toward robust and reliable wireless personal area networkswireless.egr.uh.edu/guanbo zheng...

64
Toward Robust and Reliable Wireless Personal Area Networks Guanbo Zheng Department of Electrical and Computer Eng. University of Houston TX USA University of Houston, TX, USA Ph.D. Thesis Defense Presentation 20130717

Upload: others

Post on 08-Jul-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Toward Robust and Reliable Wireless Personal Area Networkswireless.egr.uh.edu/Guanbo Zheng Defense.pdfToward Robust and Reliable Wireless Personal Area Networks Guanbo Zheng Department

Toward Robust and Reliable Wireless Personal Area Networks

Guanbo Zhengg

Department of Electrical and Computer Eng.University of Houston TX USAUniversity of Houston, TX, USA

Ph.D. Thesis Defense Presentation2013‐07‐17

Page 2: Toward Robust and Reliable Wireless Personal Area Networkswireless.egr.uh.edu/Guanbo Zheng Defense.pdfToward Robust and Reliable Wireless Personal Area Networks Guanbo Zheng Department

Outline

1. Background and Motivations

2. Link Quality Prediction

3 Neighbor Discovery and Contention Graph Inference3. Neighbor Discovery and Contention Graph Inferencea. A Binary Inference Approachb A Linear Inference Approachb. A Linear Inference Approach

4. Robust Relay Placement and Route Selection

5. Conclusions and Future Work

2

Page 3: Toward Robust and Reliable Wireless Personal Area Networkswireless.egr.uh.edu/Guanbo Zheng Defense.pdfToward Robust and Reliable Wireless Personal Area Networks Guanbo Zheng Department

Wireless Personal Area Network (WPAN)

WPAN is a wireless network interconnect wireless devices centered around an individual person.devices centered around an individual person.

Bluetooth

3

Smart Energy MonitoringHealth Monitoring

Page 4: Toward Robust and Reliable Wireless Personal Area Networkswireless.egr.uh.edu/Guanbo Zheng Defense.pdfToward Robust and Reliable Wireless Personal Area Networks Guanbo Zheng Department

IEEE Standards of WPANs0 

Meter)

00       1000

Range (M

802.15.4 Low rate WPAN10

             10

802 15 1

0.1                       1                        10                    100                 1000      

WPAN1 802.15.1Bluetooth

Data Rate (Mbps)

Low QoS QoS for voice application Very high QoSfor multimedia streaming

4

o u t ed a st ea g

Page 5: Toward Robust and Reliable Wireless Personal Area Networkswireless.egr.uh.edu/Guanbo Zheng Defense.pdfToward Robust and Reliable Wireless Personal Area Networks Guanbo Zheng Department

Typical Topologies in WPANs

Peer‐to‐peer

Two types: star(coordinated), peer‐to‐peer(ad‐hoc) 

5

Page 6: Toward Robust and Reliable Wireless Personal Area Networkswireless.egr.uh.edu/Guanbo Zheng Defense.pdfToward Robust and Reliable Wireless Personal Area Networks Guanbo Zheng Department

Motivations (1)

COTS WPAN devices provides limited PHY information regarding current channel conditioninformation regarding current channel condition.• For example, commodity Zigbee only provides:

• Received signal strength (RSSI)g g ( )• Link quality index (LQI)

Moteiv TelosB Zigbee Ask:

• Are those readings reliable?• H t di t th i t t li k lit ?• How to predict the instantaneous link quality? 

(bit/symbol /packet error rate)

6

Page 7: Toward Robust and Reliable Wireless Personal Area Networkswireless.egr.uh.edu/Guanbo Zheng Defense.pdfToward Robust and Reliable Wireless Personal Area Networks Guanbo Zheng Department

Motivations (2)

Coexistence is critical in pervasively deployed WPANs• Coexist with other WPANs and other systems like WiFiCoexist with other WPANs, and other systems like WiFi.• Network topology may change due to node mobility.

NodeA

PANCoordinator

NodeB

Need a joint neighbor discovery & contention graph inference approach

NodeC

7

Need a joint neighbor discovery & contention graph inference approach.

Page 8: Toward Robust and Reliable Wireless Personal Area Networkswireless.egr.uh.edu/Guanbo Zheng Defense.pdfToward Robust and Reliable Wireless Personal Area Networks Guanbo Zheng Department

Motivations (3)

High rate WPANs pose high QoS requirement and are vulnerable to network dynamics and uncertaintyvulnerable to network dynamics and uncertainty.• Radio link characteristics• Portable devices mobility• Moving objects

Need a robust resource provisioning to account for uncertainty

8

Need a robust resource provisioning to account for uncertainty.

Page 9: Toward Robust and Reliable Wireless Personal Area Networkswireless.egr.uh.edu/Guanbo Zheng Defense.pdfToward Robust and Reliable Wireless Personal Area Networks Guanbo Zheng Department

Main Contributions

Link quality prediction in 802.15.4 WPANs• Decipher RSSI, LQI readings  available at commodity Zigbee;p g y g• Propose a prediction model that predicts the link quality using 

LQI readings as input.

hb d d h f d Neighbor discovery and contention graph inference in ad‐hoc WPANs• Propose two solutions to neighbor discovery and contention p g y

graph inference, a binary approach and a location based linear approach.

R l l t d t l ti i 802 15 3 WPAN Relay placement and route selection in 802.15.3c WPANs• Propose two robust formulations of relay placement to combat 

the uncertain link failure.

9

Page 10: Toward Robust and Reliable Wireless Personal Area Networkswireless.egr.uh.edu/Guanbo Zheng Defense.pdfToward Robust and Reliable Wireless Personal Area Networks Guanbo Zheng Department

Structure of This Dissertation

Reliable Link Neighbor DiscoveryReliable Link Quality 

Prediction

Neighbor Discovery & Contention Graph 

Inference

Robust Resource Provisioning

Our objective is to design reliable and robust WPANs.

10

Page 11: Toward Robust and Reliable Wireless Personal Area Networkswireless.egr.uh.edu/Guanbo Zheng Defense.pdfToward Robust and Reliable Wireless Personal Area Networks Guanbo Zheng Department

Part 1Part 1

Link Quality Prediction in 802 15 4 LowLink Quality Prediction in 802.15.4 Low Rate WPANs

11

Page 12: Toward Robust and Reliable Wireless Personal Area Networkswireless.egr.uh.edu/Guanbo Zheng Defense.pdfToward Robust and Reliable Wireless Personal Area Networks Guanbo Zheng Department

802.15.4 Compliant Zigbee Sensor

802.15.4 Zigbee is a low‐rate low‐power wireless solution widely used for many applications.widely used for many applications.• 2.4GHz ISM band,  bit rate: 250kbps • 2MHz bandwidth, 

S d S i h 32 hi PN• Spread Spectrum with 32‐chip PN.• RF Single Chip: TI CC2420

P id li it d k l d f h i l li k

Moteiv TelosB Zigbee

Provide limited knowledge of physical link• Received signal strength indicator (RSSI)  readings• Link quality index (LQI) readingsq y ( ) g

Are those readings reliable?

12

Page 13: Toward Robust and Reliable Wireless Personal Area Networkswireless.egr.uh.edu/Guanbo Zheng Defense.pdfToward Robust and Reliable Wireless Personal Area Networks Guanbo Zheng Department

Our Findings

RSSI is ambiguous and NOT always linear when input power increasespower increases.  LQI truly reflects the SNR at the receiver.

Formulate SER analytically using SNR under different channel models.

A link quality prediction model is proposed using LQI.

Link quality(BER/SER/PER)

LQI Readings

Estimated SNR

13

Page 14: Toward Robust and Reliable Wireless Personal Area Networkswireless.egr.uh.edu/Guanbo Zheng Defense.pdfToward Robust and Reliable Wireless Personal Area Networks Guanbo Zheng Department

Part 2Part 2

Joint Neighbor Discovery and ContentionJoint Neighbor Discovery and Contention Graph Inference in ad-hoc WPANs

14

Page 15: Toward Robust and Reliable Wireless Personal Area Networkswireless.egr.uh.edu/Guanbo Zheng Defense.pdfToward Robust and Reliable Wireless Personal Area Networks Guanbo Zheng Department

Motivations

Neighbors are the nodes directly communicable to a given nodegiven node.

Neighbor discovery is the procedure of finding and identifying the IDs of all the neighborsidentifying the IDs of all the neighbors.• The crucial first step of constructing ad‐hoc WPANs.• Needed for efficient route selection and topology control.Needed for efficient route selection and topology control.

Contention graph (or conflict graph)l k d h f l f h• Two concurrent links may end up with failure if they 

contend with each other.• Needed for efficient resource provisioning.

15

Needed for efficient resource provisioning.

Page 16: Toward Robust and Reliable Wireless Personal Area Networkswireless.egr.uh.edu/Guanbo Zheng Defense.pdfToward Robust and Reliable Wireless Personal Area Networks Guanbo Zheng Department

Motivations

Contended or not

PAN

NodeA

PANCoordinator

NodeB

NodeC

h i i hb ?

NodeB

Especially for dynamic network environment, • f t d t i f h i d d

Who is my neighbor?

• a fast and accurate inference approach is needed.

16

Page 17: Toward Robust and Reliable Wireless Personal Area Networkswireless.egr.uh.edu/Guanbo Zheng Defense.pdfToward Robust and Reliable Wireless Personal Area Networks Guanbo Zheng Department

Related Work

Neighbor Discovery• [Kesh et al 04] studied a deterministic approach with centralized scheduling[Kesh et al., 04] studied a deterministic approach with centralized scheduling.

• [Kohvakka et al., 09] studied the randomized scheme in a single packet reception network that discovers when there is only one TX.

• [Zeng et al., 11] [You et al., 12] extended to multiple packet reception network 

• [Guo et al., 08][Guo et al., 12] explored the group testing algorithm in a multiuser detection based approach.

Contention Graph Inference• [Niculescu et al., 08] studied a per‐link active measurement based approach.

• [Jang et al., 10] proposed a passive interference inference approach.

• [Zhou et al., 13] built the measurement‐calibrated propagation models for determining conflict graph.

17

Page 18: Toward Robust and Reliable Wireless Personal Area Networkswireless.egr.uh.edu/Guanbo Zheng Defense.pdfToward Robust and Reliable Wireless Personal Area Networks Guanbo Zheng Department

Assumptions An ad‐hoc WPAN with a peer‐to‐peer topology Non CSMA (Carrier Sense Multiple Access) Non‐CSMA (Carrier Sense Multiple Access). Random on‐off signaling with strictly synchronization in a slotted time domainin a slotted time domain

On   off

18

Page 19: Toward Robust and Reliable Wireless Personal Area Networkswireless.egr.uh.edu/Guanbo Zheng Defense.pdfToward Robust and Reliable Wireless Personal Area Networks Guanbo Zheng Department

Key Notations yn(i):  the observation of node n at time slot i, 

Using two SNR thresholds:

sn(i): the activity of node n at time slot i, 

Thre1 and Thre2

n

x(n k): node relationship if k is a neighbor node of n x(n, k):  node relationship if k is a neighbor node of n.

c(n, m; n, k):  link contention if m‐>n is contended by k‐>n

19

Page 20: Toward Robust and Reliable Wireless Personal Area Networkswireless.egr.uh.edu/Guanbo Zheng Defense.pdfToward Robust and Reliable Wireless Personal Area Networks Guanbo Zheng Department

Proposed Binary Inference Approach

Exploit binary mixture to infer the knowledge of neighbors and contention graphneighbors and contention graph.

Procedure:• First, obtain neighbor relationship using observations and node activity.

• Then infer contention graph using observation nodeThen, infer contention graph using observation, node activity and neighbor relationship. 

Two types of error performance:Two types of error performance:• Observation Error• Inference Error

(using linear mixture as ground truth)Inference Error

20

Page 21: Toward Robust and Reliable Wireless Personal Area Networkswireless.egr.uh.edu/Guanbo Zheng Defense.pdfToward Robust and Reliable Wireless Personal Area Networks Guanbo Zheng Department

Analysis of Observation

Consider an example where n is RX, m, k are TX• bothm and k are neighbors of n x(n m)=1 x(n k)=1• both m and k are neighbors of n x(n, m)=1, x(n, k)=1• k‐>n contends with m‐>n,               c(n, m; n, k)=1• m‐>n does NOT contend with k‐>n,   c(n, k; n, m)=0, ( , ; , )

nmTX

k

O(n, m; n, k) = δ,     O(n, k; n, m) = 1,  

RX

where O(n, m; n, k) is the outcome of mn affected by kn. 

yn(i) = 1 RX n can decode the signal with ID (TX k).

21

Page 22: Toward Robust and Reliable Wireless Personal Area Networkswireless.egr.uh.edu/Guanbo Zheng Defense.pdfToward Robust and Reliable Wireless Personal Area Networks Guanbo Zheng Department

Analysis of Observation(Cont’d)

For a special case (|T(i)|=2), n is RX, m, k are TX

Then, 

Logical‐OR

For |T(i)|≥3:

Logical‐ANDLogical‐OR

22

g

Page 23: Toward Robust and Reliable Wireless Personal Area Networkswireless.egr.uh.edu/Guanbo Zheng Defense.pdfToward Robust and Reliable Wireless Personal Area Networks Guanbo Zheng Department

Analysis of Inference

Consider some examples where n is RX, m, k are TXx(n m)=1

n

k

mx(n, m)=1

y =δ

c(n, m; n, k) = 1, c(n, k; n, m) = 1.  

kx(n, k)=1

yn=δSignal observedbut undecodable

( , ; , )

nmx(n, m)=1

c(n, m; n, k) = 0, 

k

yn=1with ID k, m decoded

c(n, k; n, m) = 0.

23

x(n, k)=1

Page 24: Toward Robust and Reliable Wireless Personal Area Networkswireless.egr.uh.edu/Guanbo Zheng Defense.pdfToward Robust and Reliable Wireless Personal Area Networks Guanbo Zheng Department

Analysis of Inference (Cont’d)

For a special case (|T(i)|=2), n is RX, m, k are TX, 

For |T(i)|≥3, the observation y() is the result of a mixture, which is very difficult for inference directly.  • The mixture decoupling scheme is proposed in the algorithm.

24

The mixture decoupling scheme is proposed in the algorithm.

Page 25: Toward Robust and Reliable Wireless Personal Area Networkswireless.egr.uh.edu/Guanbo Zheng Defense.pdfToward Robust and Reliable Wireless Personal Area Networks Guanbo Zheng Department

Simple Neighbor Discovery Algorithm

T(i): the transmit nodes set at time tR(i): the receiver nodes set at time tyn(i): the observation of n at time tyn( )x(n, m): neighbor relationship

*Our proposed algorithm is an improved group testing

For mixture |T(i)|>=2, we use available  x() to decouple the mixture and find any resolution.

25

Page 26: Toward Robust and Reliable Wireless Personal Area Networkswireless.egr.uh.edu/Guanbo Zheng Defense.pdfToward Robust and Reliable Wireless Personal Area Networks Guanbo Zheng Department

t‐tolerance Neighbor Discovery Algorithm

T(i): the transmit nodes set at time tR(i): the receiver nodes set at time tyn(i): the observation of n at time t

We add tolerance factor t to add the 

yn( )x(n, m): the neighbor relationship

confidence when making the decision of neighbor discovery.

For mixture |T(i)|>=2, we use the same decoupling scheme

26

the same decoupling scheme.

Page 27: Toward Robust and Reliable Wireless Personal Area Networkswireless.egr.uh.edu/Guanbo Zheng Defense.pdfToward Robust and Reliable Wireless Personal Area Networks Guanbo Zheng Department

The Contention Graph Inference Algorithm

T(i): the transmit nodes set at time tR(i): the receiver nodes set at time tyn(i): the observation of n at time tyn( )x(n, m): the neighbor relationshipc(n,m,n,k): link contention if k‐>n contends with m‐>n

For mixture |T(i)|=2 (the special case), we can compute contention 

For mixture |T(i)|>=3, we use

graph directly.

For mixture |T(i)|> 3, we use available  x(), c() and y() to find O(.), which can be used to decouple the mixture and find any resolution.

27

Page 28: Toward Robust and Reliable Wireless Personal Area Networkswireless.egr.uh.edu/Guanbo Zheng Defense.pdfToward Robust and Reliable Wireless Personal Area Networks Guanbo Zheng Department

Simulation Setup

N nodes are uniformly deployed in a 100X100 room Randomly select the sensor activity (TX or RX) Randomly select the sensor activity (TX or RX)

• Bernoulli distribution with transmitting probability 0.2. 

PHY related parameters: PHY related parameters:

28

Page 29: Toward Robust and Reliable Wireless Personal Area Networkswireless.egr.uh.edu/Guanbo Zheng Defense.pdfToward Robust and Reliable Wireless Personal Area Networks Guanbo Zheng Department

Observation Error Rate vs. # of nodes95% confidence interval

False Positive False Negative

False positive errors dominate.Larger network density, lower observation errors.Smaller threshold pairs lower observation errors

29

Smaller threshold pairs, lower observation errors.

Page 30: Toward Robust and Reliable Wireless Personal Area Networkswireless.egr.uh.edu/Guanbo Zheng Defense.pdfToward Robust and Reliable Wireless Personal Area Networks Guanbo Zheng Department

Completion Rate vs. # of Tests

TOL=1 5dB 15dB N 10 5dB 15dBTOL=1, ‐5dB, ‐15dB N=10,‐5dB, ‐15dB

Larger network density, slower completion rate.More tolerance employed, slower completion rate.

30

Page 31: Toward Robust and Reliable Wireless Personal Area Networkswireless.egr.uh.edu/Guanbo Zheng Defense.pdfToward Robust and Reliable Wireless Personal Area Networks Guanbo Zheng Department

Inference Error Rate vs. # of Tests

N=10, ‐5dB, ‐15dB N=10, Tol=1

More tolerance employed, lower inference error.Smaller threshold pairs, lower inference error.

31

Page 32: Toward Robust and Reliable Wireless Personal Area Networkswireless.egr.uh.edu/Guanbo Zheng Defense.pdfToward Robust and Reliable Wireless Personal Area Networks Guanbo Zheng Department

The Location Based Linear Approach

Consider a network with K target nodes (half duplex) at unknown locations in an isotropic area (dividedat unknown locations in an isotropic area (divided into a discrete grid with N grid points)

Th Obj ti The Objective:• Find the relative locations between any two nodes simultaneously, by exploiting the linear RSS mixture fromsimultaneously, by exploiting the linear RSS mixture from concurrent transmitting nodes.

• Compute pairwise RSS using relative locations• Infer neighbor relationship x(.) using• Infer contention graph c(.) using

32

Page 33: Toward Robust and Reliable Wireless Personal Area Networkswireless.egr.uh.edu/Guanbo Zheng Defense.pdfToward Robust and Reliable Wireless Personal Area Networks Guanbo Zheng Department

Mathematical Model

Denote U as the pairwise RSS matrix between any two target nodes u =RSS(d )two target nodes, uij=RSS(dij).

The observation can be rewritten as: 

Given Y() and S() over enough # of trials, 

TX activity matrix noiseRX activity matrix

we can solve U (K2 variables) by using minimum square error (MSE) estimator.

33

Page 34: Toward Robust and Reliable Wireless Personal Area Networkswireless.egr.uh.edu/Guanbo Zheng Defense.pdfToward Robust and Reliable Wireless Personal Area Networks Guanbo Zheng Department

Location based Incremental Inference Algorithm

T(i): the TX nodes set at time tR(i): the RX nodes set at time tx(n, m): neighbor relationshipx(n, m): neighbor relationshipc(n,m; n,k): link contention

Keep independently linear equations.

34

Solve the MSE incrementally 

Page 35: Toward Robust and Reliable Wireless Personal Area Networkswireless.egr.uh.edu/Guanbo Zheng Defense.pdfToward Robust and Reliable Wireless Personal Area Networks Guanbo Zheng Department

Performance of Linear Inference Approach

Completion Rate does NOTCompletion Rate does NOTdepend on thresholds.

Thre1=‐5dB, Thre2=‐15dB

False Positive False Negative

35

False Positive

Page 36: Toward Robust and Reliable Wireless Personal Area Networkswireless.egr.uh.edu/Guanbo Zheng Defense.pdfToward Robust and Reliable Wireless Personal Area Networks Guanbo Zheng Department

Discussion

The binary approach has the advantage of small computation complexity which can achieve thecomputation complexity, which can achieve the inference completion faster.

Th li h t f th bi ith The linear approach outperforms the binary one with lower inference error rate but longer completion timetime. 

As a future work, we are interested in reducing the b f t t i t li hnumber of tests in current linear approach.

36

Page 37: Toward Robust and Reliable Wireless Personal Area Networkswireless.egr.uh.edu/Guanbo Zheng Defense.pdfToward Robust and Reliable Wireless Personal Area Networks Guanbo Zheng Department

Part 3Part 3

Robust Relay Placement and RouteRobust Relay Placement and Route Selection in 802.15.3c WPANs

37

Page 38: Toward Robust and Reliable Wireless Personal Area Networkswireless.egr.uh.edu/Guanbo Zheng Defense.pdfToward Robust and Reliable Wireless Personal Area Networks Guanbo Zheng Department

60GHz Radio & 802.15.3c

Plentiful free spectrum resource (7GHz, unlicensed)  Much faster transmit speed (Gigabit) Much faster transmit speed (Gigabit) 802.15.3c targets at short‐range, super‐high data rate wireless networking includes:rate wireless networking, includes:• HD streamed multimedia• Wireless Gigabit Ethernet• Data center and …

38

Page 39: Toward Robust and Reliable Wireless Personal Area Networkswireless.egr.uh.edu/Guanbo Zheng Defense.pdfToward Robust and Reliable Wireless Personal Area Networks Guanbo Zheng Department

60GHz Characteristics

Large Propagation loss • 22dB larger than free space on 5GHz;• 22dB larger than free space on  5GHz;

Large Penetration loss• by extremely small wavelength• Human body: 15dB~25dB

Need directional PHY/MAC and beam‐forming• To combat attenuation;• Interference‐limit environment.

39

looks like wired links

39

Page 40: Toward Robust and Reliable Wireless Personal Area Networkswireless.egr.uh.edu/Guanbo Zheng Defense.pdfToward Robust and Reliable Wireless Personal Area Networks Guanbo Zheng Department

Why Relay Placement?

For non‐line‐of‐sight (NLOS) link, relays manage to forward traffic from TX to RX that does not have direct connectivity.y

For line‐of‐sight (LOS) link, relays provide a secondary (backup) path in case of uncertain link blockagep p g

X

40

Page 41: Toward Robust and Reliable Wireless Personal Area Networkswireless.egr.uh.edu/Guanbo Zheng Defense.pdfToward Robust and Reliable Wireless Personal Area Networks Guanbo Zheng Department

Geometric Model of Link Connectivity

(Overlapped) Visibility Region

The set of feasible mmWave links is:

41

Page 42: Toward Robust and Reliable Wireless Personal Area Networkswireless.egr.uh.edu/Guanbo Zheng Defense.pdfToward Robust and Reliable Wireless Personal Area Networks Guanbo Zheng Department

Network Model

Consider an mmWave WPANs with N links,• Each link i ϵ N is associated with s d and a flow rate f• Each link i ϵ N is associated with si, di and a flow rate fi.• M obstacles with known locations.• K candidate locations for relay placement.y p

The relationship btw mmWave links (U) and relays(S) is an undirected bi partite graphis an undirected bi‐partite graph.

U

Sedge

42

Page 43: Toward Robust and Reliable Wireless Personal Area Networkswireless.egr.uh.edu/Guanbo Zheng Defense.pdfToward Robust and Reliable Wireless Personal Area Networks Guanbo Zheng Department

Assumptions 

At most 2‐hop paths (via relay)• TX RX TX Relay RX (delay sensitive QoS)• TX  RX,  TX  Relay  RX (delay sensitive QoS)

Relays can be shared by multiple links using TDMA.

TXs know the direction of RXs and tune the beam direction immediately without any additional y yswitching overhead.

A classic interference model with directional antennaA classic interference model with directional antenna is adopted.

43

Page 44: Toward Robust and Reliable Wireless Personal Area Networkswireless.egr.uh.edu/Guanbo Zheng Defense.pdfToward Robust and Reliable Wireless Personal Area Networks Guanbo Zheng Department

Spatial Contention Between Two Physical Links

The covered regions: Qu(D, θ, φu), Qv(D, θ, φv)du d

θ/2D D

u dv

c cD

θ/2s

uv vuc c

su sv The contention relationship is denoted as:

From an experiment k [ f]

44

work at 60GHz [Ref]  

Page 45: Toward Robust and Reliable Wireless Personal Area Networkswireless.egr.uh.edu/Guanbo Zheng Defense.pdfToward Robust and Reliable Wireless Personal Area Networks Guanbo Zheng Department

Three kinds of physical link i (si, di)

Relay3

mmWave RX

2

1

Direct LOS logical link (si and di are nodes)• δ i 1 if h i l li k i d t di t LOS l i l

mmWave TX

• δ1i= 1 if physical link i corresponds to direct LOS logical.

1st hop of NLOS logical link (di is a relay)• δ i 1 if h i l li k i i th 1st h f NLOS l i l li k• δ2i= 1 if physical link i is the 1st hop of NLOS logical link. 

2nd hop of NLOS logical link (si is a relay)• δ i 1 if physical link i is the 2nd hop of NLOS logical link• δ3i= 1 if physical link i is the 2nd hop of NLOS logical link. 

45

Page 46: Toward Robust and Reliable Wireless Personal Area Networkswireless.egr.uh.edu/Guanbo Zheng Defense.pdfToward Robust and Reliable Wireless Personal Area Networks Guanbo Zheng Department

Flow Rate of physical link i (si, di)

Flow rate of a physical link is the sum of traffic demands of all logical links passing through it.

P t ti f tig p g g

Protection function

LOS 1st hop of NLOS 2nd hop of NLOS

TDMA Constraints for every physical link: TDMA Constraints for every physical link:

By all physical links with spatial contention

By all physical links sharing same di

By all physical links sharing same Si

The time of link itself

46

Page 47: Toward Robust and Reliable Wireless Personal Area Networkswireless.egr.uh.edu/Guanbo Zheng Defense.pdfToward Robust and Reliable Wireless Personal Area Networks Guanbo Zheng Department

Problem Statements

Given an mmWave WPAN with N feasible logical links M obstacles K candidate relay locationslinks, M obstacles, K candidate relay locations,

Robust Minimum Relay Placement (RMRP): • What is the minimum number of relays and their locations to satisfy the connectivity, and bandwidth and robustness constraints?

Robust Maximum Relay Placement (RMURP): • What is the maximum network utility that scaled from• What is the maximum network utility that scaled from base rates by placing at most m relays such that robustness constraints?

47

Page 48: Toward Robust and Reliable Wireless Personal Area Networkswireless.egr.uh.edu/Guanbo Zheng Defense.pdfToward Robust and Reliable Wireless Personal Area Networks Guanbo Zheng Department

Robust Minimum Relay Placement (RMRP)x : l select k as primary path

Protection function

xlk: l select k as primary pathylk: l select k as secondary pathzk: relay k is selectedηl: NLOS indicatorf : traffic demand of logical link lfl : traffic demand of logical link lR: AWGN channel capacity

relay bandwidth constraint 

at most one relay for a link

The time of unit data at link i over relay k

The disjoint paths

at most one relay for a link

TDMA constraint for every physical link.

48

Page 49: Toward Robust and Reliable Wireless Personal Area Networkswireless.egr.uh.edu/Guanbo Zheng Defense.pdfToward Robust and Reliable Wireless Personal Area Networks Guanbo Zheng Department

Robust Maximum Relay Placement (RMURP)

α: the scalar variable

relay bandwidth constraint 

The disjoint paths

at most one relay for a link

TDMA constraint for every physical link.

The disjoint paths

Relay number limit

physical link.

49

Page 50: Toward Robust and Reliable Wireless Personal Area Networkswireless.egr.uh.edu/Guanbo Zheng Defense.pdfToward Robust and Reliable Wireless Personal Area Networks Guanbo Zheng Department

D‐norm Uncertainty Model 

The protection function in D‐norm is given by:

No logical link fails; Define robustness index: No logical link fails; All feasible links fail simultaneously.

Reformulation: Reformulation:

LP Relaxation & Lagrangian Dual

50

Lagrangian Dual

Page 51: Toward Robust and Reliable Wireless Personal Area Networkswireless.egr.uh.edu/Guanbo Zheng Defense.pdfToward Robust and Reliable Wireless Personal Area Networks Guanbo Zheng Department

Equivalent Formulation of RMRP

A mixed integer linear programming problem  (MILP)

NP‐hard

*MILP can be solved directly using IBM CPLEX solver. 

All th t i t i i i l bl

51

All other constraints in original problem.

Page 52: Toward Robust and Reliable Wireless Personal Area Networkswireless.egr.uh.edu/Guanbo Zheng Defense.pdfToward Robust and Reliable Wireless Personal Area Networks Guanbo Zheng Department

Equivalent Formulation of RMURP

A mixed integer non‐linear programming problem (MINLP)

NP‐hard

*MINLP can’t be ca besolved directly

52

Page 53: Toward Robust and Reliable Wireless Personal Area Networkswireless.egr.uh.edu/Guanbo Zheng Defense.pdfToward Robust and Reliable Wireless Personal Area Networks Guanbo Zheng Department

The Bisection Search Algorithm for RMURP

Principle:• F is continuous on [a b]F is continuous on [a, b], • F(a) and F(b) have opposite signs.• The algorithm starts from [a, b], and 

h (b )/2 TOLstops when (b‐a)/2 < TOL.

In our RMURP, h bl b• Given α, the problem becomes MILP.

• If α is large, RMURP infeasible• If α=0, RMURP feasible

Find αmax that makes RMURP feasible

53

Page 54: Toward Robust and Reliable Wireless Personal Area Networkswireless.egr.uh.edu/Guanbo Zheng Defense.pdfToward Robust and Reliable Wireless Personal Area Networks Guanbo Zheng Department

Simulation Setup

Parameters:• A 10mX10m room with NmmWave links 10 obstaclesA 10mX10m room with NmmWave links, 10 obstacles.• Grid point separation distance:  d0=2.• Base traffic demand fl:  1/3 of channel capacity of the slowest path.

T i i dii f ll d / l 6• Transmission radii of all nodes/relays:  6 meters.

54

Page 55: Toward Robust and Reliable Wireless Personal Area Networkswireless.egr.uh.edu/Guanbo Zheng Defense.pdfToward Robust and Reliable Wireless Personal Area Networks Guanbo Zheng Department

Performance of RMRP

Antenna beamwidth, robustness index

55

Page 56: Toward Robust and Reliable Wireless Personal Area Networkswireless.egr.uh.edu/Guanbo Zheng Defense.pdfToward Robust and Reliable Wireless Personal Area Networks Guanbo Zheng Department

Performance of RMURP

56

Page 57: Toward Robust and Reliable Wireless Personal Area Networkswireless.egr.uh.edu/Guanbo Zheng Defense.pdfToward Robust and Reliable Wireless Personal Area Networks Guanbo Zheng Department

Outline

1. Motivation and Background

2. Link Quality Prediction

3 Neighbor Discovery and Contention Graph Inference3. Neighbor Discovery and Contention Graph Inferencea. A Binary Inference Approachb A Linear Inference Approachb. A Linear Inference Approach

4. Robust Relay Placement and Routing Selection

5. Conclusions and Future Work

57

Page 58: Toward Robust and Reliable Wireless Personal Area Networkswireless.egr.uh.edu/Guanbo Zheng Defense.pdfToward Robust and Reliable Wireless Personal Area Networks Guanbo Zheng Department

Conclusions

Link quality prediction in 802.15.4 LR‐WPANs• Decipher RSSI, LQI readings available at commodity Zigbee nodes.Decipher RSSI, LQI readings  available at commodity Zigbee nodes.• Propose a prediction model that predicts the instantaneous link quality 

using LQI readings.

J i i hb di d i h i f i d Joint neighbor discovery and contention graph inference in ad‐hoc WPANs• Propose two solutions to joint neighbor discovery and contention graph 

i f bi h d l i b d li hinference, a binary approach and a location based linear approach.

Robust relay placement and route selection in mmWaveWPANsWPANs• Proposed two robust formulations to combat the uncertain link failure. • The proposed solution is a joint optimization of the relay placement 

and 2‐hop routing through relays.and 2 hop routing through relays.

58

Page 59: Toward Robust and Reliable Wireless Personal Area Networkswireless.egr.uh.edu/Guanbo Zheng Defense.pdfToward Robust and Reliable Wireless Personal Area Networks Guanbo Zheng Department

Future Work Channel Profiling for link quality prediction

• Current approach assumes the knowledge of channel.• A channel profiling is needed not only to classify channel 

models but also obtain the key parameters.

Efficient Location Estimation in linear inference approachEfficient Location Estimation in linear inference approach• Current approach simply solves a full‐rank MSE problem.• An efficient estimation method is needed to solve for locations 

using as few tests as possible.g p

Passive Relay Placement in 60GHz WPANs• Current approach utilizes active relays to forward the signal 

f TX t i t d d di tifrom TX to any intended direction.• Passive relay may introduce additional challenges on controlling 

unwanted interference.

59

Page 60: Toward Robust and Reliable Wireless Personal Area Networkswireless.egr.uh.edu/Guanbo Zheng Defense.pdfToward Robust and Reliable Wireless Personal Area Networks Guanbo Zheng Department

Publications[J1] Guanbo Zheng, C. Hua, R. Zheng and Q. Wang, “Toward a Robust Relay Placement in mmWave Wireless Personal Area Networks", submitted to IEEE Transactions on Wireless Communications (TWC), 2013. (Under review).

[J2] Y. Wang, Q. Wang, Guanbo Zheng, Z. Zeng and R. Zheng, “WiCop: Engineering WiFi Temporal White‐Spaces for Safe Operations of Wireless Personal Area Networks in Medical Applications”, IEEE Transactions on Mobile Computing (TMC), 2013. (Accepted for publication)

[J3] H. Nguyen, Guanbo Zheng, Z. Han, and R. Zheng, "Binary Inference for Primary User Separation in Cognitive Radio Networks", In IEEE Transactions on Wireless Communications (TWC), Vol. 12, Issue. 4, pp. 1532‐1542, April. 2013. 

[C1] Guanbo Zheng, C. Hua, R. Zheng and Q. Wang, “A Robust Relay Placement  Framework for 60GHz mmWave Wireless Personal Area Networks", in Proc. of IEEE Global Communication Conf. (GLOBECOM), Atlanta, Dec. 2013. (To appear)

[C2] Guanbo Zheng, C. Hua, K, Vu, R. Zheng and Q. Wang, “Robust Reflector Placement in 60GHz mmWave Wireless Personal Area Networks" In Proc of Real‐Time and Embedded Technology and Applications Symposium (RTAS) Work‐in‐Progress 2012Networks , In Proc. of Real‐Time and Embedded Technology and Applications Symposium (RTAS), Work‐in‐Progress, 2012.

[C3] H. Nguyen, N. Nguyen, Guanbo Zheng, Z. Han, and R. Zheng, “Binary Blind Identification of Wireless Transmission Technologies for Wideband Spectrum Monitoring", In Proc. of IEEE Global Communication Conf. (GLOBECOM), Houston, Dec. 2011. 

[C4] Guanbo Zheng, D. Han, R. Zheng, C. Schmitz and X. Yuan, “A Link Quality Inference Model for IEEE 802.15. 4 Low‐Rate WPANs", In Proc. of IEEE Global Communication Conf. (GLOBECOM), Houston, Dec. 2011. 

[C5] Y. Wang, Q. Wang, Z. Zeng, Guanbo Zheng and R. Zheng, “WiCop: Engineering WiFi Temporal White‐Spaces for Safe Operations of Wireless Body Area Networks in Medical Applications”, In Proc. of Real‐Time Systems Symposium (RTSS), Nov. 2011.

[C6]  N. Nguyen, Guanbo Zheng, Z. Han, and R. Zheng, "Device fingerprinting to enhance wireless security using nonparametric [ ] g y , g, , g, f g p g y g pBayesian method", In Proc. of IEEE International Conference on Computer Communications (INFOCOM), Apr. 2011.

60

Page 61: Toward Robust and Reliable Wireless Personal Area Networkswireless.egr.uh.edu/Guanbo Zheng Defense.pdfToward Robust and Reliable Wireless Personal Area Networks Guanbo Zheng Department

Thank you for your attention

Questions?Questions?

[email protected]:// wireless.cs.uh.edup

61

Page 62: Toward Robust and Reliable Wireless Personal Area Networkswireless.egr.uh.edu/Guanbo Zheng Defense.pdfToward Robust and Reliable Wireless Personal Area Networks Guanbo Zheng Department

Part 1 ‐ Terms Definition 802.15: IEEE standards Working Group for WPANs Zigbee: The spec of a low‐cost low‐power wireless comm. solution

CO S C i l f h h lf d i COTS: Commercial‐of‐the‐shelf devices PHY: Physical Layer MAC: Media Access Control Layer RSSI: Received signal strength indicator LQI: Link quality index SNR: Signal‐to‐noise ratio BER/SER/PER:  Bit/Symbol/Packet error rate CC2420: 2.4GHz IEEE 802.15.4 compliant RF transceiver chip USRP:  Universal Software Radio Peripheral SDR:  Software‐defined radio GNU Radio: a free software toolkit for SDR TinyOS:  An open source OS targeting wireless sensor networks

62

Page 63: Toward Robust and Reliable Wireless Personal Area Networkswireless.egr.uh.edu/Guanbo Zheng Defense.pdfToward Robust and Reliable Wireless Personal Area Networks Guanbo Zheng Department

Part 2 ‐ Terms and Notations

CSMA:  Carrier Sense Multiple Access, which is a probabilistic medium access protocol.

CDMA:    Code Division Multiple Access

63

Page 64: Toward Robust and Reliable Wireless Personal Area Networkswireless.egr.uh.edu/Guanbo Zheng Defense.pdfToward Robust and Reliable Wireless Personal Area Networks Guanbo Zheng Department

Part 3notationsnotations

64