topic 2 -- figures of merit - continued...antenna parameters and figures of merit (fom) continued...

13
9/12/2017 1 Topic 2 – Antenna Parameters and Figures of Merit (FOM) Continued EE‐4382/5306 ‐ Antenna Engineering Outline Polarization Input Impedance Radiation Efficiency Friis Transmission Equation 2 Antenna Parameters and FOM Constantine A. Balanis, Antenna Theory: Analysis and Design 4 th Ed., Wiley, 2016. Stutzman, Thiele, Antenna Theory and Design 3 rd Ed., Wiley, 2012.

Upload: others

Post on 30-Apr-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Topic 2 -- Figures of Merit - Continued...Antenna Parameters and Figures of Merit (FOM) Continued EE‐4382/5306 ‐Antenna Engineering Outline •Polarization •Input Impedance •Radiation

9/12/2017

1

Topic 2 –Antenna Parameters and Figures of Merit (FOM)

ContinuedEE‐4382/5306 ‐ Antenna Engineering

Outline• Polarization

• Input Impedance

• Radiation Efficiency

• Friis Transmission Equation

2Antenna Parameters and FOM

Constantine A. Balanis, Antenna Theory: Analysis and Design 4th Ed., Wiley, 2016.

Stutzman, Thiele, Antenna Theory and Design 3rd Ed., Wiley, 2012.

Page 2: Topic 2 -- Figures of Merit - Continued...Antenna Parameters and Figures of Merit (FOM) Continued EE‐4382/5306 ‐Antenna Engineering Outline •Polarization •Input Impedance •Radiation

9/12/2017

2

Polarization

3

Antenna Polarization

Slide 4

It describes the movement of the locus (end point) of the electric field. Polarization can be linear, circular, or elliptical.

Almost every wave is elliptically polarized. There are no such waves that exhibit strictly linear or circular polarization, but simplifications can be made.

Polarization is viewed when it travels  away from the observer.

Antenna Parameters and FOM

Page 3: Topic 2 -- Figures of Merit - Continued...Antenna Parameters and Figures of Merit (FOM) Continued EE‐4382/5306 ‐Antenna Engineering Outline •Polarization •Input Impedance •Radiation

9/12/2017

3

Antenna Polarization

Slide 5

A wave traveling in the ‐z direction can be written as

E , , ,

, Re cos

, Re cos

The phase difference between the x and y components of the wave isΔ

, cos Δ

The polarization can be found by calculating the magnitudes of the different components as a function of time and tracing the locus over space.Antenna Parameters and FOM

Antenna Polarization

Introduction to Antennas Slide 6

Linear PolarizationThe phase difference between components is 0 or multiples of  .

Δ , 0,1,2,3,…

Page 4: Topic 2 -- Figures of Merit - Continued...Antenna Parameters and Figures of Merit (FOM) Continued EE‐4382/5306 ‐Antenna Engineering Outline •Polarization •Input Impedance •Radiation

9/12/2017

4

Antenna Polarization

Introduction to Antennas Slide 7

Circular PolarizationThe magnitude of the components is the same.

The phase difference between components is odd multiples of  .

Two circular polarizations: Right‐Hand Circular and Left‐Hand Circular.

Δ

12

2 RHC

12

2 LHC, 0,1,2,3,…

Antenna Polarization

Introduction to Antennas Slide 8

Elliptical Polarization

“Not Linear, not circular”

The magnitude of the components is different and the phase difference 

between components is odd multiples of  .

The phase difference between components is not an odd multiple of  .

Two elliptical polarizations: Right‐Hand Circular and Left‐Hand Circular.

Page 5: Topic 2 -- Figures of Merit - Continued...Antenna Parameters and Figures of Merit (FOM) Continued EE‐4382/5306 ‐Antenna Engineering Outline •Polarization •Input Impedance •Radiation

9/12/2017

5

Antenna Polarization ‐ Example

Introduction to Antennas Slide 9

For the following wave, determine the polarization.

, 2 cos 2 cos Solution: Get the vector components of the wave, and trace the wave as a function of time

E E2 cos 2 cos

0 2 2

/2 0 0

2 2

32

0 0

x

y‐2

2

‐2

2t=0

t= ,

t=

Polarization is linear

Antenna Polarization ‐ Example

Introduction to Antennas

For the following wave, determine the polarization.E j

Solution: Convert phasor to time‐domain, and trace the wave as a function of time

E ERe cos

Re cos 2

sin

0 1 0

/2 0 1

1 0

32

0 1

Polarization is Right‐Hand Circular

x

y‐1

1

‐1

1t=0

t=

t=

t=

Page 6: Topic 2 -- Figures of Merit - Continued...Antenna Parameters and Figures of Merit (FOM) Continued EE‐4382/5306 ‐Antenna Engineering Outline •Polarization •Input Impedance •Radiation

9/12/2017

6

Polarization Loss Factor and Efficiency

Introduction to Antennas Slide 11

Sometimes the polarization of the transmitting antenna does not match the polarization of the receiving antenna. This is called polarization mismatch. The polarization loss factor quantifies the loss caused by the polarization mismatch.The incident antenna has the polarization form

The receiving antenna has the polarization form

The polarization loss factor is defined as

PLF · |cos Ψ |

Where Ψ is the angle between the two vectors.

Introduction to Antennas Slide 12

Polarization Loss Factor and EfficiencyPLF for Aperture Antennas

PLF · 1(aligned)

PLF · |cos Ψ |(rotated)

PLF · 0(orthogonal)

PLF for Wire Antennas

Page 7: Topic 2 -- Figures of Merit - Continued...Antenna Parameters and Figures of Merit (FOM) Continued EE‐4382/5306 ‐Antenna Engineering Outline •Polarization •Input Impedance •Radiation

9/12/2017

7

Input Impedance

13Antenna Parameters and FOM

Input Impedance

Introduction to Antennas Slide 14

It is the impedance presented by the antennas at its terminals.It is the ratio of voltage to current at a pair of terminals.It is the ratio of the components of the electric and magnetic fields at a point.

Page 8: Topic 2 -- Figures of Merit - Continued...Antenna Parameters and Figures of Merit (FOM) Continued EE‐4382/5306 ‐Antenna Engineering Outline •Polarization •Input Impedance •Radiation

9/12/2017

8

Input Impedance

Introduction to Antennas Slide 15

Input Impedance

Introduction to Antennas Slide 16

The impedance of the antenna at the terminals is

Where the resistive (real) part of the antenna consists of two components:

‐ Radiation Resistance‐ Radiation Loss

All the related circuit analysis techniques and calculations are used to obtain maximum power transfer (conjugate matching):

(Power supplied when conjugate matched)

Page 9: Topic 2 -- Figures of Merit - Continued...Antenna Parameters and Figures of Merit (FOM) Continued EE‐4382/5306 ‐Antenna Engineering Outline •Polarization •Input Impedance •Radiation

9/12/2017

9

Input Impedance

Introduction to Antennas Slide 17

Input Impedance

Introduction to Antennas Slide 18

Page 10: Topic 2 -- Figures of Merit - Continued...Antenna Parameters and Figures of Merit (FOM) Continued EE‐4382/5306 ‐Antenna Engineering Outline •Polarization •Input Impedance •Radiation

9/12/2017

10

Radiation Efficiency

19Antenna Parameters and FOM

Radiation Efficiency

Slide 20

It is also the conduction‐dielectric efficiency.

Takes into account the antenna efficiency in terms of antenna impedance (radiation resistance and loss resistance).

This is because conduction‐dielectric losses are very difficult to calculate and measure separately.

Antenna Parameters and FOM

Page 11: Topic 2 -- Figures of Merit - Continued...Antenna Parameters and Figures of Merit (FOM) Continued EE‐4382/5306 ‐Antenna Engineering Outline •Polarization •Input Impedance •Radiation

9/12/2017

11

Friis Transmission Equation

21Antenna Parameters and FOM

Friis Transmission Equation

Slide 22

Relates the power received to the power transmitted between 

two antennas that are placed by a distance  , where  is 

the maximum dimension of either antenna.

Antenna Parameters and FOM

Page 12: Topic 2 -- Figures of Merit - Continued...Antenna Parameters and Figures of Merit (FOM) Continued EE‐4382/5306 ‐Antenna Engineering Outline •Polarization •Input Impedance •Radiation

9/12/2017

12

Friis Transmission Equation

Slide 23

1 Γ 1 Γ4

, , ·

: Antenna efficiency of transmitting antenna

: Antenna efficiency of receiving antenna

1 Γ : Reflection efficiency of transmitting antenna

1 Γ : Reflection efficiency of receiving antenna

: Propagation loss factor

, : Directivity of transmitting antenna

, : Directivity of receiving antenna

· : polarization loss factor

Antenna Parameters and FOM

Friis Transmission Equation ‐Example

Example 2.6 (page 89 Balanis): Two lossless X‐band (8.2 12.4GHz) antennas are separated by a distance of 100 . The reflection coefficients at the terminals of the transmitting and receiving antennas are 0.1 and 0.2, respectively. The maximum directivity of the transmitting and receiving antennas (over isotropic) are 16dB and 20dB, respectively. Assuming that the input power in the lossless transmission line connected to the transmitting antenna is 2W, and the antennas are aligned for maximum radiation between them and polarization matched, find the power delivered to the load of the receiver.

Solution:

1 – Antennas are lossless

· 1 ‐ Polarization Matched

, ‐ Antennas are aligned for maximum directivity

, ‐ Antennas are aligned for maximum directivity16dB 39.81 dimensionless20dB 100 dimensionless

Introduction to Antennas Slide 24

Page 13: Topic 2 -- Figures of Merit - Continued...Antenna Parameters and Figures of Merit (FOM) Continued EE‐4382/5306 ‐Antenna Engineering Outline •Polarization •Input Impedance •Radiation

9/12/2017

13

Friis Transmission Equation ‐Example

Using Friis Transmission Equation, we obtain

1 Γ 1 Γ4

, , ·

1 1 1 0.1 1 0.24 100

39.81 100 1 2

4.777mW

Introduction to Antennas Slide 25