tidal hydrokinetic energy - university of...

24
Tidal Hydrokinetic Energy Brian Polagye Research Assistant Professor University of Washington SAMPE 2010 SAMPE 2010 May 17-20, 2010 NNMREC

Upload: others

Post on 27-Jan-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • Tidal Hydrokinetic Energy

    Brian PolagyeResearch Assistant Professor

    University of Washington

    SAMPE 2010SAMPE 2010May 17-20, 2010

    NNMREC

  • Tidal EnergyTidal Energy

    Northwest National Marine Renewable Energy Center

    Materials Suitability Materials Suitability

    NNMREC

  • Tidal Energy

    Barrage Hydrokinetic

    Comparable to hydroelectric

    Very high cost and

    Comparable to wind

    Potentially lower cost andVery high cost and environmental footprint

    Potentially lower cost and environmental footprint

    NNMREC

  • Tidal Hydrokinetic Devices

    NNMREC

  • “Typical” Sites and DevicesGearbox Generator Ch i hGearbox‐Generator Pile Chain Anchor

    Direct Drive Generator

    Drive TrainRotor 5 20 m

    Tension LegGravity Base

    2‐4 m/s

    5‐20 m 10‐20 rpm

    20‐60 m Foundation

    NNMREC

  • Tidal Energy Projects in Puget Sound

    100‐200 avg. MW practically recoverable

    Race RocksDemonstration turbine

    p y

    Marrowstone IslandDemonstration array

    Admiralty InletPilot project

    Demonstration array

    NNMREC

  • Local Drivers■ Initiative 937 obligations

    – 15% renewable energy by 2020– 15% renewable energy by 2020

    – Excludes conventional hydropower

    ■ Limited transmission capacity for new■ Limited transmission capacity for new wind energy

    Tid l d t■ Tidal energy advantages– Predictable resource

    N CO i i– No CO2 emissions

    – No visual impact

    – Close to load

    NNMREC

  • Tidal Energy Challenges

    Technology ReadinessReadiness

    Societal Concerns

    iEconomic Viability

    Environmental Effects

    NNMREC

  • Tidal EnergyTidal Energy

    Northwest National Marine Renewable Energy Center

    Materials Suitability Materials Suitability

    NNMREC

  • Northwest National Marine Renewable Energy Center (NNMREC)

    UW‐NNMRECTidal Energy

    OSU‐NNMRECWave Energy

    Resource and Site 

    Assessment

    Device and Array 

    Optimization

    Testing Facilities

    Environmental Effects

    Materials SuitabilityAssessment Optimization

    8 Faculty members involved6 Graduate student researchers supported6 Graduate student researchers supported

    NNMREC

  • Resource and Site Assessment ‐ Approach

    Shipboard SurveyR/V Jack RobertsonR/V Jack Robertson

    Land ObservationAIS Ship Tracks

    Seabed InstrumentationMeasurement Tripod

    AIS Ship Tracks

    NNMREC

  • ROV Surveys

    Seabed– Cobbles (10‐20cm)Cobbles (10 20cm)– Shell fragments– SpongesS ll l– Small slope

    Less than 4m visibility (with lighting)

    NNMREC

  • Sea Spider Instrumentation Tripod

    CTDO (conductivity, temperature, depth, 

    Acoustic release (redundant recovery)

    ADCP 

    dissolved oxygen –partnership with WA Dept of Ecology)

    ( y)

    (Acoustic Doppler Current Profiler) Fish Tag Recorder

    (partnership with NMFS)

    Hydrophone (background noise) T‐Pod/C‐Pod

    (porpoise clicks)

    Lead Weight(650 lbs)Programmed for 3 

    month deployments

    NNMREC

    month deployments

  • Challenging Research Environment

    NNMREC

  • Ferry Noise Study

    Sea Spider

    NNMREC

  • Device and Array Optimization

    Numerical Simulations:P ll l i l ti fParallel simulations of device and array performance

    R/V Jack Robertson

    Wave‐Current Flume:E i t l t diExperimental studies of device wakes

    NNMREC

  • Understanding Environmental Effects

    ■ Near‐field Effects

    – Pressure drop (model)– Sediment transport p(model)

    – Noise (experiment)

    ■ Far‐field Effects

    id l i ( d l)– Tidal regime (model)

    NNMREC

  • Tidal EnergyTidal Energy

    Northwest National Marine Renewable Energy Center

    Materials Suitability Materials Suitability

    NNMREC

  • Materials Suitability

    ■ Hydrodynamic performance

    ■ Structural performance– Metal corrosionMetal corrosion– Composite aging

    i i l

    Orme, Masters, Griffiths (2001)

    ■ Long maintenance intervals– 2‐4 years for power train– 20+ years for foundation

    NNMREC

    316 Stainless – 3 months immersion

  • Approaches to Minimize Biofouling

    ■ Biocides: “Anti‐fouling”– Effective– ToxicToxic

    ■ Low friction: “Foul‐release”– Cost– Long‐term effectiveness

    NNMREC

  • Shallow Water Biofouling

    Clean Current turbine: 6 months deployment

    Before After

    NNMREC

  • Deep Water Biofouling

    NNMREC

  • Damage: Composite Aging

    ■ Water absorption■ Water absorption, leading to loss of strength

    I i i■ In‐situ screening tests

    – 9 – 18 months exposure– Four composite material systems

    NNMREC

  • Thank You!Thank You!

    More about Tidal Energy:http://depts.washington.edu/nnmrec

    More about Wave Energy:http://nnmrec.oregonstate.edu/

    NNMREC