thermo exams and answers

Upload: mohamed-sameh

Post on 07-Jul-2018

222 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/19/2019 Thermo Exams and Answers

    1/22

  • 8/19/2019 Thermo Exams and Answers

    2/22

    Mansoura University Engineering Faculty Mechanical Eng. Department

    1st year Thermodynamics 2013 Time 3 hours

    Thermodynamic tables are allowed

    1. 

    A rigid tank of volume 0.2 m3  initially contains 0.652 kg of H20 at 2 bar. A heat

    reservoir at 500oC is used to heat the tank until the pressure inside it reaches 10 bar.

    Find initial and final temperatures inside the tank, heat and work exchanged by H 2O,

    entropy change of the universe as well as availability change due to this process

    (ambient temperature 27oC). Is the process reversible?

    2. 

    In a jet engine (نفاث

     محرك

    ) enters 0.3 kg/s of fuel (وقود

    ) as well as 3.6 kg/s of air. Aftercombustion (قارتحالا) exhaust gases (مداعلا تازاغ) are at 6 bar and 517oC. Their properties

    may be considered as those of air, semi-ideal. Gases expand in a nozzle in a reversible

    adiabatic process to exit from it at 1 bar and very high speed to produce a thrust (عفد ةوق).

    Find exit temperature and exit velocity. Find exit density as well as exit cross-sectional

    area. What is the entropy change during expansion?

    3.  Ocean (طیحملا) temperature at its surface is 27oC. Temperature decreases as we go deep

    inside the ocean (المحیط

     في عماق

    ), because solar rays are absorbed (الشمس

     امتصاص شعة

    ) to

    reach 17oC. It is possible to use this temperature difference to produce electricity, by

     placing a thermocouple between those temperatures. Two models exist in the market;

    each of them absorbs 30 W of heat at the hot temperature. Catalog of model 1 states it

    delivers 0.72 W of electricity, while catalog of model 2 states 1 W of electricity. Which

    one would you recommend?

    4.  In an insulated mixer, 0.2 kg/s of CO2 enter at 1.1 bar and 50oC as well as 0.3 kg/s of N2 

    at 1.05 bar at 40oC. Mixture exits at 1 bar. Find exit temperature, partial pressure of each

    gas at exit, heat and work exchanged, and entropy production due to this process. If

    ambient temperature was 27oC, what is the availability loss due to this process?

    5. 

    In order to measure the dryness fraction of steam flowing in a pipe, part of this steam is

    extracted to flow through a throttle valve (called throttling calorimeter) before exiting to

    atmosphere. If steam pressure inside the pipe was 20 bar, while conditions at exit of the

    throttle valve were 1 bar and 120oC, what is the dryness fraction of steam in the pipe?

    What is the entropy production due to throttling? If outside air temperature was 27oC,

    what is the availability loss due to throttling?

    Figure problem 2 Figure problem 5

  • 8/19/2019 Thermo Exams and Answers

    3/22

  • 8/19/2019 Thermo Exams and Answers

    4/22

    Mansoura University Engineering Faculty Mechanical Eng. Department

    1st year Thermodynamics 2014   Time 3 hours

    Thermodynamic tables are allowed

    Question No. (1) (25 Marks)

    A  rigid  tank of   volume 17.15  liter  contains 0.5  kg of   steam  initially  at 200oC. Heat  from a 

    reservoir at 500oC  is added  to steam until  its pressure reaches 80 bar. Find  final steam 

    temperature,  heat  and  work  exchanged  by  steam,  steam  entropy  change,  entropy 

    production of 

     Universe

     and

     availability

     loss.

     

    Question No. (2) (20 Marks)

    In an insulated air compressor, air is admitted at ambient conditions (1 bar, 27oC). If  the mass 

    flow rate was 2kg/s,  final pressure was 75.9 bar and  isentropic efficiency was 75%, find 

    exit  temperature  as  well  as  heat  and  work  exchanged  by  air.  Find  also  total  entropy 

    production as well as Second law efficiency. Assume air is an ideal gas. 

    Question No. (3) (15 Marks)

    It is required to heat a room by adding 2kW at 29oC, while outside temperature is 5oC. Heat 

    will be provided for 1000 hours per year over 2 years. Two options are available. The first 

    option  is to buy an electric heater of  price 150 EGP. The second option  is to buy an air 

    conditioning system of  price 2 000 EGP. The system can be considered as a heat pump 

    having  a COP  that  is 40%  that of   a Carnot  engine working  at  the  same  temperatures. 

    Knowing that the price of  a kWh is 0.6 EGP, calculate the sum of  initial and running costs 

    التشغیل) 

    تكلفة

     

    زا د

     

    الشرا

     

     ?) of  both options over the two years. Which is cheaperتكلفة

    Question No. (4) (20 Marks)

    A rigid  insulated tank  is  internally separated  into two rooms by a membrane. Room A has a 

    volume of  0.2 m3, containing 0.3 kg of  N2 initially at 1.5 bar. Room B has a volume of  0.6 

    m3,  containing  0.1  kg  of   H2  initially  at  2.5  bar.  Membrane  ruptures,  gases  mix.  Find 

    mixture pressure and temperature, partial pressures of  each gas in the mixture as well as 

    entropy production due to this process. 

    Question No. (5) (20 Marks)

    In a vertical frictionless piston and cylinder arrangement, 0.5 kg of H2O initially at

    120oC occupies 0.3m3. It loses heat to atmosphere at 27oC until it becomes

    saturated liquid. Find the work and heat exchanged as well as entropy changes of

    H2O. Find also the entropy production for the universe during this process.

    Best Wishes  – Prof. Mohamed‐Nabil Sabry 

  • 8/19/2019 Thermo Exams and Answers

    5/22

    Test

    1) 

    Given : H2O, m = 0.652 kg, V=0.2 m3, Trecevoir = 500   ͦ 

    C, Tambient = 27  ͦ C

    State 1: P1 = 2 bar, V1 = 0.2 m3 

    State 2: P2 = 10 bar

    Process: Isochoric (constant volume)

    Required: T1, T2, W, Q, ΔSUniverse, availability change

    Solution

    State 1: 

     =  = 

     =  .

    .   v1 = 0.30675 m3 /kg

    Enter table (2) by P1 = 2 bar:

    vf  = 0.00106049 m3 /kg, vg = 0.8858 m3 /kg

    ∵  <  <  Point 1 is in the wet zonea)

     

    Then,T1 = Tsat = 120.211546  ͦ C

    Then, from table: uf   = 504.47 kJ/kg, ug  = 2529.21

    kJ/kg, sf  = 1.53 kJ/kg.K, sg = 7.127 kJ/kg.K

     =  + ( − )  0.30675=0.00106049 + x (0.8858 – 0.00106049)

    X = 0.3455

     =  + ( − )  u1=504.47 + 0.3455 * (2529.21 - 504.47)

    u1 = 1204 kJ/kg

     =  + ( − )  

  • 8/19/2019 Thermo Exams and Answers

    6/22

    Enter table (2) by P2 = 10 bar:

    vf  = 0.001127 m3 /kg, vg = 0.1944 m3 /kg

    ∵  >  Point 2 is in the super-heated zoneEnter table 3 by P2 and v2  

    b) T2 = 400  ͦ C

    u2 = 2957.79 kJ/kg, s2 = 7.46597 kJ/kg. K

    c) 

    W = Zero  Constant volume process.

    d) 

    Q = m (u2 – u1) = 0.652 * (2957.79 – 1204)

     Q = 1143.47 kJ

    e)  ΔSSystem = m * (s2 – s1)

    = 0.652 (7.46597 – 3.4638)

     ΔSSystem = 2.6094 kJ/K

    ΔSheat recevoir = -Q / Trecevoir = - 1143.47 / 773

     ΔS heat recevoir = -1.479 kJ/K

    ΔSuniverse = ΔSsystem + ΔSheat recevoir 

    = 2.6094 + (-1.479) ΔSuniverse = 1.1304 kJ/K

  • 8/19/2019 Thermo Exams and Answers

    7/22

    f)  Exergy change for closed system (ΔX)

    ΔX = m*((u2 – u1) + P0 (v2 – v1) – T0 (s2 – s1))

    = 0.652 * ((2957.79 – 1204) + 100(0.30675 -

    0.30675) – 300(7.46597 – 3.4638))

    ΔX = 114.19 kJ

    2) 

    Given: Air (semi- ideal), mf  ͦ = 0.3 kg/s, mair ͦ = 3.6 kg/s.

    State 1: T1 = 517  ͦ C = 790 K, P1 = 6 bar

    State 2: P2 = 1 bar

    Process: reversible adiabatic (isentropic)

    Required: T2, C2, ρ2, A2, ΔS

    Solution

    -  For semi-ideal gas:

    Enter table (page 6) by T1 = 790 K

  • 8/19/2019 Thermo Exams and Answers

    8/22

     =  

     = 7.592 

    Enter table (page 5) by  = 7.592 

    a) 

    Get  by interpolation:

     − 480490−480 = 7.592 − 7.2687.824−7.268 => = 485.83  

    Get ℎ by interpolation: ℎ = 488.463 / Get ∘ by interpolation: ∘ = 2.18993 .  

    b) 

    Applying first law for open system:

    Q – P = m ͦ (Δh + ΔK.E + ΔP.E)

    Q = zero (adiabatic process), P = Zero, ΔP.E = ZeroThen, Δh = - ΔK.E

    h1 – h2 = 0.5 * (C22 – C12)/1000

    Let C1 = zero (very law compared to exit velocity)

     =  2 ∗ ( ℎ − ℎ) =  2000∗(810.99−488.463) 

     C2 = 803.15 m/s

    c) Applying the equation of state on the exit:

    P2 = ρ2*R2*T2   =   ∗.∗.ρ2=0.717 kg/m3

    d) 

    m ͦ = ρ2 * A2 * C2   =   ...∗.  A2 = 0.00677 m2 

    e)  ΔS = Zero (because it is an isentropic process).

  • 8/19/2019 Thermo Exams and Answers

    9/22

    3) Given: TH=300 K, TC = 290 K,

    QH = 30 W

    Model 1: W = 0.72 W

    Model 2: W = 1 W

    Required: recommend a model

    Solution

    a) For ideal heat engine (Carnot cycle):

    Ƞ, = 1 −   = 1 − ƞc,th = 3.333 %

    b) For first model:

    Ƞ, =    = .

     ƞth,I = 2.4 %   ƞth,I < ƞc,th 

    c) 

    For second model:

    Ƞ, =    =   ƞth,II = 3.333 %  ƞth,II = ƞc,th 

    -  Although the second model efficiency is greater than

    the first, it is practically impossible because the

    efficiency cannot be equal to or greater than a Carnot

    cycle heat engine that works under the same

    conditions. Therefore, I recommend the first model.

    4) Given: - mixture contents:

    State 1:

    CO2  m ͦ = 0.2 kg/s, P = 1.1 bar, T = 50  ͦ C

    N2   m ͦ = 0.3 kg/s, P = 1.05 bar, T = 40  ͦ C

    State 2: Pmix = 1 bar

    Tamb = 300 K

     

  • 8/19/2019 Thermo Exams and Answers

    10/22

    Solution

    For CO2: =    = .∗.

    .  (γ=1.33 for polyatomic gases)

    cp) co2 = 0.7615 kJ/kg. K

    For N2: =    =  .∗..  (γ=1.4 for diatomic gases)cp) N2 = 1.03925 kJ/kg. K

    a) Applying first law for open system:

    Q – P = m ͦ (Δh + ΔK.E + ΔP.E)

    Q = zero, P = Zero, ΔK.E = Zero, ΔP.E = Zero

    Then, ΔH = Zero

    Or: ΔHCO2 = ΔHN2

    (m ͦ

     * cp * (T1 – Tmix)) CO2 = (m ͦ

     * cp * (Tmix – T1)) N2 0.2 * 0.7615 *(50 – T) = 0.3 * 1.03925 * (T – 40)

    Solving for T Tmix = 43.28  ͦ C

    b) 

     =

     

     =

     .

    . XCO2 = 0.4

     =   =

     .. XN2 = 0.6

    content X % µ x/µ y =  / /%  = ∗ (bar) 

    CO2  40 44 0.909 29.78 0.2978

    N2 60 28 2.143 70.22 0.7022

     =3.052

  • 8/19/2019 Thermo Exams and Answers

    11/22

    Δ =  ∗

      −

     

     

       

     ΔSCO2 = 0.04618 kW/K

           

        

     ΔSCO2 = 0.03909 kW/K

    ΔSsystem = ΔSCO2 + ΔSN2  ΔSsystem = 0.08527 kW/K 

    d) 

    Exergy change for closed system (ΔX)

    ΔX = T0 * ΔSsystem  ΔX = 25.581 kW 

    5) 

    Given: H2O, Tambient = 27  C

    State 1: P1 = 20 bar

    State 2: P2 = 1 bar, T2 = 120  C

    Process: constant enthalpy

    Required: X1, ΔS, availability change

    Solution

  • 8/19/2019 Thermo Exams and Answers

    12/22

      Applying first law for open system:

    Q – P = m  (Δh + ΔK.E + ΔP.E)

    Q = zero, P = Zero, ΔK.E = Zero, ΔP.E = Zero

    Then, ΔH = Zero  h1 = h2 = 2716.37 kJ/kg

    Enter table (2) by P1 = 20 bar:

    hf  = 908.720 kJ/kg, hg = 2798.75 kJ/kg

    ∵ ℎ  ℎ  ℎ Point 1 is in the wet zoneThen, from table: sf  =2.44719 kJ/kg. K, sg = 6.33962

    kJ/kg. K.

    ℎ  ℎ  ℎ  ℎ)  2716.37 =908.720 + x (2798.75 – 908.720)

    X = 0.9564

          ) s1 = 6.1699 kJ/kg. K

    Δs = s2 – s1  Δs = 1.29663 kJ/kg. K

    Exergy change for closed system (ΔX)

    ΔX = T0 * ΔSsystem  ΔX = 388.989 kJ/kg 

  • 8/19/2019 Thermo Exams and Answers

    13/22

  • 8/19/2019 Thermo Exams and Answers

    14/22

  • 8/19/2019 Thermo Exams and Answers

    15/22

  • 8/19/2019 Thermo Exams and Answers

    16/22

  • 8/19/2019 Thermo Exams and Answers

    17/22

  • 8/19/2019 Thermo Exams and Answers

    18/22

  • 8/19/2019 Thermo Exams and Answers

    19/22

  • 8/19/2019 Thermo Exams and Answers

    20/22

  • 8/19/2019 Thermo Exams and Answers

    21/22

  • 8/19/2019 Thermo Exams and Answers

    22/22