NjJref ! JN j

    38

  • Offline: N = 4

    Parameter: µ4 = (0.25, 0.30)Working mesh: N4 = 11466Master mesh: Nmaster,4 = 15972

    0.25 0.3 0.35 0.471

    0.3

    0.4

    0.5

    0.6

    0.7

    72

    1

    2 3

    4

    103 104

    dof

    10-2

    10-1

    100

    101

    erro

    r(7

    =(0

    :25;

    0:3

    0))

    1%

    "NjJref ! JN j

    39

  • Offline: N = Nmax = 33

    Final master mesh: Nmaster,33 = 17058Max relative error: max

    µ∈Ξ⊂D∆relN (µ) = 0.0096 < 0.01

    0 10 20 30N

    10-2

    10-1

    100

    max72%"

    rel

    N(7

    )

    convergence final error distribution

    40

  • Numerical results: linear elasticity

    Problem descriptionUniform refinementAdaptive refinement

    SetupSCM constructionRB constructionOnline

  • Online: rapid and reliable solution

    Online evaluation and certification wrt exact PDE (N = 33)

    µ = (0.35, 0.6) → JN(µ) = 6.7273∆relN (µ) = 0.0068 ≤ 0.01 ≡ �tol.

    Online time: 0.007 seconds.

    Field visualization: 0.2 seconds∗.

    41

  • Summary

  • Exact-certificate RB: summary

    Offline: automatic spatio-parameter adaptivity⇒ efficient approximations [Binev et al; Ainsworth & Oden; . . . ]⇒ reduced man-hour for ROM construction.

    Online: error bounds wrt to u(µ) ∈ V (and not uN (µ) ∈ VN ).

    Key ingredient: minimum-residual mixed formulation with built-inresidual bounds for PDEs and eigenproblems.

    Limitation: error bounds only available for linear coercive equations(error estimate survives for more general PDEs).

    0.25 0.3 0.35 0.471

    0.3

    0.4

    0.5

    0.6

    0.7

    72

    1

    2 3

    4

    5

    6

    78

    9

    10 11

    12

    13

    1415

    16

    17

    18

    19

    20 21

    2223

    24

    25

    26

    27

    2829

    30

    31

    32

    33

    42

  • Backup

  • Exact-certificate RB: outlook

    Automatic spatio-parameter adaptivity become increasingly importantfor complex systems with non-intuitive behaviors.

    Large-scale systems [Maday & Rønquist 02; Huynh et al 13; . . . ]reduced-basis element (RBE) framework

    Weakly stable and nonlinear dynamicserror bound requires coercivity,

    but error estimate survives for more general PDEs

    Akselos

    43

  • Diffusion equation → linear elasticity

    Norm:

    ‖v‖2Vµ ≡ ‖K1/2(µ)E∇v‖2 + δ(‖v‖2 + ‖v‖2Γ + ‖K

    1/2ref ∇v‖

    2).

    Bound form:

    F (ũ, p;µ) ≡

    constitutive relation︷ ︸︸ ︷‖K1/2(µ)E∇ũ− C1/2(µ)p‖2

    + δ−1(‖f(µ) +∇ · p‖2︸ ︷︷ ︸body force

    + ‖g(µ)− n · p‖2Γ︸ ︷︷ ︸boundary force

    + ‖C1/2ref (I − E)p‖2︸ ︷︷ ︸

    stress symmetrization

    ).

    Stability constant:

    α(µ) ≡ infv∈V

    ‖K1/2(µ)E∇v‖‖v‖2Vµ

    =

    (1 +

    δ

    τ(µ)

    )−1,

    where (c.f. Korn’s inequality)

    τ(µ) ≡ infv∈V

    ‖K1/2(µ)E∇v‖2

    ‖v‖2 + ‖v‖2Γ + ‖K1/2ref ∇v‖2

    .

    44

    IntroductionMotivationModel problem

    Residual boundBound formFinite dimensional approximations

    Stability constantProblem description and SCMLower bound of minimum eigenvalueFinite dimensional approximationsRelationship to complementary variational principle

    Spatio-parameter adaptivityAlgorithmRemarks

    Numerical results: linear elasticityProblem descriptionUniform refinementAdaptive refinement

    SummaryBackup