time spectral method for rotorcraft flow with vorticity...

150
Time Spectral Method for Rotorcraft Flow with Vorticity Confinement Nawee Butsuntorn Department of Mechanical Engineering Advisor: Antony Jameson University Oral Exmination March 17, 2008

Upload: dangngoc

Post on 20-Apr-2018

237 views

Category:

Documents


6 download

TRANSCRIPT

Time Spectral Method for Rotorcraft Flowwith Vorticity Confinement

Nawee ButsuntornDepartment of Mechanical Engineering

Advisor: Antony Jameson

University Oral ExminationMarch 17, 2008

Outline

1 IntroductionHelicopter SimulationTime Spectral Method

2 Time Spectral MethodSpectral DerivativeNLFD Method FormulationTime Spectral Method Formulation

3 Rotorcraft Simulation ResultsHover CalculationsBasic Forward Flight CalculationsComputational CostLifting Forward Flight Calculations

4 Vorticity ConfinementIntroductionFormulationCompressible Euler CalculationsApplication to Rotorcraft Flows

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

Helicopter SimulationTime Spectral Method

Introduction

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

Helicopter SimulationTime Spectral Method

Introduction

Helicopter simulation is very complex and computationallyexpensive:

The flow is highly nonlinear.

Interactions between the vortices with the blades and fuselage.

There is a wide range of scales.

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

Helicopter SimulationTime Spectral Method

Introduction

Helicopter simulation is very complex and computationallyexpensive:

The flow is highly nonlinear.

Interactions between the vortices with the blades and fuselage.

There is a wide range of scales.

Blades are highly elastic.

Variety of blade motion:

LeadLagFlappingCollective pitch, cyclic pitch, yaw

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

Helicopter SimulationTime Spectral Method

Blade Motion

⋆ Johnson, W., “Helicopter Theory”, 1980.

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

Helicopter SimulationTime Spectral Method

Articulated Rotor

⋆ Johnson, W., “Helicopter Theory”, 1980.

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

Helicopter SimulationTime Spectral Method

Forward Flight

⋆ Johnson, W., “Helicopter Theory”, 1980.

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

Helicopter SimulationTime Spectral Method

Background

A lot has been done over the past 3 decades.

Potential flow calculations:

Caradonna & Isom (1972, 1976)Caradonna & Philippe (1976)Arieli, Taubert & Caughey (1986): the first three-dimensional,full potential flow based on Jameson & Caughey’s FLO22

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

Helicopter SimulationTime Spectral Method

Background

A lot has been done over the past 3 decades.

Potential flow calculations:

Caradonna & Isom (1972, 1976)Caradonna & Philippe (1976)Arieli, Taubert & Caughey (1986): the first three-dimensional,full potential flow based on Jameson & Caughey’s FLO22

Euler and Reynolds averaged Navier–Stokes (RANS)calculations:

Agarwal & Deese (1987, 1988)Srinivasan et al. (1991, 1992)Pomin & Wagner (2002, 2004)Allen (2003, 2004, 2005, 2006, 2007): 32 million mesh pointsand 25,000 CPU hours for Euler calculation of a four-bladedrotor!

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

Helicopter SimulationTime Spectral Method

Hybrid solvers:

Hassan, Tung & Sankar (1992): vortex wake flow field usingBiot–Savart lawYang et al. (2000, 2002): RANS/Full potential solver coupledwith free/prescribed wake modelBhagwat, Moulton & Caradonna (2005, 2006): RANS withwake model

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

Helicopter SimulationTime Spectral Method

Hybrid solvers:

Hassan, Tung & Sankar (1992): vortex wake flow field usingBiot–Savart lawYang et al. (2000, 2002): RANS/Full potential solver coupledwith free/prescribed wake modelBhagwat, Moulton & Caradonna (2005, 2006): RANS withwake model

And numerous countless others . . .

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

Helicopter SimulationTime Spectral Method

What is the Time Spectral Method?

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

Helicopter SimulationTime Spectral Method

Time Spectral Method

Time integration method based on Fourier representation.

Efficient and accurate method for periodic problems.

No need to Fourier transform variables back and forthbetween time and frequency domains, everything is solved inthe time domain.

Algorithm is easily adapted to the current solvers.

Existing convergence acceleration techniques are applicable.

The method is able to achieve spectral accuracy in theory.

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

Helicopter SimulationTime Spectral Method

What Has Been Done?

Fully nonlinear methods:1 Harmonic Balance method of Hall, Thomas & Clark (2002):

originally for turbomachinery.

Ekici & Hall (2008): Rotorcraft simultion.

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

Helicopter SimulationTime Spectral Method

What Has Been Done?

Fully nonlinear methods:1 Harmonic Balance method of Hall, Thomas & Clark (2002):

originally for turbomachinery.

Ekici & Hall (2008): Rotorcraft simultion.

2 Nonlinear frequency domain (NLFD) of McMullen, Jameson& Alonso (2001, 2002).

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

Helicopter SimulationTime Spectral Method

What Has Been Done?

Fully nonlinear methods:1 Harmonic Balance method of Hall, Thomas & Clark (2002):

originally for turbomachinery.

Ekici & Hall (2008): Rotorcraft simultion.

2 Nonlinear frequency domain (NLFD) of McMullen, Jameson& Alonso (2001, 2002).

3 Time Spectral method of Gopinath & Jameson (2005).

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

Spectral DerivativeNLFD MethodTime Spectral MethodFourier Collocation Matrix

Fourier Based Time Integration Method

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

Spectral DerivativeNLFD MethodTime Spectral MethodFourier Collocation Matrix

Spectral Derivative

Real, periodic function f (x) defined on N equally spaced gridpoints, xj = j∆x where j = 0, 1, 2, . . . ,N − 1. The discrete Fouriertransform and the inverse Fourier transform of f are

fk =1

N

N−1∑

j=0

fje−ikxj , f =

N2−1∑

k=−N2

fkeikxj ,

and the spectral derivative of f is Dfk = ikfk , i.e.

df

dx

∣∣∣∣j

=

N2−1∑

k=−N2+1

Dfkeikxj .

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

Spectral DerivativeNLFD MethodTime Spectral MethodFourier Collocation Matrix

Nonlinear Frequency Domain

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

Spectral DerivativeNLFD MethodTime Spectral MethodFourier Collocation Matrix

Nonlinear Frequency Domain

Starting with the governing equations in semi-discrete form:

d

dt(V w) + R(w) = 0,

where

w =

ρρu1

ρu2

ρu3

ρE

.

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

Spectral DerivativeNLFD MethodTime Spectral MethodFourier Collocation Matrix

Nonlinear Frequency Domain Method

Assume that both w and R(w) are periodic in time. These can berepresented as finite Fourier series.

w =

N2−1∑

k=−N2

wkeikt

and

R(w) =

N2−1∑

k=−N2

Rk(w)eikt

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

Spectral DerivativeNLFD MethodTime Spectral MethodFourier Collocation Matrix

Nonlinear Frequency Domain Method

Seperate equation for each Fourier wave number k, and multiplythe time derivative by ik

ikV wk + Rk(w) = 0.

1 Assume that wk is known at all time instances (this is theinitial condition)

2 Inverse Fourier transform wk back to the physical space toobtain w

3 Calculate the residual R(w)

4 Fourier transform R(w) back to the frequency space to obtain

Rk(w)

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

Spectral DerivativeNLFD MethodTime Spectral MethodFourier Collocation Matrix

Nonlinear Frequency Domain Method

Group Rk(w) + ikV wk together,

Rk(w) + ikV wk = Ik(w).

Introduce pseudo time τ ,

Vdwk

dτ+ Ik(w) = 0. (1)

Solve (1) as a steady state problem using well known convergenceacceleration methods, e.g. modified 5-stage Runge–Kutta timestepping scheme, multigrid, local time stepping, etc.

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

Spectral DerivativeNLFD MethodTime Spectral MethodFourier Collocation Matrix

Time Spectral

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

Spectral DerivativeNLFD MethodTime Spectral MethodFourier Collocation Matrix

Time Spectral Method

The discrete Fourier transform of the flow variables w for a timeperiod T is

wk =1

N

N−1∑

n=0

wne−ik 2π

Tn∆t ,

and its inverse transform:

wn =

N2−1∑

k=−N2

wkeik 2π

Tn∆t . (2)

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

Spectral DerivativeNLFD MethodTime Spectral MethodFourier Collocation Matrix

The spectral derivative of equation (2) with respect to time at then-th time instance is given by

Dwn =2π

T

N2−1∑

k=−N2+1

ikwkeik 2π

Tn∆t .

The right hand side can be written in terms of the flow variableswn as follows:

Dwn =

N−1∑

j=0

d jnw

j

where

d jn =

2πT

12(−1)n−j cot

π(n−j)

N

: n 6= j

0 : n = j.

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

Spectral DerivativeNLFD MethodTime Spectral MethodFourier Collocation Matrix

Let n − j = −m, one can rewrite the time derivative as

Dwn =

N2−1∑

m=−N2+1

dmw(n+m)

where dm is given by

dm =

2πT

12 (−1)m+1 cot

πmN

: m 6= 0

0 : m = 0.

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

Spectral DerivativeNLFD MethodTime Spectral MethodFourier Collocation Matrix

The original flow equations in semi-discrete form:

Vdwn

dt+ R(wn) = 0,

becomesVDwn + R(wn) = 0. (3)

Introducing a pseudo time derivative term to equation (3), theequations can now be marched towards a periodic steady stateusing well known convergence acceleration techniques.

Vdwn

dτ+ VDwn + R(wn) = 0.

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

Flow SolverHover CalculationsBasic Forward Flight CalculationsComputational CostLifting Forward Flight Calculations

Rotorcraft Simulation Results

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

Flow SolverHover CalculationsBasic Forward Flight CalculationsComputational CostLifting Forward Flight Calculations

Flow Solver

1 Modified 5-stage Runge–Kutta⋆

2 Local time stepping⋆

3 Multigrid⋆

4 Artificial dissipation schemes:⋆

Jameson–Schmidt–Turkel (JST)Symmetric LImited Positive (SLIP)Convective Upwind and Split Pressure (CUSP)

5 Internal mesh generator via conformal mapping

6 Baldwin–Lomax turbulence model (Baldwin–Lomax, 1978)

⋆ A. Jameson, A perspective on computational algorithms for aerodynamics analysis and design,Progress in Aerospace Sciences, 37, pp. 197–243, 2001.

⋆ A. Jameson, Aerodynamics, Encyclopedia of Computational Mechanics, Ch. 11, 2004.

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

Flow SolverHover CalculationsBasic Forward Flight CalculationsComputational CostLifting Forward Flight Calculations

Hover Calculations

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

Flow SolverHover CalculationsBasic Forward Flight CalculationsComputational CostLifting Forward Flight Calculations

Caradonna & Tung Experiment (1981)

Experimental setup:

Untapered, untwisted two-bladed rotor

NACA 0012 section

Aspect ratio of 6

Diameter of the rotor is 2.286 m

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

Flow SolverHover CalculationsBasic Forward Flight CalculationsComputational CostLifting Forward Flight Calculations

Caradonna & Tung Experiment (1981)

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

Flow SolverHover CalculationsBasic Forward Flight CalculationsComputational CostLifting Forward Flight Calculations

Mesh

O–H mesh for Euler calculation

Single block with one sector

128 × 48 × 32 cells, 16 cells on the blade

Bottom and top far-field distance is 1.5R from the rotor

Far-field in the spanwise direction is 1.5R from the rotor

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

Flow SolverHover CalculationsBasic Forward Flight CalculationsComputational CostLifting Forward Flight Calculations

Mesh

(a) View of blade (b) Isometric view

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

Flow SolverHover CalculationsBasic Forward Flight CalculationsComputational CostLifting Forward Flight Calculations

Boundary Conditions

Top: Riemann invariants

Hub: flow tangency (Euler calculation)

Far-field (spanwise): Riemann invariants

Periodic boundary condition for the periodic boundaries

Bottom:

Nonlifting: Riemann invariantsLifting: one-dimensional momentum theory

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

Flow SolverHover CalculationsBasic Forward Flight CalculationsComputational CostLifting Forward Flight Calculations

Steady State Periodic Problem

By adding a forcing term (Holmes & Tong, 1984), the equationscan now be solved as a steady state problem.

Ω

∂w

∂tdV +

∂Ωfj · ~n dS =

ΩTdV

where T is defined as

T =

0ρΩu3

0−ρΩu1

0

.

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

Flow SolverHover CalculationsBasic Forward Flight CalculationsComputational CostLifting Forward Flight Calculations

Case I

Flow Condition:

Mtip = 0.52θc = 0

Ω = 1500 RPM

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

Flow SolverHover CalculationsBasic Forward Flight CalculationsComputational CostLifting Forward Flight Calculations

Nonlifting Rotor (1)

0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

x/c

−C

p

(a) r/R = 0.68

0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

x/c

−C

p

(b) r/R = 0.80

experiment, — JST scheme

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

Flow SolverHover CalculationsBasic Forward Flight CalculationsComputational CostLifting Forward Flight Calculations

Nonlifting Rotor (2)

0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

x/c

−C

p

(c) r/R = 0.89

0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

x/c

−C

p

(d) r/R = 0.96

experiment, — JST scheme

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

Flow SolverHover CalculationsBasic Forward Flight CalculationsComputational CostLifting Forward Flight Calculations

Case II

Flow Condition:

Mtip = 0.439θc = 8

Ω = 1250 RPM

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

Flow SolverHover CalculationsBasic Forward Flight CalculationsComputational CostLifting Forward Flight Calculations

Subsonic Lifting Rotor (1)

0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1

x/c

−C

p

(a) r/R = 0.68

0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1

x/c

−C

p

(b) r/R = 0.80

experiment, — JST scheme, – – SLIP scheme

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

Flow SolverHover CalculationsBasic Forward Flight CalculationsComputational CostLifting Forward Flight Calculations

Subsonic Lifting Rotor (2)

0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1

x/c

−C

p

(c) r/R = 0.89

0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1

x/c

−C

p

(d) r/R = 0.96

experiment, — JST scheme, – – SLIP scheme

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

Flow SolverHover CalculationsBasic Forward Flight CalculationsComputational CostLifting Forward Flight Calculations

Case III

Flow Condition:

Mtip = 0.877θc = 8

Ω = 2500 RPM

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

Flow SolverHover CalculationsBasic Forward Flight CalculationsComputational CostLifting Forward Flight Calculations

Transonic Lifting Rotor (1)

0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1

x/c

−C

p

(a) r/R = 0.68

0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1

x/c

−C

p

(b) r/R = 0.80

experiment, — JST scheme, – – SLIP scheme

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

Flow SolverHover CalculationsBasic Forward Flight CalculationsComputational CostLifting Forward Flight Calculations

Transonic Lifting Rotor (2)

0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1

x/c

−C

p

(c) r/R = 0.89

0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1

x/c

−C

p

(d) r/R = 0.96

experiment, — JST scheme, – – SLIP scheme

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

Flow SolverHover CalculationsBasic Forward Flight CalculationsComputational CostLifting Forward Flight Calculations

Euler Calculationwith Time Spectral method

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

Flow SolverHover CalculationsBasic Forward Flight CalculationsComputational CostLifting Forward Flight Calculations

Transonic Lifting Rotor: Time Spectral Method (1)

0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1

x/c

−C

p

(a) r/R = 0.68

0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1

x/c

−C

p

(b) r/R = 0.80

experiment, — JST scheme, – – CUSP scheme

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

Flow SolverHover CalculationsBasic Forward Flight CalculationsComputational CostLifting Forward Flight Calculations

Transonic Lifting Rotor: Time Spectral Method (2)

0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1

x/c

−C

p

(c) r/R = 0.89

0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1

x/c

−C

p

(d) r/R = 0.96

experiment, — JST scheme, – – CUSP scheme

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

Flow SolverHover CalculationsBasic Forward Flight CalculationsComputational CostLifting Forward Flight Calculations

Calculations were run on four dual-core processors (clockspeed is 3.0 GHz)

250 multigrid cycles

The averaged residual reduced by almost four orders ofmagnitude

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

Flow SolverHover CalculationsBasic Forward Flight CalculationsComputational CostLifting Forward Flight Calculations

Calculations were run on four dual-core processors (clockspeed is 3.0 GHz)

250 multigrid cycles

The averaged residual reduced by almost four orders ofmagnitude

13 minutes

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

Flow SolverHover CalculationsBasic Forward Flight CalculationsComputational CostLifting Forward Flight Calculations

What if the Coefficient of Thrustis Not Known in Advance?

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

Flow SolverHover CalculationsBasic Forward Flight CalculationsComputational CostLifting Forward Flight Calculations

Increase the top and bottom distance

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

Flow SolverHover CalculationsBasic Forward Flight CalculationsComputational CostLifting Forward Flight Calculations

Increase the top and bottom distance

And run your code for a long, long time . . .

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

Flow SolverHover CalculationsBasic Forward Flight CalculationsComputational CostLifting Forward Flight Calculations

Velocity Magnitude

(a) 500 (b) 1,500 (c) 2,250

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

Flow SolverHover CalculationsBasic Forward Flight CalculationsComputational CostLifting Forward Flight Calculations

Velocity Magnitude

(d) 3,000 (e) 3,500 (f) 4,000

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

Flow SolverHover CalculationsBasic Forward Flight CalculationsComputational CostLifting Forward Flight Calculations

160 × 64 × 48 Mesh Cells, 3,500 time steps

0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1

x/c

−C

p

(a) r/R = 0.68

0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1

x/c

−C

p

(b) r/R = 0.80

experiment, — JST scheme

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

Flow SolverHover CalculationsBasic Forward Flight CalculationsComputational CostLifting Forward Flight Calculations

160 × 64 × 48 Mesh Cells, 3,500 time steps

0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1

x/c

−C

p

(c) r/R = 0.89

0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1

x/c

−C

p

(d) r/R = 0.96

experiment, — JST scheme

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

Flow SolverHover CalculationsBasic Forward Flight CalculationsComputational CostLifting Forward Flight Calculations

Forward Flight Calculations

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

Flow SolverHover CalculationsBasic Forward Flight CalculationsComputational CostLifting Forward Flight Calculations

Caradonna et al. Experiment (1984)

Experimental setup:

Untapered, untwisted two-bladed rotor

NACA 0012 section

Aspect ratio of 7

Diameter of the rotor is 7 ft

Chord is 6 in

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

Flow SolverHover CalculationsBasic Forward Flight CalculationsComputational CostLifting Forward Flight Calculations

Nonlifting Rotor in Forward Flight

Case IV

Flow Condition:

θc = 0

Mtip = 0.8µ = 0.2Re = 2.89 × 106

Twelve time instances were used, N = 12

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

Flow SolverHover CalculationsBasic Forward Flight CalculationsComputational CostLifting Forward Flight Calculations

Mesh

Euler: 128 × 48 × 32 cells per blade, 16 cells on the blade.

RANS: 192 × 64 × 48 cells per blade, 32 cells on the blade.

(a) Isometric view (b) Top view

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

Flow SolverHover CalculationsBasic Forward Flight CalculationsComputational CostLifting Forward Flight Calculations

Comparison with the Experimental Data

Dissipation schemes are JST and CUSP

Results are compared at six azimuthal angles on theadvancing side:

(a) ψ = 30

(b) ψ = 60

(c) ψ = 90

(d) ψ = 120

(e) ψ = 150

(f) ψ = 180

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

Flow SolverHover CalculationsBasic Forward Flight CalculationsComputational CostLifting Forward Flight Calculations

Euler Calculations

0 0.2 0.4 0.6 0.8 1−1

−0.5

0

0.5

1

x/c

−C

p

(a) ψ = 30

0 0.2 0.4 0.6 0.8 1−1

−0.5

0

0.5

1

x/c

−C

p

(b) ψ = 60

0 0.2 0.4 0.6 0.8 1−1

−0.5

0

0.5

1

x/c

−C

p

(c) ψ = 90

0 0.2 0.4 0.6 0.8 1−1

−0.5

0

0.5

1

x/c

−C

p

(d) ψ = 120

0 0.2 0.4 0.6 0.8 1−1

−0.5

0

0.5

1

x/c

−C

p

(e) ψ = 150

0 0.2 0.4 0.6 0.8 1−1

−0.5

0

0.5

1

x/c

−C

p

(f) ψ = 180

experiment, — JST scheme, – – CUSP scheme

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

Flow SolverHover CalculationsBasic Forward Flight CalculationsComputational CostLifting Forward Flight Calculations

RANS Calculations

0 0.2 0.4 0.6 0.8 1−1

−0.5

0

0.5

1

x/c

−C

p

(a) ψ = 30

0 0.2 0.4 0.6 0.8 1−1

−0.5

0

0.5

1

x/c

−C

p

(b) ψ = 60

0 0.2 0.4 0.6 0.8 1−1

−0.5

0

0.5

1

x/c

−C

p

(c) ψ = 90

0 0.2 0.4 0.6 0.8 1−1

−0.5

0

0.5

1

x/c

−C

p

(d) ψ = 120

0 0.2 0.4 0.6 0.8 1−1

−0.5

0

0.5

1

x/c

−C

p

(e) ψ = 150

0 0.2 0.4 0.6 0.8 1−1

−0.5

0

0.5

1

x/c

−C

p

(f) ψ = 180

experiment, — JST scheme, – – CUSP scheme

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

Flow SolverHover CalculationsBasic Forward Flight CalculationsComputational CostLifting Forward Flight Calculations

Euler & RANS Calculationswith Four Time Instances (N = 4)

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

Flow SolverHover CalculationsBasic Forward Flight CalculationsComputational CostLifting Forward Flight Calculations

Euler/RANS Calculations with four time instances

0 0.2 0.4 0.6 0.8 1−1

−0.5

0

0.5

1

x/c

−C

p

(a) ψ = 90

0 0.2 0.4 0.6 0.8 1−1

−0.5

0

0.5

1

x/c

−C

p

(b) ψ = 180

0 0.2 0.4 0.6 0.8 1−1

−0.5

0

0.5

1

x/c

−C

p

(c) ψ = 90

0 0.2 0.4 0.6 0.8 1−1

−0.5

0

0.5

1

x/c

−C

p

(d) ψ = 180

experiment, — JST scheme, – – CUSP scheme

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

Flow SolverHover CalculationsBasic Forward Flight CalculationsComputational CostLifting Forward Flight Calculations

Computational Cost

300 multigrid cycles for Euler calculations.

Residual reduced by four orders of magnitude.

500 multigrid cycles for RANS calculations.

5 hours on four dual-core processors (clock speed is 3.0 GHz).Residual reduced by three orders of magnitude.

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

Flow SolverHover CalculationsBasic Forward Flight CalculationsComputational CostLifting Forward Flight Calculations

Comparison with Backward Difference Formula (BDF)⋆

V

3

2∆twn+1 −

4

2∆twn +

1

2∆twn−1

+ R

(wn+1

)= 0.

Periodicity is established, not enforced.

Usually requires at least 4 cycles (for pitching airfoil/wing).

⋆ A. Jameson, “Time Dependent Calculations Using Multigrid, with Applications to

Unsteady Flows Past Airfoils and Wings”, AIAA Paper 1991–1596.

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

Flow SolverHover CalculationsBasic Forward Flight CalculationsComputational CostLifting Forward Flight Calculations

Comparison with Backward Difference Formula (BDF)

For the same RANS calculations, the BDF would need:

180 time steps per revolution

40 multigrid cycles per time step

6 cycles to convergence

⇒ 43200 steps

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

Flow SolverHover CalculationsBasic Forward Flight CalculationsComputational CostLifting Forward Flight Calculations

Comparison with Backward Difference Formula (BDF)

For the same RANS calculations, the BDF would need:

180 time steps per revolution

40 multigrid cycles per time step

6 cycles to convergence

⇒ 43200 steps

Time Spectral method used 500 multigrid cycles with 12 timeinstances

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

Flow SolverHover CalculationsBasic Forward Flight CalculationsComputational CostLifting Forward Flight Calculations

Comparison with Backward Difference Formula (BDF)

For the same RANS calculations, the BDF would need:

180 time steps per revolution

40 multigrid cycles per time step

6 cycles to convergence

⇒ 43200 steps

Time Spectral method used 500 multigrid cycles with 12 timeinstances

In terms of the number of multigrid cycles required ...

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

Flow SolverHover CalculationsBasic Forward Flight CalculationsComputational CostLifting Forward Flight Calculations

Comparison with Backward Difference Formula (BDF)

For the same RANS calculations, the BDF would need:

180 time steps per revolution

40 multigrid cycles per time step

6 cycles to convergence

⇒ 43200 steps

Time Spectral method used 500 multigrid cycles with 12 timeinstances

In terms of the number of multigrid cycles required ...

Time Spectral method is 87 times faster

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

Flow SolverHover CalculationsBasic Forward Flight CalculationsComputational CostLifting Forward Flight Calculations

Comparison with Backward Difference Formula (BDF)

For the same RANS calculations, the BDF would need:

180 time steps per revolution

40 multigrid cycles per time step

6 cycles to convergence

⇒ 43200 steps

Time Spectral method used 500 multigrid cycles with 12 timeinstances

In terms of the number of multigrid cycles required ...

Time Spectral method is 87 times faster

In terms of CPU hours ...

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

Flow SolverHover CalculationsBasic Forward Flight CalculationsComputational CostLifting Forward Flight Calculations

Comparison with Backward Difference Formula (BDF)

For the same RANS calculations, the BDF would need:

180 time steps per revolution

40 multigrid cycles per time step

6 cycles to convergence

⇒ 43200 steps

Time Spectral method used 500 multigrid cycles with 12 timeinstances

In terms of the number of multigrid cycles required ...

Time Spectral method is 87 times faster

In terms of CPU hours ...

Time Spectral method is still 7.2 times faster

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

Flow SolverHover CalculationsBasic Forward Flight CalculationsComputational CostLifting Forward Flight Calculations

Time-Lagged Periodic Boundary Condition

First proposed by Ekici & Hall⋆ (2008)

One blade is required for forward flight simultions

Further saving of Nb times

where Nb is the number of blades per rotor

w(r , ψ, z , t) = w

(r , ψ −

N, z , t −

T

N

)

⋆ Ekici, Hall & Dowell, “Computationally Fast Harmonic Balance Methods for

Unsteady Aerodynamic Predictions of Helicopter Rotors”, AIAA Paper 2008–1439.

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

Flow SolverHover CalculationsBasic Forward Flight CalculationsComputational CostLifting Forward Flight Calculations

Time-Lagged Periodic Boundary Condition

@@

@@

@@

@

@@

@@

@@

@

rr

z

ab

?U∞

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

Flow SolverHover CalculationsBasic Forward Flight CalculationsComputational CostLifting Forward Flight Calculations

Euler Calculations

Collective pitch, θc = 0

Tip Mach number, Mtip = 0.7634

Advance ratio, µ = 0.25

128 × 48 × 32 mesh cells

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

Flow SolverHover CalculationsBasic Forward Flight CalculationsComputational CostLifting Forward Flight Calculations

Euler Calculations

0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1

x/c

−C

p

(a) ψ = 30

0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1

x/c

−C

p

(b) ψ = 60

0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1

x/c

−C

p

(c) ψ = 90

0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1

x/c

−C

p

(d) ψ = 120

0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1

x/c

−C

p

(e) ψ = 150

0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1

x/c

−C

p

(f) ψ = 180

experiment, — JST scheme, – – CUSP scheme

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

Flow SolverHover CalculationsBasic Forward Flight CalculationsComputational CostLifting Forward Flight Calculations

Lifting Rotor in Forward Flight

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

Flow SolverHover CalculationsBasic Forward Flight CalculationsComputational CostLifting Forward Flight Calculations

Test Case

Caradonna & Tung rotor

Collective pitch, θc = 8

Tip Mach number, Mtip = 0.7

Advance ratio, µ = 0.2857

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

Flow SolverHover CalculationsBasic Forward Flight CalculationsComputational CostLifting Forward Flight Calculations

Numerical Data Provided by C. B. Allen

Over 2 million mesh points around the two blades and hub(not including the other blocks that cover the far-fields)

BDF time stepping scheme

180 steps per revolution

6 revolutions

Periodicity is established after the second revolution

JST dissipation scheme

70 3-level V-cycle multigrid cycles per time step

⋆ C.B. Allen, “An Unsteady Multiblock Multigrid Scheme for Lifting Forward Flight

Rotor Simulation”, International Journal for Numerical Methods in Fluids, 2004.

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

Flow SolverHover CalculationsBasic Forward Flight CalculationsComputational CostLifting Forward Flight Calculations

Lift Comparison

Load variation on each blade around the azimuth

CL =Fy

12ρ (ΩR)2 c R

whereFy = force in the y direction

Ω = angular velocity

c = chord

R = rotor radius

ρ = density

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

Flow SolverHover CalculationsBasic Forward Flight CalculationsComputational CostLifting Forward Flight Calculations

CL comparison – JST Scheme

500 600 700 800 900 1000 11000

0.1

0.2

0.3

0.4

0.5

Azimuthal angle, ψ in °

CL

(a) 128× 48× 32

500 600 700 800 900 1000 11000

0.1

0.2

0.3

0.4

0.5

Azimuthal angle, ψ in °

CL

(b) 160× 48× 48

500 600 700 800 900 1000 11000

0.1

0.2

0.3

0.4

0.5

Azimuthal angle, ψ in °

CL

(c) 192 × 64× 48

500 600 700 800 900 1000 11000

0.1

0.2

0.3

0.4

0.5

Azimuthal angle, ψ in °

CL

(d) 160×48×48⋆

⋆ with 18 time instances

— Allen, • computed result

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

Flow SolverHover CalculationsBasic Forward Flight CalculationsComputational CostLifting Forward Flight Calculations

CL comparison – CUSP Scheme

500 600 700 800 900 1000 11000

0.1

0.2

0.3

0.4

0.5

Azimuthal angle, ψ in °

CL

(a) 128× 48× 32

500 600 700 800 900 1000 11000

0.1

0.2

0.3

0.4

0.5

Azimuthal angle, ψ in °

CL

(b) 160× 48× 48

500 600 700 800 900 1000 11000

0.1

0.2

0.3

0.4

0.5

Azimuthal angle, ψ in °

CL

(c) 192 × 64× 48

500 600 700 800 900 1000 11000

0.1

0.2

0.3

0.4

0.5

Azimuthal angle, ψ in °

CL

(d) 160×48×48⋆

⋆ with 18 time instances

— Allen, • computed result

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

Flow SolverHover CalculationsBasic Forward Flight CalculationsComputational CostLifting Forward Flight Calculations

Cp Comparison

Comparison is made at blade section r/R = 0.90

Strong transonic flow on the advancing side

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

Flow SolverHover CalculationsBasic Forward Flight CalculationsComputational CostLifting Forward Flight Calculations

160 × 48 × 48: JST scheme (Advancing Side)

0 0.2 0.4 0.6 0.8 1−1.5

−1

−0.5

0

0.5

1

1.5

x/c

−C

p

(a) ψ = 30

0 0.2 0.4 0.6 0.8 1−1.5

−1

−0.5

0

0.5

1

1.5

x/c

−C

p(b) ψ = 60

0 0.2 0.4 0.6 0.8 1−1.5

−1

−0.5

0

0.5

1

1.5

x/c

−C

p

(c) ψ = 90

0 0.2 0.4 0.6 0.8 1−1.5

−1

−0.5

0

0.5

1

1.5

x/c

−C

p

(d) ψ = 120

0 0.2 0.4 0.6 0.8 1−1.5

−1

−0.5

0

0.5

1

1.5

2

x/c

−C

p

(e) ψ = 150

0 0.2 0.4 0.6 0.8 1−1.5

−1

−0.5

0

0.5

1

1.5

2

x/c

−C

p

(f) ψ = 180

× Allen, — computed result

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

Flow SolverHover CalculationsBasic Forward Flight CalculationsComputational CostLifting Forward Flight Calculations

160 × 48 × 48: JST scheme (Retreating Side)

0 0.2 0.4 0.6 0.8 1−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x/c

−C

p

(g) ψ = 210

0 0.2 0.4 0.6 0.8 1−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x/c

−C

p(h) ψ = 240

0 0.2 0.4 0.6 0.8 1−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x/c

−C

p

(i) ψ = .250

0 0.2 0.4 0.6 0.8 1−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x/c

−C

p

(j) ψ = 300

0 0.2 0.4 0.6 0.8 1−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x/c

−C

p

(k) ψ = 330

0 0.2 0.4 0.6 0.8 1−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x/c

−C

p

(l) ψ = 360

× Allen, — computed result

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

Flow SolverHover CalculationsBasic Forward Flight CalculationsComputational CostLifting Forward Flight Calculations

160 × 48 × 48: CUSP scheme (Advancing Side)

0 0.2 0.4 0.6 0.8 1−1.5

−1

−0.5

0

0.5

1

1.5

x/c

−C

p

(a) ψ = 30

0 0.2 0.4 0.6 0.8 1−1.5

−1

−0.5

0

0.5

1

1.5

x/c

−C

p(b) ψ = 60

0 0.2 0.4 0.6 0.8 1−1.5

−1

−0.5

0

0.5

1

1.5

x/c

−C

p

(c) ψ = 90

0 0.2 0.4 0.6 0.8 1−1.5

−1

−0.5

0

0.5

1

1.5

x/c

−C

p

(d) ψ = 120

0 0.2 0.4 0.6 0.8 1−1.5

−1

−0.5

0

0.5

1

1.5

2

x/c

−C

p

(e) ψ = 150

0 0.2 0.4 0.6 0.8 1−1.5

−1

−0.5

0

0.5

1

1.5

2

x/c

−C

p

(f) ψ = 180

× Allen, — computed result

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

Flow SolverHover CalculationsBasic Forward Flight CalculationsComputational CostLifting Forward Flight Calculations

160 × 48 × 48: CUSP scheme (Retreating Side)

0 0.2 0.4 0.6 0.8 1−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x/c

−C

p

(g) ψ = 210

0 0.2 0.4 0.6 0.8 1−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x/c

−C

p(h) ψ = 240

0 0.2 0.4 0.6 0.8 1−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

x/c

−C

p

(i) ψ = .250

0 0.2 0.4 0.6 0.8 1−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x/c

−C

p

(j) ψ = 300

0 0.2 0.4 0.6 0.8 1−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x/c

−C

p

(k) ψ = 330

0 0.2 0.4 0.6 0.8 1−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x/c

−C

p

(l) ψ = 360

× Allen, — computed result

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

IntroductionFormulationCompressible Euler CalculationsApplication to Rotorcraft Flows

Vorticity Confinement

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

IntroductionFormulationCompressible Euler CalculationsApplication to Rotorcraft Flows

What is Vorticity Confinement?

John Steinhoff first suggested the idea in 1994.

A forcing term added to the momentum equations (inviscid,incompressible), “so that as the vorticity diffuses away fromthe centroids of vortical regions, it is transported back”.

Vorticity is added in the direction normal to both ~ω and thegradient |~ω|.

Unfortunately momentum is not conserved.

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

IntroductionFormulationCompressible Euler CalculationsApplication to Rotorcraft Flows

Original Formulation

Steinhoff & Underhill (1994); Steinhoff (1994):

∂u

∂t+ (u · ∇) u =

1

ρ∇p + µ∇2u − ǫs

where the simplest form of s is

s =∇|~ω|

|∇|~ω||× ~ω

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

IntroductionFormulationCompressible Euler CalculationsApplication to Rotorcraft Flows

Compressible Formulation

Hu & Grossman (2001); Hu et al. (2001) and Dadone et al.

(2001) introduced a body force per unit mass term to the totalenergy equation:

Ω

∂w

∂tdV +

∂Ωfj · ndS = −

ΩǫsdV

where ~s is now:

~s =

0ρ(n × ~ω) · iρ(n × ~ω) · jρ(n × ~ω) · kρ(n × ~ω) · u

and n =∇|~ω|

|∇|~ω||.

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

IntroductionFormulationCompressible Euler CalculationsApplication to Rotorcraft Flows

Making ǫ Dimensionless and Dynamic

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

IntroductionFormulationCompressible Euler CalculationsApplication to Rotorcraft Flows

Making ǫ Dimensionless and Dynamic

Fedkiw et al. (2001) for incompressible Euler equations onstructured meshes

ǫh ∝ ǫh

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

IntroductionFormulationCompressible Euler CalculationsApplication to Rotorcraft Flows

Making ǫ Dimensionless and Dynamic

Fedkiw et al. (2001) for incompressible Euler equations onstructured meshes

ǫh ∝ ǫh

Lohner & Yang (2002); Lohner et al. (2002) forincompressible RANS calculations on unstructured meshes

ǫv ∝

ǫ|u|ǫh|~ω|ǫh2|∇|~ω||

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

IntroductionFormulationCompressible Euler CalculationsApplication to Rotorcraft Flows

Robinson (2004)

Chose to scale ǫ is with |u|

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

IntroductionFormulationCompressible Euler CalculationsApplication to Rotorcraft Flows

Robinson (2004)

Chose to scale ǫ is with |u|

Factor out |~ω| from s(= ∇|~ω|

|∇|~ω|| × ~ω)

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

IntroductionFormulationCompressible Euler CalculationsApplication to Rotorcraft Flows

Robinson (2004)

Chose to scale ǫ is with |u|

Factor out |~ω| from s(= ∇|~ω|

|∇|~ω|| × ~ω)

⇒ |u| · |~ω|

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

IntroductionFormulationCompressible Euler CalculationsApplication to Rotorcraft Flows

Robinson (2004)

Chose to scale ǫ is with |u|

Factor out |~ω| from s(= ∇|~ω|

|∇|~ω|| × ~ω)

⇒ |u| · |~ω|

|u · ~ω| ≡ helicity

s = ρ |u · ~ω|

∇ |~ω|

|∇ |~ω||×

|~ω|

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

IntroductionFormulationCompressible Euler CalculationsApplication to Rotorcraft Flows

New Formulation

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

IntroductionFormulationCompressible Euler CalculationsApplication to Rotorcraft Flows

New Formulation

s = |u · ~ω|

[1 + log10

(1 +

V

Vaveraged

)1/3]

0

ρ[n × ~ω

|~ω|

]· i

ρ[n × ~ω

|~ω|

]· j

ρ[n × ~ω

|~ω|

]· k

ρ[n × ~ω

|~ω|

]· u

where

n =∇|~ω|

|∇|~ω||.

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

IntroductionFormulationCompressible Euler CalculationsApplication to Rotorcraft Flows

NACA 0012 Wing

Test Case:

Euler calculation

Untwisted, untapered wing with NACA 0012 cross section

Aspect ratio of 3α = 5

M∞ = 0.8

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

IntroductionFormulationCompressible Euler CalculationsApplication to Rotorcraft Flows

Vorticity Magnitude

Figure: ǫ = 0

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

IntroductionFormulationCompressible Euler CalculationsApplication to Rotorcraft Flows

Vorticity Magnitude

Figure: ǫ = 0.025

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

IntroductionFormulationCompressible Euler CalculationsApplication to Rotorcraft Flows

Vorticity Magnitude

Figure: ǫ = 0.05

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

IntroductionFormulationCompressible Euler CalculationsApplication to Rotorcraft Flows

Vorticity Magnitude

Figure: ǫ = 0.075

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

IntroductionFormulationCompressible Euler CalculationsApplication to Rotorcraft Flows

cd and cl at Three Different Spans

z = 0.891 z = 1.828 z = 2.766ǫ cl cd cl cd cl cd

0 0.7098 0.0792 0.6123 0.0651 0.3869 0.03940.025 0.7091 0.0791 0.6114 0.0650 0.3851 0.03930.050 0.7083 0.0790 0.6103 0.0649 0.3833 0.03910.075 0.7074 0.0788 0.6093 0.0647 0.3817 0.0389

0.3% difference in cl and 0.5% difference in cd at z = 0.891

1.3% difference in both cl and cd at z = 2.766

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

IntroductionFormulationCompressible Euler CalculationsApplication to Rotorcraft Flows

Cp Plots

0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1

1.5

CP

x

(a) z = 0.891

0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1

1.5

CP

x

(b) z = 1.828

0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1

1.5

CP

x

(c) z = 2.766

— — ǫ = 0, · · · ǫ = 0.025, – · – ǫ = 0.05, – – ǫ = 0.075

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

IntroductionFormulationCompressible Euler CalculationsApplication to Rotorcraft Flows

Application to Lifting Rotorin Forward Flight

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

IntroductionFormulationCompressible Euler CalculationsApplication to Rotorcraft Flows

CL Comparison: JST Scheme

500 600 700 800 900 1000 11000

0.1

0.2

0.3

0.4

0.5

Azimuthal angle, ψ in °

CL

(a) ǫ = 0

500 600 700 800 900 1000 11000

0.1

0.2

0.3

0.4

0.5

Azimuthal angle, ψ in °

CL

(b) ǫ = 0.05

500 600 700 800 900 1000 11000

0.1

0.2

0.3

0.4

0.5

Azimuthal angle, ψ in °

CL

(c) ǫ = 0.1

500 600 700 800 900 1000 11000

0.1

0.2

0.3

0.4

0.5

Azimuthal angle, ψ in °

CL

(d) ǫ = 0.15

500 600 700 800 900 1000 11000

0.1

0.2

0.3

0.4

0.5

Azimuthal angle, ψ in °

CL

(e) ǫ = 0.2

500 600 700 800 900 1000 11000

0.1

0.2

0.3

0.4

0.5

Azimuthal angle, ψ in °

CL

(f) ǫ = 0.25

— Allen, • computed result

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

IntroductionFormulationCompressible Euler CalculationsApplication to Rotorcraft Flows

160 × 48 × 48: JST scheme (Advancing Side), ǫ = 0.2

0 0.2 0.4 0.6 0.8 1−1.5

−1

−0.5

0

0.5

1

1.5

x/c

−C

p

(a) ψ = 30

0 0.2 0.4 0.6 0.8 1−1.5

−1

−0.5

0

0.5

1

1.5

x/c

−C

p(b) ψ = 60

0 0.2 0.4 0.6 0.8 1−1.5

−1

−0.5

0

0.5

1

1.5

x/c

−C

p

(c) ψ = 90

0 0.2 0.4 0.6 0.8 1−1.5

−1

−0.5

0

0.5

1

1.5

x/c

−C

p

(d) ψ = 120

0 0.2 0.4 0.6 0.8 1−1.5

−1

−0.5

0

0.5

1

1.5

2

x/c

−C

p

(e) ψ = 150

0 0.2 0.4 0.6 0.8 1−1.5

−1

−0.5

0

0.5

1

1.5

2

x/c

−C

p

(f) ψ = 180

× Allen, — computed result

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

IntroductionFormulationCompressible Euler CalculationsApplication to Rotorcraft Flows

160 × 48 × 48: JST scheme (Advancing Side)

0 0.2 0.4 0.6 0.8 1−1.5

−1

−0.5

0

0.5

1

1.5

x/c

−C

p

(a) ψ = 30

0 0.2 0.4 0.6 0.8 1−1.5

−1

−0.5

0

0.5

1

1.5

x/c

−C

p(b) ψ = 60

0 0.2 0.4 0.6 0.8 1−1.5

−1

−0.5

0

0.5

1

1.5

x/c

−C

p

(c) ψ = 90

0 0.2 0.4 0.6 0.8 1−1.5

−1

−0.5

0

0.5

1

1.5

x/c

−C

p

(d) ψ = 120

0 0.2 0.4 0.6 0.8 1−1.5

−1

−0.5

0

0.5

1

1.5

2

x/c

−C

p

(e) ψ = 150

0 0.2 0.4 0.6 0.8 1−1.5

−1

−0.5

0

0.5

1

1.5

2

x/c

−C

p

(f) ψ = 180

× Allen, — computed result

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

IntroductionFormulationCompressible Euler CalculationsApplication to Rotorcraft Flows

Vorticity Magnitude

x = 2 and x = 3.5

1st time instance, i.e. ψ = 90

(a) ǫ = 0 (b) ǫ = 0.2

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

IntroductionFormulationCompressible Euler CalculationsApplication to Rotorcraft Flows

160 × 48 × 48: JST scheme (Retreating Side), ǫ = 0.2

0 0.2 0.4 0.6 0.8 1−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x/c

−C

p

(a) ψ = 210

0 0.2 0.4 0.6 0.8 1−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x/c

−C

p(b) ψ = 240

0 0.2 0.4 0.6 0.8 1−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x/c

−C

p

(c) ψ = 255

0 0.2 0.4 0.6 0.8 1−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x/c

−C

p

(d) ψ = 300

0 0.2 0.4 0.6 0.8 1−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x/c

−C

p

(e) ψ = 330

0 0.2 0.4 0.6 0.8 1−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x/c

−C

p

(f) ψ = 360

× Allen, — computed result

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

IntroductionFormulationCompressible Euler CalculationsApplication to Rotorcraft Flows

160 × 48 × 48: JST scheme (Retreating Side)

0 0.2 0.4 0.6 0.8 1−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x/c

−C

p

(a) ψ = 210

0 0.2 0.4 0.6 0.8 1−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x/c

−C

p(b) ψ = 240

0 0.2 0.4 0.6 0.8 1−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x/c

−C

p

(c) ψ = 255

0 0.2 0.4 0.6 0.8 1−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x/c

−C

p

(d) ψ = 300

0 0.2 0.4 0.6 0.8 1−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x/c

−C

p

(e) ψ = 330

0 0.2 0.4 0.6 0.8 1−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x/c

−C

p

(f) ψ = 360

× Allen, — computed result

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

IntroductionFormulationCompressible Euler CalculationsApplication to Rotorcraft Flows

Vorticity Magnitude

x = −1.5

7th time instance, i.e. ψ = 270

(a) ǫ = 0 (b) ǫ = 0.2

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

IntroductionFormulationCompressible Euler CalculationsApplication to Rotorcraft Flows

Vorticity Magnitude

x = −3

7th time instance, i.e. ψ = 270

(a) ǫ = 0 (b) ǫ = 0.2

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

IntroductionFormulationCompressible Euler CalculationsApplication to Rotorcraft Flows

Future Work & Summary

Time Spectral method has proved to be an efficient methodfor periodic problems, providing that the number of timeinstances are enough to capture the smallest frequency.

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

IntroductionFormulationCompressible Euler CalculationsApplication to Rotorcraft Flows

Future Work & Summary

Time Spectral method has proved to be an efficient methodfor periodic problems, providing that the number of timeinstances are enough to capture the smallest frequency.

Vorticity confinement works well for fixed-wing calculations.

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

IntroductionFormulationCompressible Euler CalculationsApplication to Rotorcraft Flows

Future Work & Summary

Time Spectral method has proved to be an efficient methodfor periodic problems, providing that the number of timeinstances are enough to capture the smallest frequency.

Vorticity confinement works well for fixed-wing calculations.

The vortical structure in lifting rotor in forward flight could becontrolled such that the effect of blade–vortex interactionbecame more apparent as ǫ increased.

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

IntroductionFormulationCompressible Euler CalculationsApplication to Rotorcraft Flows

Future Work & Summary

Time Spectral method has proved to be an efficient methodfor periodic problems, providing that the number of timeinstances are enough to capture the smallest frequency.

Vorticity confinement works well for fixed-wing calculations.

The vortical structure in lifting rotor in forward flight could becontrolled such that the effect of blade–vortex interactionbecame more apparent as ǫ increased.

... but further studies are needed for rotorcraft application, atleast with the current mesh geometry.

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

IntroductionFormulationCompressible Euler CalculationsApplication to Rotorcraft Flows

Future Work & Summary

Time Spectral method has proved to be an efficient methodfor periodic problems, providing that the number of timeinstances are enough to capture the smallest frequency.

Vorticity confinement works well for fixed-wing calculations.

The vortical structure in lifting rotor in forward flight could becontrolled such that the effect of blade–vortex interactionbecame more apparent as ǫ increased.

... but further studies are needed for rotorcraft application, atleast with the current mesh geometry.

Perhaps H-mesh would be better suited, or one can resort tooverset or unstructured meshes.

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

IntroductionFormulationCompressible Euler CalculationsApplication to Rotorcraft Flows

Conclusion

Hover calculation takes much longer than forward flight calculation(surprisingly).

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

IntroductionFormulationCompressible Euler CalculationsApplication to Rotorcraft Flows

Conclusion

Hover calculation takes much longer than forward flight calculation(surprisingly).

Time Spectral method is approximately 10 times faster than thetraditional backward difference formula (depending on the number oftime instances required).

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

IntroductionFormulationCompressible Euler CalculationsApplication to Rotorcraft Flows

Conclusion

Hover calculation takes much longer than forward flight calculation(surprisingly).

Time Spectral method is approximately 10 times faster than thetraditional backward difference formula (depending on the number oftime instances required).

RANS calculations for nonlifting rotor in forward flight took only 5 hourson four dual-core processors with 500 multigrid cycles.

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

IntroductionFormulationCompressible Euler CalculationsApplication to Rotorcraft Flows

Conclusion

Hover calculation takes much longer than forward flight calculation(surprisingly).

Time Spectral method is approximately 10 times faster than thetraditional backward difference formula (depending on the number oftime instances required).

RANS calculations for nonlifting rotor in forward flight took only 5 hourson four dual-core processors with 500 multigrid cycles.

Using the time-lagged boundary condition, computational expense can bereduced by Nb times.

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

IntroductionFormulationCompressible Euler CalculationsApplication to Rotorcraft Flows

Conclusion

Hover calculation takes much longer than forward flight calculation(surprisingly).

Time Spectral method is approximately 10 times faster than thetraditional backward difference formula (depending on the number oftime instances required).

RANS calculations for nonlifting rotor in forward flight took only 5 hourson four dual-core processors with 500 multigrid cycles.

Using the time-lagged boundary condition, computational expense can bereduced by Nb times.

New formulation for vorticity confinement has no effect on thedistribution of Cp for fixed-wing transonic flow calculations.

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

IntroductionFormulationCompressible Euler CalculationsApplication to Rotorcraft Flows

Conclusion

Hover calculation takes much longer than forward flight calculation(surprisingly).

Time Spectral method is approximately 10 times faster than thetraditional backward difference formula (depending on the number oftime instances required).

RANS calculations for nonlifting rotor in forward flight took only 5 hourson four dual-core processors with 500 multigrid cycles.

Using the time-lagged boundary condition, computational expense can bereduced by Nb times.

New formulation for vorticity confinement has no effect on thedistribution of Cp for fixed-wing transonic flow calculations.

The maximum error for cl and cd for was only 1.3%.

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

IntroductionFormulationCompressible Euler CalculationsApplication to Rotorcraft Flows

Acknowledgements

Professor Lele

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

IntroductionFormulationCompressible Euler CalculationsApplication to Rotorcraft Flows

Acknowledgements

Professor Lele

Professor MacCormack

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

IntroductionFormulationCompressible Euler CalculationsApplication to Rotorcraft Flows

Acknowledgements

Professor Lele

Professor MacCormack

Professor Van Roy

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

IntroductionFormulationCompressible Euler CalculationsApplication to Rotorcraft Flows

Acknowledgements

Professor Lele

Professor MacCormack

Professor Van Roy

Dr. Hahn

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

IntroductionFormulationCompressible Euler CalculationsApplication to Rotorcraft Flows

Acknowledgements

Professor Lele

Professor MacCormack

Professor Van Roy

Dr. Hahn

Dr. Allen

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

IntroductionFormulationCompressible Euler CalculationsApplication to Rotorcraft Flows

Acknowledgements

Professor Lele

Professor MacCormack

Professor Van Roy

Dr. Hahn

Dr. Allen

Lab/office mates

Aaron, Andy, Charlie, Edmond, Jen-Der, Matt, Rui, Sachin &Sean.Arathi, Georg, Kasidit, Karthik, Kihwan, John, Sriram.Britton & Chris.

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

IntroductionFormulationCompressible Euler CalculationsApplication to Rotorcraft Flows

Acknowledgements

Professor Lele

Professor MacCormack

Professor Van Roy

Dr. Hahn

Dr. Allen

Lab/office mates

Aaron, Andy, Charlie, Edmond, Jen-Der, Matt, Rui, Sachin &Sean.Arathi, Georg, Kasidit, Karthik, Kihwan, John, Sriram.Britton & Chris.

Edwin for bringing “gorilla” back to life a few times last year.

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

IntroductionFormulationCompressible Euler CalculationsApplication to Rotorcraft Flows

Acknowledgements

Professor Lele

Professor MacCormack

Professor Van Roy

Dr. Hahn

Dr. Allen

Lab/office mates

Aaron, Andy, Charlie, Edmond, Jen-Der, Matt, Rui, Sachin &Sean.Arathi, Georg, Kasidit, Karthik, Kihwan, John, Sriram.Britton & Chris.

Edwin for bringing “gorilla” back to life a few times last year.

(I had a few heart attacks last year because of this).

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

IntroductionFormulationCompressible Euler CalculationsApplication to Rotorcraft Flows

Acknowledgements

Friends:

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

IntroductionFormulationCompressible Euler CalculationsApplication to Rotorcraft Flows

Acknowledgements

Friends:Anup, Dave, Jaehoon, Jae-Mo, Minsuk, Sekwan, Sandipan,Tomo.

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

IntroductionFormulationCompressible Euler CalculationsApplication to Rotorcraft Flows

Acknowledgements

Friends:Anup, Dave, Jaehoon, Jae-Mo, Minsuk, Sekwan, Sandipan,Tomo.Alvin, Jaiyoung, Norm, Pamornpol, Tonkid, Yongjin.

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

IntroductionFormulationCompressible Euler CalculationsApplication to Rotorcraft Flows

Acknowledgements

Friends:Anup, Dave, Jaehoon, Jae-Mo, Minsuk, Sekwan, Sandipan,Tomo.Alvin, Jaiyoung, Norm, Pamornpol, Tonkid, Yongjin.

Ralph, Lynn, Liza, Robin

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

IntroductionFormulationCompressible Euler CalculationsApplication to Rotorcraft Flows

Acknowledgements

Friends:Anup, Dave, Jaehoon, Jae-Mo, Minsuk, Sekwan, Sandipan,Tomo.Alvin, Jaiyoung, Norm, Pamornpol, Tonkid, Yongjin.

Ralph, Lynn, Liza, Robin

Family

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

IntroductionFormulationCompressible Euler CalculationsApplication to Rotorcraft Flows

Acknowledgements

Friends:Anup, Dave, Jaehoon, Jae-Mo, Minsuk, Sekwan, Sandipan,Tomo.Alvin, Jaiyoung, Norm, Pamornpol, Tonkid, Yongjin.

Ralph, Lynn, Liza, Robin

FamilySisters

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

IntroductionFormulationCompressible Euler CalculationsApplication to Rotorcraft Flows

Acknowledgements

Friends:Anup, Dave, Jaehoon, Jae-Mo, Minsuk, Sekwan, Sandipan,Tomo.Alvin, Jaiyoung, Norm, Pamornpol, Tonkid, Yongjin.

Ralph, Lynn, Liza, Robin

FamilySistersMum

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

IntroductionFormulationCompressible Euler CalculationsApplication to Rotorcraft Flows

Acknowledgements

Friends:Anup, Dave, Jaehoon, Jae-Mo, Minsuk, Sekwan, Sandipan,Tomo.Alvin, Jaiyoung, Norm, Pamornpol, Tonkid, Yongjin.

Ralph, Lynn, Liza, Robin

FamilySistersMumDad

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

IntroductionFormulationCompressible Euler CalculationsApplication to Rotorcraft Flows

Acknowledgements

Friends:Anup, Dave, Jaehoon, Jae-Mo, Minsuk, Sekwan, Sandipan,Tomo.Alvin, Jaiyoung, Norm, Pamornpol, Tonkid, Yongjin.

Ralph, Lynn, Liza, Robin

FamilySistersMumDad

Professor Jameson

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

IntroductionFormulationCompressible Euler CalculationsApplication to Rotorcraft Flows

Acknowledgements

Friends:Anup, Dave, Jaehoon, Jae-Mo, Minsuk, Sekwan, Sandipan,Tomo.Alvin, Jaiyoung, Norm, Pamornpol, Tonkid, Yongjin.

Ralph, Lynn, Liza, Robin

FamilySistersMumDad

Professor Jameson

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow

OutlineIntroduction

Time Spectral MethodRotorcraft Simulation Results

Vorticity Confinement

IntroductionFormulationCompressible Euler CalculationsApplication to Rotorcraft Flows

Questions?

Nawee Butsuntorn Time Spectral Method for Rotorcraft Flow