time domain analysis a very superficial...

20
TIME DOMAIN ANALYSIS (A VERY SUPERFICIAL APPROACH)

Upload: others

Post on 27-Jul-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: TIME DOMAIN ANALYSIS A VERY SUPERFICIAL APPROACHsus.ziti.uni-heidelberg.de/...06_TimeDomain.pptx.pdf · CCS: Time Domain Analysis P. Fischer, ZITI, Uni Heidelberg, Seite 16 t u(t)

TIME DOMAIN ANALYSIS (A VERY SUPERFICIAL APPROACH)

Page 2: TIME DOMAIN ANALYSIS A VERY SUPERFICIAL APPROACHsus.ziti.uni-heidelberg.de/...06_TimeDomain.pptx.pdf · CCS: Time Domain Analysis P. Fischer, ZITI, Uni Heidelberg, Seite 16 t u(t)

Laplace Transform (LT)

§ The Laplace Transform (LT) is an integral transform similar to the Fourier Transform

§ The LT of a function f(t) is defined as

•  s is a complex variable •  This integral does not necessarily exist for all possible f(t) and s

(If s has a real part >0, f(t) must not grow faster than C eRe (s) t)

§ The Inverse Transform is more complicated:

• where γ > Re(all singularities of f). •  This is a line integral in the complex s-plane, ‘right’ of all

singularities

CCS: Time Domain Analysis P. Fischer, ZITI, Uni Heidelberg, Seite 2

Page 3: TIME DOMAIN ANALYSIS A VERY SUPERFICIAL APPROACHsus.ziti.uni-heidelberg.de/...06_TimeDomain.pptx.pdf · CCS: Time Domain Analysis P. Fischer, ZITI, Uni Heidelberg, Seite 16 t u(t)

§ The Residue Theorem states that the line integral of a function f(z) along a closed curve γ in the complex z-plane is 2πi × (the sum of the residues at the singularities ak of f):

§ The residue is a characteristic of a singularity ak (or c below) •  For a first order (simple) pole at c (where f behaves ~ like 1/z):

• More generally, for a pole of order n:

Reminder (hopefully..): Integration with Residues

CCS: Time Domain Analysis © P. Fischer, ziti, Uni Heidelberg, page 3

Wikipedia

This

is v

ery

sim

plifi

ed!

The

stat

emen

ts a

re v

alid

und

er c

erta

in c

ondi

tions

onl

y.

Cons

ult

a bo

ok o

n Co

mpl

ex A

naly

sis!

Page 4: TIME DOMAIN ANALYSIS A VERY SUPERFICIAL APPROACHsus.ziti.uni-heidelberg.de/...06_TimeDomain.pptx.pdf · CCS: Time Domain Analysis P. Fischer, ZITI, Uni Heidelberg, Seite 16 t u(t)

§ Assume we want to find .

§ The function has poles and

§ The residue at the ‘simple pole’ is:

§ The line integral along green curve C is

§ This is independent of R! With increasing R, the contribution of the upper arc vanishes (the length of the arc rises ~R, but f falls as 1/R2)

§ Therefore

Example for Integration with Residues

CCS: Time Domain Analysis © P. Fischer, ziti, Uni Heidelberg, page 4

i

-i Re

Im

R C

Page 5: TIME DOMAIN ANALYSIS A VERY SUPERFICIAL APPROACHsus.ziti.uni-heidelberg.de/...06_TimeDomain.pptx.pdf · CCS: Time Domain Analysis P. Fischer, ZITI, Uni Heidelberg, Seite 16 t u(t)

Example 1: LT of 1

§ For f(t) = 1:

§ Valid for Re[s] > 0 to make sure this vanishes

CCS: Time Domain Analysis P. Fischer, ZITI, Uni Heidelberg, Seite 5

Page 6: TIME DOMAIN ANALYSIS A VERY SUPERFICIAL APPROACHsus.ziti.uni-heidelberg.de/...06_TimeDomain.pptx.pdf · CCS: Time Domain Analysis P. Fischer, ZITI, Uni Heidelberg, Seite 16 t u(t)

Example 1 (inverse): Inverse LT of 1/s

§ For F(s) = :

§ The integral has just one pole at s = 0. § The Residuum is:

§ So the Integral is

§ And we just have (the arc contribution at infinity vanishes again…)

CCS: Time Domain Analysis P. Fischer, ZITI, Uni Heidelberg, Seite 6

Re

Im s

Page 7: TIME DOMAIN ANALYSIS A VERY SUPERFICIAL APPROACHsus.ziti.uni-heidelberg.de/...06_TimeDomain.pptx.pdf · CCS: Time Domain Analysis P. Fischer, ZITI, Uni Heidelberg, Seite 16 t u(t)

Properties of Laplace Transforms

§ For we have:

CCS: Time Domain Analysis P. Fischer, ZITI, Uni Heidelberg, Seite 7

Linearity

Function Laplace Transform

Derivative

Integration

Convolution

Time Shift

u(t): Step function u(t): Step function

Page 8: TIME DOMAIN ANALYSIS A VERY SUPERFICIAL APPROACHsus.ziti.uni-heidelberg.de/...06_TimeDomain.pptx.pdf · CCS: Time Domain Analysis P. Fischer, ZITI, Uni Heidelberg, Seite 16 t u(t)

Example 2 ('frequency shift'):

§ For F(s) = :

§ The pole is now at s = -k.

§ The Residuum is:

§ And we just have

CCS: Time Domain Analysis P. Fischer, ZITI, Uni Heidelberg, Seite 8

Re

Im

- k

s

Page 9: TIME DOMAIN ANALYSIS A VERY SUPERFICIAL APPROACHsus.ziti.uni-heidelberg.de/...06_TimeDomain.pptx.pdf · CCS: Time Domain Analysis P. Fischer, ZITI, Uni Heidelberg, Seite 16 t u(t)

Why is Laplace Transform so Useful ?

§ Differential / Integral equations in t can be converted to Analytical equations in s, where they can be solved

§ EQ(t) → transform to H(s) → Solve in s → Transform back

§ Example: Radioactive Decay •  f[t]: Number of atoms at time t •  The # of decaying atoms is prop. to # of atoms:

• With F[s] = LT(f[t]): (f[0] = N0 is initial number of atoms)

•  This can be solved in s-domain:

•  Transforming back (see example) gives:

CCS: Time Domain Analysis P. Fischer, ZITI, Uni Heidelberg, Seite 9

Page 10: TIME DOMAIN ANALYSIS A VERY SUPERFICIAL APPROACHsus.ziti.uni-heidelberg.de/...06_TimeDomain.pptx.pdf · CCS: Time Domain Analysis P. Fischer, ZITI, Uni Heidelberg, Seite 16 t u(t)

LAPLACE TRANSFORM AND TRANSFER FUNCTION

Page 11: TIME DOMAIN ANALYSIS A VERY SUPERFICIAL APPROACHsus.ziti.uni-heidelberg.de/...06_TimeDomain.pptx.pdf · CCS: Time Domain Analysis P. Fischer, ZITI, Uni Heidelberg, Seite 16 t u(t)

Time Response

§ The transfer function tells us how sine inputs are modified by the system, i.e. what happen in the frequency domain

§ How can be get the time response for an arbitrary input?

§ For a linear, time invariant (LTI) system, we can use:

•  The response of a k × larger input pulse is just k × larger •  The response for a time shifted input is time shifted

§ For such a system we can •  express the input signal as a superposition of 'simple' signals • Calculate the output for each 'simple' component •  Superimpose the outputs

CCS: Time Domain Analysis P. Fischer, ZITI, Uni Heidelberg, Seite 11

in H(s) out

t

in(t)

t

out(t)

Page 12: TIME DOMAIN ANALYSIS A VERY SUPERFICIAL APPROACHsus.ziti.uni-heidelberg.de/...06_TimeDomain.pptx.pdf · CCS: Time Domain Analysis P. Fischer, ZITI, Uni Heidelberg, Seite 16 t u(t)

Illustration

CCS: Time Domain Analysis P. Fischer, ZITI, Uni Heidelberg, Seite 12

in H(s) out t

in(t)

t

out(t)

a(t) A(t)

in H(s) out t

in(t)

t

out(t)

a(t) + 0.5 a(t-t0)

t0 A(t) + 0.5 A(t-t0)

in H(s) out t

in(t)

t

out(t)

Note that the integrals are CONVOLUTIONS (Faltung) of two functions!

Page 13: TIME DOMAIN ANALYSIS A VERY SUPERFICIAL APPROACHsus.ziti.uni-heidelberg.de/...06_TimeDomain.pptx.pdf · CCS: Time Domain Analysis P. Fischer, ZITI, Uni Heidelberg, Seite 16 t u(t)

Clever Choice of the 'nominal input' a[t]

§ To make the convolutions as simple as possible, it is best to chose a[t] to be Dirac Delta 'function'

§ For any input function we can write

§ The output is then just

where Δ[t] is the response of the circuit to a δ[t] input, the 'delta response':

CCS: Time Domain Analysis P. Fischer, ZITI, Uni Heidelberg, Seite 13

in H(s) out Δ[t] δ[t]

Note: I am a bit sloppy here with integration limits..

Page 14: TIME DOMAIN ANALYSIS A VERY SUPERFICIAL APPROACHsus.ziti.uni-heidelberg.de/...06_TimeDomain.pptx.pdf · CCS: Time Domain Analysis P. Fischer, ZITI, Uni Heidelberg, Seite 16 t u(t)

What is the Delta Response Δ[t] ?

§ We do not know Δ[t], but: it turns out that its LT is just the transfer function!

§ Knowing that LT(Δ[t]) = H[s], what is Δ[t] ?

It's the Inverse LT:

§ Why is this?

•  If we write down Kirchhoff's rules in the time domain, we get differential / integral equations.

•  The 'topology' of the equations is the same as using complex impedances.

•  If we transform this, we can get the impulse response

CCS: Time Domain Analysis P. Fischer, ZITI, Uni Heidelberg, Seite 14

The Laplace Transform of the Delta Response of a circuit is just given by its transfer function H[s]

Page 15: TIME DOMAIN ANALYSIS A VERY SUPERFICIAL APPROACHsus.ziti.uni-heidelberg.de/...06_TimeDomain.pptx.pdf · CCS: Time Domain Analysis P. Fischer, ZITI, Uni Heidelberg, Seite 16 t u(t)

General Time Response

§ Start from

§ Laplace transform both sides and use Convolution rule:

§ Use our knowledge that :

§ And transform back:

CCS: Time Domain Analysis P. Fischer, ZITI, Uni Heidelberg, Seite 15

To calculate the time response of a circuit to an arbitrary input f[t]: 1. Laplace Transform f[t], yielding F[s] 2. Multiply with the Transfer function H[s] 3. Laplace Transform back

Page 16: TIME DOMAIN ANALYSIS A VERY SUPERFICIAL APPROACHsus.ziti.uni-heidelberg.de/...06_TimeDomain.pptx.pdf · CCS: Time Domain Analysis P. Fischer, ZITI, Uni Heidelberg, Seite 16 t u(t)

§ The most important input to test a circuit is the Unit step: •  It is often called u[t], Heaviside Step function, UnitStep,…

§ For a Shifted Step, use Time Shift rule:

§ A rectangular Pulse is just the difference of two Unit Steps § For very short input signals (charge deposition in detector),

input is the Dirac Delta, with LT = 1.

Important Input Functions

CCS: Time Domain Analysis P. Fischer, ZITI, Uni Heidelberg, Seite 16

t

u(t)

LT

t

u(t)

LT

τ

Page 17: TIME DOMAIN ANALYSIS A VERY SUPERFICIAL APPROACHsus.ziti.uni-heidelberg.de/...06_TimeDomain.pptx.pdf · CCS: Time Domain Analysis P. Fischer, ZITI, Uni Heidelberg, Seite 16 t u(t)

§ Consider

§ This is the step response

Example 1: Step Response of Low Pass

CCS: Time Domain Analysis P. Fischer, ZITI, Uni Heidelberg, Seite 17

R

C t

u(t)

LT H[s]

Page 18: TIME DOMAIN ANALYSIS A VERY SUPERFICIAL APPROACHsus.ziti.uni-heidelberg.de/...06_TimeDomain.pptx.pdf · CCS: Time Domain Analysis P. Fischer, ZITI, Uni Heidelberg, Seite 16 t u(t)

Watch out!

§ What is LT-1[H[s]] ???, e.g.

§ That is the output for a Dirac pulse at the input (with LT[δ[t]] = 1), i.e. that is the impulse response

CCS: Time Domain Analysis P. Fischer, ZITI, Uni Heidelberg, Seite 18

Page 19: TIME DOMAIN ANALYSIS A VERY SUPERFICIAL APPROACHsus.ziti.uni-heidelberg.de/...06_TimeDomain.pptx.pdf · CCS: Time Domain Analysis P. Fischer, ZITI, Uni Heidelberg, Seite 16 t u(t)

§ Now Consider a linear input ramp in[t] = k t

§ The LT is

§ So our response is

Example 2: Response of Low Pass to Slope

CCS: Time Domain Analysis P. Fischer, ZITI, Uni Heidelberg, Seite 19

R

C t

in[t]

k=1, τ=1

in[t]

f[t]

Page 20: TIME DOMAIN ANALYSIS A VERY SUPERFICIAL APPROACHsus.ziti.uni-heidelberg.de/...06_TimeDomain.pptx.pdf · CCS: Time Domain Analysis P. Fischer, ZITI, Uni Heidelberg, Seite 16 t u(t)

Example 3: Step Response of RLC

§ Consider the RLC circuit

CCS: Time Domain Analysis P. Fischer, ZITI, Uni Heidelberg, Seite 20

R

vin vout

R=1, L=1, C=1,2,5