time-domain analog computing and vlsi systems toward … · 2017-08-22 · outline • introduction...

23
Workshop on Brain-inspired Hardware @AIResearchAIST, March 30, 2017 Takashi Morie Kyushu Institute of Technology, Japan Time-domain analog computing and VLSI systems toward ultimately high-efficient brain-like hardware 1

Upload: others

Post on 15-Jul-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Time-domain analog computing and VLSI systems toward … · 2017-08-22 · Outline • Introduction –Our brain-like VLSI chips –My approach toward brain • Time-domain analog

Workshop on Brain-inspired Hardware

@AIResearchAIST, March 30, 2017

Takashi Morie

Kyushu Institute of Technology, Japan

Time-domain analog computing

and VLSI systems

toward ultimately high-efficient

brain-like hardware

1

Page 2: Time-domain analog computing and VLSI systems toward … · 2017-08-22 · Outline • Introduction –Our brain-like VLSI chips –My approach toward brain • Time-domain analog

Outline

• Introduction

– Our brain-like VLSI chips

– My approach toward brain

• Time-domain analog computing and VLSI systems

– Time-domain energy-efficient weighted sum

calculation based on simple spiking neuron

model

– Chaotic Boltzmann machine circuit based on

oscillator neuron model

• Conclusion

2

Page 3: Time-domain analog computing and VLSI systems toward … · 2017-08-22 · Outline • Introduction –Our brain-like VLSI chips –My approach toward brain • Time-domain analog

Our brain-like VLSI chips

1995 2000 2005 2010

BP/DBM nets

Gabor filter

Conv net

Spiking neural net

Chaos circuit

Coupled chaotic system

Anisotropic propagation

Matching processor

Spiking coupled MRF

ISSCC2009 ISSCC2012SRP

ECCTD2011

VLSI Cir. 2005ESSCIRC 2002

VLSI Cir. 2004

PWM/PPM

Year

ISCAS2008

NCSP2007 ICONIP2011

Spike

based

JSC 1994

Nonlinear

oscillator

BP nets

Floating-gate memory

IEICE Trans. 1997

Analog3

Page 4: Time-domain analog computing and VLSI systems toward … · 2017-08-22 · Outline • Introduction –Our brain-like VLSI chips –My approach toward brain • Time-domain analog

Different approaches to brain functions

LIF H-H Izhikevich

model

Faithfulness/

Plausibility/

Complexity

Neuron

SynapseMAC

(weighted

sum)

Various

nonlinear

properties

Spiking

STDP

. . . . . . .

Poor/

Simple

Good/

Complex

. . . . . . . . . . .

. . .

Operation freq. 10~100 Hz (brain)

Analog . . .

My approach

used in DL algorithms

~1 MHz (VLSI) 4

Page 5: Time-domain analog computing and VLSI systems toward … · 2017-08-22 · Outline • Introduction –Our brain-like VLSI chips –My approach toward brain • Time-domain analog

Outline

• Introduction

– Our brain-like VLSI chips

– My approach toward brain

• Time-domain analog computing and VLSI systems

– Time-domain energy-efficient weighted sum

calculation based on simple spiking neuron

model

– Chaotic Boltzmann machine circuit based on

oscillator neuron model

• Conclusion

5

Page 6: Time-domain analog computing and VLSI systems toward … · 2017-08-22 · Outline • Introduction –Our brain-like VLSI chips –My approach toward brain • Time-domain analog

Digital and analog processor architectures

An

alo

g i

np

ut

MAC output

Memory/Processing

cell array

Digital processing

(von Neumann architecture) Analog/pulse processing

(Cross-bar architecture)

Row

addre

ss

Row

decoder

・・

・・

Processing unit

Memory

(RAM)

Memory cell array

RAM only accesses one row data, and

no calculation can be performed in RAM.6

Page 7: Time-domain analog computing and VLSI systems toward … · 2017-08-22 · Outline • Introduction –Our brain-like VLSI chips –My approach toward brain • Time-domain analog

DL Processors in ISSCC 2017

Latest digital DL processors

~10TOPS/W

7

Page 8: Time-domain analog computing and VLSI systems toward … · 2017-08-22 · Outline • Introduction –Our brain-like VLSI chips –My approach toward brain • Time-domain analog

Measure of energy efficiency of processors

Energy efficiency: TOPS/W

= Tera Ops. per sec. / Joule per sec.

= Tera ops. / Joule

Energy consumption per op.: 1/(TOPS/W) [pJ/op]

= 1 [pJ/op]

Operation performance: TOPS/GOPS

(Tera/Giga Operations Per Second)

FLOPS -> OPS (Fixed-point operations per sec.)

e.g. PC(Core i7) ~500GFLOPS

Synapse op. in brain: 0.1~1 fJ/op

1,000~10,000 TOPS/W

=1~10 POPS/W

# of neurons: ~1011

# of synapses: ~1015

Power cons.: 20(~1) W

Op. freq.: 10~100 Hz

Activity: ~10 %

Latest digital DL processors:

~10TOPS/W

8

Page 9: Time-domain analog computing and VLSI systems toward … · 2017-08-22 · Outline • Introduction –Our brain-like VLSI chips –My approach toward brain • Time-domain analog

Two types of neuron models

analog values

S

PSP

S

spike pulses

Synapse

S summation

saturation functionthresholding

Spiking neuron modelscoded by spatiotemporal

patterns of spike pulses

Analog neuron modelscoded by analog values representing

firing rate or population of spike pulses

Integrate-and-fire neuron

PSP: post-synaptic

potential

(sigmoid)

biological neurons output “spikes”

9

Page 10: Time-domain analog computing and VLSI systems toward … · 2017-08-22 · Outline • Introduction –Our brain-like VLSI chips –My approach toward brain • Time-domain analog

Energy consumption using resistive elements

Voltage-domain circuits based on analog neuron model

Vin1

Vin2

Vinj

N

Op-amp

virtual ground

Op-amps consume much more energy

than resistors.

uses DC-mode operation

CR

Dendrite line

10

𝑽𝒐𝒖𝒕𝑹𝒇

= −

𝒋=𝟏

𝑵𝑽𝒊𝒏𝒋

𝑹𝒋

Ew=tV2/R= 0.1~10fJ

Assuming R=100MW, Vin=0.1~1V, t=1ms

Page 11: Time-domain analog computing and VLSI systems toward … · 2017-08-22 · Outline • Introduction –Our brain-like VLSI chips –My approach toward brain • Time-domain analog

i1

i2

i3

P1

P2

P3

Vn qin

Functions of PSPs in spiking neurons

ISI: Inter-spike

interval

PSP: Post-synaptic

potentialtime

Vth

P1

i1

Internal

state

Spike

output

ISI<< tPSP

ISI

t PSP

>> tPSP

t

IntegratorCoincidence

detector

PSP

i2

P2

ISItime

ISI

Vn

in

Spike

input

11

Page 12: Time-domain analog computing and VLSI systems toward … · 2017-08-22 · Outline • Introduction –Our brain-like VLSI chips –My approach toward brain • Time-domain analog

w1

i1

i2

i3

P1

P2

P3

Vn

spkn

th

tvtime

w2

w3

t1 t3 t2

Integrate & fire neuron

i1

i2

i3

P1

P2

P3

Vn qin

ii

time

Pi

Typical time course of PSPs: a-function

Vn

Spatiotemporal

summation of all

linear rising

waveforms of

PSPs

W.Maass et al., 1999 12

Page 13: Time-domain analog computing and VLSI systems toward … · 2017-08-22 · Outline • Introduction –Our brain-like VLSI chips –My approach toward brain • Time-domain analog

Time-domain weighted-sum calculation model

given

weighted summation

(MAC: multiply and

accumulate)

xi --> spike timing ti

wi --> slope of PSP

spike timing tv --> y

,

w1

i1

i2

i3

P1

P2

P3

Vn

spkn

th

tvtime

Tin

w2

w3

t1 t3 t2

T. Morie et al. IEEE NANO 2016, Q. Wang et al. ICONIP 2016 13

Page 14: Time-domain analog computing and VLSI systems toward … · 2017-08-22 · Outline • Introduction –Our brain-like VLSI chips –My approach toward brain • Time-domain analog

Time-domain MAC calculationIn

put X

Weig

hts

W

𝑖=1

𝑁

𝑤𝑖𝑥𝑖 = 𝟖. 𝟗𝟗𝑥𝑖 ∈ 0,1

V(t

)

𝑇𝑖𝑛 𝑇𝑖𝑛

𝒕𝝂𝒕𝝂𝒎𝒂𝒙 𝒕𝝂

𝒎𝒊𝒏

𝜽

Time

𝒕𝝂𝒎𝒂𝒙 =

𝜽

𝜷

𝑁 249

𝑇𝑖𝑛 1

𝛽 24.01

𝜃 24.25

𝒕𝝂 𝟏. 𝟔𝟑𝟓ൗ𝜃 𝜆 + 𝛽(𝑇𝑖𝑛 − 𝑡𝜈)

𝑇𝑖𝑛𝟖. 𝟗𝟗

3-layer MLP784

500 10

OutputInput

(numerical simulation)

𝒕𝝂𝒎𝒊𝒏 =

𝜽

𝜷+ 𝑻𝒊𝒏

Positive weight distribution

14Q. Wang et al. ICONIP 2016

Page 15: Time-domain analog computing and VLSI systems toward … · 2017-08-22 · Outline • Introduction –Our brain-like VLSI chips –My approach toward brain • Time-domain analog

Energy consumption using resistive elements

Vin

t =RC

Vin/t

q

k

0 time

If C=1fF, V=1V, Ewsum=1fJ.

Assuming N=100, Ew=Ewsum/N=10aJ

To guarantee time resolution,

t=1ms (1,000 steps with 1 ns)

Ewsum= CV2

Extremely low-energy

computation due to

parallelism,

but very high resistance

is needed.

Time-domain analog circuits

independent of

resistance values

Vin1

Vin2

Vinj

N

R

CComparator

transient state of RC circuit

thDendrites

To reduce energy, reduce (parasitic)

interconnect capacitance

RON ~ 1GΩ, (ROFF ~ 1TΩ)

(input lines)

15Q. Wang et al. ICONIP 2016

Page 16: Time-domain analog computing and VLSI systems toward … · 2017-08-22 · Outline • Introduction –Our brain-like VLSI chips –My approach toward brain • Time-domain analog

Time-domain analog cross-bar circuit

DendritesAxon

Post-neuron

Output

Input

Coi

Cii

Ci

Low parasitic

(interconnect)

capacitance

[ Nanowire]

Low-power

neuron circuit

(comparator)

Resistance

change

memory

[ReRAM device]

Pre

-neu

ron

w1

i1

i2

i3

P1

P2

P3

Vn

spkn

th

tvtime

Tin

w2

w3

t1 t3 t2

Vn

ii

Pi

16

Page 17: Time-domain analog computing and VLSI systems toward … · 2017-08-22 · Outline • Introduction –Our brain-like VLSI chips –My approach toward brain • Time-domain analog

Comparison among different approaches

Approach

# of

neurons/

synapses

Energy per

synapse

operation

Processing

frequency

Power

consump-

tion

Biologi-

calHuman brain

~1011/

~1015

10-16~10-15 J

(0.1~1 fJ)10~100 Hz(10% active)

20 (~1) W

Digital

Super Comput.

(Kei「京」) (*1)

1.7x109/

1.0x1013

(6.5x10-4J)

(~1 mJ)

Brain:1s =

Kei: 2,400s

(4.4 fires/s)

~12 MW

Digital chips

(TrueNorth~)

1x106/

256x106

~10-13 J

(< 0.1 pJ)1 kHz 86 mW

Analog

Voltage/current

-domain

[1x106/

256x106] (*2)

>~10-15 J

(~ 1 fJ) (*3)<~MHz

[~300 mW]

(*4)

Time-domain[1x106/

256x106] (*2)

>~10-17 J

(~10 aJ) (*3)<~MHz

[~3 mW]

(*4)

(*1) http://www.riken.jp/pr/topics/2013/20130802_2/

(*2) Assuming the same values as TrueNorth

(*3) Estimation when assuming ideal condition

(*4) Only for weighted summation

17

Page 18: Time-domain analog computing and VLSI systems toward … · 2017-08-22 · Outline • Introduction –Our brain-like VLSI chips –My approach toward brain • Time-domain analog

Outline

• Introduction

– Our brain-like VLSI chips

– My approach toward brain

• Time-domain analog computing and VLSI systems

– Time-domain energy-efficient weighted sum

calculation based on simple spiking neuron

model

– Chaotic Boltzmann machine circuit based on

oscillator neuron model

• Conclusion

18

Page 19: Time-domain analog computing and VLSI systems toward … · 2017-08-22 · Outline • Introduction –Our brain-like VLSI chips –My approach toward brain • Time-domain analog

BMs

CBMs

Original and chaotic Boltzmann machines

[1] D. H. Ackley et al., Cog. Sci. 9, 1985.

[2] H. Suzuki et al., Sci. Rep., 2013.

Boltzmann machines (BMs)[1]

• Stochastic operation of binary neurons

• Symmetrically connected networks

• Solving optimization problems using energy minimization

• Success of deep learning by restricted BMs

Chaotic Boltzmann machines (CBMs)[2]

• Deterministic operation

• Using chaotic dynamics instead

of stochastic operation

• Computing ability comparable

to BMs

Simulation results 19

Page 20: Time-domain analog computing and VLSI systems toward … · 2017-08-22 · Outline • Introduction –Our brain-like VLSI chips –My approach toward brain • Time-domain analog

Chaotic Boltzmann machines (CBMs)

T

zSS

dt

dx iii

i 21exp121

Si ←0 0ix

Si ←1 1ix

i

N

j

jiji θswz 1

jiij ww

Dynamics of CBMs

Si

xi

T

wij

qi

: Binary output of i-th neuron

: Internal state of i-th neuron

: Temperature parameter

: Synaptic weight between i and j

: Constant bias of i-th neuron

without input

Slope change in xi

when Sj changes

...

Neuron i

wi1

wij

Neuron 1

Neuron 2

Neuron j

20

Page 21: Time-domain analog computing and VLSI systems toward … · 2017-08-22 · Outline • Introduction –Our brain-like VLSI chips –My approach toward brain • Time-domain analog

T

zSS

dt

dx iii

i 21exp121

A CMOS unit circuit for CBMs

Log(IDS)

VGSVth

Vth: Threshold voltage

: Sub-threshold region

IDS

D

S

G

NMOSFET

VGS

Implemented using

subthreshold region

of MOSFET

VminVmax

Sixi

S1

S2 exp

T

zSS

dt

dx iii

i 21exp121

j

jijii swbz

Si ←0 0xi

Si ←1 1xi

jiij ww

Si

xi

zitime

zi

(a) (b)

(c)

wi1

wi2

M. Yamaguchi et al. ICONIP 2016. 21

Page 22: Time-domain analog computing and VLSI systems toward … · 2017-08-22 · Outline • Introduction –Our brain-like VLSI chips –My approach toward brain • Time-domain analog

Measurement results of CBM VLSI chip

20ms

Continuous

scan

Single

scan

S2

S1

Vx3

S3

3 neurons

with 3 synapses

22

Page 23: Time-domain analog computing and VLSI systems toward … · 2017-08-22 · Outline • Introduction –Our brain-like VLSI chips –My approach toward brain • Time-domain analog

Conclusions

• Time-domain analog VLSI implementation can achieve

extremely energy-efficient operation including nonlinear

transforms, which is difficult for digital VLSI

implementation.

• Weighted-sum calculation as a simple synaptic function

can be achieved with extremely low energy consumption

based on time-domain operation of simple spiking

neuron model, but high-resistance element is required.

Also, to reduce parasitic interconnection capacitance is

another challenge to achieve energy-efficient operation.

• Nonlinear transforms performed in charging operation to

a capacitor were successfully applied to implementation

of nonlinear dynamical models, such as chaotic

Boltzmann machines.

23