torlon design manual

53
Solvay Advanced Polymers Torlon ® Resins Engineering Data

Upload: bird31

Post on 03-Dec-2015

231 views

Category:

Documents


2 download

DESCRIPTION

torlon

TRANSCRIPT

Page 1: Torlon Design Manual

Solvay Advanced Polymers

Torlon® Resins Engineering Data

Page 2: Torlon Design Manual

Check Balls for 4-Wheel-DriveVehicle Transmissions

The durability of high-torque automatictransmissions was improved whenChrysler product development engineersspecified Torlon® poly(amide-imide) resinfor the check balls. The resin was selectedfor multiple variations of three- andfour-speed transmissions coupled to theMagnum Engine product line. The checkballs withstand system pressures, andprovide excellent sealing surfaces withoutcausing metal damage, and withoutadverse reaction to transmission oil attemperatures approaching 300°F.

AutomotiveDrivetrainThrust Washers

TORLON®

poly(amide-imide)resin drive trainthrust washers inautomotiveapplications havesuperior impactstrength, wearresistance, andchemical resistance.

Diesel Engine Thrust Washers

TORLON® poly(amide-imide) thrust washersabsorb and dissipate impact energy in truckengines. They offer low friction and wear,high pressure and velocity limits, excellentmechanical properties and heat resistance.

Page 3: Torlon Design Manual

Table of ContentsIntroduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7TORLON® High Performance Molding Polymers. . . . 7The High Performance TORLON Polymers . . . . . . . . 8

Physical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9Typical Properties – US Units . . . . . . . . . . . . . . . . . . 10Typical Properties – SI Units . . . . . . . . . . . . . . . . . . . 11

Performance Properties. . . . . . . . . . . . . . . . . . 12Mechanical Properties . . . . . . . . . . . . . . . . . . . . . . . . 12Tensile and Flexural Strength at TemperatureExtremes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Ultra High Temperature . . . . . . . . . . . . . . . . . . . . . . . . . 12Tensile Properties Per ASTM D638. . . . . . . . . . . . . . . . 13Ultra Low Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Flexural Modulus-Stiffness at High Temperature . 13Stress-Strain Relationship . . . . . . . . . . . . . . . . . . . . . 14

Resistance To Cyclic Stress . . . . . . . . . . . . . . . . . . . . 15Fatigue Strength. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15Impact Resistance. . . . . . . . . . . . . . . . . . . . . . . . . . . . 16Fracture Toughness . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Thermal Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18Thermogravimetric Analysis . . . . . . . . . . . . . . . . . . . 18Effects of Prolonged Thermal Exposure . . . . . . . . . 18

Ul Thermal Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18Retention of Properties After Thermal Aging . . . . . 18Specific Heat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20Thermal Conductivity . . . . . . . . . . . . . . . . . . . . . . . . . 20Metal-Like Coefficients of Linear Thermal Expansion

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20Creep Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Flammability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23Summary of Flammability Data . . . . . . . . . . . . . . . . . 23

Performance in Various Environments . . . . . . . . . . . 24Chemical Resistance. . . . . . . . . . . . . . . . . . . . . . . . . . 24

Resistance To Automotive and Aviation Fluids. . . . . . 25Chemical Resistance Under Stress . . . . . . . . . . . . . 25Effects of Water . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Absorption Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26Equilibrium Absorption at Constant Humidity . . . . . . . 26Dimensional Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . 26Restoration of Dimensions and Properties . . . . . . . . . 27Changes in Mechanical and Electrical Properties. . . 27Constraints on Sudden High Temperature Exposure. 27

Weather-Ometer® Testing . . . . . . . . . . . . . . . . . . . . . 28Resistance to Gamma Radiation . . . . . . . . . . . . . . . . 28Electrical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . 29TORLON polymers for insulating . . . . . . . . . . . . . . . . 29Conductivity and EMI Shielding . . . . . . . . . . . . . . . . 30

Service Under Conditions of Friction and Wear . . . 32An Introduction to TORLON Wear Resistant Grades

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32Wear Rate Defined as PV Service Limits. . . . . . . . . 32Unlubricated Wear Resistance . . . . . . . . . . . . . . . . . 32

Evaluation by Thrust Washer Friction and WearMethod. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Effect of Mating Surface on Wear Rate. . . . . . . . . . 33. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Lubricated Wear Resistance . . . . . . . . . . . . . . . . . . . 35Wear Resistance and Post-Cure. . . . . . . . . . . . . . . . 35Industry and Agency Approvals . . . . . . . . . . . . . . . . 36

Structural Design . . . . . . . . . . . . . . . . . . . . . . . 37Material Efficiency—Specific Strength andModulus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37Geometry and Load Considerations. . . . . . . . . . . . . . 38Examples of Stress and Deflection FormulaApplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Example 1–Short-term loading . . . . . . . . . . . . . . . . . . . 38Example 2-Steady load . . . . . . . . . . . . . . . . . . . . . . . . . . 38Example 3-Cyclic load . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Stress Concentration . . . . . . . . . . . . . . . . . . . . . . . . . 39Recommended Maximum Working Stresses forTORLON Resins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Designing with TORLON® Resin . . . . . . . . . . . 39Fabrication Options . . . . . . . . . . . . . . . . . . . . . . . . . . . 39Injection Molding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39Extrusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39Compression Molding . . . . . . . . . . . . . . . . . . . . . . . . . 39

Post-curing TORLON Parts . . . . . . . . . . . . . . . . . . . . . 40Guidelines for Designing TORLON Parts . . . . . . . . . 40Wall Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40Wall Transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40Draft Angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40Cores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41Ribs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41Bosses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Page 4: Torlon Design Manual

4

Undercuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41Molded-in inserts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41Threads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41Holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Secondary Operations . . . . . . . . . . . . . . . . . . . 43Joining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43Mechanical Joining Techniques. . . . . . . . . . . . . . . . 43

Snap-fit: Economical and Simple . . . . . . . . . . . . . . . . . 43Threaded Fasteners . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Self-tapping Screws . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43Molded-in Inserts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43Threaded Mechanical Inserts . . . . . . . . . . . . . . . . . . . . 43Molded-in Threads. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43Interference Fits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44Ultrasonic Inserts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44Other Mechanical Joining Techniques . . . . . . . . . . . . 44

Bonding with Adhesives. . . . . . . . . . . . . . . . . . . . . . . 44Adhesive Choice. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44TORLON Grade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44Surface Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44Adhesive Application . . . . . . . . . . . . . . . . . . . . . . . . . . . 44Curing Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45Bond Strength of Various Adhesives . . . . . . . . . . . . . . 45Impact Strength of TORLON to TORLON Bonds . . . . . 45Bonding for High-Temperature Applications . . . . . . . 45

Bonding TORLON parts to metal . . . . . . . . . . . . . . . . 46Guidelines for Machining TORLON Parts. . . . . . . . . 47

Machined Parts Should be Recurred. . . . . . . . . . . . . . 47Finishing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48General Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . 48Metallizing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Electroplating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48Flame/Arc Spraying . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48Plasma Sputtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48Ion Plating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48Painting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Technical Service. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Page 5: Torlon Design Manual

5

List of TablesRoom temperature tensile properties per ASTM D638· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 13Properties of TORLON molding resins at -321°F (-196°C) · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 13Izod impact resistance for 1.8 inch (3.2 mm) samples · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 16Poly(amide-imide) balances fracture toughness and high glass transition temperature)· · · · · · · · · · · · · · · · · · · · · · · · · 17Thermal indices of TORLON resins · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 18TORLON 4203LRetention of properties after thermal aging · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 20Specific heat of TORLON polymers· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 20Thermal conductivity of TORLON resins · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 20Coefficients of linear thermal expansion for TORLON resins and selected metals.*· · · · · · · · · · · · · · · · · · · · · · · · · · · · 20Summary of flammability* data · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 23Chemical resistance of TORLON 4203L after 24 hour exposure at 200°F (93°C) except where noted otherwise.· · · · · · · · · · · · · · · 24Property retention after immersion in 300°F (149°C) automotive lubricating fluid. · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 25Tensile strength retention after immersion in aircraft hydraulic fluid4 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 25Percent change in properties ofTORLON 4203L with 2% absorbed water· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 27Important electrical considerations · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 29Electrical properties of TORLON resins · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 29Electrical resistance properties of TORLON 7130 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 30Attenuation in decibels and shielding effectiveness· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 30Thrust Washer Friction and Wear Test Method · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 33Wear characteristics of TORLON 4301 against various metals · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 34Wear characteristics of TORLON bearing grades using hardened C1018 steel as a reference · · · · · · · · · · · · · · · · · · · · · 34Lubricated wear resistance of TORLON 4301 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 35Specific strength and modulus of TORLON polymersand selected metals · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 37Recommended maximum working stresses for injection molded TORLON resins · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 40Wall thickness/insert o.d. relationship· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 41Strength of HeliCoil inserts · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 43Strength of TORLON bolts · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 44Shear strength of TORLON to TORLON bonds · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 45Shear strength* of TORLON to metal bonds· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 46Guidelines for machining TORLON parts · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 47

Page 6: Torlon Design Manual

6

List of FiguresStructure of poly(amide-imide) · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 7TORLON resins have outstanding tensile strengths · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 12Flexural strengths of TORLON resins are high across a broad temperature range · · · · · · · · · · · · · · · · · · · · · · · · · · · · 12Tensile strengths of reinforced TORLON resins surpass competitive reinforced resins at 400°F (204°C). · · · · · · · · · · · · · · · 12Flexural strengths of reinforced TORLON resins surpass competitive reinforced resins* at 400°F (204°C)· · · · · · · · · · · · · · · · · · 12Flexural moduli of TORLON polymers · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 13Flexural moduli of reinforced TORLON grades are superior to competitive reinforced resins* at 400°F (204°C) · · · · · · · · · · · · 14Stress-strain in tension for TORLON resins at 73°F (23°C) · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 14Stress-strain in tension for TORLON resins at 275°F (135°C) · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 14Flexural fatique strength of TORLON resins at 30Hz · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 15Tension/tension fatique strength of TORLON 7130 and 4203L, at 30Hz, A ratio: 0.90 · · · · · · · · · · · · · · · · · · · · · · · · · · · · 15Tension/tension low cycle fatique strength of TORLON 7130, at 2Hz, A ratio: 0.90 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 15High temperature flexural fatique strength of TORLON resins at 350°F (177°C), 30Hz · · · · · · · · · · · · · · · · · · · · · · · · · · · 15Izod impact resistance of TORLON resins versus competitive materials* · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 16Compact tension specimen · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 17Thermogragimetric analysis of TORLON 4203L · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 18TORLON resins retain strength after thermal aging at 482°F (250°C)· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 19TORLON 4203L has superior property retention after thermal aging vs. competitive resins.* · · · · · · · · · · · · · · · · · · · · · · 19Tensile strength· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 19Tensile elongation · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 19Flexural modulus · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 19Heat deflection temperature · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 19Percent strain vs. time, 73°F (23°C)· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 21Percent strain vs. time, 400°F (204°C) · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 22TORLON parts maintain high performance in hostile chemical environments. · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 24Water absorption of TORLON polymers at 73°F (23°C), 50% relative humidity · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 26Water absorption of TORLON polymers at 110°F (43°C), 90% relative humidity· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 26Relative humidity determines equilibrium moisture absorption at room temperature · · · · · · · · · · · · · · · · · · · · · · · · · · · 26Dimensional changes of TORLON polymers at 73°F (23°C), 50% relative humidity · · · · · · · · · · · · · · · · · · · · · · · · · · · · 26Dimensional change of TORLON polymers at 110°F (43°C), 90% relative humidity · · · · · · · · · · · · · · · · · · · · · · · · · · · · 27Thermal shock temperature versus moisture content of TORLON 4203L · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 27Thermal shock temperature versus exposure time for TORLON 4203L · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 28The elongation of TORLON 4203L is essentially constant after exposure to simulated weathering · · · · · · · · · · · · · · · · · · · 28Change in tensile strength of TORLON 4203L with exposure to simulated weathering · · · · · · · · · · · · · · · · · · · · · · · · · · 28Percent change in physical properties of TORLON 4203L after exposure to gamma radiation · · · · · · · · · · · · · · · · · · · · · · 28Near field EMI shielding effectiveness, dual chamber method· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 30Far field EMI shielding effectiveness, transmission line method · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 31Material wear rate is a function of the Pressure-Velocity (PV) product· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 32Wear resistance of TORLON resins compares to that of polyimide · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 33Thurst washer test specimen · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 33Extended cure at 500°F (260°C) improves wear resistance (cure cycles are a function of part geometry) · · · · · · · · · · · · · · · 35Beam used in examples · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 38Stress concentration factor for circular stress raiser (elastic stress, axial tension) · · · · · · · · · · · · · · · · · · · · · · · · · · · 39Gradual blending between different wall thicknesses· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 40Draft · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 40Coring recommendations for TORLON parts. · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 41Recommended rib sizes for TORLON parts. · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 41

Page 7: Torlon Design Manual

Introduction

TORLON® High PerformanceMolding PolymersFor reliable performance at extremely high temperatureand stress, use TORLON polymers. Parts made of TORLONengineering polymers perform under conditions generallyconsidered too severe for thermoplastics. That’s whyparts for the space shuttle, the engine of a world-classrace car, and many other critical components have beenmolded from TORLON polymers. Across a wide range ofindustries-electrical and electronics; business equipment;aerospace; transportation; process; and heavy equipment— TORLON parts meet design challenges.

Some other engineering resins may perform at 500°F, butTORLON polymers maintain superior strength at this ex-treme temperature. Of the high-temperature plastics,TORLON polymers have the advantage of being injec-tion-moldable. That means exact replication and low unitcost, making TORLON polymers the cost-effective solutionto difficult design problems.

This manual introduces the reader to the TORLON polymerfamily. Numerous graphs and tables present the physicalproperties and load-bearing capabilities of TORLON poly-mers. A discussion of design guidelines and secondaryoperations focuses on the practical aspects of fabricatinghigh-performance TORLON parts. Using this manual, thedesigner can relate the characteristics of these excep-tional resins to his own specific needs.

Solvay Advanced Polymers’ TORLON high performancepolymer is a poly(amide-imide), with the general structure:

The variety of applications requiring high temperature re-sistance, high strength, and the economies of injec-tion-molding has led to the commercialization of several

TORLON grades, which can be divided into two catego-ries; the high strength grades and the wear resistantgrades.

The high strength grades perform more like metals at ele-vated temperature, even under considerable stress.

These grades are ideally suited for repetitively-used pre-cision mechanical and load bearing parts.

The inherent lubricity of TORLON poly(amide-imide) is en-hanced with additives in the wear resistant grades.Moving parts made of TORLON polymers provide depend-able service in lubricated and non-lubricated environ-ments.

Only TORLON Engineering Polymers Offer a Combination of:

� Performance from cryogenic to 500°F

� Outstanding mechanical strength

� Easy fabrication

� Low flammability and smoke generation

� Fatigue strength

� Impact strength

� Creep resistance

� Wear resistance

� Low expansion coefficients

� Excellent thermal stability

� Resistance to aviation and automotive fluids

– 7 – TORLON EngineeringPolymers Design Manual

Figure 1

Structure of poly(amide-imide)

TORLON engineering polymers

High strength Wear resistant4203L 4347

5030 4301

7130 4275

Page 8: Torlon Design Manual

The High Performance TORLON Polymers

TORLON poly(amide-imide) resins are injection-moldablethermoplastics that offer truly outstanding performance.Diversity of end-use applications has led to developmentof several grades, each designed to maximize specificproperties.

If your application requires a special modified grade, wecan compound TORLON polymers to your specifications.

This page describes the TORLON family and suggestsgeneral application areas. For specific advice concerninga particular application, please contact your Solvay Ad-vanced Polymers representative.

– 8 –

The High Performance TORLON Polymers Introduction

TORLONgrade Nominal composition Description of properties Applications

High strength

4203L 3%1

2%TiO2fluorocarbon

Best impact resistance, most elongation, andgood mold release and electrical properties.

Connectors, switches, relays, thrust washers,spline liners, valve seats, poppets, mechanicallinkages, bushings, wear rings, Insulators, cams,picker fingers, ball bearings, rollers, and thermalinsulators.

5030 30%1%

glass fiberfluorocarbon

High stiffness, good retention of stiffness atelevated temperature, very low creep, and highstrength.

Burn-in sockets, gears, valve plates, fairings,tube clamps, impellers, rotors, housings,back-up rings, terminal strips, insulators, andbrackets.

7130 30%1%

graphite fiberfluorocarbon

Similar to 5030 but higher stiffness. Bestretention of stiffness at high temperature, bestfatigue resistance. Electrically conductive.

Metal replacement, housings, mechanicallinkages, gears, fasteners, spline liners, cargorollers, brackets, valves, labyrinth seals, fairings,tube clamps, standoffs, impellers, shrouds,potential use for EMI shielding.

Wear Resistant

4347 12%8%

graphite powderfluorocarbon

Good for reciprocating motion or bearingssubject to high loads at low speeds. Best wearresistance.

Bearings, thrust washers, wear pads, strips,piston rings, and seals.

4301 12%3%

graphite powderfluorocarbon

Similar to 4347. Designed for bearing use. Goodwear resistance, low coefficient of friction, andhigh compressive strength.

Bearings, thrust washers, wear pads, strips,piston rings, seals, vanes, and valve seats.

4275 20%3%

graphite powderfluorocarbon

Similar to 4301 with better wear resistance athigh speeds.

Bearings, thrust washers, wear pads, strips,piston rings, seals, vanes, and valve seats.

Page 9: Torlon Design Manual

Physical PropertiesHigh impact strength, exceptional mechanical strength,and excellent retention of these properties in high temper-ature environments characterize all TORLON resins.

At room temperature, tensile and flexural strengths ofTORLON 4203L are about twice those of standard engi-neering resins such as polycarbonate and nylon. At 500°F(260°C), tensile and flexural strengths of TORLON 4203Lare almost equal to these engineering resins at room tem-perature. Superior physical properties are retained afterlong-term exposure to elevated temperature.

These physical properties are typical of injection molded,post-cured test specimens.

– 9 – TORLON EngineeringPolymers Design Manual

Physical Properties The High Performance TORLON Polymers

Footnotes for Typical Property Tables on Pages 10 and 11.(1) Tensile properties per ASTM D638 appear on Page 13.(2) Note: The test methods used to obtain these date measure response to

heat and flame under controlled laboratory conditions and may not providean accurate measure of the hazard under actual fire conditions.

* By this test, this grade is conductive. See discussion on page 29.

Page 10: Torlon Design Manual

10

Typical Properties – US Units

PropertiesASTM TestMethod Units 4203L 4301 4275 4347 5030 7130

MechanicalTensile Strength(1) D1708 kpsi

-321°F 31.5 18.8 29.5 22.873°F 27.8 23.7 22.0 17.8 29.7 29.4

275°F 16.9 16.3 16.9 15.1 23.1 22.8450°F 9.5 10.6 8.1 7.8 16.3 15.7

Tensile Elongation D1708 %-321°F 6 3 4 3

73°F 15 7 7 9 7 6275°F 21 20 15 21 15 14450°F 22 17 17 15 12 11

Tensile Modulus D1708 105 psi73°F 7.0 9.5 11.3 8.7 15.6 32.2

Flexural Strength D790 kpsi-321°F 41.0 29.0 54.4 45.0

73°F 34.9 31.2 30.2 27.0 48.3 50.7275°F 24.8 23.5 22.4 20.5 35.9 37.6450°F 17.1 16.2 15.8 14.3 26.2 25.2

Flexural Modulus D790 105 psi-321°F 11.4 13.9 20.4 35.7

73°F 7.3 10.0 10.6 9.1 17.0 28.8275°F 5.6 7.9 8.1 6.4 15.5 27.2450°F 5.2 7.2 7.4 6.2 14.3 22.8

Compressive Strength D695 kpsi 32.1 24.1 17.8 18.3 38.3 36.9Compressive Modulus D695 105 psi 7.7 5.8 11.5 14.3Shear Strength D732 kpsi

73°F 18.5 16.1 11.1 11.5 20.1 17.3Izod Impact Strength ( 1

8 in) D256 ft•lbs/innotched 2.7 1.2 1.6 1.3 1.5 0.9unnotched 20.0 7.6 4.7 9.5 6.4

Poisson’s Ratio 0.45 0.39 0.39 0.43 0.39ThermalDeflection Temperature D648 °F

264 psi 532 534 536 532 539 540Coefficient of Linear ThermalExpansion D696 10-6 in/in°F 17 14 14 15 9 5

Thermal Conductivity C177 Btu in/hr ft 2°F 1.8 3.7 2.5 3.6Flammability(2), Underwriters’Laboratories 94 V-0 94 V-0 94 V-0 94 V-0 94 V-0 94 V-0

Limiting oxygen index(2) D2863 % 45 44 45 46 51 52ElectricalDielectric constant D150

103 Hz 4.2 6.0 7.3 6.8 4.4 *106 Hz 3.9 5.4 6.6 6.0 4.2 *

Dissipation factor D150103 Hz 0.026 0.037 0.059 0.037 0.022 *106 Hz 0.031 0.042 0.063 0.071 0.050 *

Volume resistivity D257 ohm-in 8 x 1016 3 x 1015 3 x 1015 3 x 1015 6 x 1016 *Surface resistivity D257 ohm 5 x 1018 8 x 1017 4 x 1017 1 x 1018 1 x 1018 *Dielectric strength (0.040 in) D149 V/mil 580 840 *GeneralDensity D792 lb/in3 0.051 0.053 0.054 0.054 0.058 0.054Hardness, Rockwell E D785 86 72 70 66 94 94Water absorption D570 % 0.33 0.28 0.33 0.17 0.24 0.26

Page 11: Torlon Design Manual

11

Typical Properties – SI Units

PropertiesASTM Test

Method Units 4203L 4301 4275 4347 5030 7130MechanicalTensile Strength(1) D1708 MPa

-196°C 218 130 204 15823°C 192 164 152 123 205 203

135°C 117 113 113 104 160 158232°C 66 73 56 54 113 108

Tensile Elongation D1708 %-196°C 6 3 4 3

23°C 15 7 7 9 7 6135°C 21 20 15 21 15 14232°C 22 17 17 15 12 11

Tensile Modulus D1708 GPa23°C 4.9 6.6 7.8 6.0 10.8 22.3

Flexural Strength D790 MPa-196°C 287 203 381 315

23°C 244 219 212 189 338 355135°C 174 165 157 144 251 263232°C 120 113 111 100 184 177

Flexural Modulus D790 GPa-196°C 7.9 9.6 14.1 24.6

23°C 5.0 6.9 7.3 6.3 11.7 19.9135°C 3.9 5.5 5.6 4.4 10.7 18.8232°C 3.6 4.5 5.1 4.3 9.9 15.7

Compressive Strength D695 MPa 220 170 120 130 260 250Compressive Modulus D695 GPa 4.0 5.3 7.9 9.9Shear Strength D732 MPa

23°C 128 112 77 80 140 120Izod Impact Strength (3.2 mm) D256 J/m

notched 142 63 84 69 79 47unnotched 1062 404 250 504 340

Poisson’s Ratio 0.45 0.39 0.39 0.43 0.39ThermalDeflection Temperature D648 °C

1.82 MPa 278 279 280 278 282 282Coefficient of LinearThermal Expansion D696 10-6 m/m/°C 30.6 25.2 25.2 27.0 16.2 9.0Thermal Conductivity C177 W/mK 0.26 0.54 0.37 0.53Flammability(2), UnderwritersLaboratories UL94 94 V-0 94 V-0 94 V-0 94 V-0 94 V-0 94 V-0

Limiting Oxygen Index(2) D2863 % 45 44 45 46 51 52ElectricalDielectric Constant D150

103 Hz 4.2 6.0 7.3 6.8 4.4 *106 Hz 3.9 5.4 6.6 6.0 4.2 *

Dissipation Factor D150103 Hz 0.026 0.037 0.059 0.037 0.022 *106 Hz 0.031 0.042 0.063 0.071 0.050 *

Volume Resistivity D257 ohm-m 2 x 1015 8 x 1013 8 x 1013 8 x 1013 2 x 1015 *Surface Resistivity D257 ohm 5 x 1018 8 x 1017 4 x 1017 1 x 1018 1 x 1018 *Dielectric Strength (1 mm) D149 kV/mm 23.6 32.6 *GeneralDensity D792 g/cm3 1.42 1.46 1.51 1.50 1.61 1.48Hardness, Rockwell E D785 86 72 70 66 94 94Water Absorption D570 % 0.33 0.28 0.33 0.17 0.24 0.26

Page 12: Torlon Design Manual

Performance PropertiesThe unrivaled properties of TORLON engineering polymersmeet the requirements of the most demanding applica-tions. Strength retention over a wide range of tempera-tures and sustained stress, low creep, flame resistance,outstanding electrical properties, and exceptional integ-rity in severe environments place TORLON poly(am-ide-imide) in a class by itself among engineering resins.

Mechanical PropertiesTensile and Flexural Strength at Temperature Extremes

Ultra High Temperature

TORLON poly(amide-imide) can be used in applicationspreviously considered too demanding for many other en-gineering plastics because of its outstanding tensile andflexural strength combined with retention of these proper-ties in continuous service at temperatures in excess of450°F (232°C).

While many competitive resins can claim “excursions” upto 500°F (260°C), TORLON polymers function with integrityat extremely high temperatures, as shown by Figures 2and 3, which demonstrate the exceptional retention oftensile and flexural strength of TORLON resins at elevatedtemperatures.

Even at 400°F (204°C), the strengths in both tensile andflexural modes of TORLON engineering polymers arebetter than other high performance engineering resins.Figures 4 and 5 compare reinforced TORLON polymers toother high performance reinforced resins.

– 12 –

Tensile and Flexural Strength at Temperature Extremes Performance Properties

0 100 200 300 400 500

Temperature, °F

0

10

20

30

Ten

sile

Str

eng

th,k

psi

0

50

100

150

200

MP

a

Figure 2

TORLON resins have outstanding tensile strengths

* Ultem is a registered trademark of General Electric Company.Ryton is a registered trademark of Phillips Petroleum Company.Vespel is a registered trademark of E.I. DuPont de Nemours and Company.

0 100 200 300 400 500Temperature, °F

0

20

40

60

Flex

ura

lStr

eng

th,k

psi

0

100

200

300

400

MP

a

Figure 3

Flexural strengths of TORLON resins are highacross a broad temperature range

TORLON7130

TORLON5030

RADELAG-330

KADELE-1130

Ultem2300

RytonR-4

VespelSP-1

0

5

10

15

20

Tens

ileS

tren

gth,

kpsi

0

25

50

75

100

125

MPa

Figure 4

Tensile strengths of reinforced TORLON resins sur-pass competitive reinforced resins at 400°F (204°C).

TORLON7130

TORLON5030

RADELAG-330

KADELE-1130

RytonR-4

VespelSP-1

0

10

20

30

40

Flex

ural

Str

engt

h,kp

si

0

50

100

150

200

250

MPa

Ultem2300

Figure 5

Flexural strengths of reinforced TORLON resins surpasscompetitive reinforced resins* at 400°F (204°C)

Page 13: Torlon Design Manual

Tensile Properties Per ASTM D638

Tensile properties reported in the preceding section werethe result of ASTM D1708 testing. Since ASTM D638 is fre-quently referenced, TORLON polymers were also tested inaccordance with this method.The data appear in Table 1.

Ultra Low Temperature

At the other end of the temperature spectrum, TORLONpolymers do not become brittle as do other resins. Table 2shows TORLON resins have excellent properties undercryogenic conditions.

Flexural Modulus-Stiffness at High Temperature

TORLON poly(amide-imide) has high modulus, making it agood replacement for metal where stiffness is crucial toperformance. TORLON parts can provide equivalent stiff-ness at significantly lower weight. Excellent retention ofpart stiffness and resistance to creep or cold flow is pre-dicted from the high and essentially constant modulus ofTORLON resins, even at 45°F (232°C), as shown in Figure6. Unlike competitive materials, which lose stiffness athigher temperatures, TORLON polymers have high moduliat elevated temperatures, as Figure 7 demonstrates.

– 13 – TORLON EngineeringPolymers Design Manual

Mechanical Properties Flexural Modulus-Stiffness at High Temperature

Table 1

Room temperature tensile properties per ASTM D638

TORLON grade

4203L 4301 4275 4347 5030 7130

TensileStrength,

kpsi 22.0 16.4 16.9 16.2 32.1 36.2

MPa 152 113 117 112 221 250

Elongation, % 7.6 3.3 2.6 3.5 2.3 1.2

Tensilemodulus,

kpsi 650 990 1,280 1,040 2,110 3,570

GPa 4.5 6.8 8.8 7.2 14.6 24.6

TORLON grade

4203L 4275 7130 5030

Tensilestrength,

kpsi(MPa)

31.5(216)

18.8(129)

22.8(157)

29.5(203)

Elongationat break, % 6 3 3 4

Flexuralstrength,

kpsi(MPa)

41.0(282)

29.0(200)

45.0(310)

54.4(374)

Flexuralmodulus,

kpsi(GPa)

1,140(7.8)

1,390(9.6)

3,570(24.6)

2,040(14.0)

Table 2

Properties of TORLON molding resins at -321°F (-196°C)

0 100 200 300 400 5000

1

2

3

Flex

ura

lMo

du

lus,

Mp

si

0

5

10

15

20

GP

a

Figure 6

Flexural moduli of TORLON polymers

Page 14: Torlon Design Manual

– 14 –

Stress-Strain Relationship Performance Properties

Stress-Strain Relationship

TORLON poly(amide-imide) does not yield at room temper-ature, therefore, strain at failure or rupture is recorded asthe elongation. Figures 8 and 9 show the stress-strain re-lationship for TORLON grades at room temperature and275°F (135°C). Figure 9 and the inset in Figure 8 highlightthe nearly linear (“Hookean”) portion of the curve.

TORLON7130

TORLON5030

RADELAG-330

RytonR-4

0

0.5

1

1.5

2

2.5

Flex

ural

Mod

ulus

,Mps

i

0

5

10

15

GPa

Ultem2300

Figure 7

Flexural moduli of reinforced TORLON grades are su-perior to competitive reinforced resins* at 400°F(204°C)

30

20

10

00 5 10 15

200

150

100

50

0

Tens

ileS

tres

skp

si

MPa

Strain, %

0

10

5

15

0 0.25 0.5 0.75 1

TOR

LON

7130

TORLON5030

TORLON 4203L

TO

RLO

N7130

TO

RLO

N5030

TORLON 4203L

Figure 8

Stress-strain in tension for TORLON resins at 73°F (23°C)

0

10

5

15

50

100

Tens

ileS

tres

s,kp

si

Strain, %

00

25

75

0.25 0.5 0.75 1

TORL

ON

7130

TORLON

5030

TORLON 4203L

MPa

Figure 9

Stress-strain in tension for TORLON resins at275°F (135°C)

Page 15: Torlon Design Manual

Resistance To Cyclic StressFatigue Strength

When a material is stressed cyclically, failure will occur atstress levels lower than the material’s ultimate strength.Resistance to failure under cyclical loading or vibration,called fatigue strength, is an important design consider-ation. TORLON engineering polymers offer excellent fa-tigue strength in both the tensile mode and the very se-vere flexural mode, a form of reverse bending.

S-N diagrams, showing maximum stress versus cycles tofailure, are useful in predicting product life. The maximumstress using the anticipated force, appropriate stress con-centration factors, and section modulus is determined.The maximum stress is then compared to the fatiguestrength S-N curve for the applicable environment to de-termine the maximum cyclic stress the material can beexpected to withstand.

The values obtained in fatigue testing are influenced bythe specimen and test method; therefore, the valuesshould serve as guidelines, not absolute values. TORLONparts resist cyclic stress. TORLON 7130, a graphite fiberreinforced grade, has exceptional fatigue strength, and issuperior to competitive engineering resins. Figure 10, theS-N curves for selected TORLON grades, shows that evenafter 10,000,000 cycles, TORLON poly(amide-imide) hasexcellent resistance to cyclical stress in the flexuralmode, and Figure 11 demonstrates the integrity ofTORLON 7130 under tension/tension cyclical stress. Atlower frequencies, the fatigue strength of TORLON 7130 iseven higher, as shown in Figure 12.

Even at high temperature, TORLON polymers maintainstrength under cyclic stress. Flexural fatigue tests wererun at 350°F (177°C) on specimens preconditioned at that

temperature. The results, shown in Figure 13, suggestTORLON polymers are suitable for applications requiringfatigue resistance at high temperature.

– 15 – TORLON EngineeringPolymers Design Manual

Resistance To Cyclic Stress Fatigue Strength

103 104 105 106 107

Cycles to Failure

0

5

10

15

Max

imu

mS

tres

s,kp

si

0

25

50

75

100

MP

a

Figure 10

Flexural fatique strength of TORLON resins at 30Hz

103 104 105 106 107

Cycles to Failure

0

10

20

25

15

05

30

Max

imu

mS

tres

s,kp

si

0

50

100

150

200

175

125

75

25

MP

a

Figure 11

Tension/tension fatique strength of TORLON 7130 and4203L, at 30Hz, A ratio: 0.90

103 104 105 106 107

Cycles to Failure

0

10

20

25

15

05

30

Max

imu

mS

tres

s,kp

si

0

50

100

150

200

175

125

75

25

MP

a

Figure 12

Tension/tension low cycle fatique strength ofTORLON 7130, at 2Hz, A ratio: 0.90

103 104 105 106 107

Cycles to Failure

0

5

10

15

Max

imu

mS

tres

s,kp

si

0

25

50

75

100

MP

aFigure 13

High temperature flexural fatique strength ofTORLON resins at 350°F (177°C), 30Hz

Page 16: Torlon Design Manual

Impact Resistance

TORLON resins absorb impact energy better than mosthigh modulus plastics. In tests using the notched Izodmethod (ASTM D256), TORLON resins give results supe-rior to those of other high temperature resins (Figure 14).Table 3 summarizes both notched and unnotched impactdata for TORLON resins.

– 16 –

Impact Resistance Performance Properties

TORLON grade Notched Unnotchedft•lb/in J/m ft•lb/in J/m

4203L 2.7 142 20.0 1062

4301 1.2 63 7.6 404

4275 1.6 84 4.7 250

4347 1.3 69 — —

5030 1.5 79 9.5 504

7130 0.9 47 6.4 340

Table 3

Izod impact resistance for 1.8 inch (3.2 mm) samples

TORLON4203L

TORLON5030

TORLON4275

RADELA-300

VespelSP-1

VespelSP-21

Ultem1000

0

1

2

3

4

Not

ched

Izod

,ft-

lbs/

in

0

50

100

150

200

J/m

RytonR-4

Figure 14

Izod impact resistance of TORLON resinsversus competitive materials*

* Ultem is a registered trademark of General Electric CompanyRyton is a registered trademark of Phillips Petroleum CompanyVespel is a registered trademark of E.I. DuPont de Nemours and Company

Page 17: Torlon Design Manual

Fracture Toughness

Fracture toughness can be assessed by measuring thefracture energy (Glc) of a polymer. The Naval ResearchLaboratory (NRL) uses a compact tension specimen(Figure 15) to determine Glc a measure of a polymer’sability to absorb and dissipate impact energy without frac-turing — larger values correspond to higher fracturetoughness. Table 4 shows selected data from NRL Memo-randum Report 5231 (February 22,1984). As expected, ther-mosetting polymers cannot absorb and dissipate impactenergy as well as thermoplastics and consequently havelower fracture energies. TORLON poly(amide-imide) ex-hibits outstanding fracture toughness, with a Glc of 1.6ft b/in 2 (3.4 kJ/m2). Glass transition temperatures (Tg) areincluded in the table to indicate the tradeoff betweenfracture toughness and useful temperature range.Poly(amide-imide) is characterized by a balance of tough-ness and high Tg.

– 17 – TORLON EngineeringPolymers Design Manual

Resistance To Cyclic Stress Fracture Toughness

b

a

W

Figure 15

Compact tension specimen

G =Y P aEW b

IC

2c

2

2 2

Where:Y = 29.6 - 186 (a/w) + 656 (a/w)2 - 1017 (a/w)3 + 639 (a/w)4Pc = critical fracture loada = crack lengthE = sample modulus

Fracture energy Tg

ft•lb/in2 kJ/m2 °F °C

Thermosets

Polyimide-1 0.095 0.20 662 350

Polyimide-2 0.057 0.12 680 360

Tetrafunctional epoxy 0.036 0.076 500 260

Thermoplastics

Poly(amide-imide) 1.6 3.4 527 275

Polysulfone 1.5 3.1 345 174

Polyethersulfone 1.2 2.6 446 230

Polyimide-4 1.0 2.1 689 365

Polyimide-3 0.38 0.81 619 326

Polyphenylene sulfide 0.10 0.21 — —

Table 4

Poly(amide-imide) balances fracture toughness andhigh glass transition temperature)

Page 18: Torlon Design Manual

Thermal StabilityThermogravimetric Analysis

TORLON resins are exceptionally stable over a wide rangeof temperatures. When heated at a rate of 18°F (10°C) perminute in air or nitrogen atmospheres, TORLON 4203Lshows virtually no weight loss over its normal servicetemperatures and well beyond, as shown in Figure 16.

Effects of Prolonged Thermal Exposure

Ul Thermal Index

The UL Thermal index provides an estimate of the maxi-mum continuous use temperature and is defined by themethod prescribed by Underwriters Laboratories’. The ULthermal index predicts at least 100,000 hours of useful lifeat the index temperature. TORLON polymers have UL ther-mal indices as high as 220°C, which is equivalent to morethan eleven years of continuous use at 428°F, and is sig-nificantly higher than most high-temperature engineeringresins. Table 5 summarizes the thermal indices of TORLON4203L, 4301, and 5030.

Retention of Properties After Thermal Aging

TORLON poly(amide-imide) resists chemical breakdownand retains high strength after prolonged thermal expo-sure. One method for determining the thermal stability ofpolymers is to measure mechanical properties of samplesafter aging at elevated temperatures* TORLON resins re-tain strength after long-term aging at high temperature, asshown in Figure 17. After 10,000 hours, tensile strengths ofTORLON polymers exceed the ultimate strength of manycompetitive resins. TORLON 4203L, for example, still hastensile strength of over 25,000 psi. It is interesting to notethat the specimens actually increase in tensile strengthinitially, because even greater strength is attained beyondthe standard post cure.* Injection molded and post-cured tensile bars (ASTM D1708 configuration,

18 inch thick) were aged in forced air ovens at 482°F (250°C). Specimens

were periodically removed from the ovens, conditioned at 73°F (23°C) and50 percent relative humidity then tested for tensile strength.

– 18 –

Thermogravimetric Analysis Performance Properties

100

90

80

70

60

50

500

40

30

20

10

00 1,000 1,500

Temperature, °F

Weig

ht

reta

ined

,%

Air

Nitrogen

Temperature, °C

100 200 300 400 500 600 700 800 900

Figure 16

Thermogragimetric analysis of TORLON 4203L

Electrical Mechanical

Minimumthickness

Withimpact

Withoutimpact

in mm °F °C °F °C °F °C

TORLON4203L 0.031 0.79 428 220 * * 410 210

0.046 1.17 428 220 * * 410 210

0.096 2.44 428 220 * * 410 210

0.120 3.05 428 220 392 200 428 220

TORLON 4301 0.120 3.05 * * 392 200 392 200

TORLON 5030 0.062 1.58 428 220 * * * *

0.096 2.44 428 220 * * * *

0.120 3.05 428 220 392 200 428 200

*Specimen not tested

Table 5

Thermal indices of TORLON resins

*Initial properties, including tensile strength, impact strength, dielectricstrength, arc resistance, dimensional stability, and flammability, aredetermined for the test material. For each property and each agingtemperature, a record is kept of elapsed time and the change in thatproperty as a percent of initial. The “end-of-life” for a property is the timerequired at the aging temperature to reach 50 percent of initial. End- of-lifepoints are plotted and regression applied to predict “life expectancy” atany operating temperature. The thermal index is that temperature at whichlife expectancy is 100,000 hours. TORLON polymers were tested inaccordance with the above procedure for 50 percent degradation ofdielectric strength (Electrical), lzod impact (Mechanical-with impact), andtensile strength (Mechanical-without impact). The other properties did notchange significantly.

Page 19: Torlon Design Manual

Compared with other non-reinforced high temperature en-gineering polymers, TORLON 4203L demonstrates superiorthermal stability. Figures 18A through D show the resultsof a 1,000 hour thermal aging study. The resins were agedat temperatures within 30°F (17°C) of their glass transitiontemperatures to avoid phase change. Tensile strength,elongation, flexural modulus, and heat deflection ofTORLON 4203L changed very little, while one competitiveresin showed significant loss of elongation.

– 19 – TORLON EngineeringPolymers Design Manual

Thermal Stability Retention of Properties After Thermal Aging

100 300 1000 3000 10000 30000Time, Hours

TORLON 4203L

TORLON 5030

TORLON 4301

0

10

20

30

Ten

sile

Str

eng

th,k

psi

0

100

40

200

MP

a

Figure 17

TORLON resins retain strength after thermal aging at482°F (250°C)

Figure 18A—D

TORLON 4203L has superior property retention afterthermal aging vs. competitive resins.*Resins were aged at temperatures noted in parenthesis.

30

20

10

250 500 750 1000

200

150

100

50

Ten

sile

Str

eng

thm

10p

si3

N/m

m2

Hours aged

Victrex PES 200P (400°F)

Ultem 1000 (400 F)°

TORLON F)4203L ( 50 0 °

Figure 18A

Tensile strength

Victrex PES 200P (400 F)°

Ultem

1000 (4

00°F)TORLON 4203L (500 F)°

30

40

50

60

20

10

250 500 750 1000

Ten

sile

Str

eng

thm

10p

si3

Hours aged

Figure 18B

Tensile elongation

6

4

2

Flex

ura

lmo

du

lus,

10p

si5

10N

/m3

2

Hours aged

2

1

3

4

5

500250 750 1000

Victrex PES 200P (400°F)

Ultem 1000 (400 F)°

TORLON 4200 F)

3L ( 5 0 °8

Figure 18C

Flexural modulus

300

400

500

600

200

100

250 500 750 1000

Hea

td

efle

ctio

nte

mp

erat

ure

,F°

°C

Hours aged

Victrex PES 200P (400°F)

Ultem 1000 (400°F)

TORLON 4203L (500°F)

50

250

300

100

150

200

Figure 18D

Heat deflection temperature

Page 20: Torlon Design Manual

TORLON polymers maintain exceptional electrical andmechanical properties and UL flammability ratings afterlong-term heat aging. Table 6 demonstrates that TORLON4203L is still suitable for demanding applications even af-ter extended exposure to 482°F (250°C).

Specific Heat

Specific heat as a function of temperature was deter-mined using a differential scanning calorimeter

The data for four TORLON grades at four temperaturesare presented in Table 7.

Thermal Conductivity

TORLON resins have low thermal conductivity, and aresuitable for applications requiring thermal isolation.TORLON heat shields protect critical sealing elementsfrom high temperatures, and protect sensitive instrumentelements from heat loss. Table 8 shows the thermal con-ductivity of TORLON resins using ASTM C177.** ASTM C177 utilizing 0.06 inch (1.6 mm) thick specimens with cold plate

temperature of 122°F (50°C) and hot plate temperature of 212°F (100°C).

Metal-Like Coefficients of Linear Thermal Expansion

The thermal expansion of filled TORLON poly(amide-imide)nearly matches that of common metals. In Table 9, wehave expressed the expansion coefficients of TORLONresins on the order of 106 because this is the order ofmagnitude generally used for metals.

– 20 –

Specific Heat Performance Properties

Samplethicknes

s Property Hours at 480°F (250°C)

in (mm) 2,000 12,000 17,000

0.035(0.9)

Dielectric strength, V/mil(kV/mm) 654

18 (3.2) Flammability, UL 94 94 V-0 94 V-0 94 V-0

18 (3.2) Dimensional change, % 0.0 0.5 0.9

18 (3.2) Tensile strength retained, % 110 86 67

Table 6

TORLON 4203LRetention of properties after thermal aging

Specific heat, cal/gm°C

TORLON grade 4203L 4301 5030 7130Temperature, °F (°C)

77 (25) 0.242 0.240 0.229 0.230212 (100) 0.298 0.298 0.276 0.285

Table 7

Specific heat of TORLON polymers

Thermal conductivity

Btu•in/hr•ft2•°F W/m•K

TORLON 4203L 1.8 0.26

TORLON 4301 3.7 0.54

TORLON 5030 2.5 0.37

TORLON 7130 3.6 0.53

Table 8

Thermal conductivity of TORLON resins

CLTE

10-6 in/in•°F �m/m•K

TORLON 7130 5 9.0

Inconel X, annealed 6.7 12.1

Plain carbon steel AISI-SAE 1020 6.7 12.1

Titanium 6-2-4-2 7 12.6

TORLON 5030 9 16.2

Copper 9.3 16.7

Stainless steel, type 304 9.6 17.3

Commercial bronze, 90%, C2200 10.2 18.4

Aluminum alloy 2017, annealed, ASTMB221

12.7 22.9

TORLON 4275 14 25.2

TORLON 4301 14 25.2

Aluminum alloy 7075 14.4 26.0

TORLON 4347 15 27.0

TORLON 4203L 17 30.6

* CLTE data for TORLON resins were determined per ASTM D696, over atemperature range of 75-3~”0”°F (24-149”C). CLTE data for metals are fromt he CRC Handbook of Chemistry and Physics, 54th ed. and MaterialsEngineering, 1984 Materials Selector edition, Dec. 1983.

Table 9

Coefficients of linear thermal expansion for TORLONresins and selected metals.*

Page 21: Torlon Design Manual

Creep Resistance

A limitation of most plastics is deformation under stress,commonly called creep. TORLON poly(amide-imide) re-sists creep, and handles stress more like a metal than aplastic. To get measurable creep, TORLON polymer mustbe stressed beyond the ultimate strength of most otherplastics. The designer must consider the long-term creepbehavior of plastics under the expected stress and tem-perature conditions of the proposed application. Figures19A through N summarize selected data from tensilecreep tests (ASTM D2990) at applied stress of 5,000,10,000, and 15,000 psi (34.5, 69.0, and 103.4 N/mm2).Non-reinforced TORLON grades may creep or rupture atextremely high temperatures (over 400F) when stress ex-ceeds 5,000 psi (34.5 N/mm2). For these applications, a re-inforced grade is recommended.

– 21 – TORLON EngineeringPolymers Design Manual

Thermal Stability Creep Resistance

5

4

3

1

0

2

0.01 0.10 1.00 10 100

Time, hours

Perc

en

tstr

ain

TORLON 4203L

73 F (23 C)° °

15,000 psi

10,000 psi

5000 psi

Figure 19A—F

Percent strain vs. time, 73°F (23°C)

Figure 19A

5

4

3

1

0

2

0.01 0.10 1.00 10 100

Time, hours

Perc

en

tstr

ain

TORLON 4275

73 F (23 C)° °

1 5,00 0 psi

10,000 psi

5000 psi

Figure 19B

5

4

3

1

0

2

0.01 0.10 1.00 10 100

Time, hours

Perc

en

tstr

ain

TORLON 4301

73 F (23 C)° °

15,000 psi

10,000 psi

5000 psi

Figure 19C

5

4

3

1

0

2

0.01 0.10 1.00 10 100

Time, hours

Perc

en

tstr

ain

TORLON 4347

73 F (23 C)° °

15,000 psi

10,000 psi

5000 psi

Figure 19D

5

4

3

1

0

2

0.01 0.10 1.00 10 100

Time, hours

Perc

en

tstr

ain

TORLON 5030

73 F (23 C)° °

15,000 psi

10,000 psi

5000 psi

Figure 19E

5

4

3

1

0

2

0.01 0.10 1.00 10 100

Time, hours

Perc

en

tstr

ain

TORLON 7130

73 F (23 C)° °

15,000 psi10,000 psi5000 psi

Figure 19F

Page 22: Torlon Design Manual

– 22 –

Creep Resistance Performance Properties

5

4

3

1

0

2

0.01 0.10 1.00 10 100

Time, hours

Perc

en

tstr

ain

5000 psi

TORLON 4275

400 F (204 C)° °

Figure 19I

5

4

3

1

0

2

0.01 0.10 1.00 10 100

Time, hours

Perc

en

tstr

ain

5000 psi

TORLON 4301

400 F (204 C)° °

Figure 19J

5

4

3

1

0

2

0.01 0.10 1.00 10 100

Time, hours

Perc

en

tstr

ain

TORLON 4203L

400 F (204 C)° °

5000 psi

Figure 19H-M

Percent strain vs. time, 400°F (204°C)Figure 19H

5

4

3

1

0

2

0.01 0.10 1.00 10 100

Time, hours

Perc

en

tstr

ain

5000 psi

TORLON 4347

400 F (204 C)° °

Figure 19K

5

4

3

1

0

2

0.01 0.10 1.00 10 100

Time, hours

Perc

en

tstr

ain

1 0,000 psi

5000 psi

TORLON 5030

400 F (204 C)° °

Figure 19L

5

4

3

1

0

2

0.01 0.10 1.00 10 100

Time, hours

Perc

en

tstr

ain

10,000 psi

5000 psi

TORLON 7130

400 F (204 C)° °

Figure 19M

Page 23: Torlon Design Manual

FlammabilityTest data indicate the suitability of TORLON parts for elec-trical, electronic, aerospace, and other applicationswhere flammability is of great concern. TORLON 5030 and7130 exceed FAA requirements for flammability, smokedensity, and toxic gas emission, and surpass, by a largemargin, the proposed requirements for aircraft interioruse.

Summary of Flammability Data

The results of several laboratory tests designed to mea-sure the burning characteristics of materials are shown inTable 10.

The tests show that TORLON resins are extremely resis-tant to flame, and are characterized by low smokegeneration.

– 23 – TORLON EngineeringPolymers Design Manual

Flammability Summary of Flammability Data

5. Vertical Flammability Class by Underwriters Laboratories (UL 94)

Thickness94 V-0 ratings forTORLON grades

in. mm0.008 0.20 4203L0.020 0.51 4203L0.046 1.17 4203L, 4301, 50300.058 1.47 4203L, 4301, 50300.096 2.44 4203L, 43010.120 3.05 4203L, 43010.125 3.18 All TORLON grades

6. Vertical flammability, FAA Transport Category Airplanes, 25.853 (a)and Appendix F.

Average burn lengthin. mm

TORLON 5030 0.6 15.2TORLON 7130 0.6 15.2

Samples of TORLON 5030 and 7130 were also tested for horizontalflammability (FAA Transport Category Airplanes, 25.853(b-3) and AppendixF) and 45 flammability (FAA Cargo and Baggage Compartment, 25.855(1-a)).In both cases, the test specimens did not ignite. Based on that result,TORLON 5030 and 7130 meet the requirements of these codes.

7. Flammability requirements in accordance with Underwriters Lab-oratories

“Electric Lighting Fixtures” (UL 57)

TORLON 4203L Noncombustible by Section 81.12. forthickness of 0.040, 0.125 and 0.200 inches(1. 0 2, 3.18, 5.08 mm)

Note: The test methods used to obtain these data measure response to heatand flame under controlled laboratory conditions detailed in the testmethod specified and may not provide an accurate measure of fire hazardunder actual fire conditions. Furthermore, as Solvay Advanced Polymershas no control over final formulation by the user of these resins includingcomponents incorporated either internally or externally, nor overprocessing conditions or final physical form or shape, these results maynot be directly applicable to the intended end use.

1. Oxygen Index, ASTM D2863 Oxygen Index, %TORLON 4203L 45TORLON 4301 44TORLON 4275 45TORLON 4347 46TORLON 5030 51TORLON 7130 52

2. FAA Smoke Density, National Bureau of Standards,NFPA 258. Specimen thickness 0.05-0.06 inch (1.3-1.5 mm)

TORLON4203L

TORLON5030 TORLON 7130

Sm Fl Sm Fl Sm Fl

Minimum lighttransmittance (Tm), % 92 6 96 56 95 28

Maximum specific opticaldensity (Dm) 5 170 2 35 3 75

Time to 90% Dm, minutes 18.5 18.6 10.7 15.7 17.0 16.0Sm= Smoldering, Fl = Flaming

3. FAA Toxic Gas Emission Test,National Bureau of Standards, NFPA 258.

Specimen thickness 0.05-0.06 inch (1.3-1.5 mm).

TORLON 5030 TORLON 7130Smppm

Flppm

Smppm

Flppm

Hydrochloric acid 0 <1 0 <1Hydrofluoric acid 0 0 0 0Carbon monoxide <10 120 <10 100Nitrogen oxides <2 19 0 14Hydrocyanic acid 0 4 0 5Sulfur dioxide 0 0 0 4Sm= Smoldering, Fl = Flaming

Table 10

Summary of flammability* data

Page 24: Torlon Design Manual

Performance in VariousEnvironmentsChemical Resistance

TORLON poly(amide-imide) is virtually unaffected byaliphatic and aromatic hydrocarbons, chlorinated and flu-orinated hydrocarbons, and most acids at moderate tem-peratures. The polymer, however, may be attacked by sat-urated steam, strong bases, and some high temperatureacid systems. The effects of a number of specific chemi-cals on the tensile strength of TORLON 4203L are pre-sented in Table 11. Proper post-cure of TORLON parts isnecessary to achieve optimal chemical resistance.

– 24 –

Chemical Resistance Performance Properties

Chemical Tensile strength% retained

AcidsAcetic (10%) . . . . . . . . . . . . . . . . . . 100Glacial acetic . . . . . . . . . . . . . . . . . 100Acetic anhydride . . . . . . . . . . . . . . 100Lactic . . . . . . . . . . . . . . . . . . . . . . . . 100Benzene sulfonic . . . . . . . . . . . . . . . 28Chromic (10%) . . . . . . . . . . . . . . . . . 100Formic (88%) . . . . . . . . . . . . . . . . . . . 66Hydrochloric (10%). . . . . . . . . . . . . 100Hydrochloric (37%). . . . . . . . . . . . . . 95Phosphoric (35%) . . . . . . . . . . . . . . 100Sulfuric (30%) . . . . . . . . . . . . . . . . . 100BasesAmmonium hydroxide (28%) . . . . . 81Sodium hydroxide (15%) . . . . . . . . . 43Sodium hydroxide (30%) . . . . . . . . . . 7Aqueous solutions (10%)Aluminum sulfate . . . . . . . . . . . . . . 100Ammonium chloride . . . . . . . . . . . 100Ammonium nitrate . . . . . . . . . . . . . . 98Barium chloride . . . . . . . . . . . . . . . 100Bromine (saturated solution, 120°F)100Calcium chloride . . . . . . . . . . . . . . 100Calcium nitrate . . . . . . . . . . . . . . . . . 96Ferric chloride . . . . . . . . . . . . . . . . . 99Magnesium chloride . . . . . . . . . . . 100Potassium permanganate . . . . . . 100Sodium bicarbonate . . . . . . . . . . . 100Silver chloride . . . . . . . . . . . . . . . . 100Sodium carbonate . . . . . . . . . . . . . 100Sodium chloride . . . . . . . . . . . . . . . 100Sodium chromate . . . . . . . . . . . . . 100Sodium hypochlorite . . . . . . . . . . . 100Sodium sulfate . . . . . . . . . . . . . . . . 100Sodium sulfide . . . . . . . . . . . . . . . . 100Sodium Sulfite . . . . . . . . . . . . . . . . 100Alcohols2-Aminoethanol . . . . . . . . . . . . . . . . . 9n-amyl alcohol . . . . . . . . . . . . . . . . 100n-butyl alcohol . . . . . . . . . . . . . . . . 100Cyclohexanol. . . . . . . . . . . . . . . . . . 100Ethylene glycol . . . . . . . . . . . . . . . . 100AminesAniline . . . . . . . . . . . . . . . . . . . . . . . . 97n-Butyl amine . . . . . . . . . . . . . . . . . 100Dimethylaniline . . . . . . . . . . . . . . . 100Ethylene diamine . . . . . . . . . . . . . . . . 7Morpholine . . . . . . . . . . . . . . . . . . . 100Pyridine . . . . . . . . . . . . . . . . . . . . . . . 43

Chemical Tensile strength% retained

Aldehydes & ketonesAcetophenone . . . . . . . . . . . . . . . . 100Benzaldehyde . . . . . . . . . . . . . . . . 100Cyclohexanone . . . . . . . . . . . . . . . 100Formaldehyde (37%) . . . . . . . . . . . 100Furfural . . . . . . . . . . . . . . . . . . . . . . . 84Methyl ethyl ketone . . . . . . . . . . . 100Chlorinated organicsAcetyl chloride (120°F) . . . . . . . . . 100Benzyl chloride (120°F) . . . . . . . . . 100Carbon tetrachloride . . . . . . . . . . . 100Chlorobenzene . . . . . . . . . . . . . . . . 1002-Chloroethanol . . . . . . . . . . . . . . . 100Chloroform (120°F) . . . . . . . . . . . . . 100Epichlorohydrin . . . . . . . . . . . . . . . 100Ethylene chloride . . . . . . . . . . . . . . 100EstersAmyl acetate . . . . . . . . . . . . . . . . . . 100Butyl acetate . . . . . . . . . . . . . . . . . . 100Butyl phthalate . . . . . . . . . . . . . . . . 100Ethyl acetate . . . . . . . . . . . . . . . . . . 100EthersButyl ether . . . . . . . . . . . . . . . . . . . 100Cellosolve . . . . . . . . . . . . . . . . . . . . 100P-Dioxane (120°F) . . . . . . . . . . . . . . 100Tetrahydrofuran . . . . . . . . . . . . . . . 100HydrocarbonsCyclohexane . . . . . . . . . . . . . . . . . . 100Diesel fuel . . . . . . . . . . . . . . . . . . . . . 99Gasoline (120°F) . . . . . . . . . . . . . . . 100Heptane . . . . . . . . . . . . . . . . . . . . . . 100Mineral oil . . . . . . . . . . . . . . . . . . . . 100Motor oil . . . . . . . . . . . . . . . . . . . . . 100Stoddard solvent . . . . . . . . . . . . . . 100Toluene. . . . . . . . . . . . . . . . . . . . . . . 100NitrilesAcetonitrile . . . . . . . . . . . . . . . . . . . 100Benzonitrile . . . . . . . . . . . . . . . . . . 100Nitro compoundsNitrobenzene. . . . . . . . . . . . . . . . . . 100Nitromethane . . . . . . . . . . . . . . . . . 100MiscellaneousCresyldiphenyl phosphate . . . . . . 100Sulfolane . . . . . . . . . . . . . . . . . . . . . 100Triphenylphosphite. . . . . . . . . . . . . 100

Table 11

Chemical resistance of TORLON 4203L after 24 hour ex-posure at 200°F (93°C) except where noted otherwise.

TORLON parts maintain high performance in hostilechemical environments.

Page 25: Torlon Design Manual

Resistance To Automotive and Aviation Fluids

Of particular interest to aerospace and automotive engi-neers is the ability of a polymer to maintain its propertiesafter exposure to commonly used fluids. Total immersiontests show TORLON poly(amide-imide) is not affected bycommon lubricating fluids at 300°F (149°C), aircraft hy-draulic fluid at low temperatures, and turbine oil, even un-der stress at elevated temperatures. At 275°F (135°C), air-craft hydraulic fluid reduces strength slightly. Tables 12and 13 summarize the methods and results of specificfluid immersion tests.Automotive Lubricating Fluids

ASTM D790 specimens were tested at room temperatureafter immersion in 300°F (149°C) lubricating fluids for onemonth. TORLON 4203L and 4275 have excellent propertyretention under these conditions (Table 12).

Aircraft Hydraulic Fluid (SKYDROL 500B)

TORLON bearing grades 4301 and 4275 were immersed inaircraft hydraulic fluid for 41 days at -108°F (-80°C) and275°F (135°C). Both TORLON grades were mildly affectedby the fluid at 275°F (135°C), showing a loss in tensilestrength of about 10 percent. It is noteworthy that this losswas not a result of embrittlement as tensile elongationwas maintained. Tests show TORLON 4203L bar speci-mens resist cracking, softening, and breakage under highstress in aircraft hydraulic fluid. Low temperature testingshowed no significant effect on either grade.

Aircraft Turbine Oil, With and Without Stress

TORLON parts have exceptional resistance to Aeroshell500 turbine oil5 under stress at elevated temperatures.Turbine oil affects TORLON 4203L and 7130 only slightly;after 100 hours of exposure under stress, 4203L maintainsmore than 80 percent of its ultimate tensile strength attemperatures up to 400°F (204°C) without rupturing, and7130, a graphite fiber reinforced grade, is even better, tol-erating stress levels of 80 percent of ultimate at tempera-tures up to 450°F (232°C).

In another test, without stress, essentially no change inthe tensile strengths of TORLON 4203L and 4301 was ob-served after 1000 hours in Aeroshell 500 at 302°F (150°C).5 Aeroshell is a registered trademark of Shell Oil Company

Chemical Resistance Under Stress

TORLON parts which had been thoroughly post-curedwere tested* for resistance to the following chemical en-vironments; aviation gasoline, turbine fuel (Jet A/A-1), hy-draulic fluid, methyl ethyl ketone, methylene chloride, 1,1,1trichloroethane, and toluene. TORLON specimens resistedbreakage, cracking, swelling, and softening.

* 5 x 0.5 x 0.125 inch (12.7 x 1.3 x 0.318 cm) specimens were clamped over a5.0 inch (12.7 cm) curve. The test chemical was applied to the middle ofeach specimen for one minute. The application was repeated after one andtwo hours. Specimens were inspected after 24 hours for breakage,cracking, swelling, and softening.

– 25 – TORLON EngineeringPolymers Design Manual

Performance in Various Environments Chemical Resistance Under Stress

Tested at room temperature

TORLON 4203L TORLON 4275Weightchange

%

Flexuralstrength

retained, %

Weightchange

%

Flexuralstrength

retained, %Motor oil 1 0.0 99.4 0.0 95.5Transmissionfluid 2 0.0 100.3 0.0 94.2

Gear lube 3 +0.2 102.7 +0.2 100.6

Table 12

Property retention after immersion in 300°F (149°C)automotive lubricating fluid.

Tested at room temperatureTensile strength,percent of initial

Elongation,percent of initial

TORLON 43011,000 hours at 275°F (135°C) 89.6 94.11,000 hours at -108°F (-80°C) 94.0 95.8

TORLON 42751,000 hours at 275°F (135°C) 92.7 119.31,000 hours at -108°F (-80°C 101.3 129.8

4 Skydrol 500B. Skydrol is a registered trademark of Monsanto Company

Table 13

Tensile strength retention after immersion in aircrafthydraulic fluid4

Page 26: Torlon Design Manual

Effects of Water

Like other high-temperature engineering resins and com-posites, TORLON parts absorb water, but the rate is slowand parts can be rapidly restored to original dimensionsand properties by drying.

Absorption Rate

TORLON poly(amide-imide) must be exposed to high hu-midity for a long time to absorb a significant amount ofwater. The rate of absorption depends on polymer grade,temperature, humidity, and part geometry.

Figures 20 and 21 report results obtained with uniformbars 5 x ½ x 1

8 inch (127 x 13 x 3 mm). Water absorption isdependent on diffusion into the part and is inversely pro-portional to part thickness.

Equilibrium Absorption at Constant Humidity

At constant humidity, a TORLON part will absorb an equi-librium amount of water. The levels for a range of relativehumidity are shown in Figure 22 using uniform panels5 x ½ x 1

8 inch (127 x 13 x 3 mm).

Dimensional Changes

Small dimensional changes occur as TORLON parts ab-sorb water. Figures 23 and 24 show dimensional changesof the standard test part with exposure to atmosphericmoisture at specified temperatures. As with absorptionrate, the change is greatest for TORLON 4203L, the gradewith least filler or reinforcement.

– 26 –

Effects of Water Performance Properties

2.5

2

1.5

1

0.5

0

0 100 200 300 400 500

Time, days

Weig

ht

incre

ase,%

TORLON 4203L

TORLON 4301

TORLON 4275TORLON 7130

T 43 47ORL ON

TORLON 5030

Figure 20

Water absorption of TORLON polymers at 73°F (23°C),50% relative humidity

5

4

3

2

1

0

0 50 100 150 200 250

Time, days

Weig

ht

incre

ase,%

TORLON 4203L

TORLON 4301TORLON 4275

TORLON 4347

TORLON 5030, 7130

Figure 21

Water absorption of TORLON polymers at 110°F(43°C), 90% relative humidity

5

4

3

2

1

0

0 2010 40 60 80 100

Relative humidity, %

Weig

ht

incre

ase,%

TORLON4203L

TORLON 4301

TORLON 7130TORLON 5030

5030 70 90

Figure 22

Relative humidity determines equilibrium moistureabsorption at room temperature

2

1.5

1

0.5

0

0 100 200 300 400 500

Time, days

Ch

an

ge,0.0

01

in./

in.

TORLON 4203L

TORLON 4301

TORLON 4275

TORLON 7130

TORLON4347

TORLON 5030

Figure 23

Dimensional changes of TORLON polymers at73°F (23°C), 50% relative humidity

Page 27: Torlon Design Manual

Restoration of Dimensions and Properties

Original dimensions and properties can be restored bydrying TORLON parts. The temperature and time requireddepend on part size and geometry. For the test panels inthis study, original dimensions were restored by heatingfor 16 hours at 300F (149C).

Changes in Mechanical and Electrical Properties

To illustrate the change in mechanical properties with wa-ter absorption, test specimens were immersed in wateruntil their weight increased by 2 percent. Table 14 com-pares the properties of these panels with those of panelsconditioned for 40 hours at 73°F (23°C) and 50 percent rel-ative humidity A slight reduction in stiffness is the mostnoticeable change

Absorbed water reduces the electrical resistance ofTORLON resin and slightly changes dielectric properties.With 2 percent moisture, TORLON specimens had volumeand surface resistivities of 1 x 1016 ohm/inch (3 x 1014

ohm/m) and 1 x 1017 ohm respectively, and dielectricstrength of 620 V/mil (24 kV/mm).

Constraints on Sudden High Temperature Exposure

Absorbed water limits the rate at which TORLON partscan be heated. Sudden exposure to high temperature candistort or blister parts unless absorbed water is allowed todiffuse from the part. Solvay Advanced Polymers uses theterm “thermal shock temperature” to designate the tem-perature at which any distortion* occurs upon sudden ex-posure to heat.

Figure 25 relates thermal shock temperature to moisturecontent for TORLON 4203L, the grade most sensitive towater absorption. At 2½ percent absorbed water (which isequilibrium at 50 percent relative humidity and room tem-perature) the thermal shock temperature is well over400°F (204°C). Thermal shock is related to exposure timein Figure 26. Even after over 200 hours at 57.8 percent rel-ative humidity and 73°F (23°C), the test part made withTORLON 4203L did not distort until sudden exposure toover 400°F (204°C). Other grades of TORLON resin exhibitlower equilibrium water absorption (refer to Figure 22) andtheir thermal shock temperatures are therefore higher.Thermal shock temperature can be restored to its highestlevel by drying at 300°F (149°C) for 24 hours for each 1

8

inch (3 mm) of part thickness.* Test bars 5 x ½ x 1

8 inch (127 x 13 x 3 mm) are exposed to 57.8 percentrelative humidity and 73°F (23°C) over a specified period of time, and placedin a circulating air oven preheated to the test temperature. After one hourthe samples are visually inspected and measured. Failure occurs if blistersor bubbles appear, or if dimensional change over 0.001 inch (25micrometers) is measured. The temperature at which failure is evident isthe thermal shock temperature.

– 27 – TORLON EngineeringPolymers Design Manual

Performance in Various Environments Effects of Water

5

4

3

2

1

0

0 50 100 150 200 250

Time, days

Ch

an

ge,0.0

01

in./

in. TO

RLON4203L

TORLON 4301

TORLON 4275

TORLON 7130

TORLON 4 347

TORLON 5030

Figure 24

Dimensional change of TORLON polymers at110°F (43°C), 90% relative humidity

Property Percent changeTensile strength -7

Tensile modulus -11

Elongation 13

Shear strength 1

lzod impact strength 20

Dielectric constant 18

Dissipation factor 53

Table 14

Percent change in properties ofTORLON 4203L with 2% absorbed water

600

500

400

300

200

100

0 0.5 1 1.5 2 2.5 30

50

100

150

200

250

300

350

Moisture level weight %

Th

erm

alsh

ock

tem

pera

ture

,°F

°C

TORLON 4203L

Figure 25

Thermal shock temperature versus moisturecontent of TORLON 4203L

Page 28: Torlon Design Manual

Weather-Ometer® Testing

TORLON molding polymers are exceptionally resistant todegradation by ultraviolet light. TORLON 4203L did not de-grade after 6,000 hours of Weather-Ometer exposure (Fig-ures 27 and 28) which is roughly equivalent to five years ofoutdoor exposure. The bearing grades, such as 4301, con-tain graphite powder which renders the material blackand screens UV radiation. These grades are even moreresistant to degradation from outdoor exposure.

Tensile bars (ASTM D1 708) were exposed in an AtlasSunshine Carbon Arc Weather-Ometer. Bars were re-moved after various exposure periods and tensile strengthand elongation were determined. The test conditionswere a black panel temperature of 145°F (63°C), 50 per-cent relative humidity and an 18-minute water spray every102 minutes.

Resistance to Gamma Radiation

Figure 29 shows the negligible effect gamma radiation hason TORLON poly(amide-imide)-only about 5 percent loss intensile strength after exposure to 109 rads.

– 28 –

Weather-Ometer® Testing Performance Properties

600

500

400

300

200

100

0 40 80 120 160 200 240

50

100

150

200

250

300

350

Exposure time, days at 57.8% RH, room temperature

Th

erm

alsh

ock

tem

pera

ture

,F°

°C

T ORLON 4203L

Figure 26

Thermal shock temperature versus exposure time forTORLON 4203L

16

14

12

10

8

6

10 50 100 500 1,000 5,000 10,000

Exposure time, hours

Elo

ng

ati

on

,%

TORLON 4203L

Figure 27

The elongation of TORLON 4203L is essentially con-stant after exposure to simulated weathering

35

30

25

20

15

10

10 50 100 500 1,000 5,000 10,000

Exposure time, hours

TORLON 4 203L 200

150

100

Ten

sile

str

en

gth

,10

psi

3

N/m

m2

Figure 28

Change in tensile strength of TORLON 4203L with ex-posure to simulated weathering

50

40

30

20

10

0

-10

-20

-30

-40

-50

0 101

102

103

104

105

106

107

108

109

Flexural Modulus

Tensile Strength

Elongation

Radiation exposure level, rads (10 rad/hr exposure rate)6

Ch

an

ge

vs.C

on

tro

l,%

Figure 29

Percent change in physical properties of TORLON4203L after exposure to gamma radiation

Page 29: Torlon Design Manual

Electrical Properties

Most TORLON grades provide electrical insulation.TORLON poly(amide-imide) provides a unique combinationof high temperature service and ease of moldability intocomplex electrical and electronic parts. Special grades ofTORLON engineering polymer are conductive. TORLON7130, a conductive grade, effectively shields electromag-netic interference. The design engineer should considerthe significant electrical properties of a material, such asthose summarized in Table 15.

TORLON polymers for insulating

TORLON engineering polymers demonstrate excellentelectrical properties and maintain them in a variety of en-vironments. The dielectric strength of the grades shown inTable 16 are high indicating these grades provide out-standing electrical insulation. Also indicative of theinsulative capability of TORLON resins are the high valuesshown for volume resistivity.

– 29 – TORLON EngineeringPolymers Design Manual

Performance in Various Environments Electrical Properties

Property

ASTMtestmethod Significance

Dielectric constant D150 The ratio of the capacity of acondenser filled with the materialto the capacity of an evacuatedcapacitor. It is a measure of theability of the molecules to becomepolarized in an electric field. A lowdielectric constant indicates lowpolarizability; thus the materialcan function as an insulator.

Dissipation factor DI50 A measure of the dielectric loss(energy dissipated) of alternatingcurrent to heat. A low dissipationfactor indicates low dielectricloss, while a high dissipationfactor indicates high loss ofpower to the material, which maybecome hot in use at highfrequencies.

Volume resistivity D257 The electrical resistance of a unitcube calculated by multiplying theresistance in ohms between thefaces of the cube by the area ofthe faces. The higher the volumeresistivity, the better the materialwill function as an insulator.

Surface resistivity D257 The resistance to electric currentalong the surface of a one squarecentimeter sample of material.Higher surface resistivityindicates better insulatingproperties.

Dielectric strength D149 A measure of the voltage aninsulating material can takebefore failure (dielectricbreakdown). A high dielectricstrength indicates the material isa good insulator.

Table 15

Important electrical considerations

TORLON Grade

4203L 4301* 4275* 4347* 5030

Volume resistivity(ASTM D257)

ohm•in 8 x 1016 3 x 1015 3 x 1015 3 x 1015 6 x 1016

ohm•m 2 x 1015 8 x 1013 8 x 1013 8 x 1013 2 x 1015

Surface resistivity(ASTM D257)

ohm 5 x 1018 8 x 1017 4 x 1017 1 X 1018 1 X 1018

Dielectric strength,0.040 in(ASTM D 149)

V/mil 580 840kV/mm 24 33

Dielectric constant(ASTM D150)

103 Hz 4.2 6.0 7.3 6.8 4.4106 Hz 3.9 5.4 6.6 6.0 6.5

Dissipation factor(ASTM D150)

103 Hz 0.026 0.037 0.059 0.037 0.022106 Hz 0.031 0.042 0.063 0.071 0.023

*Contains graphite powder. By these tests, they behave as insulators, but theymay behave in a more conductive manner at high voltage or highfrequency.

Table 16

Electrical properties of TORLON resins

Page 30: Torlon Design Manual

Conductivity and EMI Shielding

Normally, TORLON poly(amide-imide) has superior insulat-ing qualities, however, addition of graphite fiber producesa resin with electrical conductivity Table 17 shows the lowvolume resistivity and surface resistivity of the conductiveTORLON grades. ASTM D257 is an excellent test for mea-suring the resistivity of insulators, but reproducibility isunsatisfactory when dealing with conductors. This datashould not be considered absolute, but as a guideline fordistinguishing materials that insulate from materials thatconduct electrically

TORLON 7130, a graphite fiber reinforced grade is suffi-ciently conductive to shield electromagnetic interference(EMI). EMI emanates from both natural and man-madesources. Tremendous growth in electrical devices, suchas personal computers, pocket pagers, CB radios, andtelephones, has contributed to a dramatic increase in EMI“noise” Such devices create and are affected by EMI.EMI noise makes garage doors open and computers shutdown; it interferes with communications, and navigationalsystems.

EMI from electronic devices is under the Jurisdiction ofthe Federal Communications Commission (FCC) in the U.S.The VDE in West Germany and similar agencies aroundthe world have taken steps to control this serious prob-lem. The frequency of EMI ranges from 1 MHz to 1,000MHz. Regulations limiting EMI make it necessary for de-sign engineers to select a material that can attenuateEMI.

Two techniques, dual chamber and transmission line, areused to determine decibel attenuation (reduction) pro-vided by a material. Attenuation is related logarithmicallyto shielding effectiveness and is measured by detectingthe EMI penetrating a test specimen. The dual chambermethod is used to gauge EM I in the “near field.” Thiswould relate to the ability of a material to shield EMI ema-nating from devices operating in relatively close proximity.Transmission line data is more relevant in analysis of “farfield” effects, such as noise in space emanating fromearth or vice versa.

Shielding effectiveness is expressed as a percent. Table18 shows the correlation between shielding effectivenessand decibel attenuation. A material rated at 30dB attenua-tion would prevent 99.9 percent of the electromagnetic ra-diation from penetrating through it.

TORLON 7130 was tested for far field and near field shield-ing effectiveness and was shown to have potential forshielding in both categories. Figures 30 and 31 relate theresults of this testing.

– 30 –

Conductivity and EMI Shielding Performance Properties

ASTM TORLON grade

Method 7130

Volume resistivity D257

ohm•in 3 x 106*

ohm•m 8 x 104*

Surface resistivity D257

ohm 5 X 107*

* Molded specimen—plaque 3.0 x 4.5 x 0.190 inch (7.6 x 11.4 x 0.48 cm)

Table 17

Electrical resistance properties of TORLON 7130

Attenua-tion,dB

Shieldingeffectiveness, % Description

0 – 10 0 – 90 Ineffective.

10 – 30 90 – 99.9 Minor amounts of EMIeliminated.

30 – 60 99.9 – 99.9999 Moderate amounts of EMIeliminated. Considered adequatefor the large majority of currentapplications.

60 – 90 99.9999 – 99.9999999 Moderate to severe EMIeliminated.

90 – 120 99.9999999 –99.9999999999

Maximum possible reduction.

Over 120 99.9999999999 + Considered unattainable.

Table 18

Attenuation in decibels and shielding effectiveness

0

90

99

99.9

99.99

99.999

99.9999

100 200 400 500 700 800 1,000

60

50

40

30

20

10

0

TORLON 7130

Frequency, MHz

Decib

elatt

en

uati

on

Sh

ield

ing

eff

ecti

ven

ess,%

300 600 900

Figure 30

Near field EMI shielding effectiveness,dual chamber method

Page 31: Torlon Design Manual

– 31 – TORLON EngineeringPolymers Design Manual

Performance in Various Environments Conductivity and EMI Shielding

0

90

99

99.9

99.99

99.999

99.9999

100 200 400 500 700 800 1,000

60

50

40

30

20

10

0

TORLON 7130

Frequency, MHz

Decib

elatt

en

uat i

on

Sh

ield

ing

eff

ecti

ven

ess,%

300 600 900

Figure 31

Far field EMI shielding effectiveness,transmission line method

TORLON spline liners are tough, wear resistant and usefulthrough a wide temperature range. The TORLON part does notgall, resists fretting and requires no lubrication.

Page 32: Torlon Design Manual

Service Under Conditions ofFriction and WearAn Introduction to TORLON Wear Resistant Grades

New possibilities in the design of moving parts areopened by TORLON wear resistant grades; 4301, 4275, and4347. These grades offer high compressive strength andmodulus, excellent creep resistance, and outstanding re-tention of strength and modulus at elevated temperatures,as well as self-lubricity and low coefficients of thermalexpansion, which make them prime candidates for wearsurfaces in severe service. TORLON bearings are depend-able in lubricated, unlubricated, and marginally lubricatedservice. Some typical applications which lend themselvesto this unique set of properties are ball bearings, thrustwashers, piston rings, vanes, valve seats, bushings andwear pads.

Wear Rate Defined as PV Service Limits

The service regime of bearings is often defined as thepressure-velocity product (PV) limit. A given material willhave a characteristic PV limit. Below the PV limit, wear ismoderate; above the PV limit, wear is rapid as demon-strated in Figure 32. Due to heat of friction, bearings inservice above the PV limit of the material wear very rap-idly and may actually melt.

Whenever two solids rub against each other, some wearis inevitable. The rate at which wear occurs is related topressure and velocity by the following empirical equation:

t = KPVT

where:

t = wear, inchesK = wear factor determined at a given P and V, in

units of in3min/ft lb hrP = pressure on bearing surface, psiV = bearing surface velocity, ft/minT = time, hours

Low wear factors (K) are characteristic of wear resistantmaterials. Fluorocarbons, which have low coefficients offriction, have very low wear factors, but limited mechani-cal properties and poor creep resistance. At low PV’s,TORLON wear resistant grades have wear factors compa-rable to filled polytetrafluoroethylene (pTFE), a fluorocar-bon, but TORLON polymers offer superior creep resis-tance and strength.

TORLON polymers have wear factors similar to those ofmore expensive polyimide resins, and there is a distinctcost advantage in choosing TORLON poly(amide-imide). Inaddition, TORLON resins are injection moldable -polyimides are not.

Unlubricated Wear Resistance

Evaluation by Thrust Washer Friction and Wear Method

Wear data has been developed using tests run on anunlubricated thrust washer. This procedure has beenfound to be more reproducible than tests using journalbearings and the results can predict journal bearing testresults with a fair degree of confidence. Table 19 showswear factor (K), and coefficient of friction data forTORLON wear resistant grades at 10,000, 45,000, and50,000 PV. All three wear resistant grades are useful in ex-cess of 50,000 PV. Most other engineering resins fail farbelow this level.

Figure 33 compares TORLON wear resistant grades to twoengineering resins commonly used for wear surfaces. Un-der the test conditions*, TORLON wear resistant gradesare similar in wear rate to the more expensive polyimideVespel** SP21. At low PVs, TORLON wear rates are simi-lar to filled pTFE (**Vespel is a registered trademark of E.I.DuPont de Nemours and Company).

– 32 –

An Introduction to TORLON Wear Resistant Grades

PV

PV

Limit

Wear

facto

r,K

Figure 32

Material wear rate is a function of the Pressure-Ve-locity (PV) product

Page 33: Torlon Design Manual

Effect of Mating Surface on Wear Rate

The wear data presented in Table 19 and Figure 33 weredetermined using C1018 steel hardened to 24 on theRockwell C scale. Other metals were tested againstTORLON 4301 to evaluate the role of the mating surface.The results are shown in Table 20.

– 33 – TORLON EngineeringPolymers Design Manual

Service Under Conditions of Friction and Wear Effect of Mating Surface on Wear Rate

TORLON4301

TORLON4301

TORLON4301

TORLON4275

TORLON4275

TORLON4275

TORLON4347

TORLON4347

TORLON4347

VespelSP21

VespelSP21

VespelSP21

0

10

20

30

40

50

Wea

rfa

ctor

,10

K-1

0

Carbon-filledpTFE

PV = 10,000P = 50V = 200

V 10,0P

PV = 45000P = 50V = 00

V 100P 9

PV = 50000P = 1000V = 0

V 0P 5

Figure 33

Wear resistance of TORLON resins compares to that of polyimide

.078 Dia.

±.003.437

All dimensions are in inches

D.D.1.005

1.000

1.125

1.120.250 D.

.255

.185

.180

.095.085

.0005

Figure 34

Thurst washer test specimenThe Faville-LeValley FALEX 6 Thrust Washer Test Machineis used to evaluate the friction and wear properties of res-ins using a small rotating test specimen (Figure 34). A sta-tionary washer machined from C1018 steel having asurface roughness of 12.0 ± 0.50 µ inch root-mean squareis the reference material, although other materials and tol-erances can be used. Following the manufacturer’s in-structions, calculate the speed and load from accuratemeasurement of the rotating test specimen for the desiredvelocity and pressure. Several measurements should bemade to assure uniformity of the specimen.

Initiate the test following the manufacturer’s instructionsand obtain the static coefficient of friction. Allow the testto proceed for at least 40 hours or until the specimenwears down 10 mils, whichever requires the longerelapsed time. If the specimen wears quickly, terminate thetest after 50 mils of wear, as approximated by wear gaugereadings. After kinetic temperature equilibrium is reached,several torque readings should be obtained and averagedto obtain the kinetic coefficient of friction. Because staticcoefficients are determined at room temperature and ki-netic coefficients at equilibrium temperature, this proce-dure yields static coefficients which are lower than kineticcoefficients. The wear factor is calculated from the differ-ence between initial and final thickness measurementstaken in equilibrium at room temperature and the pressureand velocity used.

Thrust Washer Friction and Wear Test Method

Page 34: Torlon Design Manual

– 34 –

Performance Properties

Metal used as mating surface for TORLON 4301

C1018(Standard)

C1018Soft

316Stainless

steelBrass (free

cutting)

Aluminum diecasting alloys

A360 A380Rockwell hardness, C scale 24 6 17 -15 -24 -28Wear factor,* K (10-10in3•min/ft•lb•hr)K relative to standard at PV= 45,000 1.0 1.4 7.5 2.1 1.3 1.2K relative to standard at PV= 50,000 1.0 1.2 1.2 1.5 1.5 0.9Coefficient of friction, static

PV=45,000 0.12 0.15 0.13 0.11 0.11 0.10PV = 50,000 0.11 0.08 0.07 0.04 0.05 0.04

Coefficient of friction, kineticPV = 45,000 0.14 0.17 0.20 0.26 0.20 0.18PV = 50,000 0.13 0.13 0.12 0.23 0.13 0.13

*Pressure and velocity for PV values PV 45,000 50,000Pressure, psi 50 1,000Velocity, fpm 900 50

Table 20

Wear characteristics of TORLON 4301 against various metals

TORLON grade

Wear characteristics* 4301 4275 4347Wear factor K (10-10in3•min/ft•lb•hr)

PV= 10,000 17 8 6PV = 45,000 53 40 42PV = 50,000 41 31 24

Coefficient of friction, staticPV= 10,000 0.06 0.02 0.02PV = 45,000 0.13 0.07 0.08PV = 50,000 0.11 0.14 0.08

Coefficient of friction, kinetic’PV= 10,000 0.27 0.19 0.19PV = 45,000 0.14 0.15 0.13PV = 50,000 0.12 0.11 0.11

*Pressure and Velocity for PV valuesPV 10,000 45,000 50,000Pressure, psi 50 50 1,000Velocity, fpm 200 900 50

Table 19

Wear characteristics of TORLON bearing grades us-ing hardened C1018 steel as a reference

Page 35: Torlon Design Manual

Lubricated Wear Resistance

The impressive performance of TORLON bearing grades innonlubricated environments is insurance against cata-strophic part failure or seizure upon lube loss in a nor-mally lubricated environment. In a transmission lubricatedwith hydrocarbon fluid, TORLON thrust washers are per-forming well at PVs of 1,300,000. In a water lubricated hy-draulic motor vane, excellent performance has been at-tained at over 2,000,000 PV. Table 21 summarizes the wearcharacteristics of TORLON 4301 immersed in hydraulicfluid.

Wear Resistance and Post-Cure

The wear resistance of TORLON parts depends on properpost-cure. A thorough and complete post-cure is neces-sary to achieve maximum wear resistance. To illustratethe dependence of wear resistance on post-cure, a sam-ple of TORLON 4301 was post-cured through a specifiedcycle* and tested for wear resistance at various points intime. The results of that test and the cure cycle are shownin Figure 35. In this case, the Wear Factor, K, reached aminimum after eleven days, indicating achievement ofmaximum wear resistance.

The length of post-cure will depend on part configuration,thickness, and to some extent on conditions of molding.Very long exposure to 500°F (260°C) is not detrimental toTORLON parts. The suitability of shorter cycles must beverified experimentally.

– 35 – TORLON EngineeringPolymers Design Manual

Service Under Conditions of Friction and Wear Lubricated Wear Resistance

PV (P/V = 50/900) 45,000

Wear factor, K(10-10 in3•min/ft•lb•hr) 1.0

Coefficient of friction, static 0.08

Coefficient of friction, kinetic 0.10

Wear depth at 1,000 hours, in (mm) 0.0045 (0.11 mm)

Table 21

Lubricated wear resistance of TORLON 4301

500

400

300

200

100

0 2 4 6 8 10 12250

300

350

400

450

500

Cure cycle, days

TO

RLO

N4301

Wear

resi

st

ance

Wear

facto

r,K

x10-1

0

K, 10 in min / ft lb hr-10 3

Cu

rete

mp

era

ture

,F°

Cure cycle

Figure 35

Extended cure at 500°F (260°C) improves wear resis-tance (cure cycles are a function of part geometry)

Cure cycle consisted of one day at each of the following temperatures: 300°F420°F, 470°F followed by post-cure at 500°F as indicated in Figure 35 (149,216, 243, and 260°C respectively).

Page 36: Torlon Design Manual

Industry and Agency Approvals

TORLON engineering polymers have been tested success-fully against many industry standards and specifications.The following list is a summary of approvals to date, butshould not be considered inclusive, as work continues toqualify TORLON poly(amide-imide) for a myriad ofapplications.

Underwriters Laboratories

Vertical FlammabilityAll TORLON grades have been awarded a 94 V-0classification. See Table 10 on page 23.

Continuous UseThe Thermal Indices of TORLON 4203L, 4301, and 5030are shown in Table 5 on page 18.

Federal Aviation Administration

TORLON 5030 and 7130 pass FAA requirements forflammability, smoke density, and toxic gas emissions.

Military Specifications

MIL-P-46179A Plastic Molding and Extrusion materials,Polyamide-imide This specification coverspoly(amide-imide) thermoplastic materials intended foruse up to 500°F (260°C), classified as follows

Type I general purpose TORLON 4203L

Type 11 bearing applicationsClass 1 TORLON 4301Class 2 TORLON 4275Class 3 TORLON 4347

Type III glass fiber reinforcedClass 1 TORLON 5030Class 2 TORLON 9040

Type IV 30% carbon fiber reinforcedTORLON 7130

National Aeronautics and Space Administration

NHB8060.1 “Flammability, Odor, and OffgassingRequirements and Test Procedures for Materials inEnvironments that Support Combustion” TORLON4203L and 4301 have passed the NASA spacecraftmaterials requirements for non-vacuum exposures perNHB8060.1.

Society of Automotive Engineers-Aerospace

Material Specifications

AMS 3670 is the specification for TORLON N materials.The specification suggests applications requiring alow coefficient of friction, thermal stability, andtoughness up to 482°F (250°C). TORLON 4203L, 4275,4301, 5030, and 7130 are covered in the detailspecifications:AMS 3670/1-TORLON 4203LAMS 3670/2-TORLON 4275AMS 3670/3-TORLON 4301AMS 3670/4-TORLON 5030AMS 3670/5-TORLON 7130

– 36 –

Industry and Agency Approvals Performance Properties

Page 37: Torlon Design Manual

Structural Design

Material Efficiency—SpecificStrength and ModulusReducing weight can be the key to lower cost, reducedfriction, and decreased energy consumption. WhenTORLON engineering polymer replaces metal, theTORLON part can support an equivalent load at signifi-cantly lower weight.

The ratio of a material’s tensile strength to its density(specific strength) provides information about “materialefficiency” The specific strength of TORLON 5030, for ex-ample, is 530,000 inches (13,500 m), compared with 379,000inches (9,600 m) for stainless steel. Therefore, a TORLON5030 part will weigh almost 40% less than a stainless steelpart of equivalent strength. Similarly, the specific modulusof a material is of interest when stiffness of the part iscrucial to performance. Comparison of material efficiencydata* in Table 22 shows that TORLON parts can beat theweight of most metal parts.

– 37 – TORLON EngineeringPolymers Design Manual

Material Efficiency—Specific Strength and Modulus

Specific strength Specific stiffness103 in 103 m 106 in 105 m

TORLON 4203L 556 14.1 14.6 3.7TORLON 5030 530 13.5 30.3 7.7TORLON 7130 576 14.6 56.5 14.4Aluminum alloys, heattreated

2011 539 13.7 100.0 25.42054 700 17.8 106.0 26.97075 821 20.8 103.0 26.1

Titanium 6-2-4-2 793 20.1 100.6 25.5Stainless steel, 301 379 9.6 96.5 24.5* Strength and stiffness of metals were calculated from physical properties

as tabulated in the 1984 Materials Selector issue of Materials Engineering,December, 1983.

Table 22

Specific strength and modulus of TORLON polymersand selected metals

Page 38: Torlon Design Manual

Geometry and Load ConsiderationsIn the early stages of part design, standard stress and de-flection formulas should be applied to ensure that maxi-mum working stresses do not exceed recommendedlimits.

Examples of Stress and Deflection FormulaApplication

Recommended maximum working stresses for TORLONengineering polymers appear in Table 23. To illustrate howthese values may be used, the maximum load for a beammade of TORLON 5030 will be calculated under variousloading conditions at room temperature. Figure 36 showsthe beam dimensions and the calculation of the momentof inertia (I).

W = Load, lbL = Length of beam between supports, inc = Distance from the outermost point in tension

to the neutral axis, inb = Beam width, ind = Beam height, inI = Moment of inertia, in4

In this example:

L = 3.0 inc = 0.25 inb = 0.25 ind = 0.50 in

I bd12

(0.25 in.) (0.50 in.)12

0.0026 in3 3

4� � �

M = Load x distance to support, in•lb

Example 1–Short-term loading

The maximum bending stress, Smax, occurs at

L/2 and M WL4

� .

S WLc4Imax �

Solving for W and substituting the recommended maxi-mum working stress for TORLON 5030 under a short-termload at room temperature:

W4S I

Lc(4)(17800 psi)(0.0026 in

(3.0 in.)(maxmax

4)

� �

0.25 in.)247 lb�

Therefore, the maximum short-term load for a TORLON5030 beam at room temperature is approximately 247pounds.

The maximum deflection for this beam is:

Y WL48EI

atL2max

3

Where E is the flexural modulus of TORLON 5030 obtainedfrom the Properties Table.

Y (247 lb)(3.0 in)(48)(15.6 10 psi)(0.0026 inmax

3

5 4�

�)

0.034 in�

Therefore, the predicted maximum deflection is 0.034 in.

Example 2-Steady load

In this example, the load is long-term. Creep is consideredto be the limiting factor. The maximum load which may beapplied to the TORLON 5030 beam is:

W4S I

Lc(4)(17000)(0.0026)

(3.0)(0.25)236 lbmax

max� � � .

To calculate the maximum deflection of the beam under asteady load, the apparent (creep) modulus (Ea) is usedrather than the flexural modulus. Because material prop-erties are time dependent, a finite period is selected. Inthis example, maximum deflection after 100 hours iscalculated.

The apparent modulus at 100 hours can be estimated bydividing the steady load recommended maximum workingstress from Table 23 by the assumed maximum strain (1.5percent).

– 38 –

Examples of Stress and Deflection Formula Application Structural Design

W

L = 3.0b = 0.25

d = 0.50

Figure 36

Beam used in examples

Page 39: Torlon Design Manual

Ea 17000 psi0.015

1.13 10 psi6� � �

Substituting:

Y WL48E I

(236)(3.0)(48)(1.13 10 )(0.0026)

0.max

3

a

3

6� �

� 045 in.

Maximum deflection at L/2 is predicted to be 0.045 inch.

Example 3-Cyclic load

When materials are stressed cyclically, failures will occurat stress levels lower than the material’s ultimate strengthdue to fatigue. To calculate the maximum cyclic load ourbeam can handle for a minimum of 10,000,000 cycles:

W4S I

Lc(4)(4550)(0.0026)

(3.0)(0.25)63 lbmax

max� � �

Stress Concentration

Part discontinuities, such as sharp corners and radii, in-troduce stress concentrations that may result in failurebelow the recommended maximum working stress. It is,therefore, critical that a part be designed so that thestress field is as evenly distributed as possible.

Circular perforations give rise to stress concentrations,but as Figure 37 demonstrates, TORLON poly(amide-imide)is less sensitive than metal.

– 39 – TORLON EngineeringPolymers Design Manual

Geometry and Load Considerations Stress Concentration

3

2.5

2

1.5

1

0.5

0

0 0.1 0.3 0.4 0.5 0.6 0.7 0.8 0.9

d/D

Str

ess

Co

ncen

trati

on

Facto

r,k

0.2

P metalredicted k for

TORLON 7130TORLON 5030

TORLON 4203L

P PD d

Figure 37

Stress concentration factor for circular stress raiser(elastic stress, axial tension)

Page 40: Torlon Design Manual

Recommended Maximum Working Stresses forTORLON Resins

End use conditions restrict the allowable workingstresses for a structural member. Prototype evaluation isthe best method of determining the suitability of TORLONparts. The data summarized in Table 23 are useful early inthe design process for use in the engineering equationsfor the proposed part.

– 40 –

Recommended Maximum Working Stresses for TORLON Resins

English units (psi) TORLON grade

Temp. °F 4203L 4301 4275 4347 5030 7130

Short term load 73 17,000 14,000 13,000 10,700 17,800 17,600

275 10,000 9,800 9,800 9,100 13,900 13,700

450 5,700 6,400 4,900 4,700 9,800 9,400

Steady load (creep), 73 7,000 10,000 9,500 7,700 17,000 17,000

<1.5% strain, 100 hrs. 200 6,500 7,500 7,900 6,400 15,000 15,000

400 5,000 6,000 6,000 6,000 10,000 10,000

Cyclic load, 73 3,850 3,000 2,800 2,250 4,550 5,250

107 cycles 275 2,450 2,100 2,100 1,900 3,500 4,200

450 1,400 1,350 1,050 1,000 2,450 2,800

Sl units (MPa) Temp. °C

Short term load 23 117 96 89 74 122 121

135 69 67 67 63 96 94

232 39 44 34 32 67 55

Steady load (creep), 23 48 69 65 53 117 117

<1.5% strain, 100 hrs. 93 45 52 54 44 103 103

204 34 41 41 41 69 69

Cyclic load, 23 26 21 19 15 31 36

107 cycles 135 17 14 14 13 24 29

232 10 9 7 7 17 19

Table 23

Recommended maximum working stresses for injection molded TORLON resins

Page 41: Torlon Design Manual

Designing with TORLON®

Resin

Fabrication OptionsTORLON poly(amide-imide) can be molded using any ofthree conventional molding techniques; injection, com-pression and extrusion. Each has advantages andlimitations.

Injection Molding

TORLON parts can be injection molded to fine detail. Ofthe three methods, injection molding produces parts ofthe highest strength. When a large quantity of complexparts is required, injection molding can be the most eco-nomical technique due to short cycle times and excellentreplication. Part thickness is limited by the flow lengthversus thickness relationship of the polymer. Thickness islimited to a maximum of 5

8 inch (15.9 mm).

Extrusion

TORLON polymers can be extruded into profiles andshapes such as rods, tubing, sheet, film and plates. Smallparts with simple geometries can be economically pro-duced by combining extrusion molding and automaticscrew machining. TORLON 4203L and 4301 are availableas rod stock from 1

8 to 2 inches diameter (3.2 to 50.8 mm);and plates from 3

16 to 1 inch thick (4.8 to 25.4 mm).

Compression Molding

Large parts over -58 inch (15.9 mm) thick must be com-

pression-molded. Tooling costs are considerably lowercompared with other molding techniques. Compres-sion-molded parts will generally be lower in strength thancomparable injection-molded or extruded parts. Compres-sion molded rod in diameters up to 15 inches (381 mm).OD/ID tube combinations are available in sizes up to 36inches (914 mm) outside diameter. All sizes are availablein 6 inch (152.4 mm) lengths. Compression molded platesare available up to 3 inches (76.2 mm) thick.

– 39 – TORLON EngineeringPolymers Design Manual

Page 42: Torlon Design Manual

Post-curing TORLON PartsTORLON parts must be post-cured. Optimal properties, es-pecially chemical and wear resistance, are only achievedwith thorough post-cure. Best results are obtained whenTORLON parts are cured through a cycle of increasingtemperature. Cure cycle parameters are a function of thesize and geometry of a particular part.

Guidelines for Designing TORLONPartsTORLON poly(amide-imide) can be precision molded tofine detail using a wide range of fabricating options. Notonly can the designer select a material with outstandingperformance, but one which gives him a great deal ofdesign freedom.

In the following sections are guidelines for designingparts with TORLON poly(amide-imide).

Wall Section

Whenever feasible, wall thickness should be minimizedwithin the bounds prescribed by the end-use, to shortencycle time and economize on material. When sectionsmust be molded to thicknesses in excess of ½ inch(12.7 mm), parts may incorporate core and rib structures,or special TORLON grades may be used.

For small parts molded with TORLON resin, wall sectionsgenerally range from 0.03-0.50 inch (0.76- mm), but thick-nesses up to 5

8inch (19.0 mm) are possible with rein-

forced or bearing grades.

TORLON poly(amide-imide) has a relatively high melt vis-cosity, which limits flow length for a given wall thickness.Use of hydraulic accumulators and precise process con-trol reduce the impact of this limitation. Many factors,such as part geometry, flow direction, and severity of flowpath changes make it difficult to characterize the relation-ship between flow length and wall thickness for sectionsless than 0.050 inch (1.3 mm) thick. We suggest you con-tact your Solvay Advanced Polymers Technical Repre-sentative to discuss the part under consideration.

Wall Transition

Where it is necessary to vary wall thickness, gradual tran-sition is recommended to eliminate distortion and reduceinternal stresses. Figure 38 shows the desired method oftransition -- a smooth taper. It is better that the materialflows from thick to thin sections to avoid molding prob-lems such as sinks and voids, and to minimize internalstress.

Draft Angle

½° to 1° draft should be allowed to facilitate removal of thepart from the mold. With TORLON resin, draft angles as lowas 1

8° have been used, but such low angles require individ-

ual analysis. Draft angle is also dependent on the depth ofdraw; the greater the depth of draw, the greater the requireddraft angle (see Figure 39). Part complexity will also affectdraft requirements, as will the texture of the finish. Texturedfinish generally requires 1° per side for every 0.001 inch(0.025 mm) of texture depth.

– 40 –

Wall Section Designing with TORLON® Resin

Smooth taper

Material flow

Figure 38

Gradual blending between different wall thicknesses

Draft Angle

Depth of Draw

Dimensional Change Due to Draft

Figure 39

Draft

Page 43: Torlon Design Manual

Cores

Coring is an effective way to reduce wall thickness inheavy sections. To minimize mold cost, core removalshould be parallel to the movement of the platens.

Draft should be added to core design. Blind cores shouldbe avoided, but if necessary, the general guidelines are:for cores less than 3

16 inch (4.8 mm) diameter, the lengthshould be no greater than twice the diameter; if greaterthan 3

16 inch (4.8 mm), length should not exceed threetimes the diameter (Figure 40). For cored-through holes,length should not exceed six times the diameter for diam-eters over 3

16 inch (4.8 mm), and four times the diameterfor diameters less than 3

16 inch (4.8 mm).

Ribs

Ribs can increase the strength of TORLON parts withoutincreasing section thickness. Figure 41 shows the recom-mended rib size related to wall thickness. The width of thebase of the rib should equal the thickness of the adjacentwall to avoid backfill. A taper should be used.

Bosses

Bosses are commonly used to facilitate alignment duringassembly, but may serve other functions. In general, theouter diameter of a boss should be equal to or greaterthan twice the inside diameter of the hole, and the wallthickness of the boss should be less than or equal to theadjacent wall thickness.

Undercuts

It is not possible to mold undercuts in TORLON parts un-less side pulls are used. To minimize mold costs, under-cuts should be avoided. If it is necessary, external under-cuts can be accommodated by use of a side pull, butinternal undercuts require collapsing or removable cores.

Molded-in inserts

Threads molded into TORLON parts have good pull-outstrength, but if greater strength is needed, metal insertscan be molded-in. TORLON resins have low coefficients ofthermal expansion, making them excellent materials forapplications integrating plastic and metal. For ease ofmolding, inserts should be situated perpendicular to theparting line, and should be supported so they are not dis-placed during injection of the molten plastic. Insertsshould be preheated to the temperature of the mold.

Table 24 defines the ratio of wall thickness around the in-sert to the outer diameter of the insert for common insertmaterials. Sufficient material around the insert is neces-sary for strength.

Threads

Threads can be molded-in. Both internal and externalthreads can be molded using normal molding practices toClass 2 tolerance using TORLON resins. Class 3 can bemolded using very high precision tooling. In general, it ismore economical to machine threads for short runs.Table 27 on page 44 shows the screw holding strength ofTORLON threads.

– 41 – TORLON EngineeringPolymers Design Manual

Guidelines for Designing TORLON Parts Cores

LDD

Core diameter

< 3/16” > 3/16”

< 2D

< 4D

< 3D

< 6D

Blind core, L

Cored-through

T

Figure 40

Coring recommendations for TORLON parts.

W

W

½° to 1½° draft

Figure 41

Recommended rib sizes for TORLON parts.

Insert material Ratio of wall thickness to insert o.d.Steel 1.2Brass 1.1Aluminum 1.0

Table 24

Wall thickness/insert o.d. relationship

Page 44: Torlon Design Manual

Holes

Holes can serve a variety of functions. Electrical connec-tors, for example, have numerous small holes in closeproximity Associated with each hole is a weld line whichpotentially is a weak point. The degree of weakness is re-lated to flow distance, part geometry, and the thickness ofthe wall surrounding the hole. Because TORLON resinscan be molded to close tolerances, and can be molded tothin cross sections without cracking, they are excellentmaterials for this type of part; however, each applicationmust be considered on an individual basis due to the com-plexity of design variables.

– 42 –

Holes Designing with TORLON® Resin

Page 45: Torlon Design Manual

Secondary Operations

JoiningTORLON parts can be joined mechanically, or withadhesives.

Mechanical Joining Techniques

The dimensional stability and creep resistance of TORLONpoly(amide-imide) allows it to be readily joined with metalcomponents even in rotating or sliding assemblies.

Snap-fit: Economical and Simple

Snap-f it is an economical and simple method of joiningTORLON parts. Although the strain limit must be consid-ered for a snap-f it assembly which will be repeatedly as-sembled and disassembled, TORLON engineering poly-mers are excellent for this type of use, due to the superiorfatigue strength of poly(amide-imide). The high modulus,elongation, and low creep of TORLON resins also makethem well suited for snap-f it designs. Snap-in fingers inthe locked position should be strain-free, or under a levelof stress which can be tolerated by the material. TORLONresins can tolerate up to 10% strain for the unfilledgrades, and 5% strain for filled grades. Graphite fiber rein-forced grades are not suitable for snap-fit assembly Fig-ure 42 explains the calculation of strain for astraight-sided finger.

Threaded Fasteners

Self-tapping Screws

In general, TORLON poly(amide-imide) is too tough forself-tapping screws. Tapped holes are recommended.

Molded-in Inserts

Metal inserts can be molded into TORLON parts. Pre-heating the insert to the temperature of the mold is re-quired for best results. While poly(amide-imide) has lowshrink, it is still important to have sufficient materialaround the insert to distribute the stress induced byshrinkage.

Threaded Mechanical Inserts

Self-threading, self-locking inserts provide a highstrength, low stress option for joining TORLON parts.These metal inserts have an exterior “locking” feature foranchorage in the TORLON part and allow for repeated as-sembly and disassembly through the threaded interior.HeliCoil® inserts from HeliCoil Products, division of MiteCorporation, and SpeedSerts® inserts from Tridair Fas-teners, Rexnord, Incorporated, are examples of this typeof insert.

Table 25 gives the tensile strength of HeliCoil inserts inTORLON 4203L and 5030. It is the axial force required topull the insert out of TORLON specimens at least 0.020inch (0.51 mm).

Molded-in Threads

Both external and internal threads can be molded withTORLON polymer to a Class 2 tolerance. Mating parts withmetal fasteners in TORLON threads works well becausethe thermal expansion of TORLON poly(amide-imide) isclose to that of metal, therefore, there will be relativelylow thermal stress at the metal to plastic interface. Due tothe increase in mold cost, it is generally advisable to ma-chine threads for short runs.

– 43 – TORLON EngineeringPolymers Design Manual

Tensile strength

Thread size #4-40 #6-32 #8-32 #10-32 ¼"-20Engagement, in 0.224 0.276 0.328 0.380 0.500

(mm) 5.7 7.0 8.3 9.6 12.7TORLON 4203L

lb-f 870 1,470 1,840 2,200 2,830J/m 3,870 6,540 8,180 9,790 12,600

TORLON 5030lb-f 970 1,700 2,140 2,940 5,200J/m 4,310 7,560 9,520 13,100 23,100

Table 25

Strength of HeliCoil inserts

Page 46: Torlon Design Manual

Strength of TORLON Bolts

Threaded fasteners molded from TORLON engineeringpolymers are dependable due to the high strength, modu-lus, and load bearing characteristics of TORLON engi-neering polymers. Bolts were injection molded fromTORLON 4203L and 5030 then tested* for tensile lestrength, elongation, and torque limit (Table 26). The boltswere 0.25 inch (0.635 cm) diameter, type 28TPI with class2A threads.Screw Holding Strength

Metal screws can securely join threaded TORLON parts.Holes for #4-40 screws were drilled and tapped in 0.19inch (4.8 mm) thick TORLON plaques. Screw pull-outstrength determined by ASTM D1761* appears in Table 27

Interference Fits

Interference, or press fits, provide joints with goodstrength at minimum cost. TORLON engineering polymer isideal for this joining technique due to its resistance tocreep. Diametral interference, actual service tempera-ture, and load conditions should be evaluated to deter-mine if stresses are within design limits.

Ultrasonic Inserts

Metal inserts can be imbedded in uncured TORLON partsby ultrasonic Insertion. Inserts are installed rapidly withstrength comparable to that provided by molded-in tech-niques. A hole is molded slightly smaller than the insert.The metal insert is brought in contact with the TORLONpart. Vibration in excess of 18 kHz is applied to the metalinsert, creating frictional heat which melts the plastic.High strength is achieved if sufficient plastic flows aroundknurls, threads, etc.

Other Mechanical Joining Techniques

Because post-cured TORLON parts are extremely tough,some joining techniques will not be suitable. Expansion in-serts are generally not recommended; however, each ap-plication should be considered on an individual basis.

Bonding with Adhesives

TORLON poly(amide-imide) parts can be joined with com-mercial adhesives, extending design options. It is a goodpractice to consult the adhesive supplier concerning therequirements of your application.

Adhesive Choice

A variety of adhesives including amide-imide, epoxy, andcyanoacrylate can be used to bond TORLON parts.Cyanoacrylates have poor environmental resistance andare not recommended. Silicone, acrylic, and urethane ad-hesives are generally not recommended unless environ-ment conditions preclude other options.

TORLON Grade

TORLON 4203L, 5030, and 7130 are relatively easy to bond.Bearing grades 4301, 4275, and 4347 have inherent lubric-ity, and are more difficult to bond. Table 28 compares theshear strengths of these grades bonded with epoxy,cyanoacrylate, and amide-imide adhesives.

Surface Preparation

Bonding surfaces should be free of contaminants, such asoil, hydraulic fluid and dust. TORLON parts should be driedfor at least 24 hours at 300°F (149°C) In a desiccant oven(thicker parts, over ¼ inch (6.3 mm), require longer dryingtime) to dispel casual moisture prior to bonding. TORLONsurfaces should be mechanically abraded and sol-vent-wiped, or treated with a plasma arc to enhanceadhesion.

Adhesive Application

For adhesives other than amide-imide, follow the manu-facturer’s directions. For amide-imide adhesive: coat eachof the mating surfaces with a thin, uniform film of the ad-hesive. Adhesive coated surfaces should be clamped un-der minimal pressure, approximately 0.25 psi (1.7 x 10-3N/mm2) . The excess adhesive can be cleaned withn-methyl pyrrol 1done (NMP).**** Warning! NMP is a flammable organic solvent and the appropriate

handling procedures recommended by EPA, NIOSH, and OSHA should befollowed. Adequate ventilation is necessary when using solvents.

– 44 –

Bonding with Adhesives Secondary Operations

Pull-out strength Engagement

lb kg threads per holeTORLON 4203L 540 240 7.5TORLON 4275 400 180 7.7TORLON 4301 460 200 7.8* Crosshead speed was 0.1 inch (0.25 cm) per minute. The span between the

plaque and the screw holding fixture was 1.08 inches (2.7 cm).

Table 27

Tensile strength Elongation Shear torque

psi N/mm2 % in/lb N/mTORLON 4203L 18,200 125 9.5 28.6 5,000TORLON 5030 18,400 127 6.6 27.2 4,760* Tensile strength calculations were based on 0.0364 inch2 (0.235 cm2) cross

sectioned area. Torque tests were conducted by tightening the bolts on asteel plate with steel washers and nuts. Maximum shear torque wasdetermined using a torque wrench graduated in inch-pounds.

Table 26

Strength of TORLON bolts

Page 47: Torlon Design Manual

Curing Procedure

Amide-imide adhesive should be cured in a vented,air-circulating oven. The recommended cycle is 24 hoursat 73°F, 24 hours at 300°F, 2 hours at 400°F. The partsshould remain clamped until cooled to below 150°F (66°C).

Bond Strength of Various Adhesives

Commercial adhesives were used to bond TORLON parts.The bonds were evaluated* for shear strength, which ap-pears in Table 28.

Method of cure, handling, and working life of the adhesiveare rated in terms of “ease of use” Useful temperatureranges appear in the manufacturers’ literature and willvary with factors such as load and chemical environment.

Impact Strength of TORLON to TORLON Bonds

The impact strengths of bonded TORLON 4203L specimensusing the ASTM D256 (lzod impact) apparatus were mea-sured in foot-pounds of force required to break the bond.Epoxy bonds failed at impacts ranging from 0.6 to 14.6;amide-imide specimens failed at 8.3 to 20 + amide-imide40% SCF.

Bonding for High-Temperature Applications

Amide-imide adhesive provides high strength bonds at el-evated temperature. At 350°F (1 77°C), amide-imide adhe-sive with 40% SCF withstands lap shear forces over 4,000psi applied to TORLON 4203L/TORLON 4203L bonds. Ahigh-temperature epoxy failed at 750 psi under the sameconditions.

– 45 – TORLON EngineeringPolymers Design Manual

Joining Bonding with Adhesives

Epoxy1 Cyanoacrylate 2 Amide-imide Amide-imide+40% SCFpsi N/mm2 psi N/mm2 psi N/mm2 psi N/mm2

TORLON 4203L 6,000+ 41.4+ 2,780 19.2 5,000+ 34.5+ 6,000+ 41.4+TORLON 4301 2,250 15.5 1,740 12.0 2,890 19.9TORLON 4275 3,500 24.1 1,680 11.6 3,400 23.4TORLON 4347 2,360 16.3 1,870 12.9 2,960 20.4TORLON 5030 4,780 33.0 3,070 21.2 5,140 35.4TORLON 7130 6,400+ 44.1+ 3,980 27.4 4,750 32.8Ease of use = easiest 2 1 3 4

Useful temperature range,°F - 67 to 160 - 20 to 210 - 321 to 500 - 321 to 500°C - 55 to 71 - 29 to 99 - 196 to 260 - 196 to 260

* Post-cured TORLON bars, 2.5 x 0.5 x 0.12.5 inch (6.4 x 1.27 x 0.32 cm) were lightly abraded, wiped with acetone, then bonded with a 0.5 inch (1.3 cm) overlap. Theclamped parts were cured per adhesive manufacturer’s recommendations. After seven days at room temperature, bonds were pulled on an Instron® at acrosshead speed of 0.05 inches per minute (0.13 cm per minute). If failure occurred outside the bond area, the process was repeated with progressively smallerbonds areas, to a minimum overlap of 0.125 inch (0.32 cm) (in Tables 28 and 29, “+” denotes failure outside the bond area at 0.125 inch overlap).

1 Hysol EA 9330. Hysol is a trademark of Dexter Corporation.2 CA 5000. Lord Corporation.

SCF is an Amide-Imide adhesive component available from Solvay Advanced Polymers Polymers, Inc.

Table 28

Shear strength of TORLON to TORLON bonds

Page 48: Torlon Design Manual

Bonding TORLON parts to metal

TORLON and metal parts can be joined with adhesives.With proper surface preparation and adhesive handling,the resulting bonds will have high strength. In addition,there will be minimal stress at the interface with tempera-ture change. This is because TORLON resins, unlike manyother high temperature plastics, have expansion coeffi-cients similar to those of metals.

As mentioned in the preceding section, bond strength de-pends on adhesive selection, and TORLON grade, as wellas proper technique in preparing and curing the bond.Table 29 reports shear strength data for TORLON to alumi-num and TORLON to steel bonds. Mechanical abrasionalone may not be adequate for preparing steelsurfaces—chemical treatment of the steel is recom-mended when service temperature requires use of am-ide-imide adhesive.

– 46 –

Bonding TORLON parts to metal Secondary Operations

Shear strength—aluminum 2024 to TORLON bonds

Epoxy1 Cyanoacrylate2 Amide-imide Amide-imide+40% SCFpsi N/mm2 psi N/mm2 psi N/mm2 psi N/mm2

TORLON 4203L 4000 27.6 1350 9.3 5050+ 34.8+ 4100+ 28.3+TORLON 4301 2500 17.2 1450 10.0 4950+ 34.1+TORLON 4275 2450 16.9 750 5.2 4350+ 30.0+TORLON 4347 1100 7.6 850 5.9 2800+ 19.3+TORLON 5030 3900 26.9 3250 22.4 6050+ 41.7+TORLON 7130 4000 27.6 3750 25.9 6400+ 44.1+

Shear strength—cold rolled steel to TORLON bondsEpoxy1 Cyanoacrylate2 Amide-imide Amide-imide+40% SCF

psi N/mm2 psi N/mm2 psi N/mm2 psi N/mm2

TORLON 4203L 3050 21.0 2200 15.2 1450 10.0 1900 13.8TORLON 4301 3700 25.5 2050 14.1 1850 12.7TORLON 4275 3150 21.7 2450 16.9 1900 13.1TORLON 4347 2450 16.9 2100 14.5 1400 9.7TORLON 5030 4650 32.1 2100 14.5 2400 16.5TORLON 7130 4550 31.4 2450 16.9 1100 7.6Ease of use= easiest 2 1 3 4Useful temperature range,°F - 67 to 160 - 20 to 210 - 321 to 500 - 321 to 500°C -.55 to 71 - 29 to 99 - 196 to 260 - 196 to 260* The procedure was the same as noted in the preceding section. This test used TORLON bars 2.5 x 0.5 x 0.125 inches (6.35 x 1.27 x 0.32 cm); steel strips 2.5 x 0.5 x

0.125 inches cut from cold rolled steel, dull finished panel; and aluminum strips 2.5 x 0.5 x 0.125 inch cut from 2024 alloy panels.1 Hysol EA 9330. Hysol is a trademark of Dexter Corporation.2 CA 5000. Lord Corporation.

SCF is an Amide-Imide adhesive component available from Solvay Advanced Polymers

Table 29

Shear strength* of TORLON to metal bonds

Page 49: Torlon Design Manual

Guidelines for Machining TORLONPartsMolded shapes and extruded bars manufactured fromTORLON poly(amide-imide) can be machined using thesame techniques normally used for machining mild steelor acrylics. Machining parameters for several typical op-erations are presented in Table 30.

TORLON parts are dimensionally stable, and do not deflector yield as the cutting tool makes its pass. All TORLONgrades are very abrasive to standard tools, and highspeed tools should not be used.

Carbide-tipped tools may be used to machine TORLONparts, but diamond-tipped or insert cutting tools arestrongly recommended. These tools will outlast carbidetipped tools and provide a strong economic incentive forproduction operations, despite a relatively high initialcost. Thin sections or sharp corners must be worked withcare to prevent breakage and chipping. Damage to fragileparts can be minimized by using shallow cuts during fin-ishing operations. The use of mist coolants to cool the tooltip as well as help remove chips or shavings from thework surface is recommended. Air jets or vacuum can beused to keep the work surface clean.

Parts machined from injection-molded blanks may havebuilt-in stresses. To minimize distortion, parts should bemachined symmetrically, to relieve opposing stresses.

Machined Parts Should be Recurred.

Parts designed for friction and wear-intensive service, orwhich will be subjected to harsh chemical environmentsshould be recurred after Machining to insure optimumperformance. If such a part has been machined to greaterthan 1

16 inch (1.6 mm) depth, recurring is stronglyrecommended.

– 47 – TORLON EngineeringPolymers Design Manual

Guidelines for Machining TORLON Parts Bonding TORLON parts to metal

TurningCutting speed, fpm 300-800Feed, in/rev 0.004-0.025Relief angle, degrees 5-15Rake angle, degrees 7-15Cutting depth, in 0.025

Circular SawingCutting, fpm 6000-8000Feed, in/rev fast & steadyRelief angle, degrees 15Set slightRake angle, degrees 15

MillingCutting speed, fpm 500-800Feed, in/rev 0.006-0.035Relief angle, degrees 5-15Rake angle, degrees 7-15Cutting depth, in 0.035

DrillingCutting speed, rpm 300-800Feed, in/rev 0.003-0.015Relief angle, degrees 0Point angle, degrees 118

ReamingSlow speed, rpm 150

Table 30

Guidelines for machining TORLON parts

Page 50: Torlon Design Manual

FinishingIt is often necessary to mark or decorate TORLON partsfor appearance or functional purposes. The techniqueshould be considered early in the process of design, toensure that it will be compatible with the material and thegeometry of the part.

General Procedures

Prepare TORLON parts by removing surface contami-nants. Usually, no pretreatment of TORLON parts is re-quired-however, adhesion of the finish to the TORLON partis enhanced by techniques such as etching or mechanicalabrasion.

Metallizing

Electroplating, flame spraying, plasma sputtering, and ionplating techniques have been used successfully formetallizing TORLON parts. Vacuum metallizing is notrecommended.

Electroplating

The electroplating procedure outlined below yields a uni-form metal coating with good adhesion of two to fourpounds per linear inch (0.35-0.70 N/mm).

1. Etch – 4.3 percent (by weight) NaOH solution at 155 to160°F (70°C) for six minutes.

2. Rinse – 180°F (82°C) deionized water for two to threeminutes.

3. Catalyst treat – Mac Dermid* D-34 at roomtemperature for two minutes.

4. Activate – Mac Dermid D-45 at 120°F (49°C) for oneminute.

5. Electroless nickel coat – Mac Dermid at roomtemperature for seven minutes.

6. Electroplate.

7. Dry at 220°F (104°C) for two hours.

Flame/Arc Spraying

To enhance EMI shielding, flame erosion resistance, andhigh velocity particle erosion resistance, TORLON partscan be coated using flame or arc spraying techniques.TORLON parts have been metallized using a thermal-spraytechnique by TAFA Metallisations, Incorporated, Bow,New Hampshire, and Metco, Incorporated, Westbury,New York.

Plasma Sputtering

Plasma (cathode) sputtering has been used successfullyto deposit vaporized metal on TORLON parts by Varian As-sociates, Palo Alto, California.

Ion Plating

TORLON parts have been ion-plated. According to IllinoisTool Works, Incorporated, of Elgin, Illinois, their processrequires no base coat and produces metal coatings withsuperior adhesion at a cost less than plasma sputtering.

Painting

TORLON parts can be painted using commercially avail-able paints with conventional spraying, dipping, androller-coating techniques. Because TORLON poly(am-ide-imide) has such tremendous heat resistance, paintscan generally be cured by baking. The paint bake cycleshould start at 300°F (149°C) for 30 minutes to drive off ca-sual moisture, then proceed as recommended by the paintsupplier.*Mac Dermid Corporation, Waterbury, Connecticut

Technical ServiceOur expert technical staff is ready to answer your ques-tions related to designing, molding, finishing or testingTORLON parts. We respect proprietary information andwill consult with you on a confidential basis.

The latest design, fabrication and testing equipment avail-able to our service engineers supplements their years ofpractical experience with applications of TORLON poly-mers. Using a computer-aided design workstation, our-engineers can forecast the cost and performance of yourproposed part and offer suggestions for efficient molding.Solvay Advanced Polymers can also provide rod, sheet,film, plate, ball, disc, and tube stock shapes for makingprototype parts.

The availability of these services can be a tremendoushelp as you evaluate TORLON poly(amide-imide) for yourengineering resin needs.

– 48 –

General Procedures Secondary Operations

Page 51: Torlon Design Manual

Whatever type of process you are considering, our per-sonnel and facilities can help you achieve consistentquality and more profitable products. Call us to discussyour ideas.

– 49 – TORLON EngineeringPolymers Design Manual

Technical Service Metallizing

Page 52: Torlon Design Manual

Centrifugal Compressor LabyrinthSeals

TORLON® poly(amide-imide) resins producelabyrinth seals that are more corrosionresistant than Aluminum and can be fitted tosmaller clearances. Smaller clearances meanhigher efficiency and greater through-putwithout increasing energy input. Bettercorrosion resistance means more productivetime between maintenance shutdowns.

Stock Shapes of TORLON Resin

TORLON® resins can be formed intostock shapes useful for machiningprototypes by injection molding,compression molding, or extrusion.Shapes as large as 36 inches ( 900 mm)in outside diameter by 6 inches (150mm) long weighing 120 pounds (54 kg)have been made.

Page 53: Torlon Design Manual

Solvay Advanced Polymers, L.L.C.

4500 McGinnis Ferry Road

Alpharetta, Georgia 30005-3914 USA

Phone +1.770.772.8200

To our actual knowledge, the information contained herein is accurate as of the date of this document. However, neither Solvay Advanced Polymers, L.L.C. nor any of its affiliates makes any warranty, express or im-plied, or accepts any liability in connection with this information or its use. This information is for use by technically skilled persons at their own discretion and risk and does not relate to the use of this product incombination with any other substance or any other process. This is not a license under any patent or other proprietary right. The user alone must finally determine suitability of any information or material for anycontemplated use, the manner of use and whether any patents are infringed.

T-49893 Copyright 2002, Solvay Advanced Polymers, L.L.C. All rights reserved R 03/02

To learn more about our products andservices, please visit our website atwww.solvayadvancedpolymers.com

Engineering polymers for high-performance applicationsare developed at our Alpharetta, Georgia facility.