timoteo carletti [email protected] pace – pa’s coordination workshop, los alamos 19-22 july 2005...

24
Timoteo Carletti [email protected] PACE – PA’s Coordination Workshop, Los Alamos 19-22 July 2005 Dipartimento di Statistica, Università Ca’ Fo Venezia, ITALIA FP6 EU

Upload: samson-small

Post on 03-Jan-2016

215 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Timoteo Carletti t.carletti@sns.it PACE – PA’s Coordination Workshop, Los Alamos 19-22 July 2005 Dipartimento di Statistica, Università Ca’ Foscari Venezia,

Timoteo Carletti

[email protected]

PACE – PA’s Coordination Workshop, Los Alamos 19-22 July 2005

Dipartimento di Statistica, Università Ca’ FoscariVenezia, ITALIA

FP6 EU

Page 2: Timoteo Carletti t.carletti@sns.it PACE – PA’s Coordination Workshop, Los Alamos 19-22 July 2005 Dipartimento di Statistica, Università Ca’ Foscari Venezia,

PACE

[email protected]

summary

►introduction

►short description of the Chemoton original model

►work in progress & perspectives

►numerical analysis of the new model

►a new model to overcome some drawbacks

Page 3: Timoteo Carletti t.carletti@sns.it PACE – PA’s Coordination Workshop, Los Alamos 19-22 July 2005 Dipartimento di Statistica, Università Ca’ Foscari Venezia,

1) membrane

The membrane encloses the system andseparates it from environment. It allows nutriment and waste material to pass through.

PACE

[email protected]

the original model

► Gánti (1971) :

► Csendes (1984) : first numerical simulation

once the membrane doubled its initial size the Chemotonhalves into two equal (smaller) units

The metabolic chemical system transformsexternal energetically high materials into internal materials needed to grow and to duplicate templates

2) metabolism3) information

The double-stranded template (polymer)is the information carrier. It can duplicate

itself if enough free monomers are availableThe Chemoton

Page 4: Timoteo Carletti t.carletti@sns.it PACE – PA’s Coordination Workshop, Los Alamos 19-22 July 2005 Dipartimento di Statistica, Università Ca’ Foscari Venezia,

PACE

[email protected]

template duplication: pV2n! 2pV2n (I)

free monomers V0

double-stranded template made of 2n monomers V0

pV2n

template duplicationstarts

if concentrationof V0 is larger than

a threshold V*

……

Page 5: Timoteo Carletti t.carletti@sns.it PACE – PA’s Coordination Workshop, Los Alamos 19-22 July 2005 Dipartimento di Statistica, Università Ca’ Foscari Venezia,

PACE

[email protected]

template duplication: pV2n! 2pV2n (II)

chemical reactions:duplication initiation

duplication propagation

final step

pV2n concentration of double-stranded template

ki (direct) rate constant

ki0 (inverse) rate constant

(pV2n¢ pVi) concentration of intermediate states ki >> ki0

Page 6: Timoteo Carletti t.carletti@sns.it PACE – PA’s Coordination Workshop, Los Alamos 19-22 July 2005 Dipartimento di Statistica, Università Ca’ Foscari Venezia,

PACE

[email protected]

metabolism, autocatalytic cycle : A1! 2A1

chemical reactions:

Ai concentration of ith reagent

ki (direct) rate constant

ki0 (inverse) rate constant ki>> ki

0

Page 7: Timoteo Carletti t.carletti@sns.it PACE – PA’s Coordination Workshop, Los Alamos 19-22 July 2005 Dipartimento di Statistica, Università Ca’ Foscari Venezia,

PACE

[email protected]

membrane growth

chemical reactions:

T concentration of membrane molecules

ki (direct) rate constant

ki0 (inverse) rate constant

T0 and T* concentration of precursor of membrane molecules

ki>>ki0

Page 8: Timoteo Carletti t.carletti@sns.it PACE – PA’s Coordination Workshop, Los Alamos 19-22 July 2005 Dipartimento di Statistica, Università Ca’ Foscari Venezia,

PACE

[email protected]

kinetic differential equations

cell surface growth

balance equation for free monomers

balance equation for R reagent

Page 9: Timoteo Carletti t.carletti@sns.it PACE – PA’s Coordination Workshop, Los Alamos 19-22 July 2005 Dipartimento di Statistica, Università Ca’ Foscari Venezia,

time

size

growth growthdivision

PACE

[email protected]

the original model : division (I)

►standard assumption: (Gánti, Csendes, Fernando & Di Paolo (2004))

when growing the Chemoton always keep a spherical shape

when the surface size doubled its initial value (cell cycle),suddenly the Chemoton divides into two equal smaller spheres,

preserving total number of T molecules and halving all the contained materials

Page 10: Timoteo Carletti t.carletti@sns.it PACE – PA’s Coordination Workshop, Los Alamos 19-22 July 2005 Dipartimento di Statistica, Università Ca’ Foscari Venezia,

PACE

[email protected]

the original model : division (II)

► remark: (Munteanu & Solé (2004))

at the division all concentrations increase (by a factor )

(sphere hypothesis)

concentration generic ith reagent

immediately before division

(doubling hypothesis)

immediately after division

(halving hypothesis)

Page 11: Timoteo Carletti t.carletti@sns.it PACE – PA’s Coordination Workshop, Los Alamos 19-22 July 2005 Dipartimento di Statistica, Università Ca’ Foscari Venezia,

PACE

[email protected]

take care of the shape (I)

► we observe that the previous remark can be applied to includethe volume growth in the kinetic differential equations :

the kinetic differential equation for the generic concentration ci

has to be modified by the addition of the term

►the shape, hence the volume, changes concentrations, thus the dynamics is affected by the chosen shape

Page 12: Timoteo Carletti t.carletti@sns.it PACE – PA’s Coordination Workshop, Los Alamos 19-22 July 2005 Dipartimento di Statistica, Università Ca’ Foscari Venezia,

PACE

[email protected]

take care of the shape (II)

►observations of real cells and their division process,i.e. experiments, support the following working hypothesis:

when growing the Chemoton changes its shape passing from a sphere to a sand-glass (eight shaped body), through a peanut.

growth growth growth growth growth division

time

sha

pe

once the surface size doubled its initial value (cell cycle),the eight shaped Chemoton naturally divides into two equal smal spheres,

preserving total number of T molecules and halving all the contained materials

Page 13: Timoteo Carletti t.carletti@sns.it PACE – PA’s Coordination Workshop, Los Alamos 19-22 July 2005 Dipartimento di Statistica, Università Ca’ Foscari Venezia,

PACE

[email protected]

model analysis

& it is high dimensional: 5+2+ 4+2n

► the model depends on several parameters (for instance )

membrane

polymer

thus numerical simulations can help to understand its behaviour

What are we looking for? Which are the “interesting” dynamics?

… but …

Page 14: Timoteo Carletti t.carletti@sns.it PACE – PA’s Coordination Workshop, Los Alamos 19-22 July 2005 Dipartimento di Statistica, Università Ca’ Foscari Venezia,

PACE

[email protected]

regular behaviour

t

S(t)

t

A1(t)

►”regular” behaviour: cell cycles repeat periodically

thus each generation starts with the same amount of internal materials

let TCi be time interval between two

successive divisions at the ith generation(ith replication time)

TCi

ith generation

“The replicationPeriod”

Page 15: Timoteo Carletti t.carletti@sns.it PACE – PA’s Coordination Workshop, Los Alamos 19-22 July 2005 Dipartimento di Statistica, Università Ca’ Foscari Venezia,

PACE

[email protected]

non-regular behaviour

►”non-regular” behaviour: replication times vary for each generation

each generation can start with different amount of internal materials

TCi

ith generation

t

S(t)A1(t)

t

no replication period can be defined

Page 16: Timoteo Carletti t.carletti@sns.it PACE – PA’s Coordination Workshop, Los Alamos 19-22 July 2005 Dipartimento di Statistica, Università Ca’ Foscari Venezia,

PACE

[email protected]

regular behaviours vs parameters (I)

►determine how parameters affect the dynamicswe fix two parameters between and we study the dependence

of the replication time on the third free parameter

TCi

TCi

zoom

high concentrations of X induce a faster dynamics, thus shorter replication period,and instabilities can be found for small concentrations

Page 17: Timoteo Carletti t.carletti@sns.it PACE – PA’s Coordination Workshop, Los Alamos 19-22 July 2005 Dipartimento di Statistica, Università Ca’ Foscari Venezia,

PACE

[email protected]

regular behaviours vs parameters (II)

TCi

V*

our new model

TCi

V*

original model

high values of V* implies that polymerization (and thus all the growth process) can start only after many metabolic cycles A1! 2A1 (to produce enough V0), Namely long replication period.

At lower values, polymerization can (almost) always be done, thus the (eventually) bottleneck in the growth process must be found elsewhere & the replication period is

independent of V*. Intermediate values can give rise to instabilities.

Page 18: Timoteo Carletti t.carletti@sns.it PACE – PA’s Coordination Workshop, Los Alamos 19-22 July 2005 Dipartimento di Statistica, Università Ca’ Foscari Venezia,

PACE

[email protected]

regular behaviours vs parameters (III)

N

TCi

original model

TCi

N

our new model

long polymers need many free monomers V0 to duplicate themselves, thus many metabolic cycles A1! 2A1 have to be done, namely long replication period.

Page 19: Timoteo Carletti t.carletti@sns.it PACE – PA’s Coordination Workshop, Los Alamos 19-22 July 2005 Dipartimento di Statistica, Università Ca’ Foscari Venezia,

V*

N

PACE

[email protected]

a global picture

►to better understand the interplay of N and V* in determining regular behaviours, we fix X & for several (N,V*) we look for a unique replication period

blue spot: more than one or no replication period at all

red spot: a unique replication period

Page 20: Timoteo Carletti t.carletti@sns.it PACE – PA’s Coordination Workshop, Los Alamos 19-22 July 2005 Dipartimento di Statistica, Università Ca’ Foscari Venezia,

PACE

[email protected]

stability of regular behaviours

►once we determine a unique replication period, some natural questions arise: is this dynamics stable? Are there other

regular behaviours close to this one?

we fix N=25, V*=50 & X=100 and we consider the role of A1 and V0

blue spot: more than one or no replication period at all

red spot: a unique replication period

A1

V*

Page 21: Timoteo Carletti t.carletti@sns.it PACE – PA’s Coordination Workshop, Los Alamos 19-22 July 2005 Dipartimento di Statistica, Università Ca’ Foscari Venezia,

PACE

[email protected]

work in progress

►use a more fine mathematical tool to study the stability of a periodic orbit

in all models information is carried by the length of the polymer

►introduce a divisions process where internal materials are not equally shared in next generations & consider the previous picture (A1,V0)

►study family of Chemotons with different polymer lengths & consider the previous picture (N,V*)

Page 22: Timoteo Carletti t.carletti@sns.it PACE – PA’s Coordination Workshop, Los Alamos 19-22 July 2005 Dipartimento di Statistica, Università Ca’ Foscari Venezia,

PACE

[email protected]

perspectives

►use a stochastic integrator (Gillespie) & compare results with our deterministic approach

, then it will be possible to include mutations both in the length of the polymer and in the copying fidelity

►consider a “more realistic template” build with, at least, two different monomers V0 and W0

►introduce the space and consider competition for food

Page 23: Timoteo Carletti t.carletti@sns.it PACE – PA’s Coordination Workshop, Los Alamos 19-22 July 2005 Dipartimento di Statistica, Università Ca’ Foscari Venezia,

Timoteo Carletti

[email protected]

PACE – PA’s Coordination Workshop, Los Alamos 19-22 July 2005

Dipartimento di Statistica, Università Ca’ FoscariVenezia, ITALIA

FP6 EU

Page 24: Timoteo Carletti t.carletti@sns.it PACE – PA’s Coordination Workshop, Los Alamos 19-22 July 2005 Dipartimento di Statistica, Università Ca’ Foscari Venezia,

PACE

[email protected]