towards understanding tcp performance on...

63
Towards Understanding TCP Performance on LTE/EPC Mobile Networks Binh Nguyen 1 , Arijit Banerjee 1 , Vijay Gopalakrishnan 2 , Sneha Kasera 1 , Seungjoon Lee 2 , Aman Shaikh 2 , and Jacobus (Kobus) Van der Merwe 1 1 School of Computing, University of Utah 2 AT&T Labs - Research 1

Upload: vuongtuong

Post on 09-Mar-2018

216 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Towards Understanding TCP Performance on …conferences.sigcomm.org/sigcomm/2014/doc/slides/131.pdfTowards Understanding TCP Performance on LTE/EPC Mobile Networks! Binh Nguyen1, Arijit

Towards Understanding TCP Performance on LTE/EPC Mobile

Networks!

Binh Nguyen1, Arijit Banerjee1, Vijay Gopalakrishnan2, Sneha Kasera1, Seungjoon Lee2, Aman Shaikh2, and Jacobus (Kobus) Van der Merwe1

1School of Computing, University of Utah

2AT&T Labs - Research

1

Page 2: Towards Understanding TCP Performance on …conferences.sigcomm.org/sigcomm/2014/doc/slides/131.pdfTowards Understanding TCP Performance on LTE/EPC Mobile Networks! Binh Nguyen1, Arijit

Motivation

2

Page 3: Towards Understanding TCP Performance on …conferences.sigcomm.org/sigcomm/2014/doc/slides/131.pdfTowards Understanding TCP Performance on LTE/EPC Mobile Networks! Binh Nguyen1, Arijit

Motivation

2

“In 2013,…, they (4G-connections) already account

for 30 percent of mobile data traffic”

“4G traffic will be more than half of the total mobile

traffic by 2018.”

Page 4: Towards Understanding TCP Performance on …conferences.sigcomm.org/sigcomm/2014/doc/slides/131.pdfTowards Understanding TCP Performance on LTE/EPC Mobile Networks! Binh Nguyen1, Arijit

Motivation

2

• Does TCP work well in LTE/EPC networks? • TCP only utilize 50% of the available bandwidth in cellular

networks (Huang et al. SIGCOMM’ 13) • SPDY is not faster in cellular networks because of the interaction

between TCP with cellular networks (Erman et al. CoNEXT’ 13)

“In 2013,…, they (4G-connections) already account

for 30 percent of mobile data traffic”

“4G traffic will be more than half of the total mobile

traffic by 2018.”

Page 5: Towards Understanding TCP Performance on …conferences.sigcomm.org/sigcomm/2014/doc/slides/131.pdfTowards Understanding TCP Performance on LTE/EPC Mobile Networks! Binh Nguyen1, Arijit

Motivation

2

• Does TCP work well in LTE/EPC networks? • TCP only utilize 50% of the available bandwidth in cellular

networks (Huang et al. SIGCOMM’ 13) • SPDY is not faster in cellular networks because of the interaction

between TCP with cellular networks (Erman et al. CoNEXT’ 13)

• Treat the cellular network as a black-box. • Speculate the root causes of performance problems.

“In 2013,…, they (4G-connections) already account

for 30 percent of mobile data traffic”

“4G traffic will be more than half of the total mobile

traffic by 2018.”

Page 6: Towards Understanding TCP Performance on …conferences.sigcomm.org/sigcomm/2014/doc/slides/131.pdfTowards Understanding TCP Performance on LTE/EPC Mobile Networks! Binh Nguyen1, Arijit

Motivation

2

• Does TCP work well in LTE/EPC networks? • TCP only utilize 50% of the available bandwidth in cellular

networks (Huang et al. SIGCOMM’ 13) • SPDY is not faster in cellular networks because of the interaction

between TCP with cellular networks (Erman et al. CoNEXT’ 13)

• Treat the cellular network as a black-box. • Speculate the root causes of performance problems.

“In 2013,…, they (4G-connections) already account

for 30 percent of mobile data traffic”

“4G traffic will be more than half of the total mobile

traffic by 2018.”

We look “under the hood” to answer: how cellular specific events impact TCP’s performance?

Page 7: Towards Understanding TCP Performance on …conferences.sigcomm.org/sigcomm/2014/doc/slides/131.pdfTowards Understanding TCP Performance on LTE/EPC Mobile Networks! Binh Nguyen1, Arijit

We studied two cellular scenarios

3

Page 8: Towards Understanding TCP Performance on …conferences.sigcomm.org/sigcomm/2014/doc/slides/131.pdfTowards Understanding TCP Performance on LTE/EPC Mobile Networks! Binh Nguyen1, Arijit

We studied two cellular scenarios

• On-going TCP connection when a user is handed-over between eNodeBs.

• Seamless handover.

• Lossless handover.

3

Page 9: Towards Understanding TCP Performance on …conferences.sigcomm.org/sigcomm/2014/doc/slides/131.pdfTowards Understanding TCP Performance on LTE/EPC Mobile Networks! Binh Nguyen1, Arijit

We studied two cellular scenarios

• On-going TCP connection when a user is handed-over between eNodeBs.

• Seamless handover.

• Lossless handover.

3

• Sudden load increase on an eNodeB:

• When neighbor eNodeBs fail and users are handed to a survived eNodeB.

Page 10: Towards Understanding TCP Performance on …conferences.sigcomm.org/sigcomm/2014/doc/slides/131.pdfTowards Understanding TCP Performance on LTE/EPC Mobile Networks! Binh Nguyen1, Arijit

We studied two cellular scenarios

• On-going TCP connection when a user is handed-over between eNodeBs.

• Seamless handover.

• Lossless handover.

3

• Sudden load increase on an eNodeB:

• When neighbor eNodeBs fail and users are handed to a survived eNodeB.

Page 11: Towards Understanding TCP Performance on …conferences.sigcomm.org/sigcomm/2014/doc/slides/131.pdfTowards Understanding TCP Performance on LTE/EPC Mobile Networks! Binh Nguyen1, Arijit

LTE/EPC network architecture

4

Evolved Packet Core (EPC)Radio Network

(E-UTRAN) Internet

PDN !gateway

Serving !gateway

S1-U

X2

eNodeB

UE

Page 12: Towards Understanding TCP Performance on …conferences.sigcomm.org/sigcomm/2014/doc/slides/131.pdfTowards Understanding TCP Performance on LTE/EPC Mobile Networks! Binh Nguyen1, Arijit

LTE/EPC network architecture

4

Evolved Packet Core (EPC)Radio Network

(E-UTRAN) Internet

PDN !gateway

Serving !gateway

S1-U

X2

eNodeB

UE

Page 13: Towards Understanding TCP Performance on …conferences.sigcomm.org/sigcomm/2014/doc/slides/131.pdfTowards Understanding TCP Performance on LTE/EPC Mobile Networks! Binh Nguyen1, Arijit

LTE stack

PDCP: header compression, ciphering

RLC: segmentation/concatenation, ARQ

MAC: MAC multiplexing, HARQ

PHY: coding, modulation

IP packet

eNodeB

scheduler

5

Page 14: Towards Understanding TCP Performance on …conferences.sigcomm.org/sigcomm/2014/doc/slides/131.pdfTowards Understanding TCP Performance on LTE/EPC Mobile Networks! Binh Nguyen1, Arijit

LTE stack

PDCP: header compression, ciphering

RLC: segmentation/concatenation, ARQ

MAC: MAC multiplexing, HARQ

PHY: coding, modulation

IP packet

UEeNodeB

radio bearers

logical channels

transport channels

scheduler

PDCP: decompression, deciphering

RLC: reassembly, ARQ

MAC: MAC demultiplexing, HARQ

PHY: decoding, demodulation

IP packet

5

Page 15: Towards Understanding TCP Performance on …conferences.sigcomm.org/sigcomm/2014/doc/slides/131.pdfTowards Understanding TCP Performance on LTE/EPC Mobile Networks! Binh Nguyen1, Arijit

LTE stack

PDCP: header compression,

ciphering

RLC: segmentation/concatenation,

MAC: MAC multiplexing,

HARQ

PHY: coding, modulation

IP

UEeNodeB

radio

logical

transport scheduler

PDCP: decompression,

deciphering

RLC: reassembly, ARQ

MAC: MAC demultiplexing,

HARQ

PHY: decoding, demodulation

IP

6

Page 16: Towards Understanding TCP Performance on …conferences.sigcomm.org/sigcomm/2014/doc/slides/131.pdfTowards Understanding TCP Performance on LTE/EPC Mobile Networks! Binh Nguyen1, Arijit

LTE stack

PDCP: header compression,

ciphering

RLC: segmentation/concatenation,

MAC: MAC multiplexing,

HARQ

PHY: coding, modulation

IP

UEeNodeB

radio

logical

transport scheduler

PDCP: decompression,

deciphering

RLC: reassembly, ARQ

MAC: MAC demultiplexing,

HARQ

PHY: decoding, demodulation

IP

6

Page 17: Towards Understanding TCP Performance on …conferences.sigcomm.org/sigcomm/2014/doc/slides/131.pdfTowards Understanding TCP Performance on LTE/EPC Mobile Networks! Binh Nguyen1, Arijit

PDCP seamless handover

7

Source eNodeB Target eNodeB

Page 18: Towards Understanding TCP Performance on …conferences.sigcomm.org/sigcomm/2014/doc/slides/131.pdfTowards Understanding TCP Performance on LTE/EPC Mobile Networks! Binh Nguyen1, Arijit

PDCP seamless handover

7

Source eNodeB Target eNodeB

X2 link

• Un-transmitted SDUs are forwarded to the target eNodeB via the X2 link.

Page 19: Towards Understanding TCP Performance on …conferences.sigcomm.org/sigcomm/2014/doc/slides/131.pdfTowards Understanding TCP Performance on LTE/EPC Mobile Networks! Binh Nguyen1, Arijit

PDCP seamless handover

7

Source eNodeB Target eNodeB

X2 link

!

X

• Un-transmitted SDUs are forwarded to the target eNodeB via the X2 link.

• SDUs in the retransmission queue are discarded.

Page 20: Towards Understanding TCP Performance on …conferences.sigcomm.org/sigcomm/2014/doc/slides/131.pdfTowards Understanding TCP Performance on LTE/EPC Mobile Networks! Binh Nguyen1, Arijit

PDCP lossless handover

8

Page 21: Towards Understanding TCP Performance on …conferences.sigcomm.org/sigcomm/2014/doc/slides/131.pdfTowards Understanding TCP Performance on LTE/EPC Mobile Networks! Binh Nguyen1, Arijit

PDCP lossless handover

8

Source eNodeB Target eNodeB

Page 22: Towards Understanding TCP Performance on …conferences.sigcomm.org/sigcomm/2014/doc/slides/131.pdfTowards Understanding TCP Performance on LTE/EPC Mobile Networks! Binh Nguyen1, Arijit

PDCP lossless handover

8

Source eNodeB Target eNodeB

X2 link

• Both un-transmitted SDUs and SDUs in the retransmission queue are forwarded to the target eNodeB via the X2 link.

(1)

(2)

Page 23: Towards Understanding TCP Performance on …conferences.sigcomm.org/sigcomm/2014/doc/slides/131.pdfTowards Understanding TCP Performance on LTE/EPC Mobile Networks! Binh Nguyen1, Arijit

Methodology

• Use simulations (NS-3) for better controls and modifications.

• Real network stack: Linux v2.6.26 with TCP CUBIC.

• Workload: downlink bulk-transfer TCP application.

����� ������

���� ���������� ����������

��

9

Page 24: Towards Understanding TCP Performance on …conferences.sigcomm.org/sigcomm/2014/doc/slides/131.pdfTowards Understanding TCP Performance on LTE/EPC Mobile Networks! Binh Nguyen1, Arijit

Modifications to NS3

• Radio Link Control Acknowledged Mode (RLC AM).

• Lossless handover according to 3GPP TS 36.323 2009.

• Retrieving TCP parameters from the Network Simulation Cradle (NSC) integration.

10

Page 25: Towards Understanding TCP Performance on …conferences.sigcomm.org/sigcomm/2014/doc/slides/131.pdfTowards Understanding TCP Performance on LTE/EPC Mobile Networks! Binh Nguyen1, Arijit

Scenario 1: PDCP handovers

• Source eNB - target eNB: 750m.

• X2 interface: 6ms delay.

• UE’s velocity: normal distribution with mean 40 km/h, variance 5 km/h.

• PDCP retransmission queue size: 64KB to 4096KB.

target eNB

11

Serving gateway

S1-U

X2

source eNB

Page 26: Towards Understanding TCP Performance on …conferences.sigcomm.org/sigcomm/2014/doc/slides/131.pdfTowards Understanding TCP Performance on LTE/EPC Mobile Networks! Binh Nguyen1, Arijit

Scenario 1: PDCP handovers

• Source eNB - target eNB: 750m.

• X2 interface: 6ms delay.

• UE’s velocity: normal distribution with mean 40 km/h, variance 5 km/h.

• PDCP retransmission queue size: 64KB to 4096KB.

target eNB

11

Serving gateway

S1-U

X2

source eNB

Page 27: Towards Understanding TCP Performance on …conferences.sigcomm.org/sigcomm/2014/doc/slides/131.pdfTowards Understanding TCP Performance on LTE/EPC Mobile Networks! Binh Nguyen1, Arijit

TCP in seamless handover

12

�������

�������

����

�������

������

�������

�������

�� ��� �� ��� � �� �� ��� ��

�����

��������

��������

���������������������� ����������������

!���"�������#��

Segments sequence

Page 28: Towards Understanding TCP Performance on …conferences.sigcomm.org/sigcomm/2014/doc/slides/131.pdfTowards Understanding TCP Performance on LTE/EPC Mobile Networks! Binh Nguyen1, Arijit

TCP in seamless handover

12

�������

�������

����

�������

������

�������

�������

�� ��� �� ��� � �� �� ��� ��

�����

��������

��������

���������������������� ����������������

!���"�������#��

Segments sequence

Page 29: Towards Understanding TCP Performance on …conferences.sigcomm.org/sigcomm/2014/doc/slides/131.pdfTowards Understanding TCP Performance on LTE/EPC Mobile Networks! Binh Nguyen1, Arijit

TCP in seamless handover

12

Congestion window and throughput

�������

�������

����

�������

������

�������

�������

�� ��� �� ��� � �� �� ��� ��

�����

��������

��������

���������������������� ����������������

!���"�������#��

Segments sequence

0

50

100

150

200

20 25 30 35 400

200

400

600

800

1000

1200

1400

Cw

nd (s

egm

ent)

dela

y(m

s)

Time (s)

handover

CWndsegment delay

Page 30: Towards Understanding TCP Performance on …conferences.sigcomm.org/sigcomm/2014/doc/slides/131.pdfTowards Understanding TCP Performance on LTE/EPC Mobile Networks! Binh Nguyen1, Arijit

TCP in seamless handover

12

Congestion window and throughput

�������

�������

����

�������

������

�������

�������

�� ��� �� ��� � �� �� ��� ��

�����

��������

��������

���������������������� ����������������

!���"�������#��

Segments sequence

0

50

100

150

200

20 25 30 35 400

200

400

600

800

1000

1200

1400

Cw

nd (s

egm

ent)

dela

y(m

s)

Time (s)

handover

CWndsegment delay

Page 31: Towards Understanding TCP Performance on …conferences.sigcomm.org/sigcomm/2014/doc/slides/131.pdfTowards Understanding TCP Performance on LTE/EPC Mobile Networks! Binh Nguyen1, Arijit

TCP in seamless handover

12

Congestion window and throughput

�������

�������

����

�������

������

�������

�������

�� ��� �� ��� � �� �� ��� ��

�����

��������

��������

���������������������� ����������������

!���"�������#��

Segments sequence

0

50

100

150

200

20 25 30 35 400

200

400

600

800

1000

1200

1400

Cw

nd (s

egm

ent)

dela

y(m

s)

Time (s)

handover

CWndsegment delay

0500

10001500200025003000350040004500

20 25 30 35 40

Thro

ughp

ut (k

bps)

Time (s)

handover

TCP throughput

Page 32: Towards Understanding TCP Performance on …conferences.sigcomm.org/sigcomm/2014/doc/slides/131.pdfTowards Understanding TCP Performance on LTE/EPC Mobile Networks! Binh Nguyen1, Arijit

TCP in seamless handover

12

Congestion window and throughput

�������

�������

����

�������

������

�������

�������

�� ��� �� ��� � �� �� ��� ��

�����

��������

��������

���������������������� ����������������

!���"�������#��

Segments sequence

0

50

100

150

200

20 25 30 35 400

200

400

600

800

1000

1200

1400

Cw

nd (s

egm

ent)

dela

y(m

s)

Time (s)

handover

CWndsegment delay

0500

10001500200025003000350040004500

20 25 30 35 40

Thro

ughp

ut (k

bps)

Time (s)

handover

TCP throughput

Page 33: Towards Understanding TCP Performance on …conferences.sigcomm.org/sigcomm/2014/doc/slides/131.pdfTowards Understanding TCP Performance on LTE/EPC Mobile Networks! Binh Nguyen1, Arijit

TCP in seamless handover

12

Congestion window and throughput

�������

�������

����

�������

������

�������

�������

�� ��� �� ��� � �� �� ��� ��

�����

��������

��������

���������������������� ����������������

!���"�������#��

Segments sequence

0

50

100

150

200

20 25 30 35 400

200

400

600

800

1000

1200

1400

Cw

nd (s

egm

ent)

dela

y(m

s)

Time (s)

handover

CWndsegment delay

0500

10001500200025003000350040004500

20 25 30 35 40

Thro

ughp

ut (k

bps)

Time (s)

handover

TCP throughput

Page 34: Towards Understanding TCP Performance on …conferences.sigcomm.org/sigcomm/2014/doc/slides/131.pdfTowards Understanding TCP Performance on LTE/EPC Mobile Networks! Binh Nguyen1, Arijit

TCP in lossless handover

13

Segments sequence

0

100

200

300

400

500

600

700

800

900

1000

28 28.5 29 29.5 30 30.5 31 31.5 32se

gmen

t seq

uenc

e nu

mbe

r

Time (s)

hand-over

Sent sequence numberAck sequence number

Page 35: Towards Understanding TCP Performance on …conferences.sigcomm.org/sigcomm/2014/doc/slides/131.pdfTowards Understanding TCP Performance on LTE/EPC Mobile Networks! Binh Nguyen1, Arijit

TCP in lossless handover

13

Segments sequence

0

100

200

300

400

500

600

700

800

900

1000

28 28.5 29 29.5 30 30.5 31 31.5 32se

gmen

t seq

uenc

e nu

mbe

r

Time (s)

hand-over

Sent sequence numberAck sequence number

Page 36: Towards Understanding TCP Performance on …conferences.sigcomm.org/sigcomm/2014/doc/slides/131.pdfTowards Understanding TCP Performance on LTE/EPC Mobile Networks! Binh Nguyen1, Arijit

TCP in lossless handover

13

Congestion window and throughput Segments sequence

0

100

200

300

400

500

600

700

800

900

1000

28 28.5 29 29.5 30 30.5 31 31.5 32se

gmen

t seq

uenc

e nu

mbe

r

Time (s)

hand-over

Sent sequence numberAck sequence number

0

50

100

150

200

20 25 30 35 4002004006008001000120014001600

Cw

nd (s

egm

ent)

dela

y (m

s)

Time (s)

handover

cwndsegment delay

Page 37: Towards Understanding TCP Performance on …conferences.sigcomm.org/sigcomm/2014/doc/slides/131.pdfTowards Understanding TCP Performance on LTE/EPC Mobile Networks! Binh Nguyen1, Arijit

TCP in lossless handover

13

Congestion window and throughput Segments sequence

0

100

200

300

400

500

600

700

800

900

1000

28 28.5 29 29.5 30 30.5 31 31.5 32se

gmen

t seq

uenc

e nu

mbe

r

Time (s)

hand-over

Sent sequence numberAck sequence number

0

50

100

150

200

20 25 30 35 4002004006008001000120014001600

Cw

nd (s

egm

ent)

dela

y (m

s)

Time (s)

handover

cwndsegment delay

Page 38: Towards Understanding TCP Performance on …conferences.sigcomm.org/sigcomm/2014/doc/slides/131.pdfTowards Understanding TCP Performance on LTE/EPC Mobile Networks! Binh Nguyen1, Arijit

TCP in lossless handover

13

Congestion window and throughput Segments sequence

0

100

200

300

400

500

600

700

800

900

1000

28 28.5 29 29.5 30 30.5 31 31.5 32se

gmen

t seq

uenc

e nu

mbe

r

Time (s)

hand-over

Sent sequence numberAck sequence number

0

50

100

150

200

20 25 30 35 4002004006008001000120014001600

Cw

nd (s

egm

ent)

dela

y (m

s)

Time (s)

handover

cwndsegment delay

0500

10001500200025003000350040004500

20 25 30 35 40

Thro

ughp

ut (k

bps)

Time (s)

handover

TCP throughput

Page 39: Towards Understanding TCP Performance on …conferences.sigcomm.org/sigcomm/2014/doc/slides/131.pdfTowards Understanding TCP Performance on LTE/EPC Mobile Networks! Binh Nguyen1, Arijit

TCP in lossless handover

13

Congestion window and throughput Segments sequence

0

100

200

300

400

500

600

700

800

900

1000

28 28.5 29 29.5 30 30.5 31 31.5 32se

gmen

t seq

uenc

e nu

mbe

r

Time (s)

hand-over

Sent sequence numberAck sequence number

0

50

100

150

200

20 25 30 35 4002004006008001000120014001600

Cw

nd (s

egm

ent)

dela

y (m

s)

Time (s)

handover

cwndsegment delay

0500

10001500200025003000350040004500

20 25 30 35 40

Thro

ughp

ut (k

bps)

Time (s)

handover

TCP throughput

Page 40: Towards Understanding TCP Performance on …conferences.sigcomm.org/sigcomm/2014/doc/slides/131.pdfTowards Understanding TCP Performance on LTE/EPC Mobile Networks! Binh Nguyen1, Arijit

TCP in lossless handover

13

Congestion window and throughput Segments sequence

0

100

200

300

400

500

600

700

800

900

1000

28 28.5 29 29.5 30 30.5 31 31.5 32se

gmen

t seq

uenc

e nu

mbe

r

Time (s)

hand-over

Sent sequence numberAck sequence number

0

50

100

150

200

20 25 30 35 4002004006008001000120014001600

Cw

nd (s

egm

ent)

dela

y (m

s)

Time (s)

handover

cwndsegment delay

0500

10001500200025003000350040004500

20 25 30 35 40

Thro

ughp

ut (k

bps)

Time (s)

handover

TCP throughput

Page 41: Towards Understanding TCP Performance on …conferences.sigcomm.org/sigcomm/2014/doc/slides/131.pdfTowards Understanding TCP Performance on LTE/EPC Mobile Networks! Binh Nguyen1, Arijit

TCP in lossless handover

13

Congestion window and throughput Segments sequence

0

100

200

300

400

500

600

700

800

900

1000

28 28.5 29 29.5 30 30.5 31 31.5 32se

gmen

t seq

uenc

e nu

mbe

r

Time (s)

hand-over

Sent sequence numberAck sequence number

0

50

100

150

200

20 25 30 35 4002004006008001000120014001600

Cw

nd (s

egm

ent)

dela

y (m

s)

Time (s)

handover

cwndsegment delay

0500

10001500200025003000350040004500

20 25 30 35 40

Thro

ughp

ut (k

bps)

Time (s)

handover

TCP throughput

Seamless HO suffers from a throughput reduction while lossless HO experiences a high delay.

Page 42: Towards Understanding TCP Performance on …conferences.sigcomm.org/sigcomm/2014/doc/slides/131.pdfTowards Understanding TCP Performance on LTE/EPC Mobile Networks! Binh Nguyen1, Arijit

TCP’s performance during handovers

14

���

���

���

�����

������

����

����

����

�����

������

����

�������� �!��"�#

��

���

����

�����

���������

��������

������

������

������� ������ ��������

�������� ��� ����

TCP good-put End-to-end delay

Page 43: Towards Understanding TCP Performance on …conferences.sigcomm.org/sigcomm/2014/doc/slides/131.pdfTowards Understanding TCP Performance on LTE/EPC Mobile Networks! Binh Nguyen1, Arijit

TCP’s performance during handovers

14

���

���

���

�����

������

����

����

����

�����

������

����

�������� �!��"�#

��

���

����

�����

���������

��������

������

������

������� ������ ��������

�������� ��� ����

TCP good-put End-to-end delay

Page 44: Towards Understanding TCP Performance on …conferences.sigcomm.org/sigcomm/2014/doc/slides/131.pdfTowards Understanding TCP Performance on LTE/EPC Mobile Networks! Binh Nguyen1, Arijit

TCP’s performance during handovers

14

���

���

���

�����

������

����

����

����

�����

������

����

�������� �!��"�#

���

���

���

�����

������

����

����

����

���������������

������� !��!�� "���� �!#�

$���%��� &����'��(�� %��� &����'��

��

���

����

�����

���������

��������

������

������

�������

������

������

��

�������������� ����� ����

�������� �� �!��"������� �� �!��

��

���

����

�����

���������

��������

������

������

������� ������ ��������

�������� ��� ����

TCP good-put End-to-end delay

Page 45: Towards Understanding TCP Performance on …conferences.sigcomm.org/sigcomm/2014/doc/slides/131.pdfTowards Understanding TCP Performance on LTE/EPC Mobile Networks! Binh Nguyen1, Arijit

TCP’s performance during handovers

14

���

���

���

�����

������

����

����

����

�����

������

����

�������� �!��"�#

���

���

���

�����

������

����

����

����

���������������

������� !��!�� "���� �!#�

$���%��� &����'��(�� %��� &����'��

��

���

����

�����

���������

��������

������

������

�������

������

������

��

�������������� ����� ����

�������� �� �!��"������� �� �!��

��

���

����

�����

���������

��������

������

������

������� ������ ��������

�������� ��� ����

TCP good-put End-to-end delay

- In seamless handovers, the higher the PDCP queue size, the lower TCP good-put.

- In lossless handovers, the higher the PDCP queue size, the larger end-to-end delay.

Page 46: Towards Understanding TCP Performance on …conferences.sigcomm.org/sigcomm/2014/doc/slides/131.pdfTowards Understanding TCP Performance on LTE/EPC Mobile Networks! Binh Nguyen1, Arijit

Implications

15

Page 47: Towards Understanding TCP Performance on …conferences.sigcomm.org/sigcomm/2014/doc/slides/131.pdfTowards Understanding TCP Performance on LTE/EPC Mobile Networks! Binh Nguyen1, Arijit

Implications• Different types of handover has different impacts on

TCP’s performance:

15

Page 48: Towards Understanding TCP Performance on …conferences.sigcomm.org/sigcomm/2014/doc/slides/131.pdfTowards Understanding TCP Performance on LTE/EPC Mobile Networks! Binh Nguyen1, Arijit

Implications• Different types of handover has different impacts on

TCP’s performance:• Seamless handover: low delay but hurts throughput.

15

Page 49: Towards Understanding TCP Performance on …conferences.sigcomm.org/sigcomm/2014/doc/slides/131.pdfTowards Understanding TCP Performance on LTE/EPC Mobile Networks! Binh Nguyen1, Arijit

Implications• Different types of handover has different impacts on

TCP’s performance:• Seamless handover: low delay but hurts throughput.• Lossless handover: high delay but guarantee

throughput and delivery.

15

Page 50: Towards Understanding TCP Performance on …conferences.sigcomm.org/sigcomm/2014/doc/slides/131.pdfTowards Understanding TCP Performance on LTE/EPC Mobile Networks! Binh Nguyen1, Arijit

Implications• Different types of handover has different impacts on

TCP’s performance:• Seamless handover: low delay but hurts throughput.• Lossless handover: high delay but guarantee

throughput and delivery.

15

Page 51: Towards Understanding TCP Performance on …conferences.sigcomm.org/sigcomm/2014/doc/slides/131.pdfTowards Understanding TCP Performance on LTE/EPC Mobile Networks! Binh Nguyen1, Arijit

Implications• Different types of handover has different impacts on

TCP’s performance:• Seamless handover: low delay but hurts throughput.• Lossless handover: high delay but guarantee

throughput and delivery.

• What about applications?

15

Page 52: Towards Understanding TCP Performance on …conferences.sigcomm.org/sigcomm/2014/doc/slides/131.pdfTowards Understanding TCP Performance on LTE/EPC Mobile Networks! Binh Nguyen1, Arijit

Implications• Different types of handover has different impacts on

TCP’s performance:• Seamless handover: low delay but hurts throughput.• Lossless handover: high delay but guarantee

throughput and delivery.

• What about applications?• Low delay is important: Skype, real-time interactive

games, etc.

15

Page 53: Towards Understanding TCP Performance on …conferences.sigcomm.org/sigcomm/2014/doc/slides/131.pdfTowards Understanding TCP Performance on LTE/EPC Mobile Networks! Binh Nguyen1, Arijit

Implications• Different types of handover has different impacts on

TCP’s performance:• Seamless handover: low delay but hurts throughput.• Lossless handover: high delay but guarantee

throughput and delivery.

• What about applications?• Low delay is important: Skype, real-time interactive

games, etc.• High throughput and guaranteed delivery are

favorable (with a certain bound of delay): File transfer, HTTP.

15

Page 54: Towards Understanding TCP Performance on …conferences.sigcomm.org/sigcomm/2014/doc/slides/131.pdfTowards Understanding TCP Performance on LTE/EPC Mobile Networks! Binh Nguyen1, Arijit

Implications• Different types of handover has different impacts on

TCP’s performance:• Seamless handover: low delay but hurts throughput.• Lossless handover: high delay but guarantee

throughput and delivery.

• What about applications?• Low delay is important: Skype, real-time interactive

games, etc.• High throughput and guaranteed delivery are

favorable (with a certain bound of delay): File transfer, HTTP.

15

Can applications specify the type of handover?

Page 55: Towards Understanding TCP Performance on …conferences.sigcomm.org/sigcomm/2014/doc/slides/131.pdfTowards Understanding TCP Performance on LTE/EPC Mobile Networks! Binh Nguyen1, Arijit

Implications• Different types of handover has different impacts on

TCP’s performance:• Seamless handover: low delay but hurts throughput.• Lossless handover: high delay but guarantee

throughput and delivery.

• What about applications?• Low delay is important: Skype, real-time interactive

games, etc.• High throughput and guaranteed delivery are

favorable (with a certain bound of delay): File transfer, HTTP.

15

Can applications specify the type of handover?No: same radio bearer type for all applications.

Page 56: Towards Understanding TCP Performance on …conferences.sigcomm.org/sigcomm/2014/doc/slides/131.pdfTowards Understanding TCP Performance on LTE/EPC Mobile Networks! Binh Nguyen1, Arijit

Implications• Different types of handover has different impacts on

TCP’s performance:• Seamless handover: low delay but hurts throughput.• Lossless handover: high delay but guarantee

throughput and delivery.

• What about applications?• Low delay is important: Skype, real-time interactive

games, etc.• High throughput and guaranteed delivery are

favorable (with a certain bound of delay): File transfer, HTTP.

15

Can applications specify the type of handover?No: same radio bearer type for all applications.

Page 57: Towards Understanding TCP Performance on …conferences.sigcomm.org/sigcomm/2014/doc/slides/131.pdfTowards Understanding TCP Performance on LTE/EPC Mobile Networks! Binh Nguyen1, Arijit

Implications• Different types of handover has different impacts on

TCP’s performance:• Seamless handover: low delay but hurts throughput.• Lossless handover: high delay but guarantee

throughput and delivery.

• What about applications?• Low delay is important: Skype, real-time interactive

games, etc.• High throughput and guaranteed delivery are

favorable (with a certain bound of delay): File transfer, HTTP.

15

Can applications specify the type of handover?No: same radio bearer type for all applications.

Need a closer interaction between applications and the network?

Page 58: Towards Understanding TCP Performance on …conferences.sigcomm.org/sigcomm/2014/doc/slides/131.pdfTowards Understanding TCP Performance on LTE/EPC Mobile Networks! Binh Nguyen1, Arijit

Scenario 2: Sudden load increase in an eNodeB

• Assume an area with 250m of radius from the eNodeB where UEs are uniformly distributed.

• Users mobility: Levy-walk pedestrian mobility.

• UEs are attached to the eNodeB at the beginning of the experiment and start downloading data at a specific time.

16

Page 59: Towards Understanding TCP Performance on …conferences.sigcomm.org/sigcomm/2014/doc/slides/131.pdfTowards Understanding TCP Performance on LTE/EPC Mobile Networks! Binh Nguyen1, Arijit

Scenario 2: Sudden load increase in an eNodeB

• Assume an area with 250m of radius from the eNodeB where UEs are uniformly distributed.

• Users mobility: Levy-walk pedestrian mobility.

• UEs are attached to the eNodeB at the beginning of the experiment and start downloading data at a specific time.

16

Page 60: Towards Understanding TCP Performance on …conferences.sigcomm.org/sigcomm/2014/doc/slides/131.pdfTowards Understanding TCP Performance on LTE/EPC Mobile Networks! Binh Nguyen1, Arijit

Conclusions

17

Page 61: Towards Understanding TCP Performance on …conferences.sigcomm.org/sigcomm/2014/doc/slides/131.pdfTowards Understanding TCP Performance on LTE/EPC Mobile Networks! Binh Nguyen1, Arijit

Conclusions• Cellular specific phenomena impacts TCP’s performance:

• Different types of handover has different impacts on TCP’s performance: delay and throughput trade-off.

• Possible future work:

17

Page 62: Towards Understanding TCP Performance on …conferences.sigcomm.org/sigcomm/2014/doc/slides/131.pdfTowards Understanding TCP Performance on LTE/EPC Mobile Networks! Binh Nguyen1, Arijit

Conclusions• Cellular specific phenomena impacts TCP’s performance:

• Different types of handover has different impacts on TCP’s performance: delay and throughput trade-off.

• Possible future work:

• More investigations on the TCP’s performance problems.

• Cross-layer interactions: e.g., applications and the mobility stack.

• Base station congestion prediction and mitigation.

17

Page 63: Towards Understanding TCP Performance on …conferences.sigcomm.org/sigcomm/2014/doc/slides/131.pdfTowards Understanding TCP Performance on LTE/EPC Mobile Networks! Binh Nguyen1, Arijit

Thank you!