thuc quyen nguyen us china2009

Upload: materials-research-institute

Post on 30-May-2018

220 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/14/2019 Thuc Quyen Nguyen US China2009

    1/10

    Plastic Solar Cells

    Thuc-Quyen NguyenDepartment of Chemistry and Biochemistry

    Center for Polymers and Organic Solids (CPOS)University of California, Santa Barbara

    Exciton

    1) Light absorption

    create the excited

    state named exciton

    (electron-hole pair)

    2) Exciton diffusion

    3) Charge separationor electron transfer at

    donor-acceptor

    interfaces

    4) Charge transport

    5) Charge Collection

    Bulk Heterojunction Polymer Solar Cells

    ITO

    Aluminum

    Polymer(Donor) Fullerene(Acceptor)

  • 8/14/2019 Thuc Quyen Nguyen US China2009

    2/10

    Organic Solar Cell Fabrication

    Challenges- Material Design and Synthesis: Need strategy, theory to

    guide synthesis, take a long time to optimize new materials,

    material reproducibility

    - Material Characterization: nanoscale morphology of blended

    materials, interfaces, charge generation, charge transport,

    charge recombination, defects, etc.

    - Device Physics

    - Degradation, Lifetime

    - Modeling/Calculation: materials and devices

  • 8/14/2019 Thuc Quyen Nguyen US China2009

    3/10

    Issues with Conjugated Polymers

    1) Batch to batch variation

    - Molecular weight (MW)

    - Polydispersity- Chain end variation

    2) Impurity

    3) Difficult to purify

    4) Weak molecular packing

    Gui Bazan (UCSB), Nature Chemistry, in press

    Mn ~ 7K kg/mol

    % ~ 1.2%

    Mn ~14K kg/mol

    Mn ~ 34K kg/mol

    % ~ 5.9%

    Advantages of Molecular Donors

    Molecular Donors: No batch to batch variation, easy to

    purify and to functionalize

    S S

    SiEt3

    SiET3

    PCE = 1%

    PCE = 0.8%

    S

    S S

    S SS S

    S S

    S S

    OC6H13

    OC6H13

    C6H13O

    C6H13O

    PCE = 1.1%

    N

    S

    S

    S

    S

    S

    O

    O

    PCE = 0.8%

    S S

    SiEt3

    SiET3

    PCE = 1%

    PCE = 0.8%

    S

    S S

    S SS S

    S S

    S S

    OC6H13

    OC6H13

    C6H13O

    C6H13O

    PCE = 1.1%

    N

    S

    S

    S

    S

    S

    O

    O

    PCE = 0.8%

    G. Malliaras, Mater. Today2007, 10, 34.

  • 8/14/2019 Thuc Quyen Nguyen US China2009

    4/10

    New Materials

    Strong Molecular

    Order

    Donor Materials

    Thermal/Photo/

    Electrochemical

    Stability

    High Charge

    Carrier Mobility

    Solution

    Processable

    Strong Absorbing

    Chromophore

    Low Band Gap

    SS

    SS

    SS

    Building Blocks

    vacuum deposited on SiO2

    h ~ 0.2 cm2/V.s

    Muccini, et al., Nature Materials

    4, 81-85 (2005)

    R2N

    NR1 O

    O

    R3

    R4

    Wallquist, Olof; Lenz, R. 20 years of

    DPP pigments - future perspectives.

    Macromolecular Symposia (2002), 187,

    617-629

    Diketopyrrolopyrrole

    (DPP)Sexithiophene

  • 8/14/2019 Thuc Quyen Nguyen US China2009

    5/10

    Applications of DPP: Paint Pigments

    Diketopyrrolopyrrole (DPP)

    High thermal stability

    Incorporate the Best of Both Worlds

    +

    Diketopyrrolopyrrole

    Strong absorbing unit

    Strong Intermolecular

    Interactions

    OligothiopheneHigh charge mobility unit

    Functionalization Solution Process

    SS

    SS

    SS

  • 8/14/2019 Thuc Quyen Nguyen US China2009

    6/10

    Effect of the End Unit

    N

    N

    O

    O

    SO

    S

    O

    DPP(TBFu)2

    T.-Q. Nguyen et al. Adv. Funct. Mater. 2009, 19, 3063.

    Optical Properties

    N

    N

    O

    O

    SO

    SO

    1.6

    1.2

    0.8

    0.4

    0.0

    Intensity

    (a.u.

    )

    700600500400

    Wavelength (nm)

    DPP(TBFu)2 Solution

    DPP(TBFu)2 Film

    PC71BM Film

    0.5

    0.4

    0.3

    0.2

    0.1Absorbance(a.u.)

    700600500400

    Wavelength (nm)

    30:7050:5060:4070:30

  • 8/14/2019 Thuc Quyen Nguyen US China2009

    7/10

    Effect of Blend Ratio on Annealed Film

    Morphology

    rms ~2.4nmrms ~2.2nmrms ~2.1nm

    Image size: 5 m 5 m

    70:30 50:50 30:70

    Annealed at 100 C for 10 min

    0.5

    0.4

    0.3

    0.2

    0.1

    0.0

    IPCE(electrons/photon)

    800700600500400300Wavelength (nm)

    30:7050:5060:4070:30

    Effect of Different Blend Ratios

    As-cast Annealed

    30-70 50-50 60-40 70-30 30-70 50-50 60-40 70-30JSC

    (mA/cm2)6.64 4.13 1.45 0.68 5.70 8.38 10.7 9.01

    VOC (V) 0.87 0.93 0.96 0.81 0.89 0.89 0.92 0.92

    FF 0.32 0.29 0.24 0.23 0.33 0.38 0.37 0.43

    % 1.85 1.12 0.33 0.12 1.67 2.87 4.33 3.54

    -12

    -10

    -8

    -6

    -4

    -2

    0

    2

    4

    J(mA/cm

    2)

    1.00.80.60.40.20.0-0.2-0.4Potential (V)

    30:70 as-cast

    50:50 as-cast

    60:40 as-cast

    70:30 as-cast

    30:70 Annealed

    50:50 Annealed

    60:40 Annealed

    70:30 Annealed

  • 8/14/2019 Thuc Quyen Nguyen US China2009

    8/10

    Film Morphology of Annealed Blend

    rms ~0.5nm rms ~1.1nm rms ~2.3nm

    Image Size: 2 m 2 m Blend Ratio: 70:30

    As-cast 90 C 100 C

    Temp (C) 90 100 110 120 130 140

    Jsc 10.9 10.7 11.9 10.5 9.2 8.0

    Voc 0.92 0.92 0.92 0.92 0.92 0.92

    FF 0.34 0.37 0.37 0.39 0.41 0.40

    3.97 4.33 4.79 4.42 4.12 3.43

    -12

    -10

    -8

    -6

    -4

    -2

    0

    2

    CurrentDensity(mA/cm

    2)

    1.00.80.60.40.20.0-0.2-0.4Potential (V)

    90 C100 C110 C120 C130 C140 C

    Effect of Thermal Annealing on Device

    Performance (60:40 blend ratio)

    0.6

    0.5

    0.4

    0.3

    0.2

    0.1

    0.0

    IPC

    E

    (electrons

    /photon)

    900800700600500400300Wavelength (nm)

    As-cast80 C100 C110 C150 CP3HT

  • 8/14/2019 Thuc Quyen Nguyen US China2009

    9/10

    Adv. Funct. Mater. 2009, 19, 3063

    AcknowledgementsStudents:

    Bright Walker

    Mark Dante

    Jason Lin

    Mananya Tantiwiwat

    Jessica Sherman

    Corey Hoven

    Chi-Yen LinMichele Guide

    Daniel Kamkar

    Postdocs:

    Dr. Arnold Tamayo

    Dr. Chunki Kim

    Dr. Junghwa Seo

    Dr. Xuan-Dung Dang

    Dr. Karolina Siskova

    Dr. Jihua Yang

    Dr. Peng WangDr. Mungsoo Lee

    Dr. Andres Garcia

    Undergraduates:

    Peter Zalar

    Tyler Kent

    Ngoc Luu

    Duc Duong

    Janine Boucher

    Calvin Peng

    Alexandra PolosukhinaAlissa Walker Bell

    Jaime Salazar

    Armando Lagunas

    Dorian Mattrey

    Victoria Crockett

    Manuel Schnabel

    Jennifer Swift

    Frank Proa

    Collaborators: Jeff Peet, Gui Bazan, FredWudl, Alan Heeger, Ed Kramer, Harold Ade,

    Lynn Loo, Darryl Smith

  • 8/14/2019 Thuc Quyen Nguyen US China2009

    10/10

    Funding

    - Office of Naval Research Young Investigator Award

    - Camille Dreyfus Teacher Scholar Award

    - Alfred Sloan Research Award

    - DOE: BES, Energy Frontier Research Centers (EFRCs)

    - NSF-MRSEC

    - California NanoSystem Institute at UCSB

    - Army Office of Research/Institute for Collaborative

    Biotechnologies