thoughts on sun-synchronous* altimetryresearch.bpcrc.osu.edu/...sunsynch_hobart2007.pdf · thoughts...

18
Thoughts on Sun-Synchronous* Altimetry R. D. Ray NASA Goddard Space Flight Center 14 March 2007 * Yes, a sun-synchronous wide swath is still sun-synch!

Upload: others

Post on 16-Oct-2020

2 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Thoughts on Sun-Synchronous* Altimetryresearch.bpcrc.osu.edu/...SunSynch_Hobart2007.pdf · Thoughts on Sun-Synchronous* Altimetry R. D. Ray NASA Goddard Space Flight Center 14 March

Thoughts on Sun-Synchronous* Altimetry

R. D. RayNASA Goddard Space Flight Center

14 March 2007

* Yes, a sun-synchronous wide swath is still sun-synch!

Page 2: Thoughts on Sun-Synchronous* Altimetryresearch.bpcrc.osu.edu/...SunSynch_Hobart2007.pdf · Thoughts on Sun-Synchronous* Altimetry R. D. Ray NASA Goddard Space Flight Center 14 March

Whatʼs so bad about sun-synchronous altimetry?For many applications, absolutely nothing. For these, T/P “solved” the tide problem.But for others....

I. It prevents serious tide studies.

II. It maps “diurnal” errors to undesirable periods.

Shallow-water tides; tides polewards of 66°; open-ocean internal tides

— into the mean sea surface.— into long (climate-like) periods.— into the annual and semi-annual cycles.

Question: How large are the effects in (II.) ?Answer: Generally ~1 cm or smaller at basin scales (excl. polar seas); ~ 5 cm at short scales in shallow water. ~ 5 cm—but usually smaller—at internal-tide scales; BUT.....

Itʼs not just tides! ... diurnal ionospheric delay errorsdiurnal pressure oscillations (IB / dry trop)diurnal rain contamination (ITCZ)thermal effects on spacecraft & tracking stationsatm. drag / radiation pressure errors

Page 3: Thoughts on Sun-Synchronous* Altimetryresearch.bpcrc.osu.edu/...SunSynch_Hobart2007.pdf · Thoughts on Sun-Synchronous* Altimetry R. D. Ray NASA Goddard Space Flight Center 14 March

Tidal Alias Periods for a Sun-Synch. Altimeter

Speed Amplitude @ Alias PeriodTide (°/h) CresCity (cm) (days)P1 14.959 12 365S1 15.000 1 ∞K1 15.041 39 365T2 29.959 1 365S2 30.000 18 ∞K2 30.082 5 183

Lunar-tide aliases depend on orbit.Solar-tide aliases are always:

Note: 0.041°/h = 1 cpy

Attempts to use sun-synch altimetry for tides reviewed in:Ray, R. D., “Tidal analysis experiments with sun-synchronous

satellite altimeter data,” Journal of Geodesy, in press, 2006.

Page 4: Thoughts on Sun-Synchronous* Altimetryresearch.bpcrc.osu.edu/...SunSynch_Hobart2007.pdf · Thoughts on Sun-Synchronous* Altimetry R. D. Ray NASA Goddard Space Flight Center 14 March

– data analysis (Chabert d’Hières and Le Provost 1979;Le Provost 1991; Ponchaut et al. 2001).

Owing to the difficult challenges posed by the nonlinear-ities in the equations of motion, Le Provost’s analyticalanalyses proved to be of crucial importance to hissubsequent successful physical and numerical modeling.In this paper, we address shallow-water tides in the

context of another of Le Provost’s longstanding interests—the tidal analysis of satellite altimeter data and theassimilation of altimetry into numerical tidal models (LeProvost et al. 1994; Le Provost 2001). Tidal data assim-ilation is now routinely applied at both global and regionalscales but it was not previously used for nonlinear tides.Considering that numerical modeling is intrinsically morechallenging for nonlinear tides than for linear tides—forexample, spatial scales are shorter and the forcing is notknown a priori—the use of data assimilation appears quiteattractive at first sight. Unfortunately, nonlinear tidespresent their own special difficulties for assimilation. Thework here represents a first step in this direction. The readerwill discover that the problem is by no means solved.

After a brief review of nonlinear shallow-water tides,this paper focuses on mapping the M4 barotropic tide overthe northwest European Shelf, the region of Le Provost’skeen interest for so many years. M4 is the primary overtideof M2 and it reaches an amplitude exceeding 30 cm inseveral parts of the English Channel. Our focus is primarilyon tidal elevations rather than currents and the models weemploy are exclusively 2-D barotropic. The use ofgeneralized inverse methods with 3-D tidal models is apromising approach for more detailed investigations oftidal currents and internal tides, but such work is in itsinfancy.

2 Shallow-water tides

In coastal regions, the tidal range is generally larger than inthe open ocean and the tidal waves are considerably morecomplex. The patterns of the tidal waves shorten as thewave speed reduces. Because long waves propagate aspðgHÞ whereH is the water depth and g is normal gravity,tidal wavelengths shorten dramatically in shallows, for

Table 1 Principal nonlinear tides on the Northwest European Shelf

Tide Origin Doodson number Frequency! (�/hr)

Alias period (days) Amplitude (cm)at Dover, UKT/P ERS GFO

Long periodMSf M2�S2 073.555 1.0159 30.2 94.5 110.2 2.2SemidiurnalMNS2 M2þN2�S2 227.655 27.4238 77.3 3,166.1 98.7 2.62MS2 M2þM2�S2 237.555 27.9682 20.3 135.1 81.8 5.8SNM2 S2þN2�M2 263.655 29.4556 21.0 129.5 35.4 4.02MN2 M2þM2�N2 265.455 29.5285 20.6 349.2 39.2 7.0MSN2 M2þS2�N2 283.455 30.5444 51.9 129.5 60.8 3.62SM2 S2þS2�M2 291.555 31.0159 19.9 94.5 66.7 4.2TerdiurnalMK3 M2þK1 365.555 44.0252 96.8 127.5 392.7 1.5FourthdiurnalMN4 M2þN2 445.655 57.4238 244.5 3,166.1 62.3 9.4M4 M2þM2 455.555 57.9682 31.1 135.1 158.6 25.5ML4 M2þL2 465.455 58.5126 30.9 74.4 34.9 3.0MS4 M2þS2 473.555 58.9841 1,083.9 94.5 361.0 16.4MK4 M2þK2 475.555 59.0662 219.8 195.8 121.3 5.0S4 S2þS2 491.555 60.0000 29.4 1 84.4 1.6Sixth diurnal2MN6 M2þM2þN2 645.655 86.4079 83.3 91.7 77.5 3.8M6 M2þM2þM2 655.555 86.9523 20.7 314.5 105.7 6.5MSN6 M2þS2þN2 663.655 87.4238 47.4 3,166.1 45.5 1.72MS6 M2þM2þS2 673.555 87.9682 65.9 135.1 2,608.1 6.52MK6 M2þM2þK2 675.555 88.0503 48.4 77.6 196.4 1.82SM6 S2þS2þM2 691.555 88.9841 55.7 94.5 115.0 1.4EighthdiurnalM8 M2þM2þM2þM2 855.555 115.9364 27.4 72.6 79.3 2.03MS8 M2þM2þM2þS2 873.555 116.9523 32.0 314.5 282.7 2.9

417

Nonlinear Shallow-Water Tides

Page 5: Thoughts on Sun-Synchronous* Altimetryresearch.bpcrc.osu.edu/...SunSynch_Hobart2007.pdf · Thoughts on Sun-Synchronous* Altimetry R. D. Ray NASA Goddard Space Flight Center 14 March

Sun-Synch Aliasing of “Diurnal” Errors

Maps into Cause Example (tide) Example (non-tide)1. Mean Dʼl errors constant

in time S2 errors Diurnal pressures in IB (not smart)

2. Long periods Dʼl errors vary slowly in time

S2 temporal variationsS2 internal tides

Errors in iono correction at 11-yr solar cycle

3. Annual / semi Dʼl errors vary with season P1, K1, K2 errors Errors in in iono correction with

solar declination

Consequences

1. Errors in absolute dynamic topography & currents (Will grow in importance; GOCE) Constant SSH discrepancies at x-over points Location-dependent biases between missions (cf. temperatures from microwave sounders)

2. Diurnal errors look like climate signals

3. Corrupts studies of seasonal cycle

Page 6: Thoughts on Sun-Synchronous* Altimetryresearch.bpcrc.osu.edu/...SunSynch_Hobart2007.pdf · Thoughts on Sun-Synchronous* Altimetry R. D. Ray NASA Goddard Space Flight Center 14 March

105

110

115

120M

ean

diffe

renc

e (m

m)

0 3 6 9 12 15 18 21 24Local time (h)

Mean Jason – Topex Sea-surface Height Differencesas Function of Local Time

Jason-1 cal/val period Feb–July 2002

NOTE: Results are independent of tide corrections!

Could cause be related to spacecraft thermal effects?

Page 7: Thoughts on Sun-Synchronous* Altimetryresearch.bpcrc.osu.edu/...SunSynch_Hobart2007.pdf · Thoughts on Sun-Synchronous* Altimetry R. D. Ray NASA Goddard Space Flight Center 14 March

105

110

115

120

Mea

n di

ffere

nce

(mm

)

0 3 6 9 12 15 18 21 24Local time (h)

105

110

115

120M

ean

diffe

renc

e (m

m)

0 3 6 9 12 15 18 21 24

May 2002 - Jul 2002

Feb 2002 - Apr 2002

Mean Jason – Topex SSH Differences

as Function of Local Time

In T/P and Jason, these errors map mostly into ~ 60-day periods.Sun-synch maps them into long periods.

Page 8: Thoughts on Sun-Synchronous* Altimetryresearch.bpcrc.osu.edu/...SunSynch_Hobart2007.pdf · Thoughts on Sun-Synchronous* Altimetry R. D. Ray NASA Goddard Space Flight Center 14 March

Jason - Topex Ionosphere ComparisonsJason-1 Cal-Val Campaign

0

50

100

150

200

250

300

350

400

Tope

x de

lay

(mm

)

0 50 100 150 200 250 300 350 400Jason delay (mm)

-2

-1

0

1

2

Mea

n di

ffere

nce

(mm

)

0 3 6 9 12 15 18 21 24Local time (h)

Joint PDFMean Jason-Topex ionosphere correction

versus Local time

Differences in corrections are seen to be small.Are differences in true ionospheric delays small?

Page 9: Thoughts on Sun-Synchronous* Altimetryresearch.bpcrc.osu.edu/...SunSynch_Hobart2007.pdf · Thoughts on Sun-Synchronous* Altimetry R. D. Ray NASA Goddard Space Flight Center 14 March

0

1

2

3

4

Mea

n re

sidu

al (c

m)

0 3 6 9 12 15 18 21 24Local time (h)

0

1000

2000

3000

Num

ber o

f pas

ses

0 3 6 9 12 15 18 21 24

All stations

0

1

2

3

4

0 3 6 9 12 15 18 21 24Local time (h)

0

1000

2000

3000

0 3 6 9 12 15 18 21 24

Best stations

Jason-1 SLR Residuals vs. Local TimeJason cycles 1 – 165

Page 10: Thoughts on Sun-Synchronous* Altimetryresearch.bpcrc.osu.edu/...SunSynch_Hobart2007.pdf · Thoughts on Sun-Synchronous* Altimetry R. D. Ray NASA Goddard Space Flight Center 14 March

0  60  120  180  120  60 90 

60 

30 

30 

60 

90 

0 5 10 15 20 25 30 35 40 45 50 cm

Amplitude of S2 Ocean Tide

Page 11: Thoughts on Sun-Synchronous* Altimetryresearch.bpcrc.osu.edu/...SunSynch_Hobart2007.pdf · Thoughts on Sun-Synchronous* Altimetry R. D. Ray NASA Goddard Space Flight Center 14 March

TPXO7 formal error

Tide Errors: S2FES04 / GOT00 differences

FES04 / TPXO7 differences GOT4 / TPXO7 differences

0 1 2 10 100cm

Note: A sun-synchronous altimeter cannot fix these errors.

Page 12: Thoughts on Sun-Synchronous* Altimetryresearch.bpcrc.osu.edu/...SunSynch_Hobart2007.pdf · Thoughts on Sun-Synchronous* Altimetry R. D. Ray NASA Goddard Space Flight Center 14 March

56

57

58

59

60

1980 1990 2000

29

30

31

32

Amp

(cm

)

1980 1990 2000

11

12

13

14

1980 1990 2000

M2

S2

N2

109

110

111

112

1950 1960 1970 1980 1990 2000

34

35

36

37

1950 1960 1970 1980 1990 2000

21

22

23

24

1950 1960 1970 1980 1990 2000

M2

S2

N2

77

78

79

80

81

1940 1950 1960 1970 1980 1990 2000

21

22

23

24

1940 1950 1960 1970 1980 1990 2000

15

16

17

18

1940 1950 1960 1970 1980 1990 2000

M2

S2

N2

Temporal Variability of Tidal “Constants”

Year-to-year variability from analyses of hourly tide-gauge data

Neah BaySitkaTarawa

Yearly amplitudes in cm.

Page 13: Thoughts on Sun-Synchronous* Altimetryresearch.bpcrc.osu.edu/...SunSynch_Hobart2007.pdf · Thoughts on Sun-Synchronous* Altimetry R. D. Ray NASA Goddard Space Flight Center 14 March

46

48

50

52

54

40

42

44

20

21

22

23

20

21

22

13

14

1910 1920 1930 1940 1950 1960 1970 1980 1990 2000

S2 A

mpl

itude

(cm

)

Halifax

Boston

Portland

Eastport

St. John

72  71  70  69  68  67  66  65  64  63 41 

42 

43 

44 

45 

46 

Halifax

St. John

Portland

Eastport

Boston

Secular Trends in S2

Gulf of Maine

In contrast to decreasing S2, M2 is increasing—rapidly (13 cm/century at Eastport)

R Ray, Continental Shelf Research, 26, 422, 2006.

Page 14: Thoughts on Sun-Synchronous* Altimetryresearch.bpcrc.osu.edu/...SunSynch_Hobart2007.pdf · Thoughts on Sun-Synchronous* Altimetry R. D. Ray NASA Goddard Space Flight Center 14 March

19

20

21

22

23

24

25

Ampl

itude

(cm

)

1975 1980 1985 1990 1995

-200

-100

0

100

200

300

Mea

n se

a le

vel (

mm

)

Correlation of MSL and M2 – Hilo, Hawaii

Monthly M2 Amplitude in black

Mitchum & Chiswell, ����������������� 2000.Ray & Mitchum, ���������������� 1997.

Monthly MSL in red

Page 15: Thoughts on Sun-Synchronous* Altimetryresearch.bpcrc.osu.edu/...SunSynch_Hobart2007.pdf · Thoughts on Sun-Synchronous* Altimetry R. D. Ray NASA Goddard Space Flight Center 14 March

0

2

4

6

8

10

12

14

16

18

0 2 4 6 8 10 12 14S2 standard dev (mm)

Variability of Yearly S2 Estimates40 tide-gauge stations

Page 16: Thoughts on Sun-Synchronous* Altimetryresearch.bpcrc.osu.edu/...SunSynch_Hobart2007.pdf · Thoughts on Sun-Synchronous* Altimetry R. D. Ray NASA Goddard Space Flight Center 14 March

1008

1012

1016

P (m

b)

8 9 10 11 12 13 14 15 16 17 18January 1996

Pago Pago

1000

1004

1008

1012

P (m

b)

8 9 10 11 12 13 14 15 16 17 18September 1997

BarometerECMWFGuam

Atmospheric Tide Errors

Dry_trop (mm) = ~2.3 Pressure (mb)

Page 17: Thoughts on Sun-Synchronous* Altimetryresearch.bpcrc.osu.edu/...SunSynch_Hobart2007.pdf · Thoughts on Sun-Synchronous* Altimetry R. D. Ray NASA Goddard Space Flight Center 14 March

Mearim River30 km inland

Amazon River

RIVER TIDES

Washington, DC6th & Water St, SW

Tidal Bores in Brazil

Page 18: Thoughts on Sun-Synchronous* Altimetryresearch.bpcrc.osu.edu/...SunSynch_Hobart2007.pdf · Thoughts on Sun-Synchronous* Altimetry R. D. Ray NASA Goddard Space Flight Center 14 March

SUMMARY1. Constant diurnal errors -> mean sea surface

2. Slowly varying diurnal errors -> false climate-like signals

3. Seasonal modulations of diurnal errors -> contaminates true seasonal cycle.

The causes of these errors are unlikely to be “fixed” by using the sun-synch data — sun-synch altimetry wonʼt fix tide errors.

Source of #2 Errors

— Variability of S2 suface tide e.g., Gulf of Maine — few cm over 50 yrs— Variability of S2 internal tides ~1 cm over 100 km (mode 1) ~few mm over < 50 km (mode 2+)— Errors in ionospheric corrections unknown -- strong 1-y, 11-y periodicity

— Variability of S1 air tide (IB, dry trop) ~1 cm, “tide-like” spatial pattern all temporal scales, inc. El Nino— Radiational / drag errors in POD << 1 cm at 1 cpr— Unknown errors e.g. Topex-Jason bias vs. local time