top$quark$physics$with$cms$ · cms preliminary, 36 pb-1 at s = 7 tev figure 7: likelihood as a...

18
Top Quark Physics with CMS Rahmat Rahmat University of Mississippi (on behalf of CMS Collabora?on) The 44th Fermilab Users Mee-ng 2011 June 2, 2011 Rahmat Rahmat, University of Misssissippi 1

Upload: others

Post on 09-Aug-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Top$Quark$Physics$with$CMS$ · CMS Preliminary, 36 pb-1 at s = 7 TeV Figure 7: Likelihood as a function of the top quark mass from the fit to the data (left) and the estimated uncertainty

Top  Quark  Physics  with  CMS  

Rahmat  Rahmat  University  of  Mississippi  

(on  behalf  of  CMS  Collabora?on)      

The  44th  Fermilab  Users  Mee-ng  2011  

June  2,  2011   Rahmat  Rahmat,  University  of  Misssissippi   1  

Page 2: Top$Quark$Physics$with$CMS$ · CMS Preliminary, 36 pb-1 at s = 7 TeV Figure 7: Likelihood as a function of the top quark mass from the fit to the data (left) and the estimated uncertainty

Outline  

•  Top  Physics  •  t  t  Cross  Sec?on  -­‐  Dilepton  Channel    •  t  t  Cross  Sec?on  –  L+jets  Channel  •  Single  Top  Cross  Sec?on  •  t  t  Invariant  Mass  •  Top  Mass  •  Charge  Asymmetry  •  Summary  

June  2,  2011   Rahmat  Rahmat,  University  of  Misssissippi   2  

Page 3: Top$Quark$Physics$with$CMS$ · CMS Preliminary, 36 pb-1 at s = 7 TeV Figure 7: Likelihood as a function of the top quark mass from the fit to the data (left) and the estimated uncertainty

Top  Quark  Physics  •  Precise  Standard  Model  measurements  

–  Heaviest  known  elementary  par?cle  –  Constraint  on  Higgs  mass  

•  A  Window  to  new  physics  – Many  models  couple  preferen?ally  to  top  –  New  par?cles  may  decay  to  top    

•  Main  background  in  many  new  physics  scenarios(e.g.  SUSY)  

•  Very  useful  to  calibrate  detector  –  Jet  energy  scale  –  b-­‐tagging  efficiency  

 June  2,  2011   Rahmat  Rahmat,  University  of  Misssissippi   3  

Page 4: Top$Quark$Physics$with$CMS$ · CMS Preliminary, 36 pb-1 at s = 7 TeV Figure 7: Likelihood as a function of the top quark mass from the fit to the data (left) and the estimated uncertainty

Top  Produc?on  

Freya Blekman, Vrije Universiteit Brussel5

Top pair production and decay• Pair production in 7 TeV pp collisions:

• BR(t->Wb) ! 1 in Standard Model

• Analysis strategy depends on W decay modes

~85%

~15%

June  2,  2011   Rahmat  Rahmat,  University  of  Misssissippi   4  

Page 5: Top$Quark$Physics$with$CMS$ · CMS Preliminary, 36 pb-1 at s = 7 TeV Figure 7: Likelihood as a function of the top quark mass from the fit to the data (left) and the estimated uncertainty

Freya Blekman, Vrije Universiteit Brussel6

Compact Muon Solenoid

!!

!!

!

!

June  2,  2011   Rahmat  Rahmat,  University  of  Misssissippi   5  

Page 6: Top$Quark$Physics$with$CMS$ · CMS Preliminary, 36 pb-1 at s = 7 TeV Figure 7: Likelihood as a function of the top quark mass from the fit to the data (left) and the estimated uncertainty

Top  Quark  Candidate  

June  2,  2011   Rahmat  Rahmat,  University  of  Misssissippi   6  

Page 7: Top$Quark$Physics$with$CMS$ · CMS Preliminary, 36 pb-1 at s = 7 TeV Figure 7: Likelihood as a function of the top quark mass from the fit to the data (left) and the estimated uncertainty

t  t  Cross  Sec?on  at  CMS  

•  First  publica?on:  A  first  measurement  at  3.1  pb-­‐1  in  the  dileptonic  channel:    –  TOP-­‐10-­‐001:  «First  Measurement  of  the  Cross  Sec?on  for  Top-­‐Quark  Pair  

Produc?on  in  Proton-­‐Proton  Collisions  at  √s  =  7  TeV»,  Phys.  Le).  B695  (2011)  424    

•  In  2010,  Results  from  2010  data  are  based  on  dataset  corresponding  to  L  =  35.9  pb-­‐1  of  data  at  √s  =  7  TeV.    –  TOP-­‐10-­‐002:  «Measurement  of  the  f  Pair  produc?on  Cross  Sec?on  at  √s  =  7  

TeV  using  the  Kinema?c  Proper?es  of  Lepton  +  Jets  Events»  –  TOP-­‐10-­‐003:  «Measurement  of  the  f  Pair  Produc?on  Cross  Sec?on  at  √s  =  7  

TeV  using  b-­‐quark  Jet  Iden?fica?on  Techniques  in  Lepton  +  Jets  Events»  –  TOP-­‐11-­‐002  (submifed  to  JHEP,  arXiv:1105.5661):  «Measurement  of  the  f  

produc?on  cross  sec?on  and  the  top  quark  mass  in  the  dilepton  channel  in  pp  collisions  at√s  =  7  TeV»  

June  2,  2011   Rahmat  Rahmat,  University  of  Misssissippi   7  

Page 8: Top$Quark$Physics$with$CMS$ · CMS Preliminary, 36 pb-1 at s = 7 TeV Figure 7: Likelihood as a function of the top quark mass from the fit to the data (left) and the estimated uncertainty

t  t  Cross  Sec?on  -­‐  Dilepton  Channel    (submifed  to  JHEP,  arXiv:1105.5661)  

•  Event  Selec?on  –  two  opposite  charge  leptons:  –  pT  >  20  GeV/c,  |η|  <  2.5  (2.4)  for  e  (μ),  Isolated  in  tracker  

and  calorimeter  –  invariant  mass  selec?on:  

•  Mll  >  12  GeV/c2,  Mll  ≠  [91  ±  15]  –  jets  selec?on:  

•  corrected  Jet,  pT>  30  GeV/c,  |η|<2.5  –  For  each  channel,  for  2  jets  no  b-­‐tags,  2  jets  1  b-­‐tag  and  1  

jet  no  b-­‐tags  •  Main  backgrounds  aver  leptonic  selec?on  :  

–  Drell-­‐Yan  →  ll:  main  background,  •  rejected  by  Z  veto,  jets  and  ɆT, estimated from data

–  W+Jets,  semi-­‐lept.  f,  QCD:  from  non-­‐W/Z  decays,  es?mated  from  data  

–  Single  top  tW,  diboson,  Z→ττ:  small  cross-­‐sec?ons,  es?mated  from  MC  

•  Very  clean  channel,  thanks  to  b-­‐tagging  -­‐  Cut  and  count  experiment  

•  Event  coun?ng  with  dedicated  data-­‐driven  techniques  for  the  es?ma?on  of  background  contribu?ons  in  e+e−,    μ+μ−,  and  e±μ∓  channels  

•  Combina?on  taking  correla?on  into  account  using  Best  Linear    Unbiased  Es?mated  ¾(t  t)    =  168  ±  18(stat)  ± 14(sys)  ± 7(lum)  pb    

June  2,  2011   Rahmat  Rahmat,  University  of  Misssissippi   8  

5.3 Cross section measurements per decay channel 13

between the expected and observed numbers of events in all channels. A summary of the ex-pected number of background events is compared with the number of events observed in datain Table 2 for the channels used in the measurement.

Number of jets0 1 2 3 4!

Even

ts

0

20

40

60

80

100

120

140

160 Data signaltt

DY prediction-"+"#*$Z/

Single topVVNon-W/Z predictionBckg. uncertainty

CMS = 7 TeVs at -136 pbµEvents with e

Number of jets0 1 2 3 4!

Even

ts

0

20

40

60

80

100

120

140

160

180

200 Data signaltt

DY prediction-"+"#*$Z/

Single topVVNon-W/Z predictionBckg. uncertainty

CMS = 7 TeVs at -136 pb

µ/eµµEvents with ee/

Figure 3: Number of events passing the full dilepton selection criteria without a b tag (points),as a function of the jet multiplicity for e±µ∓ (left) and all dileptons (right). There is no E/Trequirement for the e±µ∓, and a requirement of E/T > 30 GeV for the e+e− and µ+µ−. The ex-pected distributions for the tt signal and the background sources are shown by the histograms.The Drell–Yan and non-W/Z lepton backgrounds are estimated from data, while the otherbackgrounds are from simulation. The total uncertainty on the background contribution isdisplayed by the hatched region.

Number of jets0 1 2 3 4!

Even

ts

0

10

20

30

40

50

60

70Data

signalttDY prediction

-"+"#*$Z/Single topVVNon-W/Z predictionBckg. uncertainty

CMS = 7 TeVs at -136 pbµEvents with e

Number of jets0 1 2 3 4!

Even

ts

0

20

40

60

80

100

120Data

signalttDY prediction

-"+"#*$Z/Single topVVNon-W/Z predictionBckg. uncertainty

CMS = 7 TeVs at -136 pb

µ/eµµEvents with ee/

Figure 4: Jet multiplicity for events passing full dilepton selection criteria with at least oneb-tagged jet, otherwise the same as in Fig. 3.

The tt production cross section is measured using:

σ(pp → tt) =N − BAL

, (1)

5.3 Cross section measurements per decay channel 13

between the expected and observed numbers of events in all channels. A summary of the ex-pected number of background events is compared with the number of events observed in datain Table 2 for the channels used in the measurement.

Number of jets0 1 2 3 4!

Even

ts

0

20

40

60

80

100

120

140

160 Data signaltt

DY prediction-"+"#*$Z/

Single topVVNon-W/Z predictionBckg. uncertainty

CMS = 7 TeVs at -136 pbµEvents with e

Number of jets0 1 2 3 4!

Even

ts

0

20

40

60

80

100

120

140

160

180

200 Data signaltt

DY prediction-"+"#*$Z/

Single topVVNon-W/Z predictionBckg. uncertainty

CMS = 7 TeVs at -136 pb

µ/eµµEvents with ee/

Figure 3: Number of events passing the full dilepton selection criteria without a b tag (points),as a function of the jet multiplicity for e±µ∓ (left) and all dileptons (right). There is no E/Trequirement for the e±µ∓, and a requirement of E/T > 30 GeV for the e+e− and µ+µ−. The ex-pected distributions for the tt signal and the background sources are shown by the histograms.The Drell–Yan and non-W/Z lepton backgrounds are estimated from data, while the otherbackgrounds are from simulation. The total uncertainty on the background contribution isdisplayed by the hatched region.

Number of jets0 1 2 3 4!

Even

ts

0

10

20

30

40

50

60

70Data

signalttDY prediction

-"+"#*$Z/Single topVVNon-W/Z predictionBckg. uncertainty

CMS = 7 TeVs at -136 pbµEvents with e

Number of jets0 1 2 3 4!

Even

ts

0

20

40

60

80

100

120Data

signalttDY prediction

-"+"#*$Z/Single topVVNon-W/Z predictionBckg. uncertainty

CMS = 7 TeVs at -136 pb

µ/eµµEvents with ee/

Figure 4: Jet multiplicity for events passing full dilepton selection criteria with at least oneb-tagged jet, otherwise the same as in Fig. 3.

The tt production cross section is measured using:

σ(pp → tt) =N − BAL

, (1)

Page 9: Top$Quark$Physics$with$CMS$ · CMS Preliminary, 36 pb-1 at s = 7 TeV Figure 7: Likelihood as a function of the top quark mass from the fit to the data (left) and the estimated uncertainty

t  t  Cross  Sec?on  -­‐  Lepton+Jets  Channel    (CMS  TOP-­‐10-­‐002)  

•  Measurement  without  b-­‐tagging  •  Simultaneous  binned  likelihood  fit  to  

–  Missing  ET  with  3  jet    •  discriminate  QCD  from  true  W  decay    

–  M3  with  ≥  4  jets  •  M3  is  invariant  mass  of  3  jets  with  max  §  PT  •  separates  top  from  other  events  with  real  W  

decays  •  MT(W)  shows  good  agreement  with  data  •  Combined  measurement  

•  ¾tt  =  173  (stat+sys)  ±  7(lum)  pb                                      pb  •  Compa?ble  with  other  measurement  

17

the asymmetry between W+ boson and W− boson production due to the proton-proton initial527

state to determine the templates for the W+jets background. A fourth method measured the tt528

cross section from events containing a high-pT isolated muon and at least three jets. For this529

analysis, we relax the relative isolation requirement to Irel < 0.1 but introduce a requirement on530

the missing transverse energy in the event of /ET > 20 GeV to keep the amount of QCD multijet531

background small. A method based on Ref. [52, 53] is used to estimate the amount of QCD532

multijet background separately for events with three jets and events with at least four jets. The533

number of top-pair and W+jets events is extracted from a fit to the M3 distribution. All four534

of these methods gave results similar to our previously quoted main result, but with slightly535

larger combined statistical and systematic uncertainties in each case.536

Complementary to the top-quark-pair production measurements, the production cross section537

of exactly one muon in association with additional hard jets has been measured. In all pro-538

cesses considered as signal for this measurement the muon originates from a W boson. Both539

single top quark decays and decays of top-quark pairs in the lepton+jets channel, including540

decays via tau leptons in the intermediate state, are contributors to this signature. An addi-541

tional component of this signal comes from the production of a W boson with additional jets,542

which is the most prominent background for the analysis of tt “lepton+jets” decays. The same543

event selection as in the main analysis has been applied. In addition to the main analysis all544

jets in data have been corrected for event pileup leading to reduced JES and pileup uncertain-545

ties. To obtain the cross section, the observed number of events in data is corrected for the546

remaining background processes. These are QCD multijet production, the production of a Z547

boson with additional jets, single-top-quark decays, and other tt decays. The number of QCD548

multijet events is determined from data using a template fit to the missing-transverse-energy549

distribution in each inclusive (or exclusive) jet-multiplicity bin. The normalization and shape550

of the other backgrounds is taken from the simulation. Figure 8 shows the cross section for the551

production of a single muon with pT > 20 GeV and |η| < 2.1 and additional jets as a function552

of the inclusive and exclusive multiplicity of jets with pT > 30 GeV within |η| < 2.4. The tran-553

sition from a phase space dominated by W+jets events (in the 1-jet and 2-jet bins) towards a554

region dominated by the production of top-quark pairs (in the 4-jet bin) is clearly visible. The555

comparison of data and simulation indicates a good understanding of this transition, while the556

overall normalization seems to be slightly underestimated. This is consistent with the main557

analysis, which also found a W+jets cross section larger than the theoretical prediction.558

7 Conclusions559

A measurement of the cross section for top-quark pair production in proton-proton collisions560

at a center-of-mass energy of 7 TeV has been performed at the LHC with the CMS detector.561

The analysis uses a data sample corresponding to an integrated luminosity of 36 pb−1 and562

is based on the reconstruction of the final state consisting of one isolated, high transverse-563

momentum muon or electron and hadronic jets. The measured cross section for the combined564

electron+jets and muon+jets channels is 173+39−32(stat. + syst.) ± 7(lumi.) pb. This measure-565

ment agrees with current theoretical values, e.g., [10–12, 32, 33], which agree amongst them-566

selves within their quoted uncertainties. The approximate NNLO calculation from Ref. [12]567

yields 163+7−5(scale) ± 9(PDF) pb, while a similar calculation using HATHOR1 [10, 11] yields568

160+5−9(scale) ± 9(PDF) pb. Our measurement also agrees with the earlier CMS measurement569

1The HATHOR calculation was performed using the MSTW2008 NNLO PDF [34] and mtop = 173 GeV as thechoice for both the factorization and renormalization scales. The scale uncertainty is evaluated by independentlyvarying the scales by factors of 2 and 0.5, and the PDF uncertainty is calculated using the 90% confidence levelenvelope of the PDF.

June  2,  2011   Rahmat  Rahmat,  University  of  Misssissippi   9  

t t Cross Section - Lepton+Jets Channel without b-tag

Simultaneous binned likelihood fit to� ✁ET with = 3 jets

� separates QCD from real W decays� M3 with ≥ 4 jets

� M3 is inv mass of 3 jets with max�

�pT� separates top from other events with

real W decays� good agreement with data after fit

� control: MT (W ) (transverse mass)

e+jets measurement� 180+45

−38(stat + syst)± 7(lum) pb

µ+jets measurement� 168+42

−35(stat + syst)± 7(lum) pb

Combined measurement� 173+39

−32(stat + syst)± 7(lum) pb

[GeV]TE0 20 40 60 80 100 120 140 160

even

t frac

tion

0

0.05

0.1

0.15

0.2

0.25

0.3 = 7 TeVsCMS Simulation at =3jetse+jets, N tt

Single-Top!l"W -l+l"*#Z/

+jets#QCD/

M3 [GeV]0 100 200 300 400 500 600 700

even

t frac

tion

0

0.05

0.1

0.15

0.2

0.25 = 7 TeVsCMS Simulation at

4!jetse+jets, N ttSingle-Top

"l#W -l+l#*$Z/+jets$QCD/

(W) [GeV]TM0 20 40 60 80 100 120 140

Even

ts / 1

0 GeV

0

50

100

150

200

250

300

350 Datatt

Single-Top!l"W

-l+l"*#Z/QCD

(W) [GeV]TM0 20 40 60 80 100 120 140

Even

ts / 1

0 GeV

0

50

100

150

200

250

300

350 3$

jets+jets, Nµ

CMS Preliminary = 7 TeVs at -136 pb

(W) [GeV]TM0 20 40 60 80 100 120 140

Even

ts / 1

0 GeV

0

50

100

150

200

250

300

350

(W) [GeV]TM0 20 40 60 80 100 120 140

Even

ts / 1

0 GeV

0

50

100

150

200

250

300

350

Holger Enderle (Uni Hamburg) PHENO 11 - Recent Top Results from CMS 10th May 2011 18 / 13

Page 10: Top$Quark$Physics$with$CMS$ · CMS Preliminary, 36 pb-1 at s = 7 TeV Figure 7: Likelihood as a function of the top quark mass from the fit to the data (left) and the estimated uncertainty

t  t  Cross  Sec?on  in  the  Lepton+Jets  Channels  with  b-­‐Tagging    (TOP-­‐10-­‐003)  

•  Measurement  with  b-­‐tagging  •  Event  Selec?on:  

–  one  lepton  (with  second  lepton  veto):  pT  >  30  (20)  GeV/c,  |η|  <  2.5  (2.1)  for  e  (μ),  Isolated  in  tracker  and  calorimeter  

–  jets  selec?on:  corrected  Jet,  |η|<2.4  –  ɆT  and  b-­‐tag  selec?on:  ɆT  >  20,  Secondary  Vertex  

•  Simultaneous  fit  of  –  Secondary  Vertex  Mass  (from  tracks  associated  with  the  vertex  with  a  pion  

mass  assump?on)  –  Number  of  jets  and  b-­‐tagged  jets  

µ+jets

channel:

Data

T op

S ingle T op

Wbx

Wc x

W+L F J ets

Z + J ets

QC D

Combined Measurement:

σtt = 150 ± 9 (stat.) ± 17 (syst.) ± 6 (lumi.) pb

June  2,  2011   Rahmat  Rahmat,  University  of  Misssissippi   10  

Page 11: Top$Quark$Physics$with$CMS$ · CMS Preliminary, 36 pb-1 at s = 7 TeV Figure 7: Likelihood as a function of the top quark mass from the fit to the data (left) and the estimated uncertainty

t  t    Cross  Sec?on  Combined  

•  Combined  measurement  has  precision  of  12%  

•  Very  good  agreement  with  approxima?on  NNLO  theory  

•  Comparable  to  world  average  

June  2,  2011   Rahmat  Rahmat,  University  of  Misssissippi   11  !"#$%&'()*&+,''&-&./0&+,'' &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&12%$34&5627#849&:5;82<6$4&=5>?@ ',A''

!"#$%&'(%"&

&58BC$4$4D&)*3&#3E2%)E9&2E$4D&)*3&F;:G&)3H*4$I23J&

&

!"&7$%3")84$H&J&'KL&M&'L&=E)6)@&M&'(&=ENE)@&M&O&=%2B$@&"C&

&

!"&E3B$P%3")84$H&J&'Q,&M&R&=E)6)@&M&'O&=ENE)@&M&K&=%2B$@&"C&

&

!"#$$%&'()"*"

+,-"."+/"%0123)"."+,"%2453)"."6"%7089)":;"

S*3#3&&24HT&J&E)6)$E)$H6%&24H3#)6$4)$3E&U&C6HVD#8247&B873%%$4D&$4&

&&& &&&&&&& &&&&&&&&)*3&7$%3")84$H&646%NE$E&

&&&&&&&&&&&H8#TJ&6%%&)*3&8)*3#&24H3#)6$4)$3E

W*$E&#3E2%)&$E&H84E$E)34)&S$)*&)*3&)*38#3)$H6%&))&H#8EE&E3H)$84&6)&6""#8X$B6)3&YY;Z&J

#$$%<=><?@)*"+6A""""%B2C7D)""""%:EF)":;

#$$%G9E41CH9B)*"+6I""""%B2C7D)""""%:EF)":;

647&B8#3&"#3H$E3&)*64&)*3&Y;Z&)*38#N&24H3#)6$4)N

JKLK

J,LK

JKLK

JML,

Page 12: Top$Quark$Physics$with$CMS$ · CMS Preliminary, 36 pb-1 at s = 7 TeV Figure 7: Likelihood as a function of the top quark mass from the fit to the data (left) and the estimated uncertainty

Single  Top  Cross  Sec?on  (CMS-­‐PAS  TOP-­‐10-­‐008)  

June  2,  2011   Rahmat  Rahmat,  University  of  Misssissippi   12  

•  Event  Selec?on  –  Trigger:  Single  μ/e    –  Existence  of  a  good  primary  vertex    –  Exactly  one  muon  (electron)  –  Exactly  two  an?-­‐kt  5  Par?cle  Flow  jets  

with  –  Transverse  W  boson  mass  >  40  GeV  (50  

GeV)  •  S?ll  rather  small  signal  to  background  

ra?o:    •  Complementary  methods    

–  Exploit  two  characteris?c  features  of  Single  top  quark  produc?on  (2D  analysis)    

–  Use  MVA  technique  Boosted  Decision  Trees  for  further  separa?on  (BDT  analysis)  

Single Top Cross Section (TOP-10-008)

Single Top t-Channel Production Cross Section [pb]-100 -50 0 50 100 150 2000

7.8

SM P

redi

ctio

nN

LO -

5FS

NLO

- 4F

S

CMS combination 30.030.0 ±83.6

channelµBDT, e+ 29.529.5 ±78.7

channelµ2D, e+ 48.148.1 ±124.2

BDT, e channel 37.837.8 ±59.2

channelµBDT, 40.440.4 ±89.8

2D, e channel 73.173.1 ±154.2

channelµ2D, 50.950.9 ±104.1

-1=7 TeV, L=35.9 pbsCMS Preliminary, CMS combined result� σ(t) = 84 ± 30 pb

Significance observed (expected)� 2D fit: 3.7 (2.1)� BDT: 3.5 (2.9)

Atlas: σ(t) = 53+46−36 pb

Holger Enderle (Uni Hamburg) PHENO 11 - Recent Top Results from CMS 10th May 2011 9 / 13

!"

!"#$%&'(%"&)'&*)+,-./(-012,3(,*-%4&%5%3'&3,

6$-,78,*-%4&%5%3'&3,

!#$ %#&

!#' '#!

%#" '#!

%#( !#)

9:; <:=

9:> <:?

*+,------------------------./012-3,4+,-45-672869:;

<)&=->?-.@AB-1510CD4D:

.@0EF-GF2H+I:

JDDEG324+5;-672I6K67

2D6L67

[email protected] 8:P!!

Page 13: Top$Quark$Physics$with$CMS$ · CMS Preliminary, 36 pb-1 at s = 7 TeV Figure 7: Likelihood as a function of the top quark mass from the fit to the data (left) and the estimated uncertainty

t  t  Invariant  Mass    (CMS-­‐PAS  TOP-­‐10-­‐007)  

•  Reconstruc?on  of  mt  t  done  in  3  steps  –  reconstruc?on  of  leptonic  W  (with  MET  as  pT  (μ))    

•  2  real  solu?ons  →  keep  both  •  imaginary  solu?ons  →  modify  MET  

–  jet-­‐parton  associa?on  by  χ2  minimisa?on      •  5  quan??es  used:  mlep  (top),  mhad  (top),  mhad  (W  ),  pT  (t  t  ),  HT  

frac?on    •  correct  associa?on  in  ∼  80%  (in  simula?on)  

–  kinema?c  fit  to  improve  resolu?on  •  mtop  =  172.5  GeV/c2    •  mW  =  80.4  GeV/c2  

•  Looking  for  narrow  resonances  –  Model  independent  

•  Lepton+jets  channels  –  e±  +  jets  –  µ±  +  jets  

•  No  significant  signal  observed        

t t Invariant Mass (TOP-10-007)

Search for narrow resonances� model independent

Lepton+jets channel� e±+jets� µ±+jets

Reconstruction of the t t system� with help of kinematic fit

Good agreement in mtt with SM� limits set for Z’ production at 95% CL

Already competitive with Tevatron,particularly at higher masses

� for gg induced resonances(at mtt � 550 GeV)

]2 [GeV/cttm400 600 800 1000 1200 1400 1600 1800

2Ev

ents

/ 50 G

eV/c

0

20

40

60

80

100

120

]2 [GeV/cttm400 600 800 1000 1200 1400 1600 1800

2Ev

ents

/ 50 G

eV/c

0

20

40

60

80

100

120DataQCD

(+ light jets)-l+l!*"Z/Vbb+XVc(c)+X

(+ light jets)#l!WSingle-Top

ttZ' 0.5 TeV (50 pb)Z' 0.75 TeV (50 pb)Z' 1 TeV (50 pb)Z' 1.25 TeV (50 pb)

CMS Preliminary = 7 TeVs at -136 pb

4 jets$, µe+

]2 [TeV/cZ'm0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

) [pb

]t t

! B

R(Z'

" Z'#Up

per L

imit

0

10

20

30

40

50

60

70

80CMS Preliminary

= 7 TeVs at -136 pb

Observed (95% CL)

Expected (95% CL)

Expected# 1±

Expected# 2±

Holger Enderle (Uni Hamburg) PHENO 11 - Recent Top Results from CMS 10th May 2011 12 / 14June  2,  2011   Rahmat  Rahmat,  University  of  Misssissippi   13  

Page 14: Top$Quark$Physics$with$CMS$ · CMS Preliminary, 36 pb-1 at s = 7 TeV Figure 7: Likelihood as a function of the top quark mass from the fit to the data (left) and the estimated uncertainty

Top  Quark  Mass  Measurement  in  the  Dilepton  Channels    (submifed  to  JHEP,  arXiv:1105.5661)  

•  Event  Selec?on:  –  Inclusive  single  lepton  trigger    

•  muon  with  pT>15  GeV/c  (µµ/eµ)  or  electron  with  ET>17  GeV  (ee/eµ)  –  ≥  2  leptons,  pT>20  GeV/c  |η|<2.5    

•  Isolated  and  promptly  produced  –  ≥  2  jets,  pT>30  GeV/c  |η|<2.5    

•  An?-­‐kT  (R=0.5),  par?cle  flow  based  algorithm  –  MET  >  30  (20)  GeV  for  the  ee/µµ  (eµ)  channel  

•  Evaluated  using  2  methods  –  fully  kinema?c  analysis  (KINb)  –  analy?cal  matrix  weigh?ng  technique(AMWT)  

•  Largest  systema?cs  from  jet  energy  scales  •  CMS  combined  result  

–  mtop  =  175.5  ±  4.6(stat)  ±  4.6(syst)  GeV/c2  

•  Good  agreement  with  world  average  –  mtop  =  173.1  ±  1.1  GeV/c2  

June  2,  2011   Rahmat  Rahmat,  University  of  Misssissippi   14  

20 6 Measurement of the top quark mass

]2Reconstructed mass [GeV/c100 125 150 175 200 225 250 275 300

Even

ts

5

10

15

20

25

30=7 TeVs at -1CMS, 36 pb

eventsµµ/µee/e2 5.5 GeV/c±=174.8 topm

]2Top Quark Mass [GeV/c150 160 170 180 190 200

)m

ax-2

log(

L/L

0

2

4

6

8

10

]2Reconstructed mass [GeV/c100 125 150 175 200 225 250 275 300

Even

ts

5

10

15

20

25

30=7 TeVs at -1CMS, 36 pb

eventsµµ/µee/e2 4.9 GeV/c± = 175.8 topm

]2Top Quark Mass [GeV/c150 160 170 180 190 200

)m

ax-2

log

(L/L

0

2

4

6

8

10

Figure 8: Reconstructed top quark mass distributions from the KINb (left) and AMWT (right)methods. Also shown are the total background plus signal models, and the background-onlyshapes (shaded). The insets show the likelihoods as functions of mtop.

where xi are the Bjorken x values of the initial-state partons, F(x) is the PDF, the summationis over the possible leading-order initial-state partons (uu, uu, dd, dd, and gg), and the termp(E∗|mtop) is the probability of observing a charged lepton of energy E∗ in the rest frame of thetop quark, for a given mtop. For each value of mtop, the weights w are added for all solutions.Detector resolution effects are accounted for by reconstructing the event 1000 times, each timedrawing random numbers for the jet momenta from a normal distribution with mean equalto the measured momentum and width equal to the detector resolution. The weight is aver-aged over all resolution samples for each event and mtop hypothesis. For each event, the mtophypothesis with the maximum averaged weight is taken as the reconstructed top quark massmAMWT. Events that have no solutions or that have a maximum weight below a threshold valueare discarded. Based on simulations, we expect this requirement to remove about 9% of the ttand 20% of the Z+jet events from the sample.

A likelihood L is computed for values of mtop between 151 and 199 GeV/c2 in steps of 3 GeV/c2,using data in the range 100 < mAMWT < 300 GeV/c2. A unique shape determined from MC isused for each b-tag category, where the peak mass distribution of each individual contributionis added according to its expected relative contribution. For the Z+jet background, both thedistribution and its relative contribution are derived from data in the Z-boson mass window(c.f. Section 5.1.1). For the other contributions (signal, single top production, non-dileptonicdecays of tt pairs), the distributions predicted by the simulation are used. Further backgroundcontributions are negligible and are not taken into account in the fit.

We determine the bias of this estimate using ensembles of pseudo-experiments based on theexpected numbers of signal and background events, as shown in Fig. 9. A small correctionof 0.3 ± 0.1 GeV/c2 is applied to the final result to compensate for the residual bias introducedby the fit (Fig. 9, left). The width of the pull distribution is on average about 4% smaller than1.0, indicating that the statistical uncertainties are overestimated (Fig. 9, right). The statisticaluncertainty of the measurement is therefore corrected down by 4%.

Figure 8 (right) shows the predicted distribution of mAMWT summed over the three b-tag cate-gories for the case of simulated mtop = 175 GeV/c2, superimposed on the distribution observed

20 6 Measurement of the top quark mass

]2Reconstructed mass [GeV/c100 125 150 175 200 225 250 275 300

Even

ts

5

10

15

20

25

30=7 TeVs at -1CMS, 36 pb

eventsµµ/µee/e2 5.5 GeV/c±=174.8 topm

]2Top Quark Mass [GeV/c150 160 170 180 190 200

)m

ax-2

log(

L/L

0

2

4

6

8

10

]2Reconstructed mass [GeV/c100 125 150 175 200 225 250 275 300

Even

ts

5

10

15

20

25

30=7 TeVs at -1CMS, 36 pb

eventsµµ/µee/e2 4.9 GeV/c± = 175.8 topm

]2Top Quark Mass [GeV/c150 160 170 180 190 200

)m

ax-2

log

(L/L

0

2

4

6

8

10

Figure 8: Reconstructed top quark mass distributions from the KINb (left) and AMWT (right)methods. Also shown are the total background plus signal models, and the background-onlyshapes (shaded). The insets show the likelihoods as functions of mtop.

where xi are the Bjorken x values of the initial-state partons, F(x) is the PDF, the summationis over the possible leading-order initial-state partons (uu, uu, dd, dd, and gg), and the termp(E∗|mtop) is the probability of observing a charged lepton of energy E∗ in the rest frame of thetop quark, for a given mtop. For each value of mtop, the weights w are added for all solutions.Detector resolution effects are accounted for by reconstructing the event 1000 times, each timedrawing random numbers for the jet momenta from a normal distribution with mean equalto the measured momentum and width equal to the detector resolution. The weight is aver-aged over all resolution samples for each event and mtop hypothesis. For each event, the mtophypothesis with the maximum averaged weight is taken as the reconstructed top quark massmAMWT. Events that have no solutions or that have a maximum weight below a threshold valueare discarded. Based on simulations, we expect this requirement to remove about 9% of the ttand 20% of the Z+jet events from the sample.

A likelihood L is computed for values of mtop between 151 and 199 GeV/c2 in steps of 3 GeV/c2,using data in the range 100 < mAMWT < 300 GeV/c2. A unique shape determined from MC isused for each b-tag category, where the peak mass distribution of each individual contributionis added according to its expected relative contribution. For the Z+jet background, both thedistribution and its relative contribution are derived from data in the Z-boson mass window(c.f. Section 5.1.1). For the other contributions (signal, single top production, non-dileptonicdecays of tt pairs), the distributions predicted by the simulation are used. Further backgroundcontributions are negligible and are not taken into account in the fit.

We determine the bias of this estimate using ensembles of pseudo-experiments based on theexpected numbers of signal and background events, as shown in Fig. 9. A small correctionof 0.3 ± 0.1 GeV/c2 is applied to the final result to compensate for the residual bias introducedby the fit (Fig. 9, left). The width of the pull distribution is on average about 4% smaller than1.0, indicating that the statistical uncertainties are overestimated (Fig. 9, right). The statisticaluncertainty of the measurement is therefore corrected down by 4%.

Figure 8 (right) shows the predicted distribution of mAMWT summed over the three b-tag cate-gories for the case of simulated mtop = 175 GeV/c2, superimposed on the distribution observed

KINb  

AMWT  

Page 15: Top$Quark$Physics$with$CMS$ · CMS Preliminary, 36 pb-1 at s = 7 TeV Figure 7: Likelihood as a function of the top quark mass from the fit to the data (left) and the estimated uncertainty

Top  Quark  Mass  Measurement  in  the  Lepton+jets  Channels    (CMS-­‐PAS  TOP-­‐10-­‐009)  

•  Event  Selec?on:  –  Exactly  one  high  pT  isolated  lepton  (electron  pT  >  30  

GeV,  μ  pT  >  20  GeV),  loose  2nd  lepton  veto  and  four  or  more  PF  jets  (pT  >  30  GeV).  

–  Par?cle  flow  jets  and  missing  transverse  energy  are  used  to  achieve  the  best  expected  mass  resolu?on.  

•  Using  Ideogram  method    –  A  constrained  kinema?c  fit  is  used  to  reconstruct  the  

complete  kinema?cs  of  the  event  under  the  hypothesis  that  the  event  is  a  f    lepton+jets  event  

–  A  likelihood  is  calculated  for  each  event  in  the  data  sample  from  the  output  of  the  kinema?c  fit  

–  The  likelihood  calcula?on  takes  into  account  all  the  possible  assignments  of  jets  to  quarks  in  the  f    lepton+jet  event  hypothesis,  and  considers  the  possibility  that  the  event  is  a  f    event  or  a  background  event  

–  A  joint  likelihood  fit  over  all  events  in  the  data  sample  is  then  used  to  extract  the  value  of  the  top  quark  mass  

6/2/11   Rahmat  Rahmat,  University  of  Misssissippi   15  

Fitted Top Mass [GeV]0 100 200 300 400 500 600

Num

ber o

f Eve

nts

/ 20

GeV

0

20

40

60

80 Datat t

!l" W Single-Top

-l+l"*# Z/ QCD

-1CMS Preliminary, L = 36 pb

+ jets channelµ

0 100 200 300 400 500 6000

20

40

60

80

0 100 200 300 400 500 6000

20

40

60

80

Fitted Top Mass [GeV]0 100 200 300 400 500 600

Num

ber o

f Eve

nts

/ 20

GeV

0

20

40

60

Datat t

!l" W Single-Top

-l+l"*# Z/ QCD

-1CMS Preliminary, L = 36 pb

e + jets channel

0 100 200 300 400 500 6000

20

40

60

0 100 200 300 400 500 6000

20

40

60

Page 16: Top$Quark$Physics$with$CMS$ · CMS Preliminary, 36 pb-1 at s = 7 TeV Figure 7: Likelihood as a function of the top quark mass from the fit to the data (left) and the estimated uncertainty

'Fresh  from  the  oven:  approved  yesterday!’  

•  Combina?on  e+jets  and    µ+jets  

 The  most  precise  top  mass    measurement  outside  Tevatron  

•  Combina?on  of  dilepton  and  lepton+jets  top  mass  using  the  BLUE  (Best  Linear  Unbiased  Es?mate)  method.      mt  =  173.4  ±  1.9(stat)  ±  2.7  (syst)  GeV  

13

Top mass [GeV]155 160 165 170 175 180 185 190

-2 lo

g(lik

elih

ood)

0

5

10

15

20

25 = 7 TeVs at -1CMS Preliminary, 36 pb

fitted statistical uncertainty [GeV]0 1 2 3 4 5 6 7 8 9 10

Pse

udo

Exp

erim

ents

/ (5

0 M

eV)

1

10

210

310

410

510Mean = 2.81

RMS = 0.47 DATA

electron+jets

= 7 TeVs at -1CMS Preliminary, 36 pb

Top mass [GeV]155 160 165 170 175 180 185 190

-2 lo

g(lik

elih

ood)

0

5

10

15

20

25 = 7 TeVs at -1CMS Preliminary, 36 pb

fitted statistical uncertainty [GeV]0 1 2 3 4 5 6 7 8 9 10

Pse

udo

Exp

erim

ents

/ (2

5 M

eV)

1

10

210

310

410

510

DATA

muon+jets

Mean = 2.50

RMS = 0.38

= 7 TeVs at -1CMS Preliminary, 36 pb

Top mass [GeV]155 160 165 170 175 180 185 190

-2 lo

g(lik

elih

ood)

0

5

10

15

20

25 = 7 TeVs at -1CMS Preliminary, 36 pb

fitted statistical uncertainty [GeV]0 1 2 3 4 5 6

Pse

udo

Exp

erim

ents

/ (2

5 M

eV)

1

10

210

310

410

510Mean = 1.86

RMS = 0.25 DATA

lepton+jets

= 7 TeVs at -1CMS Preliminary, 36 pb

Figure 7: Likelihood as a function of the top quark mass from the fit to the data (left) and theestimated uncertainty compared to the expectation from MC pseudo-experiments (right), forthe electron+jets (top), muon+jets (middle), and the combined lepton+jets channel (bottom).

mt = 178.2 ± 3.7(stat) GeV

and from 334 events in the muon+jets channel:335

mt = 170.2 ± 2.6(stat) GeV.

The results in the electron+jets and muon+jets channels are statistically consistent (the differ-336

ence corresponds to 1.8 σ), and the combined likelihood of the two channels yields the follow-337

ing result:338

mt = 173.1 ± 2.1(stat)+2.4−2.1(JES)± 1.4(other syst) GeV.

The estimated statistical uncertainties observed in data agree well with the expectation from339

the MC pseudo-experiments, as shown in Fig. 7(right).340

June  2,  2011   Rahmat  Rahmat,  University  of  Misssissippi   16  

Top mass [GeV]155 160 165 170 175 180 185 190

-2 lo

g(lik

elih

ood)

0

5

10

15

20

25 = 7 TeVs at -1CMS Preliminary, 36 pb

fitted statistical uncertainty [GeV]0 1 2 3 4 5 6

Pse

udo

Exp

erim

ents

/ (2

5 M

eV)

1

10

210

310

410

510Mean = 1.86

RMS = 0.25 DATA

lepton+jets

= 7 TeVs at -1CMS Preliminary, 36 pb

Page 17: Top$Quark$Physics$with$CMS$ · CMS Preliminary, 36 pb-1 at s = 7 TeV Figure 7: Likelihood as a function of the top quark mass from the fit to the data (left) and the estimated uncertainty

Charge  Asymmetry    (CMS-­‐PAS  TOP-­‐10-­‐010)  

•  Tevatron  –  Valence  (an?-­‐)quarks  from  certain  direc?on  –  Forward-­‐backward  asymmetry  

•  LHC  –  gg  fusion  symmetric  –  asymmetry  only  from  small  qq  frac?on  

•  AC  =  (N+  -­‐  N-­‐)/  (N+  +  N-­‐  )    N+  /  N-­‐  are  the  number  of  events  with    posi?ve  /nega?ve  values  of  |´top|-­‐  |´antitop|    Predicted  in  SM  AC  =  0.0130(11)  

•  Would  indicate  BSM  if  there  is  devia?on  e.g.  axigluon  

•  Measured  at  CMS  AC  =  0.060  ±  0.134(stat)  ±  0.026(sys)  

Charge Asymmetry (TOP-10-010)Tevatron: proton-antiproton collider

� valence (anti-)quarks from certain direction� forward-backward asymmetry

LHC: proton-proton collider� gg fusion symmetric� asymmetry only from small qq fraction� no valence antiquarks� quarks have higher x on average� asymmetry in |ηt |− |ηt |=: AC

Predicted in SM� AC = 0.0130(11)

Deviation would indicate BSM physics� e.g. axigluon

Measured at CMS (unfolded)� AC = 0.06 ± 0.13(stat)± 0.03(syst)

Competitive in sensitivity with Tevatronend of 2011 (� 1 fb−1) |

t!|-|

t!|

-4 -2 0 2 4e

ven

ts

0

50

100 data

tt

single top

Z+jets

W+jets

QCD

0.034±=0.018recCA

CMS Preliminary = 7 TeVs at -136 pb

+jetsµe+jets,

|t

!|-|t

!|-4 -2 0 2 4

eve

nts

0

50

100

Holger Enderle (Uni Hamburg) PHENO 11 - Recent Top Results from CMS 10th May 2011 13 / 14June  2,  2011   Rahmat  Rahmat,  University  of  Misssissippi   17  

Page 18: Top$Quark$Physics$with$CMS$ · CMS Preliminary, 36 pb-1 at s = 7 TeV Figure 7: Likelihood as a function of the top quark mass from the fit to the data (left) and the estimated uncertainty

Summary  

•  CMS  is  a  new  Top  Factory  •  With  only  36  pb-­‐1  we  have:  –  t  t  cross  sec?on  (±12%)      –  Single  top  cross  sec?on  (±36%)      –  The  most  precise  top  mass  measurement  outside  Tevatron  –  t  t  invariant  mass  (-­‐>  limits  for  Z’  produc?on)      –  Charge  asymmetry  (compe??ve  with  Tevatron  end  of  2011?)  

•  Today,  June  2,  2011  we  have  more  than  500  pb-­‐1  and  many    in  Top  Physics  

June  2,  2011   Rahmat  Rahmat,  University  of  Misssissippi   18