tie summary report – almatis outfall 001 effluent · pdf filetie summary report –...

47
TIE Summary Report – Almatis Outfall 001 Effluent Prepared For: Almatis, Inc. Bauxite, Arkansas Prepared by: ENVIRON International Corporation Nashville, Tennessee Date: July 2013 Project Number: 20-28319C

Upload: vuongnhan

Post on 13-Mar-2018

228 views

Category:

Documents


5 download

TRANSCRIPT

TIE Summary Report – Almatis Outfall 001 Effluent

Prepared For:

Almatis, Inc. Bauxite, Arkansas

Prepared by: ENVIRON International Corporation

Nashville, Tennessee

Date: July 2013

Project Number: 20-28319C

201 Summit View Drive, Suite 300, Brentwood, TN 37027 www.environcorp.com Tel: +1 615.277.7570 Fax: +1 615.377.4976 NELAP Accredited and Laboratory Certification in the following States: AR (02-008-0), AZ (0751), CA (2465), FL (E87896), IA (386), KS (E-10391), LA (02061), MN, NC (003), OK (9973), SC (84015), TX (T104704410-11-2), VA (460171), WI (399050850), WV (351) Test Results Contained in this Report Meet NELAP Requirements

July 8, 2013

Mr. James Whitener EHS Manager Almatis, Inc. 4701 Alcoa Rd Bauxite, AR 72011 Re: TIE Summary Report

ENVIRON Project No. 20-28319C

Dear Mr. Whitener:

Attached is the Toxicity Identification Evaluation (TIE) summary report for submittal to the Arkansas Department of Environmental Quality to conclude the TIE conducted for the Almatis Bauxite Facility. Various toxicity control measures were implemented by Almatis during the course of the TIE, and included modifications to the wastewater treatment process such as a new computerized process control system, new automatic valves, and new pump and clarifier flow-balancing systems. Process changes included increased effluent hardness, and replacement of a polymer shown to be of relatively high toxicity to Ceriodaphnia dubia. Process and wastewater treatment alterations considered not only control of Whole Effluent Toxicity (WET), but requirements to meet various chemical-specific NPDES discharge limits. As summarized herein, key TIE study findings and WET control techniques implemented were:

• Ceriodaphnia dubia was consistently more sensitive to effluent toxicity than the fathead minnow. TIE efforts therefore focused on C. dubia.

• During the TIE, neither the comparison of effluent chemical data to WET test

results nor the correlation assessments indicated strong associations between effluent chemistry and C. dubia toxicity. Similar assessments ruled out most of the wastewater treatment chemicals used on-site as likely causes of WET. However, study results did indicate that:

− When effluent hardness is maintained above 50 mg/L CaCO3 to better

balance effluent “major ions” (calcium, sulfate, bicarbonate, etc.), WET test compliance can more readily be achieved, especially when intermittent sources of relatively high toxicity source waters are controlled.

− During evaluations of various wastewater treatment polymers, one polymer

was identified as a potential source of WET. In October 2012, the polymer was replaced with an anionic polymer that was shown to be less toxic yet effective in metals control.

Based on these findings, Almatis implemented toxicity control techniques that included computerized injection of CaCl2 to maintain the required effluent ion balance and effluent hardness, and a computerized injection system of H2SO4 based on effluent flow. The main

Mr. James Whitener -2- July 8, 2013

factor in controlling toxicity was the replacement of Nalco polymer 71303 with Nalco polymer 7757. Since implementation of these toxicity control techniques, NPDES permit limits for chronic toxicity have consistently been met since October 2012. Thank you for the continued opportunity to be of service to Almatis. Please do not hesitate to contact Scott Hall at (615) 277-7512 or [email protected] with any questions you may have. Sincerely, ENVIRON International Corporation

Scott Hall, Manager Patrick J. Campbell, PE Ecotoxicology Group Principal

Almatis Bauxite Facility Bauxite, Arkansas

TIE Status Report – Outfall 001 July 2013

20-28319C July 2013 1

Background The Almatis, Inc. Bauxite, Arkansas Facility (Almatis) discharges treated process water and site runoff to a small unnamed tributary that flows to Hurricane Creek. The Almatis National Pollutant Discharge Elimination System (NPDES) chemical-specific and whole effluent toxicity (WET) limits apply at the Outfall 001 discharge. The facility’s chronic (seven day) WET limit for the fathead minnow (Pimephales promelas) and water flea (Ceriodaphnia dubia) is therefore a no observed effect concentration (NOEC) value of 100 percent effluent. Any NOEC value of less than 100 percent effluent constitutes non-compliance with NPDES permit limits. Beginning in 2007, Outfall 001 chronic WET testing indicated intermittent non-compliance with C. dubia, but generally indicated no toxicity to the fathead minnow. WET test failures in 2010 and 2011 required that Almatis, as a condition of its NPDES discharge permit, formally enter into a toxicity identification evaluation (TIE). Almatis retained ENVIRON International Corporation (ENVIRON) in support of resolving WET non-compliance. TIE Activities Key TIE efforts conducted by ENVIRON from approximately June 2010 through the spring of 2012 included:

• Review, compilation, and evaluation of WET test and TIE data developed prior to 2010. • Confirmatory WET testing and chemical analyses of Outfall 001 effluent. • Evaluation of process flows, wastewater treatment operations, wastewater treatment

chemicals, production schedules, and related facility operations. • Coordinated WET testing and chemical monitoring of Outfall 001 effluent and selected

internal waters, and monitoring of plant operations and related factors (e.g. rain events). • Comparison of effluent chemical concentrations to known toxic concentrations for the

fathead minnow and C. dubia to identify toxicants most toxic to C. dubia.

− Given the known high sensitivity of C. dubia to “major ions” (i.e., those present at mg/L concentrations in effluents) and the unusual ion make-up of Outfall 001 effluent, TIE efforts included evaluations of major ion ratios, hardness and alkalinity conditions, and other major ion-related effluent conditions.

• Laboratory fractionation tests to determine the physical/chemical nature of effluent

toxicants.

• Assessments of seasonal trends in WET.

Almatis Bauxite Facility Bauxite, Arkansas

TIE Status Report – Outfall 001 July 2013

20-28319C July 2013 2

• Evaluations of the toxicity of various wastewater treatment polymers that could be used to control effluent heavy metals concentrations. TIE Findings Findings of the initial study efforts were reported to the Arkansas Department of Environmental Quality in October 2011 (Attachment 1). ENVIRON’s status report of additional TIE efforts was provided to Almatis in May 2012 (Attachment 2). Key findings as of May 2012 were:

• Maintaining effluent hardness above 50 mg/L CaCO3 assists in maintaining effluent conditions conducive to C. dubia survival and reproduction. However, control of intermittently present source waters of apparently high toxicity must be achieved in order to consistently meet NPDES permit limits for WET.

• The Nalco polymer Coreshell 71303, while effective in metals control, was relatively toxic

to C. dubia.

During the fall of 2011, Almatis instituted various internal process controls and waste-reduction efforts such as:

• A new computerized process control system.

• New automatic valving, and pump and clarifier balancing systems.

• Evaluations of polymer toxicity and efficacy in metals control were continued (Attachment 3).

As reported in the May 2012 TIE status report, Almatis continued to monitor effluent quality during these time periods. In late October 2012, Almatis instituted full-scale use of Nalco anionic polymer 7757. Results of TIE Response Actions The results of sampling and analyses subsequent to the above-reported efforts are presented in Tables 1 and 2.

• Nine of the 17 test events with two WET testing laboratories from January 2012 through May 2013 indicated a C. dubia NOEC value of less than 100 percent effluent. − Eight of the nine WET test failures occurred prior to October 2012 when

the change in polymer occurred.

− C. dubia NOEC values of 100 percent effluent have been consistently achieved since October 2012 when the use of Nalco 7757 began. WET test

Almatis Bauxite Facility Bauxite, Arkansas

TIE Status Report – Outfall 001 July 2013

20-28319C July 2013 3

compliance with the fathead minnow has also been achieved during this period.

• Correlation assessments of the 2012 to 2013 WET test data and chemical

analyses again did not show any relationships between chemical concentrations and C. dubia (data not shown).

The overall conclusion of the polymer toxicity assessments and effluent monitoring program is that maintaining appropriate ion balance, wastewater process control modifications, and the switch to a less toxic polymer has resulted in more reliable achievement of WET limits in the NPDES discharge permit.

Table 1. C. dubia  TIE Sampling and Testing Results ‐ Almatis Bauxite, ARAll data for Outfall 001 effluent unless indicated to be for WET test controls.

Tox Tox Test Special Events, Control Control 100% Eff Hardness Alkalinity Conductivity Control Control 100% Eff Hardness Alkalinity ConductivityTest Sample Production/Ops  Sample Percent Avg. Neonate Survival NOEC % Reduced from WET from WET from WET Percent Avg. Neonate Survival NOEC % Reduced from WET from WET from WETNo.  Date Changes, etc. No. Survival Production (%) (% eff) Reprodctn. Test Test Test Survival Production (%) (% efflunt) Reprodctn. Test Test Test1 1/31/2012 1 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ 104 210 1,189

2/1/2012 2 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ 104 210 1,1752/3/2012 3 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ 100 235 1,101

Avg. 100 19.8 60 < 100 33 100 33 100 100 0 103 218 1,155

2 2/6/2012 1 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ 63 220 870 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ 80 240 1,1222/8/2012 2 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ 73 190 840 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ 88 225 1,2372/10/2012 3 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ 61 200 810 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ 84 225 1,273

Avg. 100 18.3 100 100 0 66 203 840 90 23 100 100 0 84 230 1,211

3 2/13/2012 1 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ 55 200 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ 68 225 1,2081.6" rain 2/15/2012 2 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ 48 180 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ 52 220 1,281

2/17/2012 3 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ 50 180 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ 52 230 1,249Avg. 100 21.1 100 <100  56 51 187 #DIV/0! 100 28 100 100 0 57 225 1,246

4 3/5/2012 Non‐ toxic to fathead minnow 1 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ 82 190 890 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ 80 190 1,2193/8/2012 (Am. Inplx. Test) 2 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ 54 180 900 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ 80 190 1,1653/9/2012 3 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ 52 190 850 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ 1,171

Avg. 100 15.3 100 100 9.8 63 187 880 100 29 100 100 6.6 80 190 1,185

5 3/19/2012 80% mortality by T48, but 1 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ 34 160 820 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐5.6" rain 3/22/2012 April 4 re‐test of indiv. Samples 2 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ 43 150 820 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐

3/23/2012 showed no acute tox in any samples 3 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ 44 150 780 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐Avg. 100 20.1 10 <100 100 40 153 807

6 4/2/2012 Sample was toxic, third sample toxic 1 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ 38 130 690 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ 46 138 8594/3/2012 at both labs. Air stripping removed  2 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ 41 130 690 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ 44 136 997

0.54" rain 4/5/2012 all toxicity.  3 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ 42 130 780 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ 68 145 926Avg. 100 21.0 0 < 100 100 40 130 720 100 31 0 < 100 97 53 140 927

7 4/23/2012 Quarterly Chronic WET monitoring 1 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ 64 140 630 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐4/26/2012 Failed w/ both Species, but 2 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ 86 140 800 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐4/27/2012 Fish pathogen maybe present 3 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ 74 140 570 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐

Avg. 90 18.4 100 56 36 75 140 667

8 8/27/2012 First & third samples rain impacted. 1 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ 96 260 1,5888/29/2012 Second sample delayed 2 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ 80 340 1,6508/31/2012 in shipment. Fish failed. 3 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ 96 105 1,644

Avg. 98 30 70 42 73 91 235 1,627

10/23/2012New Anionic Polymer 7757 from Nalco was used in plant scale tests starting 3rd 

October, 2012100 30 100 100 0 64 255 Not tested

9 12/3/2012 1 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ 80 300 1,7652 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ 63 305 1,8253 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ 62 305 1,818

Avg. 100 32 100 100 0 68 303 1,803

Not tested

Not tested

American Interplx WET Test Data ENVIRON WET Test Data

not reported

Not tested

Not tested

Not tested

samples collected on 3rd, 5th, 7th Dec

Table 1. C. dubia  TIE Sampling and Testing Results ‐ Almatis Bauxite, ARAll data for Outfall 001 effluent unless indicated to be for WET test controls.

Tox Tox Test Special Events, Control Control 100% Eff Hardness Alkalinity Conductivity Control Control 100% Eff Hardness Alkalinity ConductivityTest Sample Production/Ops  Sample Percent Avg. Neonate Survival NOEC % Reduced from WET from WET from WET Percent Avg. Neonate Survival NOEC % Reduced from WET from WET from WETNo.  Date Changes, etc. No. Survival Production (%) (% eff) Reprodctn. Test Test Test Survival Production (%) (% efflunt) Reprodctn. Test Test Test

American Interplx WET Test Data ENVIRON WET Test Data

10 2/25/2013 1 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ 76 166 1,0732 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ 64 172 1,0753 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ 54 177 949

Avg. 100 30 100 80 17 65 172 1,032

11 5/17/2013 1 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ 64 177 1,0872 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ 44 192 1,0583 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ 46 197 1,119

Avg. 98 32 100 100 0 51 189 1,088

TIE ‐ Toxicity Identification EvaluationWET ‐ Whole Effluent ToxicityRained on this date% eff ‐ Percent effluentNOEC ‐ No Observed Effect Concentration% Reduced Reprodctn. ‐ Reduction in neonated reproduction comparing 100% effluent to the control

Not tested

samples collected on 13th, 15th and 17th May

samples collected on 25th, 27th Feb and 1st March

Not tested

Table 2. C. dubia  WET Testing Results and Effluent Characterization ‐ Almatis Bauxite, AR

Tox Tox Test Total Nitrite Nitrate F Cl‐ Si SO4 Na Mg K Ca B Al Zn Se FeTest Sample Sample NOEC % Reduced NOEC % Reduced Hardness Ammonia (NO2) (NO3) TOC TDS Fluoride Chloride Silicon Sulfate Sodium Magnesium Potassium Calcium Boron Aluminum Zinc Selenium IronNo.  Date No. (% eff) Reprodctn. (% eff) Reprodctn. Cal'd mg/L as N mg/L as N mg/L as N mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L1 1/31/2012 1 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ 92 0.1 0.05 0.16 3.7 700 0.73 68 0.9 270 250 1.8 6.0 34 1.6 0.11 0.0023 0.0025 ‐‐‐

2/1/2012 2 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ 78 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ 230 1.4 4.8 29 1.5 0.15 0.0029 0.0034 ‐‐‐2/3/2012 3 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ 230 1.5 4.2 23 1.3 0.20 0.0076 0.0024 0.053

Avg. < 100 33 100 0 85 0.1 0.05 0.16 3.7 700 0.73 68 0.9 270 237 1.6 5.0 29 1.5 0.15 0.0043 0.0028 0.053     

2 2/6/2012 1 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ 62 0.1 0.05 0.12 3.5 720 0.88 47 0.89 280 250 1.8 4.5 22 1.5 0.29 0.0027 0.0034 0.0142/8/2012 2 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ 61 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ 290 1.4 3.9 22 1.3 0.17 0.0051 0.0030 ‐‐‐2/10/2012 3 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ 250 1.7 4.8 21 1.4 0.32 0.011 0.0028 0.073

Avg. 100 0 100 0 62 0.1 0.05 0.12 3.5 720 0.88 47 0.89 280 263 1.6 4.4 22 1.4 0.26 0.0063 0.0031 0.044

3 2/13/2012 1 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ 53 0.51 0.05 0.054 2.9 750 0.92 55 0.88 320 270 1.3 5.1 19 1.7 0.47 0.0047 0.0033 0.101.6" rain 2/15/2012 2 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ 52 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ 260 1.2 4.8 19 1.6 0.32 0.0038 0.0032 0.27

2/17/2012 3 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ 50 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ 250 1.3 4.5 18 1.5 2 0.0027 0.0020 0.11Avg. <100  56 100 0 52 0.51 0.05 0.054 2.9 750 0.92 55 0.88 320 260 1.3 4.8 19 1.6 0.93 0.0037 0.0028 0.16

4 3/5/2012 1 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ 0.12 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐3/8/2012 2 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ 0.58 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐3/9/2012 3 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ 0.43 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐

Avg. 100 9.8 100 6.6 Not Tested 0.38

5 3/19/2012 1 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ 33 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ 220 0.79 4.1 12 1.5 0.23 0.0065 0.0025 ‐‐‐5.6" rain 3/22/2012 2 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐

3/23/2012 3 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐Avg. <100 100 33 220 0.8 4.1 12 1.5 0.23 0.0065 0.0025 Not Tested

6 4/2/2012 1 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ 33 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ 320 0.84 3.6 12 1.6 0.36 0.0020 0.0032 ‐‐‐4/3/2012 2 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐

0.54" rain 4/5/2012 3 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ 48 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ 180 0.67 4.3 18 1.7 0.35 0.0084 0.0020 ‐‐‐Avg. < 100 100 < 100 97 41 250 0.76 4.0 15 1.7 0.36 0.0052 0.0026 Not Tested

7 4/23/2012 1 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ 60 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ 190 0.67 4.9 23 1.7 0.17 0.0064 0.0033 ‐‐‐4/26/2012 2 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐4/27/2012 3 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐

Avg. 56 36 60 190 0.67 4.9 23 1.7 0.17 0.0064 0.0033 Not Tested

8 8/27/2012 1 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐8/29/2012 2 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ 800 ‐‐‐ 62 ‐‐‐ 560 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ 2.3 0.022 0.002 ‐‐‐8/31/2012 3 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐

Avg. 42 73 800 Not Tested 62 Not Tested 560 2.3 0.022 0.002 Not Tested

10/23/2012 100 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ 76 ‐‐‐ 410 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ 0.41 0.07 0.002 ‐‐‐

Not Tested

American Interplx

Not Tested

Not Tested Not Tested

Not Tested

Not TestedNot Tested

 ENVIRONEffluent Characterization

Not Tested

WET Test Results

Table 2. C. dubia  WET Testing Results and Effluent Characterization ‐ Almatis Bauxite, AR

Tox Tox Test Total Nitrite Nitrate F Cl‐ Si SO4 Na Mg K Ca B Al Zn Se FeTest Sample Sample NOEC % Reduced NOEC % Reduced Hardness Ammonia (NO2) (NO3) TOC TDS Fluoride Chloride Silicon Sulfate Sodium Magnesium Potassium Calcium Boron Aluminum Zinc Selenium IronNo.  Date No. (% eff) Reprodctn. (% eff) Reprodctn. Cal'd mg/L as N mg/L as N mg/L as N mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L

American Interplx  ENVIRONEffluent CharacterizationWET Test Results

9 12/3/2012 1 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐2 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐3 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐

Avg. 100 0

10 2/25/2013 1 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐2 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐3 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐

Avg. 80 17

11 5/17/2013 1 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐2 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐3 ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐

Avg. 100 0

WET ‐ Whole Effluent ToxicityRained on this dateBolded red values indicate the analyte was not detected. Detection limit shown.% eff ‐ Percent effluent% Reduced Reprodctn. ‐ Reduction in neonated reproduction comparing 100% effluent to the controlHardness Cal'd ‐ Calculated hardness value using the reported calcium and magnesium valuesTOC ‐ Total Organic CarbonTDS ‐ Total Dissolved Solids

Not Tested

Not Tested

Not Tested

Attachment 1: TIE Status Report-

October 2011

TRE ACTIVITIES REPORT ALMATIS INC. OUTFALL 001

(NPDES PERMIT NO. AR0050270) 3rd QUARTER 2011

Prepared by:

James Whitener EHS Manager

Almatis Arkansas Operations

October 27, 2011

1.0 INTRODUCTION

The purpose of this document is to report the results of sampling and analysis conducted in support of the Toxicity Reduction Evaluation (TRE) currently being performed by Almatis Inc. (Almatis), Bauxite Arkansas, (National Pollutant Discharge Elimination System [NPDES] Permit No. AR0050270). The objective of a TRE is to identify the means to eliminate toxicity in whole effluent toxicity (WET) tests. The technical approach to toxicity identification and control for WET in acute toxicity tests at Outfall 001 was presented in the TRE Action Plan submitted to the Arkansas Department of Environmental Quality (ADEQ) on January 19, 2010.

2.0 TESTING SUMMARY

During this period and change in consultants took place. ENVIRON is now assisting Almatis to determine the cause of the toxicity in our wastewater. ENVIRON in conjunction with Almatis has reviewed the effluent chemical and WET test data from the sampling conducted over the past three years. Data on the effluent conditions, such as pH, hardness and suspended solids that can alter the toxicity of various chemical groups (e.g., metals, ammonia, major ions) were reviewed to interpret the likely role of various toxicants. Below is a summary of that review. Historic chronic (seven day) whole effluent toxicity (WET) test data have shown the presence of intermittent lethal and sub-lethal (reproductive) toxicity to the water flea Ceriodaphnia dubia, but a general lack of WET to the fathead minnow (Pimephales promelas). The WET permit limit is a No Observed Effects Concentration (NOEC) value of 100 percent effluent (i.e., an NOEC value of less than 100 percent effluent for either test species indicates non-compliance). 2.1 HISTORICAL DATA REVIEW AND CONCLUSIONS ENVIRON has conducted a review of Almatis’ NPDES chemical and WET test data, a 2009 Phase I fractionation test conducted by FTN Associates, and the initial Design of Experiment (DOE) developed by Almatis’ WET testing laboratory. The initial DOE focused on evaluating effluent suspended solids and WET as a function of polymer dose and settling time. Although the rationale for focusing on particulate toxicants was not stated in the initial DOE, the presence of particulate matter in clarifier effluent is noted daily and data from the 2009 fractionation testing, indicates that an evaluation of the role of particulate matter in contributing to WET is warranted. This is especially true given the higher sensitivity of C. dubia (a filter feeding organism) to the effluent (i.e., ingested particles may contribute to WET).

Further, changes in site production (e.g. increased boric acid use) and wastewater treatment since the initial 2009 fractionation tests (which implicated zinc as an effluent toxicant), also warrant an review of other toxicants and modes of toxicity. 2.2 DATA REVIEW Summarized below are key observations related to the data review as they pertain to likely effluent toxicants based on the NPDES chemical and WET test data for the effluent monitoring period February 9, 2007 to August 16, 2011. Based on these data:

C. dubia is clearly the more sensitive test species. Sub-lethal NOEC values of less than 100 percent effluent were observed for this test species in 16 of 36 tests (44 percent frequency of occurrence). C. dubia WET was typically sublethal, although test failures based on mortality were observed in seven of the 36 tests (19 percent occurrence).

Only one fathead minnow WET test (3 percent occurrence) indicated WET test failure.

The most toxic WET test event occurred on July 26, 2010 when both test organisms exhibited significant mortality in 100 percent effluent exposures and permit non-compliance occurred for both test species.

Effluent conductivity values range from approximately 1,000 to 2,500 umho/cm, and TDS concentrations range from approximately 450 to 1,400 mg/L. These TDS concentrations and corresponding conductivity values are high enough to be of concern with respect to causing chronic toxicity to C. dubia, especially given the combination of low hardness and high alkalinity found in the wastewater. The fathead minnow is less sensitive to dissolved ions contributing to these gross measurements of salt, thus implicating dissolved “major ions” as a potential cause of WET given the species sensitivity patterns observed.

Effluent ion imbalance is likely of concern with respect to causing C. dubia sub-lethal chronic WET. For example, effluent alkalinity ranges from 92 to 360 mg/L CaCO3 whereas effluent hardness ranges from 11 to 82 mg/L CaCO3. Natural waters and most effluents typically exhibit similar alkalinity and hardness values, with effluent alkalinity values lower than hardness values. Such conditions are preferred by C. dubia, but the opposite conditions prevail in the Almatis effluent. The alkalinity to hardness ratios range from 1.6 to 13.3, also indicating a high degree of variability for these parameters.

More data need to be obtained on major ions, such as sodium (Na), magnesium (Mg), potassium (K) and calcium (Ca), that would allow a better understanding of the role of ionic imbalance in causing C. dubia sub-lethal toxicity. The ratio of effluent Ca to Mg (key contributors to hardness) is also important to understand

in assessing the role of ion imbalance in causing WET (generally 1:1 or greater Ca:Mg ratio is preferred by C. dubia).

Although the dataset is small, an average effluent total aluminum (Al) concentration of approximately 0.63 mg/L will need to be reviewed and may be of concern depending on the proportion in the dissolved and various polymeric forms of Al. The toxicity of aluminum will also depend on hardness and pH conditions that are exacerbated in high alkalinity/low hardness waters.

Zinc concentrations also may be of concern in such low hardness conditions. Two of the seven mortality events occurred when zinc was 0.072 mg/L and 0.140 mg/L, and zinc concentrations as high as approximately 0.5 mg/L were observed in sampling conducted in May 2011. The toxicity of zinc is also exacerbated in low hardness water.

The concentrations of total selenium (Se, generally 0.05 to 0.010 mg/L) and total mercury (Hg, below 0.003 mg/L) do not appear to be of toxicological concern.

Data on iron (Fe) concentrations would be useful in determining its role in causing WET as this metal is typically a particulate in effluents and can be chronically toxic to C. dubia in the range of 1 to 2 mg/L.

Chloride (average approximately 70 mg/L, maximum 130 mg/L), and sulfate (average and maximum 371 and 710 mg/L, respectively) are not at concentrations likely to be directly responsible for WET to C. dubia, but this can be better determined with data on other major ions as discussed below.

Correlation assessments of C. dubia sub-lethal WET and chemical parameters monitored in accordance with the NPDES discharge permit requirements were conducted by ENVIRON. In general, poor correlation coefficients (r2 values) were observed (< 0.30). However, the r2 value for zinc and WET was 0.87, albeit for only three matched data pairs. Assessments of temporal trends in WET and chemical parameters also did not indicate likely associations.

The September 24, 2009 FTN Associates Memorandum on Phase I fractionation testing done in July 2009 implicated zinc as the causative effluent toxicant. This finding was consistent with the data. However, the possible role of an organic toxicant was not discussed. The success of the solid phase extraction (SPE) treatment and sublimation treatment also implicate a potential organic toxicant.

This Phase I testing evaluated acute toxicity, and was conducted on a sample that had been stored for approximately three weeks. The findings of this 2009 testing were inconsistent with the limited chronic fractionation testing done in 2007. This, in conjunction with the fact that changes have occurred at the site, indicate the need to conduct new targeted fractionation tests to identify potential

successful treatments and/or relate toxicity to changed production and operational conditions.

2.3 MSDS Data Review A review was also conducted of acute (48 and 96 hour) toxicity test data found in Material Safety Data Sheets for the wastewater treatment chemicals currently used on site (i.e., Nalco Core Shell 71303, Nalco Cat-Floc 71264, sulfuric acid, and calcium chloride). Emphasis was placed on the Nalco products as the other additives would be pH-neutralized and reflected in other data such as hardness, TDS, sulfate, and conductivity.

The MSDS toxicity test data for Core Shell 71303, a polymer-based flocculent, indicated respective acute fathead minnow and C. dubia LC50 values of 3.62 and 1.07 mg/L for tests conducted in “clean water” (i.e., laboratory water without dissolved organic carbon, or DOC).

The Cat Floc 71264 toxicity test data were generated for a “representative polymer” with Daphnia magna (water flea, similar to C. dubia) in water containing DOC, and indicated an acute LC50 value of 10 to 100 mg/L. It is difficult to extrapolate these acute data to potential chronic toxicity effects levels without knowing their acute to chronic ratio (ACR) values, and without C. dubia data for Cat Floc 71264. Additionally, DOC in the test water (and effluent) will decrease polymer toxicity, and the extent of this for Core Shell 71303 is unknown. Nonetheless, an acute C. dubia LC50 value of approximately 1 mg/L for Core Shell 71303 indicates a potential for toxicity for this product, especially given that chronic toxicity levels will be below 1mg/L. Information on the targeted effluent dose of this product would be useful to better interpret the potential role of Core Shell 71303 in causing effluent toxicity. It should be noted, that the general acute toxicity levels of both products to fish and invertebrates are similar (i.e., 1.07 to 3.62 mg/L for Core Shell 71303, and 10 to 100 mg/L for Cat Floc 71264).

The similar levels of product toxicity to fish and invertebrates is unlike that observed for the effluent (i.e., much more toxic to C. dubia), indicating that these products are likely not key candidates to be the causative effluent toxicant. Given the lack of chronic toxicity data on these products, this should be confirmed in the proposed TIE WET tests below.

3.0 Proposed Design of Experiment (DOE) In consideration of the observations above, the following DOE will be undertaken in October. The purpose of the DOE is to determine the toxic agent in the wastewater. All proposed testing will be done on final effluent samples. Sampling. Collect effluent from the NPDES compliance sampling point in a manner representative of that for NPDES WET test sampling. Chemical characterizations will

then be conducted on the sample for Ammonia, iron, aluminum, zinc, nickel, and boron; Total organic carbon (TOC) and dissolved organic carbon (DOC); TDS, hardness, alkalinity, Na, Mg, K, Ca, chloride, and sulfate; and Dissolved zinc, nickel, aluminum. Samples for DOC and dissolved metals analyses will be prepared by filtration with trace-metals quality 0.45 um pore size filter prior to sample preservation and analysis. WET testing, Fractionation. The following series of toxicity tests with aliquots of the initially-collected sample will then be completed. Effluent treatment (fractionation) will occur only once, and the same sample will be used for test solution renewals throughout the week. The goal of this testing is to implicate toxicants associated with various chemical groups as indicated below, and/or to develop data implicating specific conditions such as ion imbalance that may be contributing to effluent toxicity. All chronic WET tests will follow standard NPDES compliance testing methods, and be conducted with C. dubia at the NPDES pass/fail concentration of 100 percent effluent, as well as at a 50 percent effluent exposure concentration. Conventional “wet chemistry” parameters (pH, dissolved oxygen, etc.) will be monitored during WET testing. Mock Effluent. Following determination of effluent ion concentrations (Na, Mg, K, Ca, Cl-, SO4, alkalinity, and hardness), a mock effluent will be prepared to reflect key ion concentrations. Obtaining similar results to those of the above baseline test, and confirming an absence of toxicity to the fathead minnow would implicate such major ions and ion imbalance as a cause of WET historically observed at the site.

4.0 FUTURE ANALYSES AND TRE ACTIVITIES If successful, future tests will involve spiking of the mock effluent with other potential toxicants (Zn, Al,) to confirm the role of covariant toxicants in the system. Other testing will be proposed following review of the results from the above testing. These or similar fractionation evaluations will be repeated during different effluent conditions to determine whether results are repeatable under various discharge scenarios. Depending on test results, chemical analyses of post-treatment samples and/or effluent spiking tests may be incorporated. Successful treatments may be refined to reflect the most feasible, cost-effective full-scale wastewater treatment plant improvement options.

Attachment 2: TIE Status Report-

May 2012

TRE Status Report –

Almatis Outfall 001 Effluent

May 2012

Prepared For:

Almatis, Inc. Bauxite, Arkansas

Prepared by: ENVIRON International Corporation

Nashville, Tennessee

Date: May 2012

Project Number: 20-28319A

201 Summit View Drive, Suite 300, Brentwood, TN 37027 www.environcorp.com Tel: +1 615.277.7570 Fax: +1 615.377.4976 NELAP Accredited and Laboratory Certification in the following States: AR (02-008-0), AZ (0751), CA (2465), FL (E87896), IA (386), KS (E-10391), LA (02061), MN, NC (003), OK (9973), SC (84015), TX (T104704410-11-2), VA (460171), WI (399050850), WV (351) Test Results Contained in this Report Meet NELAP Requirements

May 23, 2012

Mr. James Whitener EHS Manager Almatis, Inc. 4701 Alcoa Road Bauxite, AR 72011 Re: TIE Status Report

ENVIRON Project No. 20-28319A

Dear Mr. Whitener:

Attached is a summary report of results of whole effluent toxicity (WET) tests, chemical analyses, and other data related to the ongoing toxicity identification evaluation (TIE) at the Almatis Bauxite, Arkansas facility. Key findings to date are:

WET test failures have been documented for the Outfall 001 effluent discharge for an approximately six-year period. Although one fathead minnow WET test failure was documented in 2012, C. dubia is still clearly the more sensitive test species. Sub-lethal effects to C. dubia were generally observed, but lethal effects were sometimes observed.

Comparison of effluent chemical data to WET test results did not indicate any strong associations, although the results of all chemical analyses are not yet available. Comparison of effluent chemical concentrations to literature-reported toxic concentrations for C. dubia, and correlation assessments between WET test and effluent chemical data also did not indicate a likely causative agent.

Although the low effluent hardness to alkalinity ratio (generally 0.3) is not optimum, it is unchanged between relatively toxic and non-toxic samples so long as effluent hardness is maintained above 50 mg/L CaCO3. This indicates that WET test compliance can be achieved under current conditions of increased effluent hardness if the source of intermittent WET can be identified.

The Coreshell 7103 polymer used on site was not implicated as a cause of WET.

The more toxic events observed during the monitoring period were associated with rainfall during the sampling period.

The generally consistent loss of sampling toxicity due to aging, and the results of air stripping fractionation tests indicate that a labile and likely volatile compound is associated with increased toxicity.

Mr. James Whitener -2- May 23, 2012

Planned testing efforts include wet weather and dry weather WET and chemical testing, with an emphasis on evaluating the role of readily degradable and volatile compounds in causing toxicity. Thank you for the continued opportunity to be of service to Almatis. Please do not hesitate to contact Scott Hall at (615) 277-7512 or [email protected] with any questions you may have. Sincerely, ENVIRON International Corporation

Scott Hall, Manager Patrick J. Campbell, PE Ecotoxicology Group Principal

Almatis Bauxite Facility Bauxite, Arkansas

TRE Status Report – Outfall 001 May 2012

20-28319A May 23, 2012 1

Background The Almatis, Inc. Bauxite, Arkansas Facility (Almatis) discharges treated process water and site runoff to a small, unnamed tributary to Hurricane Creek. As such, the facility’s National Pollutant Discharge Elimination System (NPDES) chemical-specific and whole effluent toxicity (WET) limits for the Outfall 001 discharge have to be achieved at “end-of-pipe.” The facility’s chronic (seven day) WET limit for the fathead minnow (Pimephales promelas) and water flea (Ceriodaphnia dubia) is therefore a no observed effect concentration (NOEC) value of 100 percent effluent. Any NOEC value of less than 100 percent constitutes non-compliance with NPDES permit limits. Historic Outfall 001 chronic WET testing indicated intermittent non-compliance with C. dubia, but generally indicated no toxicity to the fathead minnow. Persistent WET test failures in 2010 and 2011 required that Almatis, as a condition of its NPDES discharge permit, formally enter into a toxicity identification evaluation (TIE). Almatis retained ENVIRON International Corporation (ENVIRON) in support of resolving WET non-compliance. Study Approach ENVIRON conducted an initial data review and site visit in the fall of 2011. Subsequently, a Design of Experiment (DOE) was prepared for formal data review, and correlation assessments of WET test and effluent chemical data. Based on initial study findings, a monitoring program was implemented to more specifically assess relationships between WET and chemical parameters in Outfall 001 effluent. The monitoring program was initiated in February 2012. WET and chemical analyses followed standard US Environmental Protection Agency (USEPA) methods for wastewater analyses as prescribed in the Almatis discharge permit. Testing was conducted on 24-hour composite samples of Outfall 001 effluent. Results Initial Data Review – Fall 2011

The WET test data for testing conducted between 2007 and 2011 is summarized as follows:

Year C. dubia Tests

C. dubia Lethality failures

C. dubia Sub Lethality

failures

Fathead Minnow

Tests

Fathead Minnow Lethality failures

Fathead Minnow

Sub Lethality failures

2007 6 0 2 5 0 0 2008 10 1 4 3 0 0 2009 14 6 7 5 0 0 2010 4 0 1 3 1 1 2011 2 0 2 2 0 0

The initial data review considered these and additional WET test data, a review of Material Safety Data Sheet (MSDS) data, a review of Outfall 001 effluent chemical monitoring data for the monitoring period February 9, 2007 to August 16, 2011, and evaluation of a previously conducted preliminary TIE. Key findings were:

Almatis Bauxite Facility Bauxite, Arkansas

TRE Status Report – Outfall 001 May 2012

20-28319A May 23, 2012 2

C. dubia was the more sensitive WET test species.

Intermittent lethal and sub-lethal chronic WET to Ceriodaphnia dubia has been observed for an approximately five-year period, with a general lack of toxicity to the fathead minnow. WET levels to C. dubia were sufficient to cause NPDES permit non-compliance in 44 percent of test events. These data confirmed the high sensitivity of C. dubia in more recent test events, and indicated the transient nature of toxicity.

C. dubia WET was typically sub-lethal (i.e., suppression of C. dubia neonate reproduction), although test failures based on mortality were observed in seven of the 36 tests (19 percent occurrence). Since 2010, WET test failures were due to sub-lethal toxicity only.

The most toxic WET test event occurred on July 26, 2010 when both test organisms exhibited significant mortality in 100 percent effluent exposures and permit non-compliance occurred for both test species.

Effluent conductivity values ranged from approximately 1,000 to 2,500 umho/cm, and TDS concentrations ranged from approximately 450 to 1,400 mg/L. These conditions are of concern with respect to causing chronic toxicity to C. dubia, especially given the combination of low hardness and high alkalinity prevalent in the effluent. As compared to the fathead minnow, C. dubia is much more sensitive to the dissolved ions contributing to conductivity and TDS, thus implicating dissolved “major ions” as a potential contributor to WET given the clear differences in species sensitivity to the effluent.

Effluent ion imbalance is likely of concern with respect to causing C. dubia sub-lethal chronic WET. For example, effluent alkalinity ranged from 92 to 360 mg/L CaCO3 whereas effluent hardness ranged from 11 to 82 mg/L CaCO3. Conditions of an approximate hardness to alkalinity ratio of 1:1 are preferred by C. dubia, with the best conditions being when effluent hardness exceeds alkalinity. The opposite conditions prevailed in the Almatis Outfall 001 effluent.

Chloride (average approximately 70 mg/L, maximum 130 mg/L), and sulfate (average and maximum 371 and 710 mg/L, respectively) were not at concentrations likely to be directly responsible for WET to C. dubia.

Data were lacking on major ions such as sodium (Na), magnesium (Mg), potassium (K) and calcium (Ca) that would allow a better understanding of the role of ionic imbalance in causing C. dubia sub-lethal toxicity. The ratio of effluent Ca to Mg (key contributors to hardness) is also important to understand in assessing the role of ion imbalance in causing WET (generally a Ca:Mg ratio of 1:1 or greater is preferred by C. dubia).

Almatis Bauxite Facility Bauxite, Arkansas

TRE Status Report – Outfall 001 May 2012

20-28319A May 23, 2012 3

WET to C. dubia occurred on occasions where it could not be explained by effluent TDS or conductivity conditions. For example, toxicity occurred in WET test concentrations where effluent dilution would have eliminated salt and/or ion imbalance effects. This indicated that an additional, non-TDS related toxicant(s) was occasionally present in the effluent.

Although the initial dataset was small, an average effluent total aluminum (Al)

concentration of approximately 0.63 mg/L may be of concern depending on the proportion in the dissolved and various forms of Al. Zinc concentrations also may be of concern in the low hardness effluent. The concentrations of other heavy metals monitored do not appear to be of concern. Data on iron (Fe) concentrations would be useful in determining its role in causing WET. Iron can be chronically toxic to C. dubia in the range of 1 to 2 mg/L.

Correlation assessments of C. dubia sub-lethal WET and chemical parameters indicated poor correlation coefficients (r2 values < 0.30) for all constituents except total zinc (r2 0.87, albeit for only three matched data pairs). Two of the seven mortality events occurred when zinc was 0.072 mg/L and 0.140 mg/L, and zinc concentrations as high as approximately 0.5 mg/L were observed in sampling conducted in May 2011. The toxicity of zinc is also exacerbated in low hardness water.

Previously conducted preliminary TIE efforts indicated that particulate-

associated toxicants may be responsible for C. dubia WET, and also pointed to the possible role of zinc and an unidentified organic material in causing WET.

Assessments of seasonal trends in WET and chemical parameters did not indicate likely associations.

ENVIRON reviewed acute (48 and 96 hour) toxicity test data on Material Safety Data Sheets (MSDSs) for wastewater treatment additives used on site (i.e., Nalco Core Shell 7103, Nalco Cat-Floc 71264, sulfuric acid, and calcium chloride). Emphasis was placed on the Nalco products given that the other treatment additives would be pH-neutralized and/or reflected in other data such as hardness, TDS, sulfate, and conductivity.

The Coreshell 7103 (a polymer-based flocculant used on site as a settling

agent) toxicity test data indicated C. dubia and fathead minnow acute LC50 values of 1.07 and 3.62 mg/L, respectively. i) Given the similarity of product LC50 values for the two species, and ii) dissimilarity of effluent toxicity to the product testing requests, the product is likely not a key contributor to C. dubia WET. Further evaluation is warranted given the low LC50 values.

The Cat Floc 71264 toxicity test data were generated for Daphnia magna (water flea, similar to C. dubia) in water containing dissolved organic carbon (DOC), and indicated an acute LC50 value of 10 to 100 mg/L. It is difficult to

Almatis Bauxite Facility Bauxite, Arkansas

TRE Status Report – Outfall 001 May 2012

20-28319A May 23, 2012 4

extrapolate these acute data to potential chronic toxicity effects levels without knowing their acute to chronic ratio (ACR) values and without C. dubia data. Based on the relatively low toxicity of Cat FLoc 71264 to D. magna, it is unlikely that product is responsible for C. dubia toxicity.

Initial Test Efforts – November 2011

Based on the results of the initial data review, a DOE was prepared for initial WET testing and more focused effluent characterization. Various heavy metals of potential concern, ammonia, organic carbon, TDS, and major ions were monitored on two of the three samples used in the initial (November 2, 2011) chronic WET test with C. dubia. Key effluent-characterization parameters such as alkalinity and hardness were monitored on all three samples used in this initial test. The DOE included effluent fractionation (bench-scale treatments to remove toxicity due to specific chemical groups) if WET was observed. A fathead minnow WET test was also conducted, and confirmed the lack of toxicity to this test organism. The C. dubia chronic NOEC value was determined to be less than 32 percent effluent, and 70 percent test organism mortality was observed in 100 percent effluent exposures over the seven-day test (Table 1). Due to a marked increase in C. dubia mortality with test renewal with the third composite sample in the chronic test, acute toxicity tests were conducted with each of the three individual samples. These follow-up acute tests indicated sixty percent test organism mortality in the third sample as opposed to 20 percent or less mortality in the first two samples used in the chronic WET test. Effluent alkalinity, hardness, conductivity and TDS were similar to those historically observed (Table 2), indicating that the high level of chronic WET observed could not be explained by major ions alone. Results of chemical analyses also indicated that it was unlikely that conductivity, major ions, heavy metals, ammonia, or boron were responsible for the observed chronic toxicity, or the high level of C. dubia acute toxicity observed in the third sample. It was noteworthy that chloride and sulfate were elevated in the third, acutely toxic sample (as compared to the first sample), albeit not to concentrations that would have caused the observed acute toxicity in the third sample. Effluent fractionation was conducted on the first and third samples used in the initial chronic WET test (Table 3). Treatment steps were designed based on the results of the chemical analyses. C. dubia survival and reproduction in fractionated samples were compared to that in the baseline (unaltered effluent) toxicity test. Upon conducting the fractionation tests, it was determined that the first sample did not exhibit chronic toxicity (average neonate production was 16.2 and 16.6 in control and 100 percent effluent exposures, respectively). The fractionation results were inconclusive, although a slight improvement in C. dubia reproduction was observed following EDTA chelation to reduce the toxicity associated with divalent cationic metals. Fractionation of the third sample used in the initial chronic WET test indicated much lower mortality (90 percent survival over even days) in 100 percent effluent exposures as compared to when initially tested. This loss in toxicity indicates the presence of a labile toxicant, given the marked decrease in toxicity during refrigerated storage. A small but statistically significant sub-lethal effect was still present in the third sample (11.1 neonates produced on average as compared to 16.2 in control exposures). EDTA treatment again resulted in a small increase in average neonate production (14.2), but this finding was not considered significant due to the low concentrations of divalent cationic heavy metals in this sample, and the fact that toxicity due to heavy metals should not have decreased over time.

Almatis Bauxite Facility Bauxite, Arkansas

TRE Status Report – Outfall 001 May 2012

20-28319A May 23, 2012 5

Effluent Monitoring - 2012

Table 4 summarizes the results of WET testing and chemical analyses for Outfall 001 composite samples collected from early February to late April 2012 (n = 7). WET testing was conducted by American Interplex and ENVIRON, depending on laboratory availability. Chemical analyses were conducted by American Interplex. Additional notations are provided with respect to whether rainfall was observed during the sampling period. Due to occasional differences between WET test results among laboratories, the Table 4 data are also denoted with respect to which samples were most consistently indicated as toxic or non-toxic by both laboratories, and/or were clearly toxic as indicated by one laboratory. Review of these data and correlation assessments between chemical and WET test data indicated:

Data are not yet available for all testing events. However, when data were

available for chemical parameters for all of the relatively toxic and non-toxic events (Tests 2 and 4, and 5 and 6, respectively), no strong relationships were evident between WET and conductivity, calcium, sodium, boron, aluminum, zinc, or selenium concentrations, or the hardness to alkalinity ratio. − Correlation assessments of effluent chemical concentrations and WET

(as indicated by percent decrease in neonate production report by both laboratories) indicated a lack of a strong positive correlation between WET and any chemical parameters (r2 values < 0.3).

Although not a strong trend, the relatively toxic samples (Tests 5 and 6) were

characterized by low hardness (40 mg/L CaCO3) and somewhat decreased conductivity. These decreases in hardness and conductivity may be associated with rainfall during the sampling period.

Observations related to the potential impact of rainfall are as follows:

− The absence of rainfall during the two test events (Tests 2 and 4) when

both laboratories reported the absence of effluent toxicity (i.e., NOEC values of 100 percent effluent), additionally:

− Rainfall was noted during the two most toxic test events (Tests 5 and 6).

− With the exception of Test 7, the four NOEC values of less than 100 percent effluent (i.e., toxic samples) reported by American Interplex were all associated with rain events, whereas the two non-toxic events were for dry sampling periods.

− No association was evident between the amount of rainfall and the extent of toxicity to C. dubia. For example, the lowest amount of rain (0.54 inches) was documented for the test event when both laboratories indicted a high degree of toxicity (Test 6).

Almatis Bauxite Facility Bauxite, Arkansas

TRE Status Report – Outfall 001 May 2012

20-28319A May 23, 2012 6

To follow-up on the rainfall observations, Table 5 summarizes the testing events since November 2011, and indicates that WET excursions are often associated with rain events. Additionally, a pattern of loss of toxicity upon sample storage is also evident. Fractionation Tests – April 2012 The April 3, 2012 WET test indicated a high degree of toxicity by both WET test labs, and a sudden increase in test organism mortality was observed with test renewal with the third sample used in the chronic test. Acute toxicity was confirmed for this sample, and acute and chronic fractionation were conducted with C. dubia. Results for test exposures of 100 percent effluent are summarized below:

Fractionation Step Percent Survival (48 hr)

Baseline 0 EDTA 0 Sodium thiosulfate 0 0.45 µm Filtration 50 pH 11 Filtration 70 pH 3 Filtration 90 C18 0 Eluate Addition 0 Aeration 100 Sublation 70 Aging 100 GAC 50

Results of sample fractionation indicated:

Acute toxicity in the third sample was persistent (zero survival in baseline test)

EDTA, sodium thiosulfate, and C18 treatments were unsuccessful, indicating that divalent cationic metals, oxidants, and sorptive organics, respectfully did not contribute to toxicity

Re-addition of the C18 eluate to control water caused toxicity, this result

cannot be explained.

The relatively low level of mortality (30 percent) associated with re-addition of the aeration materials adhering to air-stripping vessels (i.e., sublation) is also considered anomalous.

Filtration resulted in modest toxicity removal, but toxicity removal by filtration

was enhanced by sample adjustment to pH 3 and pH 11 s.u. This may

Almatis Bauxite Facility Bauxite, Arkansas

TRE Status Report – Outfall 001 May 2012

20-28319A May 23, 2012 7

indicate the presence of two toxicants that are precipitated at low and high pH, and/or hydrolysis of the toxicant(s) by pH adjustment.

Aeration (air stripping) and aging (in an open vessel for two days at room

temperature) resulted in complete removal of acute toxicity. The aged sample test was conducted as a chronic test, and neonate production was observed during this test.

Polymer Testing – 2012 Table 6 summarizes the results of pre- and post-polymer addition WET testing. Effluent was collected immediately above and below the point of addition of the Coreshell 7103 flocculant. In the first two rounds of testing, effluent samples were less toxic following polymer addition as compared to the pre-polymer sample. In the third round of tests, both sample sites indicated higher levels of toxicity than in the first two test events, but the pre-polymer sample was less toxic than the post-polymer sample. This testing indicated that polymer addition does not markedly increase effluent toxicity. Summary Key study findings were:

WET test failures have been documented for the Outfall 001 effluent discharge for an approximately six-year period. Although one fathead minnow WET test failure was documented in 2012, C. dubia is still clearly the more sensitive test species. Sub-lethal effects to C. dubia were generally observed, but lethal effects were sometimes observed.

Comparison of effluent chemical data to WET test results did not indicate any strong associations, although the results of all chemical analyses are not yet available. Comparison of effluent chemical concentrations to literature-reported toxic concentrations for C. dubia, and correlation assessments between WET test and effluent chemical data also did not indicate a likely causative agent.

Although the low effluent hardness to alkalinity ratio (generally 0.3) is not optimum, it is unchanged between relatively toxic and non-toxic samples so long as effluent hardness is maintained above 50 mg/L CaCO3. This indicates that WET test compliance can be achieved under current conditions of increased effluent hardness if the source of intermittent WET can be identified.

The Coreshell 7103 polymer used on site was not implicated as a cause of WET.

The more toxic events observed during the monitoring period were associated with rainfall during the sampling period.

Almatis Bauxite Facility Bauxite, Arkansas

TRE Status Report – Outfall 001 May 2012

20-28319A May 23, 2012 8

The generally consistent loss of sampling toxicity due to aging, and the results of air stripping fractionation tests indicate that a labile and likely volatile compound is associated with increased toxicity.

Planned Efforts The upcoming testing is planned for late May and June 2012:

Dry-weather acute WET testing of Outfall 001 effluent and two upstream locations. Chemical analyses for TOC, COD, volatile and semi-volatile compounds, and tentatively identified compounds (TIC) will also be conducted on WET test samples.

− If acute toxicity is observed, aged and air-stripped samples will be re-

tested, and chemical analyses conducted on treated samples. Wet-weather WET testing will be conducted at the same locations, and

coordinated with selenium sampling.

A review of site operations will be conducted for comparison to WET test results over time to determine whether changes in site operations could have accounted for some of the observed toxicity.

20-28319A - May 2012 ENVIRON

Table 1. Initial TIE Test Results (November 2, 2011 test)- Almatis Outfall 001 Effluent (a)

2011 2011 48-hour 7-day 7-day NOECTest Test Exposure Sample Test Lethality Lethality Average Neonate Value

Date Date (%) (%) Reproduction (% effluent)

Initial Chronic Test32, 42, 56, 75, 100% effluent exposures 11/1 to 11/4 (b) 11/1 10 70 * 0 (c) < 32

Follow-up Acute (d) 100% effluent only 11/1 11/11 0 NA NA 100 11/2 11/11 20 NA NA 100

11/4 11/11 60 NA NA < 100

(a) Data for Ceriodaphia dubia only (no toxicity to fathead minnow in initial chronic test). Data for 100 percent effluent exposures (except NOEC values).Test acceptability criteria were met for all toxicity tests. (b) Three separate composite samples.(c) As compared to an average of 15.8 neonates per female in control exposures.(d) Samples are the same three used in the initial chronic toxicity test.NA = Not Applicable. * Majority of mortality observed after test renewal with third (11/4) sample.

20-28319A - May 2012 ENVIRON

Table 2. Initial TIE Chemical Analyses (November 2, 2011 test) - Almatis Outfall 001 Effluent (a)

Parameter UnitsInitial Chronic - All 3 samples (11/1 to 11/4)

Initial Chronic Test - FIRST Sample Used in TIE (11/1)

Initial Chronic Test - THIRD Sample Used in TIE (11/3 to

11/4) *

HISTORIC Range 2007 to

2011

pH su 7.6 to 7.9Dissolved Oxygen mg/L 7.8 to 8.4Specific Conductance umho/cm 1,300 to 1,500 1,300 1,500 1,000 to 2,500Total Hardness mg/L as CaCO3 57 to 73 (b) 73 57 11 to 85Total Alkalinity mg/L as CaCO3 270 to 280 270 280 92 to 360

Tot. Diss. Solids mg/L 940 not run 450 to 1,500Sodium mg/L 380 330Magnesium mg/L 1.3 1.1Potassium mg/L 6.6 5.6Calcium mg/L 25 18Chloride mg/L 9.3 89 22 to 130Sulfate mg/L 41 430 190 to 710Ammonia-N mg/L 0.23 not runTot. Organ. Carbon mg/L 6.1 4.3Diss. Organ. Carbon mg/L 4.5 not runTotal Boron mg/L 2.5 2.0Total Iron µg/L 21 < 7Total Aluminum µg/L 310 130 40 to 15,000Diss. Aluminum µg/L 49 not runTotal Nickel µg/L < 10 < 10Diss. Nickel µg/L < 10 not runTotal Zinc µg/L < 2 < 2 < 2 to 540Dissolved Zinc µg/L < 2 not run

(a) Data for 100 percent effluent.(b) Lowest hardness was associated with third sample.* Various priority pollutant metals were run, all were non-detect (Hg not assessed)

20-28319A - May 2012 ENVIRON

Table 3. Initial TIE Fractionation Results (November 2, 2011 tests) All values are for 7-day results.

Survival Survival Avg. Neonates Avg. NeonatesTest Event and Control 100% Control 100%

Fractionation Treatment Exposure (a) Effluent Exposure (a) Effluent

First Sample Used in Initial Chronic Test

Baseline Control 100 --- 16.2 ---Baseline Effluent (unaltered) --- 100 --- 16.6

Filtrered (1 um) Effluent --- 100 --- 14.2Hardness Increase Effluent --- 100 --- 12.6 *Alkalinity Decrease Effluent --- 90 --- 11.7 *

3 mg/L EDTA Control (b) 90 --- 16.7 ---3 mg/L EDTA Effluent --- 100 --- 19.0

Third Sample Used in

Initial Chronic Test

Baseline Control 100 --- 16.2 ---Baseline Effluent (unaltered) --- 90 --- 11.1 *

3 mg/L EDTA Control (b) 90 --- 16.7 ---3 mg/L EDTA-treated Effluent --- 100 --- 14.2

GAC Control (c) 100 --- 12.6 ---

GAC-treated Effluent --- 0 --- 0 *

(a) Baseline controls were unaltered control water, EDTA and GAC.Controls were treated with EDTA or GAC as done for 100 percent effluent.(b) Ethylene-di amine-tetracetic acid (chelates divalent cationic metals).(c) GAC = Granular Activated Carbon treatment.

--- = Not applicable. * Indicates statistically significant decrease (alpha 0.05) versus control.

Table 4. Results of Spring 2012 WET and Chemical Monitorig of Outfall 001 Effluent - Almatis Bauxite, Arkansas

20-28319A - May 2012 Page 4 of 7 ENVIRON

Test Rain in WET AI(a) ENVIRON AI(a) ENVIRON AI(a) ENVIRON Hardness Alkalinity Hard: Conductivity Total Nitrite Nitrate F Cl-Test Iniitiation Sample # Survival Survival NOEC NOEC % Reduced % Reduced from WET from WET Alk from WET Ca:Mg Ammonia (NO2) (NO3) TOC TDS Fluoride ChlorideNo. Date (inches) (%) (%) (% efflunt) (% efflunt) Reprodctn. Reprodctn. Test Test Ratio Test Ratio mg/L as N mg/L as N mg/L as N mg/L mg/L mg/L mg/L1 Feb. 1 2, 3 (2.5" ea.) 60 100 < 100 100 33 0 85 218 0.39 18 0.1 0.05 0.16 3.7 700 0.73 682 Feb. 7 Dry 100 100 100 100 0 0 66 203 0.32 840 13 0.1 0.05 0.12 3.5 720 0.88 473 Feb. 14 2 (1.6") 100 100 < 100 100 56 0 51 187 0.27 15 0.5 0.05 0.05 2.9 750 0.92 554 March 6 Dry 100 100 100 100 9.8 6.6 63 187 0.34 880 --- 0.4 --- --- --- --- --- ---5 March 20 1 (5.6") 10 No test < 100 No test 100 No test 40 153 0.26 807 15 --- --- --- --- --- --- ---6 April 3 3 (0.54") 0 0 < 100 < 100 100 97 40 130 0.31 720 20 --- --- --- --- --- --- ---7 April 24 Dry 100 No test 56 * No test 36 No test 75 140 0.53 667 --- --- --- --- --- --- --- ---

--- Analysis not conducted.* Fathead minnow NOEC value also 56 percent effluent, pathogen suspected but not confirmed. Considered a non-toxic event.Considred a most-toxic event.

(a) American Interplex.

C. dubia WET TEST DATA Average Effluent Test Data(a) Average Analyte Data(a)

Table 4. Results of Spring 2012 WET and Chemical Monitorig of Outfall 001 Effluent - Almatis Bauxite, Arkansas

20-28319A - May 2012 Page 5 of 7 ENVIRON

TestTest IniitiationNo. Date1 Feb. 12 Feb. 73 Feb. 144 March 65 March 206 April 37 April 24

--- Analysis not con* Fathead minnow N Considered a non-to Considred a most-to

(a) American Interp

Si SO4 Na Mg K Ca B Al Zn Se FeSilicon Sulfate Sodium Magnesium Potassium Calcium Boron Aluminum Zinc Selenium Ironmg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L0.90 270 237 1.6 5.0 28.7 1.5 0.15 0.0043 0.0028 0.0530.89 280 263 1.6 4.4 21.7 1.4 0.26 0.0063 0.0031 0.0440.88 320 260 1.3 4.8 18.7 1.6 0.93 0.0037 0.0028 0.160--- --- --- --- --- --- --- --- --- --- ------ --- 220 0.8 4.1 12.0 1.5 0.23 0.0065 0.0025 ------ --- 250 0.8 4.0 15.0 1.7 0.36 0.0052 0.0026 ------ --- --- --- --- --- --- --- --- --- ---

--- Analysis not conducted.* Fathead minnow NOEC value also 56 percent effluent, pathogen suspected but not confirmed. Considered a non-toxic event.Considred a most-toxic event.

(a) American Interplex.

Average Analyte Data

20-28319A - May 2012 ENVIRON

Table 5. Summary of Almatis Ceriodaphnia TIE WET Testing - Fall 2011 to 2012

Average AverageTest Key Findings Comments Hardness(a) Alkalinity(a)

Date ppm ppm

Nov 1, 2011 Failed Chronic WET, 3rd sample Rained apprx. 2.5" on 11/2 & 11/3, &was especially toxic. corresponds w/ high toxy. of 3rd sampleAcute toxicty confirmed for 3rd sample Stable toxicity in subsequent fractionations

but less toxic vs. original sample.EDTA-treated showed slight toxicty decrease

Feb. 1. 2012 Toxic at Intrplx, not at ENVIRON Had rain in second sample 85 218

Feb. 7 Non-toxic @ both labs Dry 66 203

Feb. 14 Toxic at Intrplx, not at ENVIRON 1.6" rain in second sample 51 187

Mar. 6 Non-toxic @ both labs Dry, & Also not toxic to fish (Intplx. Test) 63 187

Mar. 20 Acutely toxic (80% mortal. @ T-48) 5.6" rain in first sample 40 153Zero dead in acute re-test of toxic sampleLarge increase in COD seen @ Lg. Strom Lk.

Apr. 3 Toxic at both labs, esp. in 3rd sample 0.54" rain in 3rd sample. 40 133Fractionation of 3rd sample showed aging & air stripping esp. remove WET, 1 um filt. helps some

Apr. 24 Toxic (NOEC 56%) Dry 75 140Toxic to fish too, NOEC 56% - pathogen

(a) From American Interplex WET tests.

20-28319A - May 2012 ENVIRON

Table 6. Results of Pre- and Post-polymer WET Testing

Test Initiation % % Number Number % Neonate % NeonateDate - 2012 Percent Survive Survive Neonates Neonates Reduct'n Reduct'n Comments/Conlsusions

Notes Effluent (a) PrePoly PostPoly PrePoly PostPoly PrePoly PostPoly

Mar. 20 0 100 100 22.3 22.3 NA NA Post polymer less toxic on bothAvg. Hdss 50 90 100 1.5 19.5 93 13 survival and reproduction basis.43. Avg. 100 60 90 0 10.2 100 54Alky. 160

Aprox. BothWaters

Mar. 27 0 100 100 22.0 22.0 NA NA Post polymer less toxic, but only

Avg. Hdss 50 70 80 2 1.3 91 94 on a survival basis.45. Avg. 100 40 100 0 0 100 100Alky. 150

Aprox. BothWaters

April 3 0 100 100 23.0 23.0 NA NA Both waters relatively toxic, but

Avg. Hdss 50 100 0 13.4 0 42 100 Pre polymer is less toxic after42. Avg. 100 0 0 0 0 100 100 50% dilution. Alky. 140

Aprox. BothWaters

(a) Waters collected upstream in the treatment system, immediately pre- & post-polymer addition. 0 = lab control water.

NA = Not Applicable.

Attachment 3: Polymer Evaluations Report

1  

Polymer Experimentation Bench Trials Report  

TableofContentsBackground Information‐Polymer Changes: ............................................................................................. 1 

Literature search to evaluate the hypothesis:........................................................................................... 2 

Lab Testing‐Phase I: .................................................................................................................................. 4 

Conclusions of Phase I testing: .................................................................................................................. 6 

Lab Testing –Phase II‐ September 7th, 2012 ............................................................................................. 6 

Conclusions from Phase II testing‐ September 7th, 2012. ......................................................................... 8 

Lab Testing‐Phase III – September 13th, 2012 .......................................................................................... 8 

Recommended Path Forward:................................................................................................................... 9 

Research Articles: .................................................................................................................................... 10 

 

BackgroundInformation‐PolymerChanges:1. Prior to 2008 we were using Nalco 7751 Ultimer polymer. 2. We started using ECO 2010A polymer supplied by ECO Tech Enterprises Inc in 2008. 3. On 10/14/2009 switched to ECO 111 from ECO Tech. The switch to Eco tech was

because the chemicals were cheaper. 4. Due to bio-failures a switch was made to Nalco core shell polymer 71303 in March 2010.

Since the biological test failures have happened sporadically for the Ceriodaphnia sometimes for survival and other times for re-production.

Hypothesis: Of the various causal factors listed below in the Fishbone diagram the polymer was a key suspect for the failures related with toxicity of the Ceriodaphnia.

 

Machine Personnel

Process Control Lack of in house expertsInstrumentation on Toxicological Issues

EffectFailure of C.Dubia Toxicity

Rainfall

CaCl2 Algae Blooms, sunlightH2SO4 Water TempPolymer pH, Toxins from environment

Material Environment Method

Dissolved Oxygen

Recycling of thickened solids to Storm Lake

2  

Literaturesearchtoevaluatethehypothesis:In the 4th quarter of 2010, FTN conducted bench tests to understand the effect of variation in polymer dosing and/or the response of the storm lake water to the treatment. Nalco 71303 polymer was added at 4 different levels (1, 4, 8, 16 mg/L by weight). Results of the toxicity tests showed that, “although all treated samples showed significantly less reproduction than the control, there is a distinct dose‐response with increasing polymer addition.”  The hypothesis at that time was that the lower polymer addition levels was due to fine suspended materials resulting from incomplete flocculation and precipitation. Accordingly, an experiment was designed to repeat the November 2010 tests with concurrent testing of filtered and unfiltered test exposures. The results are shown below in Table I.  Table I – Unfiltered sample tests Nov 2010 compared with filtered bench top tests March 2011. 

 For purposes of comparison the results of the unfiltered sample tests from the November 2010 and March 2011 bench top tests are presented in Table I. In contrast to the March 2011 results, the November 2010 tests not only showed no lethal toxicity at the 8 and16 mg/L polymer treatments but improved organisms performance (average number of neonates produced) at those treatments relative to treatment with lower polymer additions. However, comparing two time periods with changes in the water and the absence of baseline toxicity data on untreated water was troubling and hence this test was ruled inconclusive.  

Results of the toxicity tests on the treated filtered and unfiltered samples are presented in Table 2. “Visual inspection of Table I indicates a sharp response to the polymer level in unfiltered samples with lethal toxicity present in the 8 and 16 mg/L unfiltered treatments. Filtration had little effect on reproduction in the non‐lethal filtered treatments (2 and 4 mg/L). For the lethal filtered treatments filtration had a dramatic effect removing both lethal and sub‐lethal toxicity relative to the unfiltered treatments.”  

Table 2‐ survival data for neonates during the November 2010 and March 2011 testing.

  

3  

Literature searches showed that in Organic Emulsion Cationic polymers (similar to the Nalco 71303 polymer that was in use at Almatis) were the most commonly used treatment chemical in most waste water treatment plants but in some cases they caused bio‐failures. Several companies made the switch to anionic polymers and survival for Ceriodaphnia Dubia increased substantially and toxicity issues were reduced. Nalco also confirmed that one of their customers was using the 71303 polymer had similar issues and they had to switch to an alternate anionic polymer.  

From the above literature search it was quite evident that the hypothesis that the 71303 cationic polymer could be a key causal agent for toxicity had to be re‐tested. In plant operation no filtration is performed and flocculent carry over at the clarifiers is readily observable. This could have been part of the cause of the toxicity and the variability that was observed in the survival and reproduction of the C.Dubia species. 

Simultaneously the MSDS for Nalco polymer 71303 was reviewed and the following information was observed. The LC50 value for Ceriodaphnia dubia was very low at 1.07 mg/l.  

Table 3‐ Acute toxicity results from Nalco Polymer 71303

 

If for some reason the polymer is not consumed completely, it could be quite detrimental to the C. Dubia due to the very low LC 50 value and this was a concern. MSDS sheets of other potential polymers from the past such as Ultimer 7751 were also reviewed. In order to understand if any residual chemicals were present in the water causing toxicity, samples were sent to American Interplex for TIC’s. They determined the key organic compounds in the untreated and treated water samples. The table 4 below shows the results obtained from American Interplex.  

 

 

Table 4‐ Compounds found in the outfall or treated water during various events (with & without rain)

 

4  

Nalco core shell polymer 71303 was sent to American Interplex and they checked if these residues matched with the water treated intentionally with the 71303 polymer at different dosage levels.  . They prepared a 2 ppm solution of polymer with DI water and analyzed using GC/MS for comparison with the previously submitted samples whose TIC’s are shown in the table 4 above. The 2 ppm solution was extracted the same day and 3 days later for TIC identification. The compounds were matched using their spectral lab and found to contain dodecane and tridecane and the concentration dropped over 3 days. (Table 5). Some of these compounds matched with what was observed in the effluent samples (Table 4) and so the polymer being used became the “prime suspect”. 

Table 5‐ TIC compounds identified with 2 ppm of Nalco Polymer 71303 and then ageing it for 3 days.

 

Table 6 ‐% Mortality ‐ 48 hours Ceriodaphnia Dubia for the 71303 Core shell Polymer (CS) Exposure  0.25 ppm CS  0.5 ppm CS      Unaltered  20  85 Air Stripped  0  0 Aged (2 d)  5  10 Testing by Environ also showed that air stripping (Table 6) or aging the samples caused a reduction in toxicity. 

So a growing consensus was developing that we should investigate alternate polymers including the Ultimer 7751 which had a much higher LC 50 value as compared to the 71303. (see table 7) 

Table 7‐ Acute toxicity information for Ultimer 7751 Nalco polymer

 

Discussions within Almatis ensued as to why we switched polymers to begin with in 2008 from the Ultimer 7751 and if we should go back. It was clear that we were failing the metals testing and hence a change to the 71303 was proposed. In all fairness it appears that the metals data was brought back under control using the 71303 except that it caused bio‐failures on an intermittent basis. 

LabTesting‐PhaseI:In discussions with Nalco, it was clear that several alternatives should be examined and so the first series of tests were conducted on August 01st with the goal of optimizing both metals and toxicity. The tests were conducted in the Arkansas lab using 43C tank water for the baseline (treated with Calcium Chloride and Sulfuric acid to address the hardness and pH issues using the WWTP systems). The test protocol involved treating six 1000 ml jars of 43C water with the coagulant first with the necessary dosage (if used), mixing for two minutes and then adding the polymer at the appropriate dosage level and stirring for 3 minutes. The mixture was allowed to settle for five minutes. The samples were intentionally not filtered to simulate plant conditions. Only one sample of the 71303 with 5 mg/L was filtered so that we could compare with the unfiltered sample to see if there was any effect of filtration.  

5  

The water samples were sent on Aug 8th, 2012 to Nalco for metals data in their labs (excluding Selenium). Nalco independently filtered some of these samples to see if metals data would be significantly better than if they were not filtered (Total). The samples were tested on Aug 14th and the data is shown in the Table 8: 

Table 8 ‐ Nalco Polymer bench testing metals data‐ Aug 08, 2012

 

Samples were sent to Environ on August 8th for 48 hour acute mortality and the results obtained are shown in the Table 9: 

Table 9 – Mortality data after 48 hrs acute toxicity testing of neonates of C.Dubia. 

Exposure  % mortality

Lab Control   0 

Filtered Total Filtered Total Filtered Total Filtered Total Filtered Total Filtered TotalAluminum 0.11 4.1 0.2 0.43 0.21 0.44 0.43 0.55 0.18 0.21 0.24 0.87Barium 0.01 0.01 0.1 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01Boron 2.4 2.4 2.5 2.6 2.5 2.5 2.5 2.5 2.5 2.5 2.4 2.5Cadmium 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01Calcium 25 25 25 27 25 25 25 26 26 26 25 26Calcium (CaCO3) 63 63 62 67 63 63 63 66 64 66 62 65Chromium 0.02 0.02 0.02 0.03 0.02 0.03 0.02 0.02 0.02 0.02 0.02 0.03Copper 0.03 0.03 0.03 0.06 0.03 0.06 0.03 0.03 0.03 0.03 0.03 0.06Iron 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.02 0.02 0.07 0.02 0.04Lead 0.1 0.1 0.11 0.2 0.11 0.2 0.1 0.1 0.1 0.1 0.11 0.2Lithium 0.09 0.09 0.09 0.1 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09Magnesium 0.19 0.19 0.2 0.3 0.2 0.3 0.22 0.23 0.2 0.2 0.18 0.3Magnesium (CaCO3) 0.78 0.8 0.8 1.2 0.82 1.2 0.9 0.96 0.8 0.81 0.76 1.2Manganese 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01Molybdenum 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.1 0.09 0.09 0.09 0.09Nickel 0.01 0.01 0.01 0.02 0.01 0.022 0.01 0.01 0.01 0.01 0.01 0.02Phosphorus 0.03 0.03 0.03 0.06 0.03 0.06 0.03 0.03 0.03 0.03 0.03 0.06Potassium 5.4 5.6 5.6 6.2 5.7 5.9 5.6 5.9 5.7 5.9 5.6 6.1Silicon 1.1 1.2 1.2 1.2 1.1 1.2 1.1 1.2 1.1 1.2 0.1 1.2Silica 2.3 2.6 2.5 2.6 2.5 2.5 2.4 2.6 2.4 2.5 2.3 2.5Sodium 300 310 310 330 310 310 310 320 310 320 300 320Sodium (CaCO3) 660 670 670 720 670 680 670 690 670 700 660 700Strontium 1.3 1.3 1.2 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.2 1.3Vanadium 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.02 0.02Zinc 0.01 0.01 0.01 0.02 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.02Total Hardness 64 64 63 68 64 64 64 67 65 67 63 66Chloride 62 78 60 63 66 59Nitrite 2 2 2 2 2 2Bromide 2 2 2 2 2 2Nitrate 2 2 2 2 2 2Sulfate 330 400 320 330 330 340Chloride (CaCO3) 88 110 85 88 93 83Nitrate (CaCO3) 1.6 1.6 1.6 1.6 1.6 1.6Sulfate (CaCO3) 350 420 340 340 340 350Total Alkalinity (CaCO3) 260 260 260 260 250 260P ‐ Alkalinity (CaCO3) 10 10 10 10 10 10Bicarbonate (CaCO3) 260 250 250 250 240 250Carbonate (CaCO3) NA 10 10 16 11 13Inorganic Phosphate 0.2 0.2 0.2 0.2 0.2 0.2Ortho Phospahte 0.1 0.1 0.1 0.1 0.1 0.1Organic Phosphate 0.2 0.2 0.2 0.2 0.2 0.2Polyphosphate 0.2 0.2 0.2 0.2 0.2 0.2Total Phosphate 0.2 0.2 0.2 0.2 0.2 0.2Conductivity 1400 1400 1400 1400 1400 1400pH @ 25C 8.2 8.3 8.3 8.5 8.4 8.4

y g g71303 1.0 ppm UF w/ 10 ppm 71264 7751 10.0 ppm UFTank 43C Control 71303 2.5 ppm UF 71303 5.0 ppm UF 71303 5.0 ppm Fil

6  

Pre Polymer‐Tank 43C   0 Tank 43C +71303 @ 2.5 mg/L  100 Tank 43C +71303 @ 5 mg/L  100 Tank 43C +71303, 5 mg/L Filtered  100 Tank 43C +7751 @ 10 mg/L  0 Tank 43C +71303 @ 1 mg/L +10 mg/L ferric 

35 

ConclusionsofPhaseItesting:a) Tank 43C untreated had 4.1 ppm of Al metal.  b) Al data was ~0.44‐0.5 with 71303 at 2.5 and 5.0 ppm were similar. No substantial reduction 

between the filtered and unfiltered samples in the Total sample. Mortality 100% in all three levels of 2.5‐5.0 ppm (filtered and unfiltered). This gave us a decisive answer that 71303 was toxic even at these low levels of addition. 

c) 7751 10 ppm samples passed the metals test but Al values were close (0.87 in the total samples) as compared to the allowable limit of 1 ppm. Zn and other metals were below the limits. Zero mortality in the 48 hr acute tests for the C. Dubia due to this polymer. 

d) A lot of the flocculated particles were floating on all of the treated samples after 5 mins of settling. 

e) Even at the lower dosage level of 1 ppm of 71303 with 10 ppm of Ferric Chloride (71264) the Al content was at  low at 0.21 ppm. With this reduced dosage of 71303, mortality was still high at 35% in the 48 hr acute mortality test.  

f) From this series of tests, it was felt that 7751 was a potential option but it still was cationic polymer. 

LabTesting–PhaseII‐September7th,2012The purpose of the second series of tests was to test if the Anionic polymer 7757 would perform as well as the cationic polymer in terms of settling the metals. Further, we wanted to evaluate if Nalco Polymer 7751 in conjunction with a coagulant such as Ferric Chloride with Epi‐DMA (71264) or Ferric Sulfate (8131) would perform better in terms of settling the metals. So this was bench screening experiment using the Arkansas Lab and the PMD lab to run ICP’s. No bio‐testing was done with these samples. From the screening test results obtained below the best candidates were chosen for both metals and bio‐testing the following week (September 13th, 2012).  

In this series of testing water was obtained from the 43C tank by gravity feeding it from the tank as the WWTP was shutdown. Calcium chloride solution was drained from the plant solution system and 98% H2SO4 solution was obtained from the Arkansas lab. The CaCl2 dosage was calculated to give a hardness similar to what was present in the plant using the addition tables. pH of the water was measured and the amount of H2SO4 addition was adjusted to get the water pH down to 6.8. This “conditioned” water was used for all subsequent tests samples 2‐10. 

Treatment was as in the first set of experiments. Coagulants were added first and allowed to mix for 2 minutes and then the polymer was added and allowed to mix for 3 minutes. The mixture was allowed to settle for 5 minutes and the solution was decanted to bottles for analysis on the ICP. 

 

 

7  

 

Table 10 – Nalco jar test metals data evaluated in the Arkansas Lab‐ September 07, 2012 

 

 

 

 

 

 

 

 

Sample 1Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample 7 Sample 8 Sample 9 Sample 10

43C2.5 ppm 71303

2.5 ppm 71303

10 ppm 7751

10 ppm 7757

5 ppm 7751

5 ppm 7751

5 ppm 7757

5 ppm 7757

5 ppm 7757

Control10 ppm

869110 ppm 71264

10 ppm 8131

10 ppm 71264

10 ppm 8131

Ag <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006Al 3.98 0.645 0.714 3.26 0.644 2.44 3.14 0.896 0.408 0.766As 0.007 0.003 0.003 0.006 <0.002 0.004 0.005 0.002 0.004 <0.002B 2.28 2.24 2.23 2.20 2.20 2.21 2.17 2.16 2.10 2.13Ba 0.011 0.582 0.011 0.011 0.010 0.069 0.013 0.011 0.010 0.010Be <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001Ca 23.8 23.8 23.3 24.1 24.0 24.5 23.6 24.1 22.9 23.4Cd <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001Co <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.001 <0.001 <0.001 <0.001Cr 0.041 0.005 0.006 0.035 0.008 0.026 0.032 0.011 <0.003 0.007Cu 0.007 0.008 0.006 0.008 <0.005 0.010 0.011 0.009 <0.005 0.005Fe 3.190 0.833 0.925 2.550 0.873 3.08 3.70 1.34 0.959 0.868Ga 0.06 <0.03 0.04 0.10 0.04 0.06 0.06 0.04 0.05 0.05K 7.33 7.48 7.46 7.42 7.48 7.70 7.58 7.57 7.38 7.53Li 0.101 0.100 0.102 0.102 0.106 0.106 0.103 0.104 0.103 0.105Mg 0.485 0.466 0.446 0.461 0.445 0.494 0.465 0.438 0.420 0.429Mn 0.022 0.019 0.020 0.021 0.019 0.027 0.022 0.024 0.019 0.019Mo 0.092 0.093 0.093 0.091 0.094 0.093 0.093 0.094 0.092 0.093Na 280 277 281 275 281 284 283 288 273 281Ni 0.080 0.064 0.065 0.077 0.065 0.074 0.078 0.067 0.061 0.065Pb <0.001 0.421 <0.001 <0.001 <0.001 0.009 <0.001 <0.001 <0.001 <0.001Sb <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001Se 0.006 0.004 0.004 0.004 0.004 0.004 0.004 0.005 0.005 0.004Si 1.160 0.965 1.33 1.10 0.908 1.03 1.10 0.986 0.871 0.888Sr 1.27 1.30 1.27 1.26 1.27 1.29 1.26 1.26 1.23 1.25Ti 0.004 0.007 0.004 0.002 0.004 0.007 0.004 0.004 0.004 0.004Tl <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001V 0.020 0.007 0.006 0.017 0.008 0.014 0.018 0.006 0.005 0.007Zn 0.044 0.026 0.024 0.030 0.025 0.036 0.042 0.026 0.022 0.040Zr 0.026 0.272 <0.003 <0.003 <0.003 0.484 <0.003 <0.003 <0.003 <0.003

All results reported as ppm -Tested in Arkansas Lab

8  

ConclusionsfromPhaseIItesting‐September7th,2012.a) Polymer 7751 containing samples (4,6&7) showed very high values of Al metal much above the 

limit of 1.0 ppm and hence they did not pass. b) Polymer 7757 containing samples(5,10) without any coagulants showed acceptable levels of Al, 

Zn and Se. These qualified for further bio‐testing on C.Dubia.  c) Polymer 7757 containing samples (8, 9) both had acceptable Al, Zn and Se levels. However, the 

8131 coagulant at 10 ppm addition rate seemed to outperform the 71264 coagulant at 10 ppm addition level. Both of the samples were chosen for the next set of experiments with bio‐testing. 

d) In a majority of the 7757 polymer samples there were no floaters at the top of the jars whereas with the 71303 and 7751 treated there were a substantial number of floaters. 

LabTesting‐PhaseIII–September13th,2012Due to the success of the 7757 it was felt that it had to be tested for acute and chronic toxicity with and without coagulant additions. Nalco recommended after discussions with the Toxicologist on staff that the 71303 toxicity could be reduced by the addition of silica gel (8691). The hypothesis was that any excess polymer present after the cations reacted with the metals would be tied up by the Silica gel and thus toxicity would be reduced. In order to confirm that the 71303 was toxic at the 2.5 ppm level it was repeated with and without 8691 silica gel in this set of experiments.  

The waste water system was in recirculation mode after 3 hours of startup when the samples were taken from 43C tank. Several 5 gallon buckets of water were collected from 43C and transported to the Arkansas lab. This time the Calcium chloride system and the sulfuric acid systems were functional and hence nothing was added to this water. It’s pH and conductivity was measured and found to be at 6.8 and in the acceptable range. 6 liters were used for each of the tests conducted.  The treated samples were taken by Nalco and analyzed in their lab. A one liter cubitainer was sent by overnight mail to Environ for bio testing for acute (48 hrs survival) and chronic toxicity (7day reproduction).The treatments and the Biometric testing data are shown in the Table 11. 

Table 11 – Neonates survival and reproduction data from jar testing‐ Sept 13, 2012 

Environ‐7 day Chronic testing‐  September 13th, 2012 

% Dead  Avg. # per Female: Neonates Produced 

Lab control  0  33.3 Tank 43C  0  32.3 Tank 43C + 2.5 ppm 71303  100 *  0 Tank 43C + 2.5 ppm 71303 & Silica(8691)  10 **  0 Tank 43C + 10 ppm 7757  0  21.2 Tank 43C + 5 ppm 7757 & 10 ppm 71264  0  32.9 Tank 43C + 5 ppm 7757 & 10 ppm 8131  0  30.9 * = All dead within 48 hrs, ** = All dead w/in 72 hrs, 90% dead in 48 hrs. 

The metals data was analyzed by Nalco in their labs and is shown in the Table 12. The data shows that several possible treatment options meet the metals limit of 1.0 ppm in the unfiltered samples. However, the 71303 for the 3rd time showed that it was toxic and even the silica gel did not help as all of the organisms died at the end of 48 hours. This completely rules out any possibility of continuing to use 71303 polymer in the plant scale at any level and with any combination of chemicals. 

 

9  

Table 12 – Nalco bench testing metals data –September 13th, 2012

Timeline for Polymer Experimentation-Plan 

RecommendedPathForward:a) Switch out the use of 71303 Nalco Cationic polymer with 7757 Nalco anionic polymer. a) Start with 5 ppm levels of 7757 polymer by itself. Monitor metals data and if necessary increase 

to 6.0 and maybe 7.5 ppm level.  b) Once the system stabilizes for several days and the metals data shows that we are in compliance 

for Se, Zn and Al metals then collect weekly samples for bio‐monitoring use the Arkansas lab for the preliminary assessment of metals and send the weekly samples to Environ for bio monitoring and American Interplex for metals testing data.  

c) If all of the requirements are not met, then switch the system to a dual chemical system by adding the coagulant 71264 (Ferric Chloride) at 10 ppm with 5 ppm of polymer 7757 because the toxicity testing showed the best possible results and zero mortality.  Test the system with sampling for several weeks so that we have repeatable data. The coagulant can be added near the 43C tank (using the old polymer system). 

d) If this fails then test the 5 ppm addition of 7757 polymer with 8131 coagulant. Again perform several weeks of testing to verify the results. The embedded excel above shows this graphically.    

Filtered Total Filtered Total Filtered Total Filtered Total Filtered Total Filtered TotalAluminum 0.12 8.1 0.12 0.28 0.1 0.28 0.22 0.31 0.13 0.18 0.12 0.57Barium 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01Boron 2.3 2.4 2.3 2.3 2.4 2.4 2.4 2.5 2.4 2.4 2.4 2.4Cadmium 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01Calcium 30 30 29 29 30 30 30 31 30 30 30 31Calcium (CaCO3) 74 74 72 72 74 74 75 78 75 75 76 76Chromium 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02Copper 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03Iron 0.02 0.25 0.02 0.02 0.02 0.02 0.02 0.02 0.12 0.27 0.07 0.33Lead 0.1 0.1 0.1 0.1 0.13 0.13 0.1 0.1 0.1 0.1 0.1 0.1Lithium 0.12 0.12 0.13 0.13 0.12 0.12 0.13 0.14 0.13 0.13 0.13 0.14Magnesium 0.36 0.44 0.35 0.35 0.36 0.36 0.37 0.38 0.38 0.38 0.38 0.38Magnesium (CaCO3) 1.5 1.8 1.4 1.4 1.5 1.5 1.5 1.6 1.5 1.6 1.6 1.6Manganese 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01Molybdenum 0.09 0.09 0.09 0.09 0.1 0.1 0.1 0.1 0.09 0.09 0.1 0.1Nickel 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01Phosphorus 0.03 0.04 0.03 0.03 0.03 0.03 0.03 0.04 0.03 0.03 0.03 0.03Potassium 6.5 7.8 6.6 6.6 6.7 6.7 6.8 7.2 6.8 6.9 6.8 6.8Silicon 1.1 1.6 1.1 1.1 1.3 1.4 1.2 1.2 1.2 1.2 1.1 1.2Silica 2.3 3.5 2.4 2.4 2.8 2.9 2.5 2.7 2.5 2.5 2.4 2.5Sodium 320 340 320 320 330 330 330 350 330 330 330 330Sodium (CaCO3) 690 750 700 700 710 710 720 760 710 720 720 720Strontium 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.5 1.4 1.4 1.4 1.5Vanadium 0.01 0.02 0.02 0.02 0.01 0.02 0.01 0.02 0.01 0.01 0.01 0.01Zinc 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01Total Hardness 76 76 73 73 76 76 76 80 76 77 78 78

Filtered Total Filtered Total Filtered Total Filtered Total Filtered Total Filtered TotalChloride 79 78 77 76 80 77Nitrite 2 2 2 2 2 2Bromide 2 2 2 2 2 2Nitrate 2 2 2 2 2 2Sulfate 410 410 410 410 400 410Chloride (CaCO3) 110 110 110 110 110 110Nitrate (CaCO3) 1.6 1.6 1.6 1.6 1.6 1.6Sulfate (CaCO3) 430 430 430 430 410 430Total Alkalinity (CaCO3) 220 210 210 210 210 210P ‐ Alkalinity (CaCO3) 10 10 10 10 10 10Bicarbonate (CaCO3) 220 200 220 200 200 220Carbonate (CaCO3) NA 11 10 10 11 11Conductivity 1600 1600 1600 1600 1600 1600pH @ 25C 8.2 8.4 8.3 8.3 8.4 8.4

7757 10 ppm w/ 10 ppm 71264

7757 10 ppm w/ 10 ppm 8131

Tank 43C Control 71303 2.5 ppm71303 2.5 ppm w/10 ppm 8691 7757 10 ppm

7757 10 ppm w/ 10 ppm 71264

7757 10 ppm w/ 10 ppm 8131

Tank 43C Control 71303 2.5 ppm71303 2.5 ppm w/10 ppm 8691 7757 10 ppm

10  

ResearchArticles:1) A SUMMARY OF PULP AND PAPER MILL EXPERIENCES WITH TOXICITY REDUCTION

AND TOXICITY IDENTIFICATION EVALUATIONS (TRE/TIE) Diana Cook, Angela Parrish, Senior Research Chemist Research Associate, NCASI, Corvallis, Oregon, 97333, USA. Dennis Borton Tim Hall, Aquatic Biology Program Manager NCASI Vanceboro, North Carolina, 28586 Anacortes, Washington, 98221, USA

2) Performance Evaluation of an Anionic Polymer for Treatment of Construction Runoff, Vaughan, Ontario.

3) Effective Strategies for Residual Polymer and Aquatic Toxicity Testing For Dredge Slurry Dewatering 2012 Headwaters to Oceans (H2O) Conference, Gregg Lebster - WaterSolve, LLC, May 29, 2012

4) TRE ACTIVITIES REPORT, ALMATIS INC. OUTFALL 001, (NPDES PERMIT NO. AR0050270), 4th QUARTER 2010, prepared by FTN and associates.

5) TRE ACTIVITIES REPORT, ALMATIS INC. OUTFALL 001, (NPDES PERMIT NO. AR0050270), 1st QUARTER 2011, prepared by FTN and associates.

6) TRE ACTIVITIES REPORT, ALMATIS INC. OUTFALL 001, (NPDES PERMIT NO. AR0050270), 2nd QUARTER 2011, prepared by FTN and associates.

7) STATISTICAL MODELS TO PREDICT THE TOXICITY OF MAJOR IONS TO CERIODAPHNIA DUBIA, DAPHNIA MAGNA AND PIMEPHALES PROMELAS (FATHEAD MINNOWS), DAVID R. MOUNT,*‡ DAVID D. GULLEY,†§ J. RUSSELL HOCKETT,\ TYLER D. GARRISON\ and JAMES M. EVANS#.