tiling the hyperbolic plane - long version

103
Gaussian curvature Elliptic geometry Hyperbolic geometry Tiling M.C. Escher’s work Tiling the hyperbolic plane - long version aniel Cz´ egel E¨otv¨ os Lor´ and University, Budapest ICPS, Heidelberg August 14, 2014 aniel Cz´ egel Tiling the hyperbolic plane - long version

Upload: daniel-czegel

Post on 02-Aug-2015

159 views

Category:

Science


3 download

TRANSCRIPT

Page 1: Tiling the hyperbolic plane - long version

Gaussian curvatureElliptic geometry

Hyperbolic geometryTiling

M.C. Escher’s work

Tiling the hyperbolic plane - longversion

Daniel Czegel

Eotvos Lorand University, Budapest

ICPS, HeidelbergAugust 14, 2014

Daniel Czegel Tiling the hyperbolic plane - long version

Page 2: Tiling the hyperbolic plane - long version

Gaussian curvatureElliptic geometry

Hyperbolic geometryTiling

M.C. Escher’s work

Daniel Czegel Tiling the hyperbolic plane - long version

Page 3: Tiling the hyperbolic plane - long version

Gaussian curvatureElliptic geometry

Hyperbolic geometryTiling

M.C. Escher’s work

Definition of Gaussian curvature

1 find a normal vector N

2 rotate the normal planecontaining N

3 intersection of the surfaceand the normal plane: aplane curve, curvature:κ = 1

R

4 Gaussian curvature of thesurface:

K (r) = κmin(r) κmax(r)

5 sign!

Daniel Czegel Tiling the hyperbolic plane - long version

Page 4: Tiling the hyperbolic plane - long version

Gaussian curvatureElliptic geometry

Hyperbolic geometryTiling

M.C. Escher’s work

Definition of Gaussian curvature

1 find a normal vector N

2 rotate the normal planecontaining N

3 intersection of the surfaceand the normal plane: aplane curve, curvature:κ = 1

R

4 Gaussian curvature of thesurface:

K (r) = κmin(r) κmax(r)

5 sign!

Daniel Czegel Tiling the hyperbolic plane - long version

Page 5: Tiling the hyperbolic plane - long version

Gaussian curvatureElliptic geometry

Hyperbolic geometryTiling

M.C. Escher’s work

Definition of Gaussian curvature

1 find a normal vector N

2 rotate the normal planecontaining N

3 intersection of the surfaceand the normal plane: aplane curve, curvature:κ = 1

R

4 Gaussian curvature of thesurface:

K (r) = κmin(r) κmax(r)

5 sign!

Daniel Czegel Tiling the hyperbolic plane - long version

Page 6: Tiling the hyperbolic plane - long version

Gaussian curvatureElliptic geometry

Hyperbolic geometryTiling

M.C. Escher’s work

Definition of Gaussian curvature

1 find a normal vector N

2 rotate the normal planecontaining N

3 intersection of the surfaceand the normal plane: aplane curve, curvature:κ = 1

R

4 Gaussian curvature of thesurface:

K (r) = κmin(r) κmax(r)

5 sign!

Daniel Czegel Tiling the hyperbolic plane - long version

Page 7: Tiling the hyperbolic plane - long version

Gaussian curvatureElliptic geometry

Hyperbolic geometryTiling

M.C. Escher’s work

Definition of Gaussian curvature

1 find a normal vector N

2 rotate the normal planecontaining N

3 intersection of the surfaceand the normal plane: aplane curve, curvature:κ = 1

R

4 Gaussian curvature of thesurface:

K (r) = κmin(r) κmax(r)

5 sign!

Daniel Czegel Tiling the hyperbolic plane - long version

Page 8: Tiling the hyperbolic plane - long version

Gaussian curvatureElliptic geometry

Hyperbolic geometryTiling

M.C. Escher’s work

Theorema Egregium

Does K (r) change if we wrap, bend, twist (i.e. change theembedding in the 3 dim space)?

Theorema Egregium (Great Theorem): No!

Gaussian curvature is an intrinsic measure of the surface!

In a 2 dimensional Universe, K fully determines howspacetime curves: GR, Einstein eqs.:

Rµν −R

2gµν + Λgµν =

8πG

c4Tµν

In 2 dim:Rµν = f (K , gµν), R = 2K

Daniel Czegel Tiling the hyperbolic plane - long version

Page 9: Tiling the hyperbolic plane - long version

Gaussian curvatureElliptic geometry

Hyperbolic geometryTiling

M.C. Escher’s work

Theorema Egregium

Does K (r) change if we wrap, bend, twist (i.e. change theembedding in the 3 dim space)?

Theorema Egregium (Great Theorem): No!

Gaussian curvature is an intrinsic measure of the surface!

In a 2 dimensional Universe, K fully determines howspacetime curves: GR, Einstein eqs.:

Rµν −R

2gµν + Λgµν =

8πG

c4Tµν

In 2 dim:Rµν = f (K , gµν), R = 2K

Daniel Czegel Tiling the hyperbolic plane - long version

Page 10: Tiling the hyperbolic plane - long version

Gaussian curvatureElliptic geometry

Hyperbolic geometryTiling

M.C. Escher’s work

Theorema Egregium

Does K (r) change if we wrap, bend, twist (i.e. change theembedding in the 3 dim space)?

Theorema Egregium (Great Theorem): No!

Gaussian curvature is an intrinsic measure of the surface!

In a 2 dimensional Universe, K fully determines howspacetime curves: GR, Einstein eqs.:

Rµν −R

2gµν + Λgµν =

8πG

c4Tµν

In 2 dim:Rµν = f (K , gµν), R = 2K

Daniel Czegel Tiling the hyperbolic plane - long version

Page 11: Tiling the hyperbolic plane - long version

Gaussian curvatureElliptic geometry

Hyperbolic geometryTiling

M.C. Escher’s work

Theorema Egregium

Does K (r) change if we wrap, bend, twist (i.e. change theembedding in the 3 dim space)?

Theorema Egregium (Great Theorem): No!

Gaussian curvature is an intrinsic measure of the surface!

In a 2 dimensional Universe, K fully determines howspacetime curves: GR, Einstein eqs.:

Rµν −R

2gµν + Λgµν =

8πG

c4Tµν

In 2 dim:Rµν = f (K , gµν), R = 2K

Daniel Czegel Tiling the hyperbolic plane - long version

Page 12: Tiling the hyperbolic plane - long version

Gaussian curvatureElliptic geometry

Hyperbolic geometryTiling

M.C. Escher’s work

Theorema Egregium

Does K (r) change if we wrap, bend, twist (i.e. change theembedding in the 3 dim space)?

Theorema Egregium (Great Theorem): No!

Gaussian curvature is an intrinsic measure of the surface!

In a 2 dimensional Universe, K fully determines howspacetime curves: GR, Einstein eqs.:

Rµν −R

2gµν + Λgµν =

8πG

c4Tµν

In 2 dim:Rµν = f (K , gµν), R = 2K

Daniel Czegel Tiling the hyperbolic plane - long version

Page 13: Tiling the hyperbolic plane - long version

Gaussian curvatureElliptic geometry

Hyperbolic geometryTiling

M.C. Escher’s work

Cylinder, Oloid

⇒ a surface can be unfolded without distortion ⇔ K ≡ 0

cylinder:

κmax =1

R, κmin =

1

∞= 0 ⇒ K ≡ 0

nontrivial example: oloid: convex hull of two perpendicularcircles

every point of its surface touches the floor during rolling!

Daniel Czegel Tiling the hyperbolic plane - long version

Page 14: Tiling the hyperbolic plane - long version

Gaussian curvatureElliptic geometry

Hyperbolic geometryTiling

M.C. Escher’s work

Cylinder, Oloid

⇒ a surface can be unfolded without distortion ⇔ K ≡ 0

cylinder:

κmax =1

R, κmin =

1

∞= 0 ⇒ K ≡ 0

nontrivial example: oloid: convex hull of two perpendicularcircles

every point of its surface touches the floor during rolling!

Daniel Czegel Tiling the hyperbolic plane - long version

Page 15: Tiling the hyperbolic plane - long version

Gaussian curvatureElliptic geometry

Hyperbolic geometryTiling

M.C. Escher’s work

Cylinder, Oloid

⇒ a surface can be unfolded without distortion ⇔ K ≡ 0

cylinder:

κmax =1

R, κmin =

1

∞= 0 ⇒ K ≡ 0

nontrivial example: oloid: convex hull of two perpendicularcircles

every point of its surface touches the floor during rolling!

Daniel Czegel Tiling the hyperbolic plane - long version

Page 16: Tiling the hyperbolic plane - long version

Gaussian curvatureElliptic geometry

Hyperbolic geometryTiling

M.C. Escher’s work

Cylinder, Oloid

⇒ a surface can be unfolded without distortion ⇔ K ≡ 0

cylinder:

κmax =1

R, κmin =

1

∞= 0 ⇒ K ≡ 0

nontrivial example: oloid: convex hull of two perpendicularcircles

every point of its surface touches the floor during rolling!

Daniel Czegel Tiling the hyperbolic plane - long version

Page 17: Tiling the hyperbolic plane - long version

Gaussian curvatureElliptic geometry

Hyperbolic geometryTiling

M.C. Escher’s work

Spherical triangles

sphere: K =?

K ≡ 1R2 > 0, a model of elliptic geometry;

”straight lines”=geodesics: great circles

What is the sum of angles Σ in a triangle?

Daniel Czegel Tiling the hyperbolic plane - long version

Page 18: Tiling the hyperbolic plane - long version

Gaussian curvatureElliptic geometry

Hyperbolic geometryTiling

M.C. Escher’s work

Spherical triangles

sphere: K =?

K ≡ 1R2 > 0, a model of elliptic geometry;

”straight lines”=geodesics: great circles

What is the sum of angles Σ in a triangle?

Daniel Czegel Tiling the hyperbolic plane - long version

Page 19: Tiling the hyperbolic plane - long version

Gaussian curvatureElliptic geometry

Hyperbolic geometryTiling

M.C. Escher’s work

Spherical triangles

sphere: K =?

K ≡ 1R2 > 0, a model of elliptic geometry;

”straight lines”=geodesics: great circles

What is the sum of angles Σ in a triangle?

Daniel Czegel Tiling the hyperbolic plane - long version

Page 20: Tiling the hyperbolic plane - long version

Gaussian curvatureElliptic geometry

Hyperbolic geometryTiling

M.C. Escher’s work

Spherical triangles

sphere: K =?

K ≡ 1R2 > 0, a model of elliptic geometry;

”straight lines”=geodesics: great circles

What is the sum of angles Σ in a triangle?

Daniel Czegel Tiling the hyperbolic plane - long version

Page 21: Tiling the hyperbolic plane - long version

Gaussian curvatureElliptic geometry

Hyperbolic geometryTiling

M.C. Escher’s work

Spherical triangles

i) Σ =3

2π, A =

π

2R2 ii) Σ = 3π, A = 2πR2

Generally?

A = (Σ− π)R2 ⇒ KA = Σ− π

The sum of angles Σ is size-independent: only if K = 0(euclidean geometry)

elliptic geometry:

KA > 0 ⇒ Σ > π

Daniel Czegel Tiling the hyperbolic plane - long version

Page 22: Tiling the hyperbolic plane - long version

Gaussian curvatureElliptic geometry

Hyperbolic geometryTiling

M.C. Escher’s work

Spherical triangles

i) Σ =3

2π, A =

π

2R2 ii) Σ = 3π, A = 2πR2

Generally?

A = (Σ− π)R2 ⇒ KA = Σ− π

The sum of angles Σ is size-independent: only if K = 0(euclidean geometry)

elliptic geometry:

KA > 0 ⇒ Σ > π

Daniel Czegel Tiling the hyperbolic plane - long version

Page 23: Tiling the hyperbolic plane - long version

Gaussian curvatureElliptic geometry

Hyperbolic geometryTiling

M.C. Escher’s work

Spherical triangles

i) Σ =3

2π, A =

π

2R2 ii) Σ = 3π, A = 2πR2

Generally?

A = (Σ− π)R2 ⇒ KA = Σ− π

The sum of angles Σ is size-independent: only if K = 0(euclidean geometry)

elliptic geometry:

KA > 0 ⇒ Σ > π

Daniel Czegel Tiling the hyperbolic plane - long version

Page 24: Tiling the hyperbolic plane - long version

Gaussian curvatureElliptic geometry

Hyperbolic geometryTiling

M.C. Escher’s work

Spherical triangles

i) Σ =3

2π, A =

π

2R2 ii) Σ = 3π, A = 2πR2

Generally?

A = (Σ− π)R2 ⇒ KA = Σ− π

The sum of angles Σ is size-independent: only if K = 0(euclidean geometry)

elliptic geometry:

KA > 0 ⇒ Σ > π

Daniel Czegel Tiling the hyperbolic plane - long version

Page 25: Tiling the hyperbolic plane - long version

Gaussian curvatureElliptic geometry

Hyperbolic geometryTiling

M.C. Escher’s work

Stereographic projection

sphere: K 6= 0 ⇒ cannot be unfolded:there is no sphere → plane map that preserves both distanceand angle!

We have to choose; e.g.: preserves angle (conformal), butdoes not preserve distance: stereographic projection

unit sphere, equator ⊂ plane, project from the north pole

Daniel Czegel Tiling the hyperbolic plane - long version

Page 26: Tiling the hyperbolic plane - long version

Gaussian curvatureElliptic geometry

Hyperbolic geometryTiling

M.C. Escher’s work

Stereographic projection

sphere: K 6= 0 ⇒ cannot be unfolded:there is no sphere → plane map that preserves both distanceand angle!We have to choose; e.g.: preserves angle (conformal), butdoes not preserve distance: stereographic projection

unit sphere, equator ⊂ plane, project from the north pole

Daniel Czegel Tiling the hyperbolic plane - long version

Page 27: Tiling the hyperbolic plane - long version

Gaussian curvatureElliptic geometry

Hyperbolic geometryTiling

M.C. Escher’s work

Stereographic projection

sphere: K 6= 0 ⇒ cannot be unfolded:there is no sphere → plane map that preserves both distanceand angle!We have to choose; e.g.: preserves angle (conformal), butdoes not preserve distance: stereographic projection

unit sphere, equator ⊂ plane, project from the north poleDaniel Czegel Tiling the hyperbolic plane - long version

Page 28: Tiling the hyperbolic plane - long version

Gaussian curvatureElliptic geometry

Hyperbolic geometryTiling

M.C. Escher’s work

Properties of stereographic projection

northern (southern) hemisphere 7→ outside (inside) of the unitcircle (north pole 7→ ∞)

circle 7→ circle

special case: geodetic (”straight line”)=great circle 7→ circle

Daniel Czegel Tiling the hyperbolic plane - long version

Page 29: Tiling the hyperbolic plane - long version

Gaussian curvatureElliptic geometry

Hyperbolic geometryTiling

M.C. Escher’s work

Properties of stereographic projection

northern (southern) hemisphere 7→ outside (inside) of the unitcircle (north pole 7→ ∞)

circle 7→ circle

special case: geodetic (”straight line”)=great circle 7→ circle

Daniel Czegel Tiling the hyperbolic plane - long version

Page 30: Tiling the hyperbolic plane - long version

Gaussian curvatureElliptic geometry

Hyperbolic geometryTiling

M.C. Escher’s work

Properties of stereographic projection

northern (southern) hemisphere 7→ outside (inside) of the unitcircle (north pole 7→ ∞)

circle 7→ circle

special case: geodetic (”straight line”)=great circle 7→ circle

Daniel Czegel Tiling the hyperbolic plane - long version

Page 31: Tiling the hyperbolic plane - long version

Gaussian curvatureElliptic geometry

Hyperbolic geometryTiling

M.C. Escher’s work

Properties of stereographic projection

northern (southern) hemisphere 7→ outside (inside) of the unitcircle (north pole 7→ ∞)

circle 7→ circle

special case: geodetic (”straight line”)=great circle 7→ circle

Daniel Czegel Tiling the hyperbolic plane - long version

Page 32: Tiling the hyperbolic plane - long version

Gaussian curvatureElliptic geometry

Hyperbolic geometryTiling

M.C. Escher’s work

Metric induced by stereographic projection

The spherical geometry can be modeled on a plane

Do not forget: this model does not preserve distance, instead,the metric:

ds2 = (dx2 + dy2)

(4

(1 + x2 + y2)2

)metric tensor:

g = λ(x , y)

(1 00 1

)⇒ isotropic scaling ⇒ conformal (angle-preserving)

distance on the sphere, if (0, 0)→∞ on the plane?∫ ∞0

ds =

∫ ∞0

2

1 + x2dx = π

Daniel Czegel Tiling the hyperbolic plane - long version

Page 33: Tiling the hyperbolic plane - long version

Gaussian curvatureElliptic geometry

Hyperbolic geometryTiling

M.C. Escher’s work

Metric induced by stereographic projection

The spherical geometry can be modeled on a plane

Do not forget: this model does not preserve distance, instead,the metric:

ds2 = (dx2 + dy2)

(4

(1 + x2 + y2)2

)

metric tensor:

g = λ(x , y)

(1 00 1

)⇒ isotropic scaling ⇒ conformal (angle-preserving)

distance on the sphere, if (0, 0)→∞ on the plane?∫ ∞0

ds =

∫ ∞0

2

1 + x2dx = π

Daniel Czegel Tiling the hyperbolic plane - long version

Page 34: Tiling the hyperbolic plane - long version

Gaussian curvatureElliptic geometry

Hyperbolic geometryTiling

M.C. Escher’s work

Metric induced by stereographic projection

The spherical geometry can be modeled on a plane

Do not forget: this model does not preserve distance, instead,the metric:

ds2 = (dx2 + dy2)

(4

(1 + x2 + y2)2

)metric tensor:

g = λ(x , y)

(1 00 1

)⇒ isotropic scaling ⇒ conformal (angle-preserving)

distance on the sphere, if (0, 0)→∞ on the plane?∫ ∞0

ds =

∫ ∞0

2

1 + x2dx = π

Daniel Czegel Tiling the hyperbolic plane - long version

Page 35: Tiling the hyperbolic plane - long version

Gaussian curvatureElliptic geometry

Hyperbolic geometryTiling

M.C. Escher’s work

Metric induced by stereographic projection

The spherical geometry can be modeled on a plane

Do not forget: this model does not preserve distance, instead,the metric:

ds2 = (dx2 + dy2)

(4

(1 + x2 + y2)2

)metric tensor:

g = λ(x , y)

(1 00 1

)⇒ isotropic scaling ⇒ conformal (angle-preserving)

distance on the sphere, if (0, 0)→∞ on the plane?

∫ ∞0

ds =

∫ ∞0

2

1 + x2dx = π

Daniel Czegel Tiling the hyperbolic plane - long version

Page 36: Tiling the hyperbolic plane - long version

Gaussian curvatureElliptic geometry

Hyperbolic geometryTiling

M.C. Escher’s work

Metric induced by stereographic projection

The spherical geometry can be modeled on a plane

Do not forget: this model does not preserve distance, instead,the metric:

ds2 = (dx2 + dy2)

(4

(1 + x2 + y2)2

)metric tensor:

g = λ(x , y)

(1 00 1

)⇒ isotropic scaling ⇒ conformal (angle-preserving)

distance on the sphere, if (0, 0)→∞ on the plane?∫ ∞0

ds =

∫ ∞0

2

1 + x2dx = π

Daniel Czegel Tiling the hyperbolic plane - long version

Page 37: Tiling the hyperbolic plane - long version

Gaussian curvatureElliptic geometry

Hyperbolic geometryTiling

M.C. Escher’s work

The Earth

The image of the Earth under stereographic projection from thesouth pole:

Daniel Czegel Tiling the hyperbolic plane - long version

Page 38: Tiling the hyperbolic plane - long version

Gaussian curvatureElliptic geometry

Hyperbolic geometryTiling

M.C. Escher’s work

Hyperbolic geometry

Is K < 0 (negative curvature) possible at a point?

Saddle point: κmin < 0, κmax > 0

Hyperbolic plane: saddle points everywhere! (e.g. K ≡ −1)Can you imagine it? Is it possible to embed it into a 3 dimeuclidean space?

Daniel Czegel Tiling the hyperbolic plane - long version

Page 39: Tiling the hyperbolic plane - long version

Gaussian curvatureElliptic geometry

Hyperbolic geometryTiling

M.C. Escher’s work

Hyperbolic geometry

Is K < 0 (negative curvature) possible at a point?Saddle point: κmin < 0, κmax > 0

Hyperbolic plane: saddle points everywhere! (e.g. K ≡ −1)Can you imagine it? Is it possible to embed it into a 3 dimeuclidean space?

Daniel Czegel Tiling the hyperbolic plane - long version

Page 40: Tiling the hyperbolic plane - long version

Gaussian curvatureElliptic geometry

Hyperbolic geometryTiling

M.C. Escher’s work

Hyperbolic geometry

Is K < 0 (negative curvature) possible at a point?Saddle point: κmin < 0, κmax > 0

Hyperbolic plane: saddle points everywhere! (e.g. K ≡ −1)

Can you imagine it? Is it possible to embed it into a 3 dimeuclidean space?

Daniel Czegel Tiling the hyperbolic plane - long version

Page 41: Tiling the hyperbolic plane - long version

Gaussian curvatureElliptic geometry

Hyperbolic geometryTiling

M.C. Escher’s work

Hyperbolic geometry

Is K < 0 (negative curvature) possible at a point?Saddle point: κmin < 0, κmax > 0

Hyperbolic plane: saddle points everywhere! (e.g. K ≡ −1)Can you imagine it? Is it possible to embed it into a 3 dimeuclidean space?

Daniel Czegel Tiling the hyperbolic plane - long version

Page 42: Tiling the hyperbolic plane - long version

Gaussian curvatureElliptic geometry

Hyperbolic geometryTiling

M.C. Escher’s work

Hyperbolic paper

Cut equilateral triangles

At every vertex, glue 7 (instead of 6) triangles to each other!

What happens, if 5 triangles are glued at a vertex?

Icosahedron!

Daniel Czegel Tiling the hyperbolic plane - long version

Page 43: Tiling the hyperbolic plane - long version

Gaussian curvatureElliptic geometry

Hyperbolic geometryTiling

M.C. Escher’s work

Hyperbolic paper

Cut equilateral triangles

At every vertex, glue 7 (instead of 6) triangles to each other!

What happens, if 5 triangles are glued at a vertex?

Icosahedron!

Daniel Czegel Tiling the hyperbolic plane - long version

Page 44: Tiling the hyperbolic plane - long version

Gaussian curvatureElliptic geometry

Hyperbolic geometryTiling

M.C. Escher’s work

Hyperbolic paper

Cut equilateral triangles

At every vertex, glue 7 (instead of 6) triangles to each other!

What happens, if 5 triangles are glued at a vertex?

Icosahedron!

Daniel Czegel Tiling the hyperbolic plane - long version

Page 45: Tiling the hyperbolic plane - long version

Gaussian curvatureElliptic geometry

Hyperbolic geometryTiling

M.C. Escher’s work

Hyperbolic paper

Cut equilateral triangles

At every vertex, glue 7 (instead of 6) triangles to each other!

What happens, if 5 triangles are glued at a vertex?

Icosahedron!

Daniel Czegel Tiling the hyperbolic plane - long version

Page 46: Tiling the hyperbolic plane - long version

Gaussian curvatureElliptic geometry

Hyperbolic geometryTiling

M.C. Escher’s work

Hyperbolic paper

Cut equilateral triangles

At every vertex, glue 7 (instead of 6) triangles to each other!

What happens, if 5 triangles are glued at a vertex?

Icosahedron!

Daniel Czegel Tiling the hyperbolic plane - long version

Page 47: Tiling the hyperbolic plane - long version

Gaussian curvatureElliptic geometry

Hyperbolic geometryTiling

M.C. Escher’s work

Hyperbolic triangles

Sum of angles Σ in a triangle?

elliptic & euclidean case:

KA = Σ− π

good news: it is also valid for K < 0!

A > 0 ⇒ KA < 0 ⇒ Σ < π

special case: K = −1

A = π − Σ ≤ π

Despite the hyperbolic plane is infinite, no triangle can havelarger area than π!!

Daniel Czegel Tiling the hyperbolic plane - long version

Page 48: Tiling the hyperbolic plane - long version

Gaussian curvatureElliptic geometry

Hyperbolic geometryTiling

M.C. Escher’s work

Hyperbolic triangles

Sum of angles Σ in a triangle?

elliptic & euclidean case:

KA = Σ− π

good news: it is also valid for K < 0!

A > 0 ⇒ KA < 0 ⇒ Σ < π

special case: K = −1

A = π − Σ ≤ π

Despite the hyperbolic plane is infinite, no triangle can havelarger area than π!!

Daniel Czegel Tiling the hyperbolic plane - long version

Page 49: Tiling the hyperbolic plane - long version

Gaussian curvatureElliptic geometry

Hyperbolic geometryTiling

M.C. Escher’s work

Hyperbolic triangles

Sum of angles Σ in a triangle?

elliptic & euclidean case:

KA = Σ− π

good news: it is also valid for K < 0!

A > 0 ⇒ KA < 0 ⇒ Σ < π

special case: K = −1

A = π − Σ ≤ π

Despite the hyperbolic plane is infinite, no triangle can havelarger area than π!!

Daniel Czegel Tiling the hyperbolic plane - long version

Page 50: Tiling the hyperbolic plane - long version

Gaussian curvatureElliptic geometry

Hyperbolic geometryTiling

M.C. Escher’s work

Hyperbolic triangles

Sum of angles Σ in a triangle?

elliptic & euclidean case:

KA = Σ− π

good news: it is also valid for K < 0!

A > 0 ⇒ KA < 0 ⇒ Σ < π

special case: K = −1

A = π − Σ ≤ π

Despite the hyperbolic plane is infinite, no triangle can havelarger area than π!!

Daniel Czegel Tiling the hyperbolic plane - long version

Page 51: Tiling the hyperbolic plane - long version

Gaussian curvatureElliptic geometry

Hyperbolic geometryTiling

M.C. Escher’s work

Hyperbolic triangles

Sum of angles Σ in a triangle?

elliptic & euclidean case:

KA = Σ− π

good news: it is also valid for K < 0!

A > 0 ⇒ KA < 0 ⇒ Σ < π

special case: K = −1

A = π − Σ ≤ π

Despite the hyperbolic plane is infinite, no triangle can havelarger area than π!!

Daniel Czegel Tiling the hyperbolic plane - long version

Page 52: Tiling the hyperbolic plane - long version

Gaussian curvatureElliptic geometry

Hyperbolic geometryTiling

M.C. Escher’s work

Hyperbolic triangles

Sum of angles Σ in a triangle?

elliptic & euclidean case:

KA = Σ− π

good news: it is also valid for K < 0!

A > 0 ⇒ KA < 0 ⇒ Σ < π

special case: K = −1

A = π − Σ ≤ π

Despite the hyperbolic plane is infinite, no triangle can havelarger area than π!!

Daniel Czegel Tiling the hyperbolic plane - long version

Page 53: Tiling the hyperbolic plane - long version

Gaussian curvatureElliptic geometry

Hyperbolic geometryTiling

M.C. Escher’s work

Poincare model of the hyperbolic plane

K 6= 0 ⇒ There is no distance-preserving ANDangle-preserving map to the euclidean plane

Poincare model: angle preserving, but not distance preserving(like the stereographic projection)

infinite hyperbolic plane → unit disc

infinity 7→ edge of the unit disk

geodesics (”straight lines”) 7→ circles that meet the edge ofthe unit disc at 90◦

parallel lines 7→ not intersecting such circles

Daniel Czegel Tiling the hyperbolic plane - long version

Page 54: Tiling the hyperbolic plane - long version

Gaussian curvatureElliptic geometry

Hyperbolic geometryTiling

M.C. Escher’s work

Poincare model of the hyperbolic plane

K 6= 0 ⇒ There is no distance-preserving ANDangle-preserving map to the euclidean plane

Poincare model: angle preserving, but not distance preserving(like the stereographic projection)

infinite hyperbolic plane → unit disc

infinity 7→ edge of the unit disk

geodesics (”straight lines”) 7→ circles that meet the edge ofthe unit disc at 90◦

parallel lines 7→ not intersecting such circles

Daniel Czegel Tiling the hyperbolic plane - long version

Page 55: Tiling the hyperbolic plane - long version

Gaussian curvatureElliptic geometry

Hyperbolic geometryTiling

M.C. Escher’s work

Poincare model of the hyperbolic plane

K 6= 0 ⇒ There is no distance-preserving ANDangle-preserving map to the euclidean plane

Poincare model: angle preserving, but not distance preserving(like the stereographic projection)

infinite hyperbolic plane → unit disc

infinity 7→ edge of the unit disk

geodesics (”straight lines”) 7→ circles that meet the edge ofthe unit disc at 90◦

parallel lines 7→ not intersecting such circles

Daniel Czegel Tiling the hyperbolic plane - long version

Page 56: Tiling the hyperbolic plane - long version

Gaussian curvatureElliptic geometry

Hyperbolic geometryTiling

M.C. Escher’s work

Poincare model of the hyperbolic plane

K 6= 0 ⇒ There is no distance-preserving ANDangle-preserving map to the euclidean plane

Poincare model: angle preserving, but not distance preserving(like the stereographic projection)

infinite hyperbolic plane → unit disc

infinity 7→ edge of the unit disk

geodesics (”straight lines”) 7→ circles that meet the edge ofthe unit disc at 90◦

parallel lines 7→ not intersecting such circles

Daniel Czegel Tiling the hyperbolic plane - long version

Page 57: Tiling the hyperbolic plane - long version

Gaussian curvatureElliptic geometry

Hyperbolic geometryTiling

M.C. Escher’s work

Poincare model of the hyperbolic plane

K 6= 0 ⇒ There is no distance-preserving ANDangle-preserving map to the euclidean plane

Poincare model: angle preserving, but not distance preserving(like the stereographic projection)

infinite hyperbolic plane → unit disc

infinity 7→ edge of the unit disk

geodesics (”straight lines”) 7→ circles that meet the edge ofthe unit disc at 90◦

parallel lines 7→ not intersecting such circles

Daniel Czegel Tiling the hyperbolic plane - long version

Page 58: Tiling the hyperbolic plane - long version

Gaussian curvatureElliptic geometry

Hyperbolic geometryTiling

M.C. Escher’s work

Poincare model of the hyperbolic plane

K 6= 0 ⇒ There is no distance-preserving ANDangle-preserving map to the euclidean plane

Poincare model: angle preserving, but not distance preserving(like the stereographic projection)

infinite hyperbolic plane → unit disc

infinity 7→ edge of the unit disk

geodesics (”straight lines”) 7→ circles that meet the edge ofthe unit disc at 90◦

parallel lines 7→ not intersecting such circles

Daniel Czegel Tiling the hyperbolic plane - long version

Page 59: Tiling the hyperbolic plane - long version

Gaussian curvatureElliptic geometry

Hyperbolic geometryTiling

M.C. Escher’s work

Poincare model of the hyperbolic plane

Daniel Czegel Tiling the hyperbolic plane - long version

Page 60: Tiling the hyperbolic plane - long version

Gaussian curvatureElliptic geometry

Hyperbolic geometryTiling

M.C. Escher’s work

Ideal triangles

Triangles with largest area?

A = π − Σ

largest: if Σ = 0 ( ⇔ α = β = γ = 0). How does it look like?

Figure 1 : Ideal triangles having all verices at infinity. Note thatthese triangles are congruent (having the same area A = π)!

Daniel Czegel Tiling the hyperbolic plane - long version

Page 61: Tiling the hyperbolic plane - long version

Gaussian curvatureElliptic geometry

Hyperbolic geometryTiling

M.C. Escher’s work

Ideal triangles

Triangles with largest area?

A = π − Σ

largest: if Σ = 0 ( ⇔ α = β = γ = 0). How does it look like?

Figure 1 : Ideal triangles having all verices at infinity. Note thatthese triangles are congruent (having the same area A = π)!

Daniel Czegel Tiling the hyperbolic plane - long version

Page 62: Tiling the hyperbolic plane - long version

Gaussian curvatureElliptic geometry

Hyperbolic geometryTiling

M.C. Escher’s work

Ideal triangles

Triangles with largest area?

A = π − Σ

largest: if Σ = 0 ( ⇔ α = β = γ = 0). How does it look like?

Figure 1 : Ideal triangles having all verices at infinity. Note thatthese triangles are congruent (having the same area A = π)!

Daniel Czegel Tiling the hyperbolic plane - long version

Page 63: Tiling the hyperbolic plane - long version

Gaussian curvatureElliptic geometry

Hyperbolic geometryTiling

M.C. Escher’s work

Ideal triangles

Triangles with largest area?

A = π − Σ

largest: if Σ = 0 ( ⇔ α = β = γ = 0). How does it look like?

Figure 1 : Ideal triangles having all verices at infinity. Note thatthese triangles are congruent (having the same area A = π)!

Daniel Czegel Tiling the hyperbolic plane - long version

Page 64: Tiling the hyperbolic plane - long version

Gaussian curvatureElliptic geometry

Hyperbolic geometryTiling

M.C. Escher’s work

Hyperbolic metric

Metric?

ds2 = (dx2 + dy2)

(4

(1−(x2 + y2))2

)(compare with stereographic projection!)

again: isotropic scaling ⇒ angle-preserving

Near the edge (x2 + y2 ≈ 1): ds2 >> dx2 + dy2

center → edge in the Poincare model: ∞ distance in thehyperbolic plane!∫ 1

0ds =

∫ 1

0

2

1− x2dx =∞

Daniel Czegel Tiling the hyperbolic plane - long version

Page 65: Tiling the hyperbolic plane - long version

Gaussian curvatureElliptic geometry

Hyperbolic geometryTiling

M.C. Escher’s work

Hyperbolic metric

Metric?

ds2 = (dx2 + dy2)

(4

(1−(x2 + y2))2

)(compare with stereographic projection!)

again: isotropic scaling ⇒ angle-preserving

Near the edge (x2 + y2 ≈ 1): ds2 >> dx2 + dy2

center → edge in the Poincare model: ∞ distance in thehyperbolic plane!∫ 1

0ds =

∫ 1

0

2

1− x2dx =∞

Daniel Czegel Tiling the hyperbolic plane - long version

Page 66: Tiling the hyperbolic plane - long version

Gaussian curvatureElliptic geometry

Hyperbolic geometryTiling

M.C. Escher’s work

Hyperbolic metric

Metric?

ds2 = (dx2 + dy2)

(4

(1−(x2 + y2))2

)(compare with stereographic projection!)

again: isotropic scaling ⇒ angle-preserving

Near the edge (x2 + y2 ≈ 1): ds2 >> dx2 + dy2

center → edge in the Poincare model: ∞ distance in thehyperbolic plane!∫ 1

0ds =

∫ 1

0

2

1− x2dx =∞

Daniel Czegel Tiling the hyperbolic plane - long version

Page 67: Tiling the hyperbolic plane - long version

Gaussian curvatureElliptic geometry

Hyperbolic geometryTiling

M.C. Escher’s work

Hyperbolic metric

Metric?

ds2 = (dx2 + dy2)

(4

(1−(x2 + y2))2

)(compare with stereographic projection!)

again: isotropic scaling ⇒ angle-preserving

Near the edge (x2 + y2 ≈ 1): ds2 >> dx2 + dy2

center → edge in the Poincare model: ∞ distance in thehyperbolic plane!∫ 1

0ds =

∫ 1

0

2

1− x2dx =∞

Daniel Czegel Tiling the hyperbolic plane - long version

Page 68: Tiling the hyperbolic plane - long version

Gaussian curvatureElliptic geometry

Hyperbolic geometryTiling

M.C. Escher’s work

Hyperbolic metric

Metric?

ds2 = (dx2 + dy2)

(4

(1−(x2 + y2))2

)(compare with stereographic projection!)

again: isotropic scaling ⇒ angle-preserving

Near the edge (x2 + y2 ≈ 1): ds2 >> dx2 + dy2

center → edge in the Poincare model: ∞ distance in thehyperbolic plane!∫ 1

0ds =

∫ 1

0

2

1− x2dx =∞

Daniel Czegel Tiling the hyperbolic plane - long version

Page 69: Tiling the hyperbolic plane - long version

Gaussian curvatureElliptic geometry

Hyperbolic geometryTiling

M.C. Escher’s work

Figure 2 : Hyperbolic man takes a walk to infinity

Daniel Czegel Tiling the hyperbolic plane - long version

Page 70: Tiling the hyperbolic plane - long version

Gaussian curvatureElliptic geometry

Hyperbolic geometryTiling

M.C. Escher’s work

Schlafli-symbol

Regular tiling: tiling by i) congruent regular poligons (n-gons),ii) at every vertex, m poligons meet

Euclidean plane?

Schlafli-symbol: {n,m}Any relationship between these three Schlafli-symbols?

1

n+

1

m=

1

2There is no other such n,m ∈ N ⇔ no other regulareuclidean tiling

Daniel Czegel Tiling the hyperbolic plane - long version

Page 71: Tiling the hyperbolic plane - long version

Gaussian curvatureElliptic geometry

Hyperbolic geometryTiling

M.C. Escher’s work

Schlafli-symbol

Regular tiling: tiling by i) congruent regular poligons (n-gons),ii) at every vertex, m poligons meet

Euclidean plane?

Schlafli-symbol: {n,m}Any relationship between these three Schlafli-symbols?

1

n+

1

m=

1

2There is no other such n,m ∈ N ⇔ no other regulareuclidean tiling

Daniel Czegel Tiling the hyperbolic plane - long version

Page 72: Tiling the hyperbolic plane - long version

Gaussian curvatureElliptic geometry

Hyperbolic geometryTiling

M.C. Escher’s work

Schlafli-symbol

Regular tiling: tiling by i) congruent regular poligons (n-gons),ii) at every vertex, m poligons meet

Euclidean plane?

Schlafli-symbol: {n,m}Any relationship between these three Schlafli-symbols?

1

n+

1

m=

1

2There is no other such n,m ∈ N ⇔ no other regulareuclidean tiling

Daniel Czegel Tiling the hyperbolic plane - long version

Page 73: Tiling the hyperbolic plane - long version

Gaussian curvatureElliptic geometry

Hyperbolic geometryTiling

M.C. Escher’s work

Schlafli-symbol

Regular tiling: tiling by i) congruent regular poligons (n-gons),ii) at every vertex, m poligons meet

Euclidean plane?

Schlafli-symbol: {n,m}

Any relationship between these three Schlafli-symbols?

1

n+

1

m=

1

2There is no other such n,m ∈ N ⇔ no other regulareuclidean tiling

Daniel Czegel Tiling the hyperbolic plane - long version

Page 74: Tiling the hyperbolic plane - long version

Gaussian curvatureElliptic geometry

Hyperbolic geometryTiling

M.C. Escher’s work

Schlafli-symbol

Regular tiling: tiling by i) congruent regular poligons (n-gons),ii) at every vertex, m poligons meet

Euclidean plane?

Schlafli-symbol: {n,m}Any relationship between these three Schlafli-symbols?

1

n+

1

m=

1

2There is no other such n,m ∈ N ⇔ no other regulareuclidean tiling

Daniel Czegel Tiling the hyperbolic plane - long version

Page 75: Tiling the hyperbolic plane - long version

Gaussian curvatureElliptic geometry

Hyperbolic geometryTiling

M.C. Escher’s work

Schlafli-symbol

Regular tiling: tiling by i) congruent regular poligons (n-gons),ii) at every vertex, m poligons meet

Euclidean plane?

Schlafli-symbol: {n,m}Any relationship between these three Schlafli-symbols?

1

n+

1

m=

1

2There is no other such n,m ∈ N ⇔ no other regulareuclidean tiling

Daniel Czegel Tiling the hyperbolic plane - long version

Page 76: Tiling the hyperbolic plane - long version

Gaussian curvatureElliptic geometry

Hyperbolic geometryTiling

M.C. Escher’s work

Tiling on the sphere

Regular tilings on the sphere? (assume n,m ≥ 3, i.e.nondegenrate cases)

n = 3, m = 3 ?

A blown tetrahedron!

Daniel Czegel Tiling the hyperbolic plane - long version

Page 77: Tiling the hyperbolic plane - long version

Gaussian curvatureElliptic geometry

Hyperbolic geometryTiling

M.C. Escher’s work

Tiling on the sphere

Regular tilings on the sphere? (assume n,m ≥ 3, i.e.nondegenrate cases)

n = 3, m = 3 ?

A blown tetrahedron!

Daniel Czegel Tiling the hyperbolic plane - long version

Page 78: Tiling the hyperbolic plane - long version

Gaussian curvatureElliptic geometry

Hyperbolic geometryTiling

M.C. Escher’s work

Tiling on the sphere

Regular tilings on the sphere? (assume n,m ≥ 3, i.e.nondegenrate cases)

n = 3, m = 3 ?

A blown tetrahedron!

Daniel Czegel Tiling the hyperbolic plane - long version

Page 79: Tiling the hyperbolic plane - long version

Gaussian curvatureElliptic geometry

Hyperbolic geometryTiling

M.C. Escher’s work

Tiling on the sphere

Regular tilings on the sphere? (assume n,m ≥ 3, i.e.nondegenrate cases)

n = 3, m = 3 ?

A blown tetrahedron!

Daniel Czegel Tiling the hyperbolic plane - long version

Page 80: Tiling the hyperbolic plane - long version

Gaussian curvatureElliptic geometry

Hyperbolic geometryTiling

M.C. Escher’s work

Tiling on the sphere

{4, 3} ?

A cube:

{3, 4}, {3, 5}, {5, 3} ?

Octahedron, icosahedron, dodecahedron.

Daniel Czegel Tiling the hyperbolic plane - long version

Page 81: Tiling the hyperbolic plane - long version

Gaussian curvatureElliptic geometry

Hyperbolic geometryTiling

M.C. Escher’s work

Tiling on the sphere

{4, 3} ?

A cube:

{3, 4}, {3, 5}, {5, 3} ?

Octahedron, icosahedron, dodecahedron.

Daniel Czegel Tiling the hyperbolic plane - long version

Page 82: Tiling the hyperbolic plane - long version

Gaussian curvatureElliptic geometry

Hyperbolic geometryTiling

M.C. Escher’s work

Tiling on the sphere

{4, 3} ?

A cube:

{3, 4}, {3, 5}, {5, 3} ?

Octahedron, icosahedron, dodecahedron.

Daniel Czegel Tiling the hyperbolic plane - long version

Page 83: Tiling the hyperbolic plane - long version

Gaussian curvatureElliptic geometry

Hyperbolic geometryTiling

M.C. Escher’s work

Tiling on the sphere

{4, 3} ?

A cube:

{3, 4}, {3, 5}, {5, 3} ?

Octahedron, icosahedron, dodecahedron.

Daniel Czegel Tiling the hyperbolic plane - long version

Page 84: Tiling the hyperbolic plane - long version

Gaussian curvatureElliptic geometry

Hyperbolic geometryTiling

M.C. Escher’s work

Tiling on the sphere

Any more?

No. Why?

1

n+

1

m>

1

2

only for these five!

Figure 3 : The five Platonic solids

Daniel Czegel Tiling the hyperbolic plane - long version

Page 85: Tiling the hyperbolic plane - long version

Gaussian curvatureElliptic geometry

Hyperbolic geometryTiling

M.C. Escher’s work

Tiling on the sphere

Any more?

No. Why?

1

n+

1

m>

1

2

only for these five!

Figure 3 : The five Platonic solids

Daniel Czegel Tiling the hyperbolic plane - long version

Page 86: Tiling the hyperbolic plane - long version

Gaussian curvatureElliptic geometry

Hyperbolic geometryTiling

M.C. Escher’s work

Tiling on the sphere

Any more?

No. Why?

1

n+

1

m>

1

2

only for these five!

Figure 3 : The five Platonic solids

Daniel Czegel Tiling the hyperbolic plane - long version

Page 87: Tiling the hyperbolic plane - long version

Gaussian curvatureElliptic geometry

Hyperbolic geometryTiling

M.C. Escher’s work

Hyperbolic tiling

Hyperbolic tiling?

If 1n + 1

m < 12

How many such tilings?Infinite!

Figure 4 : {3, 7} Figure 5 : {7, 3}

Daniel Czegel Tiling the hyperbolic plane - long version

Page 88: Tiling the hyperbolic plane - long version

Gaussian curvatureElliptic geometry

Hyperbolic geometryTiling

M.C. Escher’s work

Hyperbolic tiling

Hyperbolic tiling?If 1

n + 1m < 1

2

How many such tilings?Infinite!

Figure 4 : {3, 7} Figure 5 : {7, 3}

Daniel Czegel Tiling the hyperbolic plane - long version

Page 89: Tiling the hyperbolic plane - long version

Gaussian curvatureElliptic geometry

Hyperbolic geometryTiling

M.C. Escher’s work

Hyperbolic tiling

Hyperbolic tiling?If 1

n + 1m < 1

2How many such tilings?

Infinite!

Figure 4 : {3, 7} Figure 5 : {7, 3}

Daniel Czegel Tiling the hyperbolic plane - long version

Page 90: Tiling the hyperbolic plane - long version

Gaussian curvatureElliptic geometry

Hyperbolic geometryTiling

M.C. Escher’s work

Hyperbolic tiling

Hyperbolic tiling?If 1

n + 1m < 1

2How many such tilings?Infinite!

Figure 4 : {3, 7} Figure 5 : {7, 3}

Daniel Czegel Tiling the hyperbolic plane - long version

Page 91: Tiling the hyperbolic plane - long version

Gaussian curvatureElliptic geometry

Hyperbolic geometryTiling

M.C. Escher’s work

Hyperbolic tiling

Hyperbolic tiling?If 1

n + 1m < 1

2How many such tilings?Infinite!

Figure 4 : {3, 7} Figure 5 : {7, 3}

Daniel Czegel Tiling the hyperbolic plane - long version

Page 92: Tiling the hyperbolic plane - long version

Gaussian curvatureElliptic geometry

Hyperbolic geometryTiling

M.C. Escher’s work

Hyperbolic tiling

n or m can even be infinite!

Figure 6 : {3,∞},for every triangle:α = β = γ = 0 ⇒ A = π

Figure 7 : {∞, 3},”aperiogon”

Daniel Czegel Tiling the hyperbolic plane - long version

Page 93: Tiling the hyperbolic plane - long version

Gaussian curvatureElliptic geometry

Hyperbolic geometryTiling

M.C. Escher’s work

Hyperbolic tiling

n or m can even be infinite!

Figure 6 : {3,∞},for every triangle:α = β = γ = 0 ⇒ A = π

Figure 7 : {∞, 3},”aperiogon”

Daniel Czegel Tiling the hyperbolic plane - long version

Page 94: Tiling the hyperbolic plane - long version

Gaussian curvatureElliptic geometry

Hyperbolic geometryTiling

M.C. Escher’s work

Hyperbolic tiling

Or both!

Figure 8 : {∞,∞}Daniel Czegel Tiling the hyperbolic plane - long version

Page 95: Tiling the hyperbolic plane - long version

Gaussian curvatureElliptic geometry

Hyperbolic geometryTiling

M.C. Escher’s work

Classification of regular tilings

Figure 9 : Classification of regular tilings

Daniel Czegel Tiling the hyperbolic plane - long version

Page 96: Tiling the hyperbolic plane - long version

Gaussian curvatureElliptic geometry

Hyperbolic geometryTiling

M.C. Escher’s work

Figure 10 : M.C. Escher

Figure 11 : H.S.M.Coxeter

Daniel Czegel Tiling the hyperbolic plane - long version

Page 97: Tiling the hyperbolic plane - long version

Gaussian curvatureElliptic geometry

Hyperbolic geometryTiling

M.C. Escher’s work

Figure 12 : Escher’s Circle Limit I. (1958)

Daniel Czegel Tiling the hyperbolic plane - long version

Page 98: Tiling the hyperbolic plane - long version

Gaussian curvatureElliptic geometry

Hyperbolic geometryTiling

M.C. Escher’s work

Figure 13 : Circle Limit I.: nonregular tiling of the hyperbolic plane(m = 4 and 6)

Daniel Czegel Tiling the hyperbolic plane - long version

Page 99: Tiling the hyperbolic plane - long version

Gaussian curvatureElliptic geometry

Hyperbolic geometryTiling

M.C. Escher’s work

Any regular tiling?

Figure 14 : Escher’s Circle Limit III. (1959).

Schlafli symbol?

Daniel Czegel Tiling the hyperbolic plane - long version

Page 100: Tiling the hyperbolic plane - long version

Gaussian curvatureElliptic geometry

Hyperbolic geometryTiling

M.C. Escher’s work

Any regular tiling?

Figure 14 : Escher’s Circle Limit III. (1959).

Schlafli symbol?

Daniel Czegel Tiling the hyperbolic plane - long version

Page 101: Tiling the hyperbolic plane - long version

Gaussian curvatureElliptic geometry

Hyperbolic geometryTiling

M.C. Escher’s work

Any regular tiling?

Figure 14 : Escher’s Circle Limit III. (1959).

Schlafli symbol?

Daniel Czegel Tiling the hyperbolic plane - long version

Page 102: Tiling the hyperbolic plane - long version

Gaussian curvatureElliptic geometry

Hyperbolic geometryTiling

M.C. Escher’s work

Figure 15 : Schlafli symbol of Circle Limit III.: {8, 3}!

Daniel Czegel Tiling the hyperbolic plane - long version

Page 103: Tiling the hyperbolic plane - long version

Gaussian curvatureElliptic geometry

Hyperbolic geometryTiling

M.C. Escher’s work

References

Weeks, J. R. (2001). The shape of space. CRC press.

Dirnbock, H., & Stachel, H. (1997). The development of theoloid. Journal for Geometry and Graphics, 1(2), 105-118.

http://aleph0.clarku.edu/

~djoyce/poincare/poincare.html

http://en.wikipedia.org/wiki/

Uniform_tilings_in_hyperbolic_plane

http://euler.slu.edu/escher/index.php/

Math_and_the_Art_of_M._C._Escher

http://www.reed.edu/reed_magazine/march2010/

features/capturing_infinity/3.html

Thank You!

Daniel Czegel Tiling the hyperbolic plane - long version