towards systemic analysis of building energy systems...environmental energy technologies division...

36
1 Environmental Energy Technologies Division Towards Systemic Analysis of Building Energy Systems seminar presented at the Carnegie Mellon University Electricity Industry Center 30 May 2006 by Chris Marnay research supported by the U.S. Dept of Energy and the California Energy Commission der.lbl.gov eetd.lbl.gov/ea/emp [email protected] collaborators: Afzal Siddiqui, Karl Maribu, Kristina Hamachi LaCommare, Michael Stadler, Ryan Firestone

Upload: others

Post on 05-Feb-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • 1

    Environmental Energy Technologies Division

    Towards Systemic Analysis of Building Energy Systems

    seminar presented at the

    Carnegie Mellon UniversityElectricity Industry Center

    30 May 2006by

    Chris Marnay

    research supported by the U.S. Dept of Energy and the California Energy Commission

    der.lbl.gov eetd.lbl.gov/ea/emp [email protected]

    collaborators: Afzal Siddiqui, Karl Maribu, Kristina Hamachi LaCommare, Michael Stadler, Ryan Firestone

  • 2

    Environmental Energy Technologies Division

    Outline

    1. Introduction to Microgrids

    2. Distributed Energy Resources Customer Adoption Model (DER-CAM)

    3. Example Study: San Bernardino CA USPS P&DC (parts A & B)

    4. Power Quality and Reliability (PQR)

    5. Lessons Learned/Future Work

  • 3

    Environmental Energy Technologies Division

    History of U.S. Electricity Sector

    phases of centralization

    1. isolated developments (pre 1900)

    2. consolidation and monopolization (1900-1933)

    3. fossilization and total centralization (1933-1980)

    phases of decentralization

    1. independent investment (avoided cost) (1980-1995)

    2. wholesale (and some retail) competition (1995- )

    3. decentralization and full competition? (2000- )

  • 4

    Environmental Energy Technologies Division

    What is a Microgrid?

    A controlled grouping of energy (including electricity) sources and sinks that is connected to the macrogrid but can function independently of it.

    Two Main Benefits to Developers of Microgrids:• pushing efficiency limits by heat recovery (CHP)• providing heterogeneous power quality and

    reliability (PQR)

    There are other societal benefits.

  • 5

    Environmental Energy Technologies Division

    2. Distributed Energy Resources Customer Adoption Model

    (DER-CAM)

  • 6

    Environmental Energy Technologies Division

    DER Customer Adoption Model (DER-CAM)

  • 7

    Environmental Energy Technologies Division

    DER-CAM:Mathematical Model

    • DER-CAM uses GAMS to model an MIP solved with Cplex • minimize

    – customer (annual) energy bill(DER investment, DER operation, energy purchases,

    energy sales) annualized• subject to:

    – energy balance– electricity & NG tariffs– DER characteristics (investment cost, heat rate, and maintenance cost)– heat production/available waste heat/CHP technology

    (heat storage & solar thermal assistance)– solar insolation

  • 8

    Environmental Energy Technologies Division

    3. San Bernardino Processing and Distribution Center

    Part A: 2002

  • 9

    Environmental Energy Technologies Division

    Redlands, California

    San Bernardino USPS, Redlands CA

  • 10

    Environmental Energy Technologies Division

    San Bernardino USPS: Temperature

    source: Renewable Resource Data Center, National Renewable Energy Laboratory, http://rredc.nrel.gov/

    05

    1015202530354045

    1 2 3 4 5 6 7 8 9 10 11 12Month

    deg

    C

    Minimum Temp (degC)Average Temp (degC)Maximum Temp (degC)

  • 11

    Environmental Energy Technologies Division

    San Bernardino USPS, Redlands CA

    equipment runs mostly during evening and night

    25 000 m2 single-story

  • 12

    Environmental Energy Technologies Division

    USPS July Weekday Electric Loads

    site electric loads

    How site electric loads are met.

    peak load = 1500 kW

    0200400600800

    1000120014001600

    1 4 7 10 13 16 19 22

    hour

    load

    (kW

    e)

    CoolingElectric-Only

    0

    200

    400

    600

    800

    1000

    1200

    1400

    1600

    1 3 5 7 9 11 13 15 17 19 21 23

    hour

    load

    (kW

    e)

    cooling offset by gas burningcooling offset by waste heat recoveryutility electricity purchaseNG generator generationMT generation

    peak load = 1150 kW

  • 13

    Environmental Energy Technologies Division

    San Diego USPS(Margaret L. Sellers Processing and Distribution Center)

  • 14

    Environmental Energy Technologies Division

    East Bay Municipal Utility District Microturbine Installation with Cooling

  • 15

    Environmental Energy Technologies Division

    3. San Bernardino Processing and Distribution Center

    Part B: 2005

  • 16

    Environmental Energy Technologies Division

    San Bernardino USPS: Solar Radiation

    0

    5001000

    1500

    2000

    2500

    3000

    3500

    1 2 3 4 5 6 7 8 9 10 11 12month

    J/cm

    ^2/d

    ay

    Fukuoka, JapanSan Joaquin Valley, CA

    source: 2001 data from World Radiation Data Centre, http://wrdc.mgo.rssi.ru/

  • 17

    Environmental Energy Technologies Division

    Minimum Cost Results• low temp. collectors are economic• chosen system:

    – 1 MW (electric capacity) of reciprocating engines– 1.7 MW (thermal cooling capacity) single-effect abs. chiller– 1.5 MW (heat delivered) low temperature collectors

    • but only provide 45% of heat• and only lower the annual bill by 1%• high temp. collectors and PV are not chosen

  • 18

    Environmental Energy Technologies Division

    Meeting Absorption Chiller and Electric Loads

    0

    500

    1000

    1500solarDG

    absorption chiller thermal load

    $500/kWhigh temp. July

    US$150/kW low temp. Jan

    elec

    tric

    pow

    er (k

    W)

    0

    500

    1000

    1500

    1 5 9 13 17 21hour

    solarDG

    ther

    mal

    pow

    er (k

    W)

    0

    500

    1000

    1500

    NG-fired DGpurchase

    offset by abs.

    0

    500

    1000

    1500

    1 5 9 13 17 21hour

    offset by abs. chiller

    purchased

    NG-fired DG

  • 19

    Environmental Energy Technologies Division

    Deteriorating Economics of DG-CHP2002 2004 2006

    summer winter summer winter summer winterelectricity

    monthly fee ($) ~300 ~300 ~300 ~300 ~300 ~300demand charge noncoincident 6.6 0.0 8.3 8.3 8.5 8.5($/kW monthly peak)on-peak 18.0 0.0 21.7 0.0 29.7 0.0

    mid-peak 2.7 0.0 3.3 0.0 4.8 0.0off-peak 0.0 0.0 0.0 0.0 0.0 0.0

    volumetric charge on-peak 0.195 n/a 0.122 n/a 0.163($/kWh) mid-peak 0.109 0.121 0.072 0.091 0.094 0.118

    off-peak 0.088 0.089 0.041 0.043 0.054 0.056natural gas

    monthly fee ($) ~600 ~600 ~600 ~600 ~600 ~600volumetric ($/kWh) 0.014 0.013 0.02 0.021 0.024 0.024($/GJ) 3.89 3.61 5.56 5.83 6.67 6.67

    to to to to to to($/kWh) 0.02 0.023 0.026 0.028 0.032 0.041($/GJ) 5.56 6.39 7.22 7.78 8.89 11.39

    on-site generation marginal cost

    electricity only 0.042 0.039 0.061 0.064 0.073 0.073($/kWh) to to to to to to

    0.061 0.070 0.079 0.085 0.097 0.124electricity and absorption cooling 0.039 0.037 0.056 0.059 0.068 0.068($/kWh) to to to to to to

    0.056 0.065 0.073 0.079 0.090 0.116

  • 20

    Environmental Energy Technologies Division

    Optimal System Results (130 g/kWh)

    NG

    ICE*

    Abs. chiller**

    Heat

    exchanger***

    Solar collector****

    Total

    DER

    Maint-enance

    Elec-tricity

    Natural G

    as

    Electricity

    Natural gas

    no investment 0.0 0.0 0.0 0.0 932 0 0 930 2 9770 13.9 1271CHP, no solar 1.0 1.7 1.1 0.0 813 58 37 437 281 6092 9326 1277low temp. $150/kW 1.0 1.7 1.1 1.5 802 75 35 426 266 5224 10197 1236high temp. $500/kW 1.0 1.6 0.9 0.8 798 95 32 424 247 5886 8168 1190high temp. $900/kW 1.0 1.6 0.6 0.1 819 69 24 515 211 6933 6825 1256

    * capacity in units of 0.5 MW engines**

    *** capacity in units of rated thermal power transfer**** capacity in units of thermal power production at 1 kW/m^2 solar radiation

    Installed Capacity (MW) Energy cost (k$/a) Energy purchase (MWh/a)

    chiller capacity stated as amount of thermal power consumed. Chillers are single effect for the low temp. case and double effect for the high temp. cases.

    Carbon emissions

    (t/a)

  • 21

    Environmental Energy Technologies Division

    Carbon Constraint Results• high temp. collectors provide carbon

    savings at lower control cost than low temp. collectors

    • for low carbon reductions PV is…– more economic than high temp. collectors– competitive with low temp. collectors

    • solar thermal is still valuable because of storage which offsets evening cooling loads

  • 22

    Environmental Energy Technologies Division

    DER Equipment Installation Under Carbon Constraint (130 g/kWh)

    low temp. collector high temp. collector

    01234567

    600 800 1000 1200carbon emissions (t/a)

    inst

    alle

    d ca

    paci

    ty (M

    W)

    solar collector PV NG-fired DG

    01234567

    600 800 1000 1200carbon emissions (t/a)

  • 23

    Environmental Energy Technologies Division

    Pareto Minimization of Cost and Carbon Emissions (130 g/kWh)

    0

    500

    1000

    1500

    2000

    2500

    3000

    0 500 1000 1500carbon limit (t/a)

    cost

    (US

    k$/a

    )

    Low Temp.collectorsHigh Temp.collectors

  • 24

    Environmental Energy Technologies Division

    Cost of Carbon Savings (130 g/kWh)

    00.20.40.60.8

    11.21.41.61.8

    2

    0 200 400 600 800 1000carbon savings (t/a)

    cost

    of c

    arbo

    n sa

    ving

    s (U

    S$/

    kg) Low Temp.

    collectorsHigh Temp.collectors

  • 25

    Environmental Energy Technologies Division

    Source of Carbon Emissions(130 g/kWh)

    0200400600

    800100012001400

    700 800 900 1000 1100 1200 1238

    carbon limit (t/a)

    carb

    on e

    mis

    sion

    s (t/

    a)

    Carbon Emissioncarbon emissions from natural gas carbon emissions from utility electricity

    low temp. collector high temp. collector

    0200400600

    800100012001400

    600 700 800 900 1000 1100 1200

    carbon limit (t/a)

  • 26

    Environmental Energy Technologies Division

    4. Power Quality and Reliability

  • 27

    Environmental Energy Technologies Division

    Electricity Reliability, Technology, and Cost (Traditional)

    stand-alonesteam generation

    1900 1950 2000

    Year

    LightsMotors

    Digital Systems

    electricity reliability(nines)

    109876543210

    (3 ms/yr)

    (30 ms/yr)

    (0.3 sec/yr)

    (3 sec/yr)

    (30 sec/yr)

    (5 min/yr)

    (1 hr/yr)

    (9 hr/yr)

    (3-4 day/yr)

    (1 mo/yr)

    interconnected central station generation

    grid + back-up + UPS

    cost ($/kWh)

  • 28

    Environmental Energy Technologies Division

    1900 1950 2000

    Year

    electricity reliability(nines)

    109876543210

    (3 ms/yr)

    (30 ms/yr)

    (0.3 sec/yr)

    (3 sec/yr)

    (30 sec/yr)

    (5 min/yr)

    (1 hr/yr)

    (9 hr/yr)

    (3-4 day/yr)

    (1 mo/yr)

    cost $/kWh

    DER-basedDistribution System

    Robust Gen. & Trans.

    Local Reliability

    Electricity Reliability, Technology, and Cost (Distributed)

    UPS/microgrids

  • 29

    Environmental Energy Technologies Division

    What Does Power Quality and Reliability Really Cost?

    lowest in w

    orld today→

    U.S. today

    →perfection

    cost of unreliability→

    total cost of reliability

    possible effect of DER

    cost of reliability→

  • 30

    Environmental Energy Technologies Division

    Temporal Electricity Price Variation is Familiar

  • 31

    Environmental Energy Technologies Division

    An PQR Pyramid• Loads are often broken

    down by time and enduse but not by PQR requirements.

    • The most demanding PQR requirements are not met.

    • Highly sensitive loads are small and they could be smaller.

    • Local supply could tailor PQR to the needs of the enduse.

  • 32

    Environmental Energy Technologies Division

    5. Lessons Learned/Future Work/Conclusion

  • 33

    Environmental Energy Technologies Division

    Lessons Learned

    • reciprocating engines are the strongly incumbent technology• mixed technology systems sometimes economically attractive• DER economics are driven more by electricity than fuel prices• optimal systems are larger than are typically built today• DER-CAM sizes more to meet electricity than heat loads• in moderate climates, cooling loads can justify CHP systems• PV becomes economic with subsidies or carbon constraints• demand charges encourage bigger systems• energy efficiency gains significant when CHP involved, but

    modest overall • efficiency constraints can run counter to system economics• markets are highly regionalized and building specific

  • 34

    Environmental Energy Technologies Division

    DER-CAM On-Going Work• bottom up modeling of effects of DER/microgrid

    adoption (environmental/PQR?)• evaluating economics of microgrid technology

    improvements • extending storage capability to electricity• estimation of national benefits of U.S. DER

    adoption and DG R&D• development of EnergyManager capabilities• applying algorithms in Energy+• PQR valuation

  • 35

    Environmental Energy Technologies Division

    Conclusion• DER-CAM has been developed to identify cost minimizing technology neutral microgrid systems

    • useful energy flow requirements are met systemically by equipment investments and operations, including CHP and endogenous effects

    • devices/investments interaction endogenously solved

    • results provide valuable starting point yardstick for building analysis or can be generalized to produce higher level estimates of DER adoption

    • incorporating PQR is the big challenge

  • 36

    Environmental Energy Technologies Division

    THE END