thessaloniki, 24 january 2006

16
Thessaloniki, 24 January 2006 F U T U R R E G Futures for Regional Development 2 nd Steering Committee

Upload: gibson

Post on 25-Feb-2016

44 views

Category:

Documents


2 download

DESCRIPTION

F U T U R R E G Futures for Regional Development 2 nd Steering Committee. Thessaloniki, 24 January 2006. F U T U R R E G Futures tools report The Delphi Method. Definition of the Delphi Method. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Thessaloniki, 24 January 2006

Thessaloniki, 24 January 2006

F U T U R R E G Futures for Regional Development

2nd Steering Committee

Page 2: Thessaloniki, 24 January 2006

F U T U R R E G Futures tools reportThe Delphi Method

Page 3: Thessaloniki, 24 January 2006

Definition of the Delphi Method

Delphi may be characterised as a method for structuring a group communication process so that the process is effective in allowing a group of individuals, as a whole, to deal with a complex problem.

Linstone and Turoff (1974)

The Delphi method is an exercise in-group communication among a panel of geographically dispersed experts

Adler and Ziglio, (1996)

Page 4: Thessaloniki, 24 January 2006

The essence of the technique

It comprises a series of questionnaires sent either by mail or via computerised systems, to a pre-selected group of experts. These questionnaires are designed to elicit and develop individual responses to the problems posed and to enable the experts to refine their views as the group’s work progresses in accordance with the assigned task.

The main point behind the Delphi method is to overcome the disadvantages of conventional committee action.

Anonymity, controlled feedback, and statistical response characterise Delphi. The group interaction is anonymous, in the sense that comments, forecasts, and the like are not identified as to their originator, but are presented to the group in such a

way as to suppress any identification.Fowles (1978)

Page 5: Thessaloniki, 24 January 2006

Main types of the technique

The most common is the paper-and-pencil version, the "Delphi Exercise." In this situation a small monitor team designs a questionnaire,

which is sent to a larger respondent group, after the questionnaire is returned the monitor team summarizes the results and, based upon the

results, develops a new questionnaire for the respondent group. The respondent group is usually given at least one opportunity to re-evaluate its original answers based upon examination of the group response. This

form can be labelled as conventional Delphi.A newer form, sometimes called a "Delphi Conference", replaces the

monitor team to a large degree by a computer, which has been programmed to carry out the compilation of the group results. This approach has the

advantage of eliminating the delay caused in summarising each round of Delphi. However, it does require that the characteristics of the

communication be well defined before Delphi is undertaken, whereas in a paper-and-pencil Delphi exercise the monitor team can adjust these

characteristics as a function of the group responses. This latter form can be labelled real-lucre Delphi.

Page 6: Thessaloniki, 24 January 2006

Phases

The first phase is characterised by exploration of the subject under discussion, wherein each individual

contributes additional information he feels is pertinent to the issue. The second phase involves the process of reaching

an understanding of how the group views the issue (i.e., where the members agree or disagree and what they mean

by relative terms such as importance, desirability, or feasibility). If there is significant disagreement, then that disagreement is explored in the third phase to bring out the underlying reasons for the differences and possibly to evaluate them. The last phase, a final evaluation, occurs when all previously gathered information has been initially

analysed and the evaluations have been fed back for consideration

Page 7: Thessaloniki, 24 January 2006

Applications and main uses

Delphi is mainly known as a forecasting procedure because of its significant use in that area. However, there is a surprising variety of other application areas:

•Gathering current and historical data not accurately

known or available•Examining the significance of

historical events•Evaluating possible budget

allocations •Exploring urban and regional

planning options•Planning university campus and curriculum development

• Putting together the structure of a model

• Delineating the pros and cons associated with potential policy

options• Developing causal

relationships in complex economic or social Phenomena Distinguishing and clarifying

real and perceived human motivations

   Exposing priorities of personal values, social goal

Page 8: Thessaloniki, 24 January 2006

Other Modern Applications

• Advanced materials • Nanotechnology • Microelectronics • Photonics Software and simulation • Molecular electronics or bioelectronics • Cellular biotechnology • Information, production and management engineering

Results expected already in the fields of: • manufacturing • food production • medicine • energy• environment • transportation

Page 9: Thessaloniki, 24 January 2006

Time Horizon and length

It better addresses the near future (one to two years) as time horizon, but even in the long run it might prove to be useful (more than 20 years).Does the method produce an accurate view of the future? It is no more accurate, probably, than any expert, single or composite. Or suppose we wanted to explore the range of future events that could affect population growth or weaponry or war. No better way exists to collect and synthesize opinions than Delphi.

The Delphi method is quite time consuming. A single round can easily require three weeks; a three-round Delphi is at least a three to four month affair, including preparation and analysis time.

Page 10: Thessaloniki, 24 January 2006

The Group Judgement

The data from a Delphi can be displayed in several ways. The group judgment should be based on the median rather than the mean, since single extreme answers can "pull" the mean unrealistically.

Furthermore, it is incumbent on the analyst to show the spread of opinion, which can be done by showing the interquartile range (the range that contains the answers of 50 % of the respondents). An example is shown below:

Page 11: Thessaloniki, 24 January 2006

Strengths and other points

A great deal of attention must be given to the choice of participants; the questionnaires must be meticulously prepared and tested to avoid ambiguity. Multi-round studies

require a great deal of time; inevitably, some participants will drop out during the process.

The primary strength of Delphi is its ability to explore, coolly and objectively, issues that require judgment.

Delphi is a powerful technique when used to seek answers to appropriate questions.

Page 12: Thessaloniki, 24 January 2006

Weaknesses and concerns

• Discounting the future: Future (and past) happenings are not as important as the current ones; therefore one may have a tendency to discount the future events. • The simplification urge: Experts tend to judge the future of events in isolation from other developments. A holistic view of future events, where change has had a pervasive influence, cannot be visualized easily. At this point cross-impact analysis is of some help. • Illusory expertise: some of the experts may be poor forecasters. The expert tends to be a specialist and thus views the forecast in a setting which is not the most appropriate one. • Sloppy execution: there are many ways to do a poor job. Execution of the Delphi process may loose the required attention easily. • Format bias: it should be recognised that the format of the questionnaire may be unsuitable to some potential societal participants. • Manipulation of Delphi: The responses can be altered by the monitors in the hope of moving the next round responses in a desired direction.

Page 13: Thessaloniki, 24 January 2006

Common reasons for the failure of a Delphi

•Imposing monitor view's and preconceptions of a problem upon the respondent group by over specifying the structure of the Delphi and not allowing for the contribution of other perspectives related to the problem.

   Assuming that Delphi can be a surrogate for all other human communications in a given situation.

 Poor techniques of summarizing and presenting the group response and ensuring common interpretations of the evaluation scales utilized in the exercise

  Ignoring and not exploring disagreements, so that discouraged dissenters drop out and an artificial consensus is generated

 Underestimating the demanding nature of a Delphi and the fact that tire respondents should he recognized as consultants and properly compensated for their time if the Delphi is not an integral part of their job function

Page 14: Thessaloniki, 24 January 2006

Complementarity/synergy with other tools

A drawback weakness of Delphi is the ease with which questions can be asked for which better techniques exist.

The term “Technology Foresight” (TF), describes a systematic effort to look ahead in science and technology with the aim of identifying the areas of strategic research and the emerging

generic technologies likely to yield the greatest economic and social benefits. The distinctive characteristic of technology

foresight is the Delphi Method.Other forms that work together with Delphi: I) The questions

relate to the value of independent variables that are used in quantitative simulation models. II) The in-depth

interviews with experts have been used at The Futures Group and elsewhere with great success as an alternative to questionnaires. III) For some applications, group meetings among experts have now become practical. Delphi had its

birth in concern about spurious factors that intrude in face-to-face meetings among experts

Page 15: Thessaloniki, 24 January 2006

Case Studies

Japan has been conducting TF for a long period and in a variety of public and private organisations and contexts. Since 1971, the Science and Technology Agency has been conducting Delphi surveys at regular intervals, about every 5 years, to provide information for science and

technology strategies and planning. First, major technological categories were set up, covering the fields of materials and processing, electronics,

information, life sciences, space, marine and earth science, resources and energy, environment, agriculture, production and machinery, urbanisation and construction, communication, transportation, health and medical care

The French survey on critical technologies (Les 100 technologies clés) that had a narrower scope, but combined Delphi expert interviews with bibliometric studies and patent analysis. The initial questions were very pragmatic and concerned the more important technologies for the French industry, the European leadership in these fields, and the actions to be taken.

Page 16: Thessaloniki, 24 January 2006

French Case study implementation procedure

 The first step involved the definition of technology selection criteria. A steering committee outlined nine selection criteria: actual and potential

markets, impact on foreign trade, social and cultural acceptability, vulnerability, contribution to national needs, connection with the national

industry, diffusion capacity, and assessment of competitiveness.

The next step used these criteria to identify technologies; large groups were defined, which were further analysed in 136 technology topics.

In the third step, each technology topic was assessed on the basis of bibliometric studies, patent analysis, and interviews with experts.

Additional information was collected on markets, players, companies, R&D programmes.

In the final step, 105 technologies were identified as ‘critical’, accompanied with a short description, a ranking of the degree of development, and the

relative scientific leadership in Europe. A good information base was produced, and the positive impact of this TF exercise helped to reorient

industrial research subsidies of the Ministry of Industry in relation to the 100 critical technologies.