towards the description of long term self consistent effects in … · 2006. 11. 3. · sis100 has...

33
10/2/06 ICAP 2006 G. Franchetti 1 Towards the Description of Long Term Self Consistent Effects in Space Charge Induced Resonance Trapping G. Franchetti, GSI ICAP 2006, Chamonix

Upload: others

Post on 27-Jan-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • 10/2/06 ICAP 2006 G. Franchetti 1

    Towards the Description of Long Term Self Consistent Effects in Space

    Charge Induced Resonance Trapping

    G. Franchetti, GSIICAP 2006, Chamonix

  • 10/2/06 ICAP 2006 G. Franchetti 2

    Overview

    High intensity challenges

    Impact on computer simulations

    Trapping of particle inducedby space charge

    Status of the art of long term simulation

  • 10/2/06 ICAP 2006 G. Franchetti 3

    Computing & Modeling

    PhysicalProblem

    Modeling of ComplexSystems (analytic, numeric)

    Results(observables)

    Experiment

    Prediction

    TheoristTheoristPathPath

    Unde

    rsta

    nding

  • 10/2/06 ICAP 2006 G. Franchetti 4

    High Intensity beams are needed in future research

    JPARC SNS (J. Holmes)

    ∆Q ~ 0.17-0.28

    Storage for 25000 turns ofBunches with tuneshift Design intensity 1.4 x 1014 protons

    Stored for 1000 turns

    CERN: LHC beam in PS

    9.2 1012 ppp @ 26 GeV/c(01/09/04)

    00.5

    11.5

    2

    2.53

    3.54

    205 705 1205 1705 2205

    TIME IN THE CYCLE [ms]

    LOSS

    ES IN

    THE

    PS

    [% o

    f the

    inj.

    beam

    ]

    0

    5

    10

    15

    20

    25

    30

    Kin

    etic

    ene

    rgy

    [GeV

    ]

    Courtesy E. MetralHHH CERN-GSI workshop

    Space charge effect not neglectable

  • 10/2/06 ICAP 2006 G. Franchetti 5

    The next generation of computational challenges at FAIR

    New: Cooled pbar Beams (15 GeV)Intense Cooled Radioactive BeamsParallel Operation

    Primary Beam Intensity x 100-1000Secondary Beam Intensity x 10 000

    Heavy Ion Beam Energy x 30

  • 10/2/06 ICAP 2006 G. Franchetti 6

    SIS100 critial scenario

    Beam Life Time

    Required Intensity in SIS18 Booster (after acceleration)

    1.5 x 1011 U28+ -ions /cycle

    Required Intensity in SIS100

    6 x 1011 U28+ -ions /cycle

    Low charge states beams providehigher intensities but have shorterlife time

    Beam Life Time

    1 secondStorage ofThe first bunch

  • 10/2/06 ICAP 2006 G. Franchetti 7

    Requirements on Beam loss

    6 1011/s 1.0 GeV/u U28+: 23 kW1 W/m tolerable beam loss

    SIS 100/300 average (peak) power:

    ~5 % acceptable loss

  • 10/2/06 ICAP 2006 G. Franchetti 8

    The SIS100 challengesStorage time 5 x 105 turnsIntensity 1.5 x 1011/ions U+28

    Space charge tuneshift ∆Q ~ 0.2SIS100 has SC dipoles --> Nonlinearities

    Beam loss predictionLocalization of beam lossEmittance increase prediction

    Lattice design:Collimation system

    Magnet quality:Nonlinear field control

    Resonance compensation system

    Coherent instability threshold with space charge in theFAIR rings. Talk on Wed. by O. Boine-Frankenheim

  • 10/2/06 ICAP 2006 G. Franchetti 9

    The physics problem

    Periodic crossingOf a resonance

    x

    Bare tune

    Resonance

    z

  • 10/2/06 ICAP 2006 G. Franchetti 10

    Periodic crossingOf a resonance

    x

    Bare tune

    Resonance

    Trapping into Resonances

    z

  • 10/2/06 ICAP 2006 G. Franchetti 11

    Computing challenges

    Grid resolution of the beam: +/- 10 grid points

    Typical beam pipe/beam size ratio = 6

    Transversally 125 x 125 grid points Longitudinally keep the same 125 grid points

    Statistical fluctuation of 1% -> 104 particle/grid cell

    PIC parameters

    N = 100 x 106

    particles

    Integration steps/turn: 20 x Qx = 20 x 18 = 360

    Tracking a bunch for 5 x 10Tracking a bunch for 5 x 1055 turns means:turns means:

    Compute the space charge of 100 x 10Compute the space charge of 100 x 1066 particlesparticlesfor 200 x 10for 200 x 1066 integration stepsintegration steps

  • 10/2/06 ICAP 2006 G. Franchetti 12

    The long term effect of PIC noise

    J. J. Struckmeier Struckmeier Phys. Rev. E 54, 830Phys. Rev. E 54, 830−−837837

  • 10/2/06 ICAP 2006 G. Franchetti 13

    Modeling: Example with SIS18

    AG lattice modeledIn smooth approximation

    Uniform focusing transport channel

  • 10/2/06 ICAP 2006 G. Franchetti 14

    Beam distribution

    xWeakSpace charge

    StrongSpace charge

    z

    Matched with a 3D uniform focusing system

  • 10/2/06 ICAP 2006 G. Franchetti 15

    Modeling of space charge and lattice nonlinearities

    LatticeNonlinearities(in 2D)

    Analytic space charge modeling

    * Round beam* Frozen distribution

    LocalLongitudinal density

  • 10/2/06 ICAP 2006 G. Franchetti 16

    Single particle equation of motion

    Symplectic trackingLatticeNonlinear kickSpace charge kicks

  • 10/2/06 ICAP 2006 G. Franchetti 17

    Example for SIS18Correlation instantaneousisland position versus longitudinal position

    Phase space plot of the frozen system at z = 0

    R = 34.4 mQx0 ~ 4.3Qy0 = 3.2σx/y = 1 cm∆Qx = 0.1K2 = 0.05 m-2

    Space charge frozen

    Qx0

    Qy0

    3 Q

    x=

    13

    The outer position of the island is reached at z = 0 and it depends on Qx - Qx, res. Here Qx = 4.35

  • 10/2/06 ICAP 2006 G. Franchetti 18

    Island Crossing

    A particle with maximum amplitude of x = 1.5 σx willsee the island crossing its orbit at z = 1.6 - 1.7 σz

    The larger the particle maximum amplitude, the smaller the longitudinal position where the island crosses the particle’s orbit

  • 10/2/06 ICAP 2006 G. Franchetti 19

    Trapping

    15000 turns for 1 oscillation

    x = 1.5 σx, x’ = y = y’ = 0z = 3 σz, z’ = 0Qx = 4.35

    Example of full trappingIn 1 synchrotron oscillation

  • 10/2/06 ICAP 2006 G. Franchetti 20

    Halo formation

    x=1.5σ x’=y=y’=z’=0 z = 3σQx = 4.35

    Halo

    Mechanicallimitation

  • 10/2/06 ICAP 2006 G. Franchetti 21

    Consequences on the evolution of the bunched beam

    Emittance growth Halo densityHalo Size

    How to simulate such a complex dynamics ?

  • 10/2/06 ICAP 2006 G. Franchetti 22

    The Universe of CodesF. Zimmermann et al. EPAC2006 http://oraweb.cern.ch:9000/pls/hhh/code_website.startup

    Optics

    BETALieMathMADXSADSixTrack�

    Electron Cloud

    Build-Up SimulationsCSECECLOUDFaktor2POSINST

    IncoherentHEADTAILMICROMAP

    Multi-Bunch InstabilitySimulationsPEI-M

    MultipactingESA ESTEC

    Self-Consistent SimulationsFaktor2ORBITQUICKPICWARP

    Single-Bunch Instability SimulationsHEADTAIL

    Synchrotron RadiationPHOTON������������������

    Intrabeam Scattering

    MADXMOCAC�

    ConventionalInstabilitiesHEADTAILMOSESORBITTRISIMWARP� ����� �

    VacuumVAKDYNCollimation

    SixTrack VAKLOOPImpedancesVAKTRAKABCILAWALLAWATPATRICREWALL

    NonlinearDynamics Strong-Strong

    BBSSBEAMXBeamBeam3DCOMBI

    Weak-StrongBBSIMBBTrackWSDIFF�������

    Ctrack Space Charge

    IMPACTMICROMAPORBITPATRICSimpsonsWARP�����

    MICROMAP

    ��

    Electron Cooling

    BETACOOLMOCACVORPAL

    IonsFIIATFWARP

    Luminosity PerformanceNAFFEVOLNERO

    PLATOSODDSUSSIXSixTrackgrr

  • 10/2/06 ICAP 2006 G. Franchetti 23

    MICROMAP Library

    Arbitrary linear maptransportNonlinear

    kick

    2D PIC solver: Square or arbitrary boundaryNonlinear kicks: Lattice nonlinearities

    Space charge

  • 10/2/06 ICAP 2006 G. Franchetti 24

    Frozen space charge modelingA. Orzekhovskaya poster

    Normalizeddistribution

    Ellipsoidalsimmetry

    For beam of arbitrary sizes the modeling is more complex

    Are computedonly once

  • 10/2/06 ICAP 2006 G. Franchetti 25

    Benchmarking / Validation

    Code2(modeling)

    Code1(modeling)

    ExperimentalResult

    PhysicalProblem

    Code-code Benchmarking

    Modeling-Physics Benchmarking

    Brute force modeling ?Step-by-step modeling ?

  • 10/2/06 ICAP 2006 G. Franchetti 26

    Emittance evolution in a full bunch

    Q s = 10-3

    105 turns103 macroparticles

    In SIMPSONS (S. Machida)the longitudinal dynamicsIs nonlinearIn MICROMAP (G.Franchetti)the longitudinal dynamicsIs linear

    http:http://www//www--linuxlinux..gsigsi..de/~giuliano/research_activity/trapping_benchmarking/mainde/~giuliano/research_activity/trapping_benchmarking/main.html.html

    Code-code benchmarking

    G. Franchetti,I. Hofmann, S. Machida HB2006

    Excellent Agreement !!

    Qx = 4.3604

    SIS18 (full AG lattice)

  • 10/2/06 ICAP 2006 G. Franchetti 27

    Simulations of the CERN-PS Experiment

    16% beam loss

    Including chromaticity Without chromaticity

    9% beam loss

    Maximum beam loss do not match measurements

    Modeling-Experiment Benchmarking

    G.Franchetti, I.Hofmann, M.Giovannozzi, E.Metral, M.Martini

  • 10/2/06 ICAP 2006 G. Franchetti 28

    E-cloud incoherent effectsCode-simplified-model benchmarking

    Periodic crossing of resonancesand particle trapping Inducedby EC pinch

    E.Benedetto, G.Franchetti, F. ZimmermannPRL, 97, 034801 (2006)

  • 10/2/06 ICAP 2006 G. Franchetti 29

    The complexity of the self-consistency

    Resonance conditiondetuning

    Particle amplitudegrowth

    Beam sizegrowth

    Particleloss

    Halo particles

  • 10/2/06 ICAP 2006 G. Franchetti 30

    Including beam loss effect

    CF modeling of PSIncluding chromaticity

    2x106 turns

    Measurementat CERN-PS

    Attempt of longTerm beam lossPrediction includingSemi-self consistency4x105This prediction is not correct because

    The effect of the self-consistency is very Critical on how many particles are pushedInto the resonance

  • 10/2/06 ICAP 2006 G. Franchetti 31

    Effect of beam lossParticles whichCross the resonanceAre trapped and lost

    New particle arePushed into a periodicResonance crossing

    The result on long term beam loss are sensitiveTo the modeling on how new particles are drawnClose the resonance.

    ISSUES: better modeling and further Experiment-code Benchmarching

  • 10/2/06 ICAP 2006 G. Franchetti 32

    Benchmarking Experiments @ GSI

    • 4 Measurement campaign starting from December 2006.

    • 24 shifts of beam

    Experiment S317

    Controlled highly resolved measurement data will be available for benchmarking codes, on emittance growth and beam loss perdition

    SIS18

    Scheduling

  • 10/2/06 ICAP 2006 G. Franchetti 33

    Conclusion / Outlook

    Understanding of the mainIngredients of the long termStorage of high intensity bunches

    Developed a modeling whichGives result consistent withMeasurements

    Work for including the effect of the Self consistency is in Progress

    At GSI measurement for code Benchmarking will be performedAs part of an approved experiment