thermal management analysis of a li-ion battery cell using phase

Upload: alijazizaib

Post on 06-Jul-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/17/2019 Thermal Management Analysis of a Li-ion Battery Cell Using Phase

    1/18

    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/292994606

    Thermal management analysis of a Li-ionbattery cell using phase change material loaded

    with carbon fibers

     Article  in  Energy · February 2016

    Impact Factor: 4.84 · DOI: 10.1016/j.energy.2015.12.064

    CITATIONS

    2

    READS

    22

    5 authors, including:

    M. Azizi

    University of Texas at Arlington

    4 PUBLICATIONS  9 CITATIONS 

    SEE PROFILE

    Fereshteh Samimi

    Shiraz University

    18 PUBLICATIONS  130 CITATIONS 

    SEE PROFILE

    Gholamreza Karimi

    Shiraz University

    71 PUBLICATIONS  713 CITATIONS 

    SEE PROFILE

    All in-text references underlined in blue are linked to publications on ResearchGate,

    letting you access and read them immediately.

    Available from: Gholamreza Karimi

    Retrieved on: 13 May 2016

    https://www.researchgate.net/profile/Gholamreza_Karimi4?enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg%3D%3D&el=1_x_4https://www.researchgate.net/profile/Gholamreza_Karimi4?enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg%3D%3D&el=1_x_4https://www.researchgate.net/profile/Gholamreza_Karimi4?enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg%3D%3D&el=1_x_5https://www.researchgate.net/profile/Gholamreza_Karimi4?enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg%3D%3D&el=1_x_5https://www.researchgate.net/profile/M_Azizi2?enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg%3D%3D&el=1_x_4https://www.researchgate.net/profile/M_Azizi2?enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg%3D%3D&el=1_x_4https://www.researchgate.net/profile/Fereshteh_Samimi?enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg%3D%3D&el=1_x_4https://www.researchgate.net/profile/Fereshteh_Samimi?enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg%3D%3D&el=1_x_4https://www.researchgate.net/publication/292994606_Thermal_management_analysis_of_a_Li-ion_battery_cell_using_phase_change_material_loaded_with_carbon_fibers?enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg%3D%3D&el=1_x_3https://www.researchgate.net/publication/292994606_Thermal_management_analysis_of_a_Li-ion_battery_cell_using_phase_change_material_loaded_with_carbon_fibers?enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg%3D%3D&el=1_x_3https://www.researchgate.net/publication/292994606_Thermal_management_analysis_of_a_Li-ion_battery_cell_using_phase_change_material_loaded_with_carbon_fibers?enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg%3D%3D&el=1_x_3https://www.researchgate.net/publication/292994606_Thermal_management_analysis_of_a_Li-ion_battery_cell_using_phase_change_material_loaded_with_carbon_fibers?enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg%3D%3D&el=1_x_3https://www.researchgate.net/publication/292994606_Thermal_management_analysis_of_a_Li-ion_battery_cell_using_phase_change_material_loaded_with_carbon_fibers?enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg%3D%3D&el=1_x_3https://www.researchgate.net/publication/292994606_Thermal_management_analysis_of_a_Li-ion_battery_cell_using_phase_change_material_loaded_with_carbon_fibers?enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg%3D%3D&el=1_x_3https://www.researchgate.net/publication/292994606_Thermal_management_analysis_of_a_Li-ion_battery_cell_using_phase_change_material_loaded_with_carbon_fibers?enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg%3D%3D&el=1_x_3https://www.researchgate.net/publication/292994606_Thermal_management_analysis_of_a_Li-ion_battery_cell_using_phase_change_material_loaded_with_carbon_fibers?enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg%3D%3D&el=1_x_3https://www.researchgate.net/publication/292994606_Thermal_management_analysis_of_a_Li-ion_battery_cell_using_phase_change_material_loaded_with_carbon_fibers?enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg%3D%3D&el=1_x_3https://www.researchgate.net/?enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg%3D%3D&el=1_x_1https://www.researchgate.net/profile/Gholamreza_Karimi4?enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg%3D%3D&el=1_x_7https://www.researchgate.net/institution/Shiraz_University?enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg%3D%3D&el=1_x_6https://www.researchgate.net/profile/Gholamreza_Karimi4?enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg%3D%3D&el=1_x_5https://www.researchgate.net/profile/Gholamreza_Karimi4?enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg%3D%3D&el=1_x_4https://www.researchgate.net/profile/Fereshteh_Samimi?enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg%3D%3D&el=1_x_7https://www.researchgate.net/institution/Shiraz_University?enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg%3D%3D&el=1_x_6https://www.researchgate.net/profile/Fereshteh_Samimi?enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg%3D%3D&el=1_x_5https://www.researchgate.net/profile/Fereshteh_Samimi?enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg%3D%3D&el=1_x_4https://www.researchgate.net/profile/M_Azizi2?enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg%3D%3D&el=1_x_7https://www.researchgate.net/institution/University_of_Texas_at_Arlington?enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg%3D%3D&el=1_x_6https://www.researchgate.net/profile/M_Azizi2?enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg%3D%3D&el=1_x_5https://www.researchgate.net/profile/M_Azizi2?enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg%3D%3D&el=1_x_4https://www.researchgate.net/?enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg%3D%3D&el=1_x_1https://www.researchgate.net/publication/292994606_Thermal_management_analysis_of_a_Li-ion_battery_cell_using_phase_change_material_loaded_with_carbon_fibers?enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg%3D%3D&el=1_x_3https://www.researchgate.net/publication/292994606_Thermal_management_analysis_of_a_Li-ion_battery_cell_using_phase_change_material_loaded_with_carbon_fibers?enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg%3D%3D&el=1_x_2

  • 8/17/2019 Thermal Management Analysis of a Li-ion Battery Cell Using Phase

    2/18

    Thermal management analysis of a Li-ion battery cell using phase

    change material loaded with carbon  bers

    Fereshteh Samimi  a, b, Aziz Babapoor  b , Mohammadmehdi Azizi  b , Gholamreza Karimi   b,  *

    a Department of Chemical Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iranb Department of Chemical Engineering, Shiraz University, Shiraz 7134851154, Iran

    a r t i c l e i n f o

     Article history:

    Received 26 May 2015

    Received in revised form

    14 December 2015

    Accepted 16 December 2015

    Available online xxx

    Keywords:

    Li-ion battery

    PCMs (phase change materials)

    Carbon  ber

    Simulation

    Thermal energy management

    a b s t r a c t

    High latent heat of PCMs (phase change materials) has made them as one of the most important ma-

    terials for thermal management purposes. However, PCMs’ low thermal diffusivities could limit their use

    in applications which require fast thermal response. The goal of this study is to simulate thermal per-

    formance of a lithium ion battery cell in the presence of carbon   ber-PCM composites. The effect of 

    carbon  ber loading within the PCM on thermal performance is studied and the results are compared

    with the experimental data. The results showed that the presence of carbon  bers increases the effective

    thermal conductivity of PCM and hence inuences temperature distribution within the cell. PCM com-

    posites containing higher percentages of carbon bers present a more uniform temperature distribution.

    The results showed that the minimum and maximum thermal conductivity enhancement of 85% and

    155% respectively (105% on average). A reasonable agreement is obtained between the simulation results

    and the experimental data.

    ©  2015 Elsevier Ltd. All rights reserved.

    1. Introduction

    Robust, reliable and ef cient storage units are required as an

    integral part of renewable energy systems due to their output

    unpredictability [1]. Energy storage makes the systems more cost

    effective by reducing the wastage of energy and also enhances the

    performance and reliability of energy systems. The energy storage

    can also solve the imbalance between the energy supply and con-

    sumption of energy that normally exist in the most systems and

    thereby helps in saving of capital costs. It is also desirable for more

    effective and environmentally benign energy use  [2,3].

    Thermal energy might be stored in the form of sensible heat

    (energy stored by raising the temperature of the storage materialsolid or liquid) or latent heat (energy stored by either melting or

    freezing when a substance changes from one phase to another).

    When the reverse process occurs, this energy becomes available. It

    has been generally accepted that latent heat thermal energystorage

    technique is a good engineering option primarily because higher

    energy storage density can be obtained with lower temperature

    difference between storage and retrieval   [1e5]. Phase change

    materials are capable of storing and releasing thermal energy at a

    nearly  xed temperature by taking advantage of their latent heat

    (heat of fusion) during phase change. They change from solid to

    liquid (liquid to solid) at the melting (solidication) point, reacting

    by means of external temperature changes. The melting tempera-

    ture varies over a wide range for different PCMs (phase change

    materials), e.g., paraf ns, fatty acids, sugar alcohols, salt hydrates,

    etc. [1,5,6].

    Amongst the various kinds of PCMs, paraf n wax presents

    applicable characteristics such as large latent heat of fusion,

    negligible supercooling, low vapor pressure during melting,

    chemical stability, and total recyclability. Therefore paraf n wax is

    being normally considered as one of the most prospective candi-dates in energy systems. However, the relatively low thermal

    conductivity associated with paraf n wax leads to lower heat

    transfer rates during melting/solidication processes   [1,2]. To

    overcome this problem, the introduction of highly conductive

    materials to form a composite of PCM and thermal conductivity

    promoter have been recently proposed; using different types of ns

    on the metal wall, and adding metal foam matrix and carbon-based

    materials to the PCM are the common promoters used to enlarge

    the thermal conductivity of paraf n wax [6e12]. Although, metal

    foams have an ultralight porous structure with high strength-to-

    density ratio and relatively high thermal conductivity  [12], carbon*  Corresponding author. Tel.:  þ98 71 36473170.E-mail addresses:  [email protected][email protected] (G. Karimi).

    Contents lists available at ScienceDirect

    Energy

    j o u r n a l h o m e p a g e :   w w w . e l s e v i e r . co m / l o c a t e / e n e r g y

    http://dx.doi.org/10.1016/j.energy.2015.12.064

    0360-5442/©

     2015 Elsevier Ltd. All rights reserved.

    Energy 96 (2016) 355e371

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-https://www.researchgate.net/publication/227421332_Thermal_Conductivity_Enhancement_of_Phase_Change_Materials_for_Thermal_Energy_Storage_A_Review?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==https://www.researchgate.net/publication/223277538_Phase_transition_temperature_ranges_and_storage_density_of_paraffin_wax_phase_change_materials?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==https://www.researchgate.net/publication/262975374_Heat_transfer_characteristics_of_thermal_energy_storage_of_a_composite_phase_change_materials_Numerical_and_experimental_investigations?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==http://-/?-http://-/?-https://www.researchgate.net/publication/227421332_Thermal_Conductivity_Enhancement_of_Phase_Change_Materials_for_Thermal_Energy_Storage_A_Review?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==https://www.researchgate.net/publication/223525511_Heat_transfer_characteristics_of_thermal_energy_storage_system_using_PCM_capsules_a_review_Renew_Sustain_Energy_Rev?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==https://www.researchgate.net/publication/257375359_Development_of_PCMcarbon-based_composite_materials?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==https://www.researchgate.net/publication/227421332_Thermal_Conductivity_Enhancement_of_Phase_Change_Materials_for_Thermal_Energy_Storage_A_Review?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==https://www.researchgate.net/publication/223277538_Phase_transition_temperature_ranges_and_storage_density_of_paraffin_wax_phase_change_materials?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==http://-/?-http://-/?-https://www.researchgate.net/publication/251581825_A_numerical_investigation_of_heat_transfer_in_phase_change_materials_PCMs_embedded_in_porous_metals?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==mailto:[email protected]:[email protected]://www.sciencedirect.com/science/journal/03605442http://www.elsevier.com/locate/energyhttp://dx.doi.org/10.1016/j.energy.2015.12.064http://dx.doi.org/10.1016/j.energy.2015.12.064http://dx.doi.org/10.1016/j.energy.2015.12.064https://www.researchgate.net/publication/223525511_Heat_transfer_characteristics_of_thermal_energy_storage_system_using_PCM_capsules_a_review_Renew_Sustain_Energy_Rev?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==https://www.researchgate.net/publication/257375359_Development_of_PCMcarbon-based_composite_materials?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==https://www.researchgate.net/publication/223277538_Phase_transition_temperature_ranges_and_storage_density_of_paraffin_wax_phase_change_materials?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==https://www.researchgate.net/publication/223277538_Phase_transition_temperature_ranges_and_storage_density_of_paraffin_wax_phase_change_materials?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==https://www.researchgate.net/publication/262975374_Heat_transfer_characteristics_of_thermal_energy_storage_of_a_composite_phase_change_materials_Numerical_and_experimental_investigations?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==https://www.researchgate.net/publication/251581825_A_numerical_investigation_of_heat_transfer_in_phase_change_materials_PCMs_embedded_in_porous_metals?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==https://www.researchgate.net/publication/227421332_Thermal_Conductivity_Enhancement_of_Phase_Change_Materials_for_Thermal_Energy_Storage_A_Review?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==https://www.researchgate.net/publication/227421332_Thermal_Conductivity_Enhancement_of_Phase_Change_Materials_for_Thermal_Energy_Storage_A_Review?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==https://www.researchgate.net/publication/227421332_Thermal_Conductivity_Enhancement_of_Phase_Change_Materials_for_Thermal_Energy_Storage_A_Review?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==http://dx.doi.org/10.1016/j.energy.2015.12.064http://dx.doi.org/10.1016/j.energy.2015.12.064http://dx.doi.org/10.1016/j.energy.2015.12.064http://www.elsevier.com/locate/energyhttp://www.sciencedirect.com/science/journal/03605442http://crossmark.crossref.org/dialog/?doi=10.1016/j.energy.2015.12.064&domain=pdfmailto:[email protected]:[email protected]://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-

  • 8/17/2019 Thermal Management Analysis of a Li-ion Battery Cell Using Phase

    3/18

    materials are more proper candidates for thermal and electrical

    conductive  llers because of their superior thermal and electrical

    properties, prominent chemical stability as well as larger specic

    surface area and lower density than those of metals [10].

    Lithium-ion (Li-ion) cells have shown excellent performance for

    high energy storage density and competitive cost  [13,14]. Devel-

    opment of Li-ion batteries enabled progress in mobile communi-

    cations, consumer electronics, automotive and aerospace

    industries. However, Li-ion batteries suffers from temperature rise

    beyond their normal operating range resulting in a fast aging and

    accelerated capacity fade. Therefore, thermal management of Li-ion

    batteries has an effective role in large power applications in

    addressing the thermal safety apart from enhancing the perfor-

    mance and extending the cycle life. Utilization of PCM is a commonapproach for thermal management of Li-ion battery packs. The PCM

    introduced in the cell and/or battery supplies a compact and simple

    design for controlling battery temperature in Li-ion technology

    [14e19].

    There are several studies conducted on thermal management of 

    batteries. In one review by Al-Hallaj et al.  [20], it was shown that

    the technology base for such a PCM integrated in the battery

    module is available in a relatively simple design, and thereby

    providing appreciable cost reduction compared to active cooling

    systems. Tong et al.   [21]  demonstrated that safety issues raised

    from a lithium-ion battery during operation can be attributed to the

    variation of its temperature. Smith et al. [22] showed that proper

    comprehending of heat generation and design of heat dissipation

    paths are essential for assuring the safety of lithium ion modulesduring abuse events such as external shorts. Abdalla et al.   [23]

    provided blocks for Li-ion battery thermal management. Thermal

    properties of PCM-EG (phase change material-expanded graphite)

    composites have been veried. The results indicated that the PCM/

    EG composites are strongly affected by their ambient temperatures.

    When the percentage of paraf n wax increases in the composite

    material, the thermal conductivity was improved at low operating

    temperatures while reverse behaviors was observed at relatively

    high operating temperature. Frusteri et al.  [24]  evaluated the in-

    uence of carbon   bers loading on thermal conductivity

    enhancement of an inorganic PCM. Fibers of different lengths were

    randomly distributed in an eutectic mixture of Mg (NO3)26H2OeMgCl2 6H2OeNH4NO3  (as a PCM) and thermal conductivity

    measurements of the obtained composite were accomplished byhot-wire method. It was shown that the homogeneity grade of the

    composite (PCM and  ber) plays a signicant role in the improve-

    ment of heat diffusion [25]. Recently, Javani et al. [26] have applied

    a   nite volume based numerical model to investigate thermal

     Table 2

    Thermo-physical properties of carbon 

    ber.

    Name Thermal conductivity (W/m K) Density (kg/m3) Specic heat capacity (J/kg K)

    Carbon ber 50 2000 500

     Table 1

    Thermo-physical properties of paraf n mixture.

    Melting point temperature (C) Density (liquid phase) (kg/m3) Density (solid phase) (kg/m3) Thermal conductivity of solid phase (W/m K) Latent heat of fusion (kJ/kg)

    42e49 768 912 0.21 242

     Table 3

    Labels of samples (ber length ¼ 1 mm).

    Sample label Mass fraction of   ber [%]

    W0   0

    W1   0.32

    W2   0.46

    W3   0.56

    W4   0.69

    Fig. 1.  Experimental setup and the data acquisition system (1-power source 2-container 3-battery module 4-thermocouples 5-temperature indicator 6-data acquisition system)

    [26].

    F. Samimi et al. / Energy 96 (2016) 355e 371356

    https://www.researchgate.net/publication/257176628_Thermal_and_electrical_conductivity_enhancement_of_graphite_nanoplatelets_on_form-stable_polyethylene_glycolpolymethyl_methacrylate_composite_phase_change_materials?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==https://www.researchgate.net/publication/245105599_Simulation_of_passive_thermal_management_system_for_lithium-ion_battery_packs?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==https://www.researchgate.net/publication/229318954_Passive_control_of_temperature_excursion_and_uniformity_in_high-energy_Li-ion_battery_packs_at_high_current_and_ambient_temperature?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==http://-/?-http://-/?-https://www.researchgate.net/publication/223586534_Thermal_modeling_of_secondary_lithium_batteries_for_electric_vehicle_hybrid_electric_vehicle_application?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==https://www.researchgate.net/publication/272384457_Correlating_uncertainties_of_a_lithium-ion_battery_-_A_Monte_Carlo_simulation?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==https://www.researchgate.net/publication/229642145_Thermalelectrical_modeling_for_abuse-tolerant_design_of_lithium_ion_modules?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==https://www.researchgate.net/publication/248254014_Thermomechanical_behaviors_of_the_expanded_graphite-phase_change_material_matrix_used_for_thermal_management_of_Li-ion_battery_packs?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==https://www.researchgate.net/publication/257525087_Thermal_conductivity_measurement_of_a_PCM_based_storage_system_containing_carbon_fibers?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==https://www.researchgate.net/publication/229294657_Numerical_approach_to_describe_the_phase_change_of_an_inorganic_PCM_containing_carbon_fibres?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==https://www.researchgate.net/publication/276121117_Numerical_Modeling_of_Sub-module_Heat_Transfer_with_PCM_for_Thermal_Management_of_Electric_Vehicle_Battery_Packs?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==http://-/?-https://www.researchgate.net/publication/276121117_Numerical_Modeling_of_Sub-module_Heat_Transfer_with_PCM_for_Thermal_Management_of_Electric_Vehicle_Battery_Packs?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==https://www.researchgate.net/publication/229294657_Numerical_approach_to_describe_the_phase_change_of_an_inorganic_PCM_containing_carbon_fibres?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==https://www.researchgate.net/publication/248254014_Thermomechanical_behaviors_of_the_expanded_graphite-phase_change_material_matrix_used_for_thermal_management_of_Li-ion_battery_packs?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==https://www.researchgate.net/publication/257525087_Thermal_conductivity_measurement_of_a_PCM_based_storage_system_containing_carbon_fibers?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==https://www.researchgate.net/publication/229642145_Thermalelectrical_modeling_for_abuse-tolerant_design_of_lithium_ion_modules?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==https://www.researchgate.net/publication/257176628_Thermal_and_electrical_conductivity_enhancement_of_graphite_nanoplatelets_on_form-stable_polyethylene_glycolpolymethyl_methacrylate_composite_phase_change_materials?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==https://www.researchgate.net/publication/272384457_Correlating_uncertainties_of_a_lithium-ion_battery_-_A_Monte_Carlo_simulation?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==https://www.researchgate.net/publication/223586534_Thermal_modeling_of_secondary_lithium_batteries_for_electric_vehicle_hybrid_electric_vehicle_application?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==https://www.researchgate.net/publication/245105599_Simulation_of_passive_thermal_management_system_for_lithium-ion_battery_packs?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==https://www.researchgate.net/publication/229318954_Passive_control_of_temperature_excursion_and_uniformity_in_high-energy_Li-ion_battery_packs_at_high_current_and_ambient_temperature?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-

  • 8/17/2019 Thermal Management Analysis of a Li-ion Battery Cell Using Phase

    4/18

    management of an electric vehicle battery pack using PCM. The

    effects of different operating conditions were compared for the

    submodule in the presence and the absence of PCM. A more uni-

    form temperature distribution was observed when the PCM was

    employed.

    Despite a large number of investigations have been conducted

    for thermal management of Li-ion batteries, there is a funda-

    mental lack of information on the optimum condition of PCM

    composites, especially those which involve carbon  bers. There-

    fore the objective of the present work is to examine the heat

    transfer enhancement due to presence of carbon  ber in a PCM in

    a more detail. To this end, thermal management of a discharging

    lithium ion battery is simulated in the presence of various cooling

    media (a) air, (b) PCM and (c) PCM loaded with carbon bers using

    CFD (computational   uid dynamic) technique. The simulation

    results are compared with the experimental data available in the

    literature   [27]   to verify the composite effectiveness for thermal

    management purposes. A very good agreement was observed

    between experimental and simulation results for thermal con-

    ductivity which is the most signicant parameter in thermal

    management. The numerical and experimental results can be

    used as a guideline for designing BTMS (battery thermal man-

    agement system).

    2. Experimentations

    Battery discharge is a highly exothermic process. This may

    lead to accumulation of heat inside the battery if the generated

    heat cannot be removed ef ciently [20,28]. This accumulation of 

    heat becomes more severe if the battery is operated under

    insulating conditions or in a hot environment. Under such con-

    ditions, a signicant temperature rise can develop within the

    battery and consequently, risking thermal runaway [28]. Having

    large amount of latent energy at small temperature changes,

    PCMs can be used to absorb and store the heat generated by the

    batteries while minimizing the temperature variation in the

    battery pack  [13,28].In this work, a mixture of paraf ns provided from Merck was

    used as the continuous phase change medium with the desired

    melting point temperature. Thermo-physical properties of paraf n

    mixture are listed in   Table 1.  Carbon   bers were provided from

    Zoltex Corporation. The mixture of carbon   bers and melted

    paraf n was agitated for 2 h at a temperature above its melting

    point to ensure that a perfect mixture is obtained. Thermo-physical

    properties of carbon  ber are listed in Table 2.

    Various composites having different mass fraction of carbon  -

    ber were produced and utilized in a series of experiments to study

    the effects of carbon  ber loading on the heat transfer rate. Table 3

    displays the specications of each experiment.

    In practice, the amount of heat dissipation in a Li-ion battery is a

    function of state of charge, rate of discharge (or charge) and the

    operating temperature. For a regular AA Li-ion battery (e.g.

    14500AA), this amount is reported to be approximately 2 W on

    average   [29,30]. In this work, a cylindrical battery simulator

    (14.5 mm in diameter and 50.5 mm in length) was used to simulate

    an operating battery during discharge.  Fig. 1   shows the experi-

    mental setup and the data acquisition system. The battery like

    Fig. 2.  Variation of temperature of the battery cell, (a): t  ¼

     0 and (b): t  ¼

     60 (min).

    Fig. 3.   Time variations of battery surface temperature in the presence of air (natural

    convection).

    F. Samimi et al. / Energy 96 (2016) 355e 371   357

    https://www.researchgate.net/publication/274096038_Thermal_management_of_a_Li-ion_battery_using_carbon_fiber-PCM_composites?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==https://www.researchgate.net/publication/223586534_Thermal_modeling_of_secondary_lithium_batteries_for_electric_vehicle_hybrid_electric_vehicle_application?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==https://www.researchgate.net/publication/223354629_Thermal_modeling_and_design_considerations_of_lithium-ion_batteries?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==http://-/?-https://www.researchgate.net/publication/223354629_Thermal_modeling_and_design_considerations_of_lithium-ion_batteries?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==http://-/?-https://www.researchgate.net/publication/245105599_Simulation_of_passive_thermal_management_system_for_lithium-ion_battery_packs?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==https://www.researchgate.net/publication/223354629_Thermal_modeling_and_design_considerations_of_lithium-ion_batteries?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==http://-/?-http://-/?-http://-/?-http://-/?-https://www.researchgate.net/publication/251670543_A_review_of_power_battery_thermal_energy_management?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==https://www.researchgate.net/publication/229382558_Heat_transfer_in_phase_change_materials_for_thermal_management_of_electric_vehicle_battery_modules?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==http://-/?-https://www.researchgate.net/publication/274096038_Thermal_management_of_a_Li-ion_battery_using_carbon_fiber-PCM_composites?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==https://www.researchgate.net/publication/229382558_Heat_transfer_in_phase_change_materials_for_thermal_management_of_electric_vehicle_battery_modules?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==https://www.researchgate.net/publication/251670543_A_review_of_power_battery_thermal_energy_management?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==https://www.researchgate.net/publication/223354629_Thermal_modeling_and_design_considerations_of_lithium-ion_batteries?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==https://www.researchgate.net/publication/223354629_Thermal_modeling_and_design_considerations_of_lithium-ion_batteries?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==https://www.researchgate.net/publication/223354629_Thermal_modeling_and_design_considerations_of_lithium-ion_batteries?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==https://www.researchgate.net/publication/223586534_Thermal_modeling_of_secondary_lithium_batteries_for_electric_vehicle_hybrid_electric_vehicle_application?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==https://www.researchgate.net/publication/245105599_Simulation_of_passive_thermal_management_system_for_lithium-ion_battery_packs?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-

  • 8/17/2019 Thermal Management Analysis of a Li-ion Battery Cell Using Phase

    5/18

    simulator dissipates heat at a constant heat  ux set at of 870 W/m2

    equivalent to 2 W. The battery simulatoris mounted in the center of 

    a 6 mm-thick rectangular container   lled with PCM or PCM

    composites.

    Babapoor et al. [27] have recently showed that the presence of 

    carbon  ber in the paraf n mixture can signicantly improve the

    effective thermal conductivity of the cooling medium and hence

    carbon   ber loaded PCM can be very suitable for thermal man-agement of battery cells in a module or stack.

    3. Mathematical modeling 

    Fig. 1 displays the problem. A cylindrical battery is situated in

    the center of a rectangular container lled with the PCM composite

    to simulate the experimental setup. Heat is generated within the

    battery and dissipated intothe PCM as the cooling medium. As time

    elapses, the PCM is heated and the melting starts at the battery-

    PCM interface. The melting zone extends towards the container

    boundaries. For the axisymmetric cylindrical system considered,

    the governing equations for continuity, momentum and energy are

    as follows [31e

    33]:

    Fig. 4.  Variations of temperature distributions within the battery cell in the presence of PCM at (a): t   ¼ 0, (b): t   ¼ 30, (c): t   ¼ 60, (d): t   ¼ 90 (min).

    Fig. 5.  Time variations of battery surface temperature in the presence of PCM.

    F. Samimi et al. / Energy 96 (2016) 355e 371358

    https://www.researchgate.net/publication/274096038_Thermal_management_of_a_Li-ion_battery_using_carbon_fiber-PCM_composites?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==http://-/?-http://-/?-http://-/?-https://www.researchgate.net/publication/274096038_Thermal_management_of_a_Li-ion_battery_using_carbon_fiber-PCM_composites?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==http://-/?-http://-/?-http://-/?-http://-/?-

  • 8/17/2019 Thermal Management Analysis of a Li-ion Battery Cell Using Phase

    6/18

    Fig. 6.  Variations of temperature distributions within the battery cell in the presence of carbon  ber loaded PCM (W4) (a): t   ¼ 0, (b): t   ¼ 30, (c): t   ¼ 60, (d): t   ¼ 90.

    Fig. 7.  Variation of battery surface temperature in the presence of carbon  ber loaded

    PCM (W4).

    Fig. 8.   Variation of battery surface temperature versus time for various carbon  ber

    loadings.

    F. Samimi et al. / Energy 96 (2016) 355e 371   359

  • 8/17/2019 Thermal Management Analysis of a Li-ion Battery Cell Using Phase

    7/18

    Continuity equation:

    vr

    vt  þ

    1

    v

    vr ðrr yr Þ þ

      v

    v z ðry z Þ ¼ 0 (1)

    Momentum equations:

    rvu

    vt 

     þ rðu:VÞu ¼ VP þ r g !þ V:tþ   F 

    !(2)

    where   F !

    (volume force) is dened as below:

    F r  ¼ 0 (3)

    F  z  ¼ r g b

    T  T ref 

      (4)

    where T ref   is the reference temperature and is equal to 293.15 K and

    b is volumetric thermal expansion coef cient (1/K).

    The initial conditions are:

    At   t  ¼ 0   :   ur   ¼ u z  ¼ 0 (5)

    At   t  ¼ 0   :   P  ¼ r g ðhbatt   z Þ   (6)

    where  hbatt   is the height of the battery.

    Energy equation:

    rC  pvT 

    vt  þ rC  pu:VT  ¼ V:ðkVT Þ þ Q    (7)

    The initial and boundary conditions are:

    At   t  ¼ 0   T  ¼ 298:15K    (8)

    At boundaries :   n:ð kVT Þ ¼ hðT ∞ T Þ   (9)

    where  T ∞

     is the ambient temperature and equals to 298.15 K.

    The battery heat equation can be written as:

    rC  pvT 

    vt  ¼ Q    (10)

    where Q , as the heat generated is equal to 236.4 (kW/m3) equiva-

    lent to 2 W per battery.

    The energy equation for the cooling medium (air, PCM, carbonber-PCM composite), is as follows:

    rC  pvT 

    vt  þ rC  pu:VT  ¼ V:ðkVT Þ   (11)

    The thermal conductivity, specic heat and density of the PCM

    are calculated as bellow:

    k pcm ¼ qk phase1 þ ð1 qÞk phase2   (12)

    C  p

     pcm ¼ q

    C  p

     phase1þ ð1 qÞ

    C  p

     phase2  (13)

    r pcm ¼

    qr phase1C  p phase1

    þ ð1 qÞr phase2C  p phase2

    q

    C  p phase1 þ ð1 qÞ

    C  p phase2

    (14)

    where q  is the liquid fraction. For carbon  ber-PCM composite the

    latent heat content can be expressed as a function of the latent heat

    of the PCM (L), PCM composite mass fraction (f) and liquid fraction

    (q) as indicated in Eq.  (15).

    Lcomp ¼ L4q   (15)

    The liquid fraction is described as the mass ratio of melted PCM

    to the total mass of PCM in the uid. The PCM melting temperature

    ranges from T solidus to  T liquidus.

    Density, specic heat capacity, latent heat and viscosity of the

    carbon ber loaded PCM are dened as follows [33e39]:

    rcomp ¼ 4rc þ ð1 4Þr pcm   (16)

    C  p

    comp ¼4

    rC  p

    c þ ð1 4Þ

    rC  p

     pcm

    rcomp(17)

    Lcomp ¼ð1 4ÞðrLÞ pcm

    rcomp(18)

    mcomp  ¼ 0:983eð12:959fÞm pcm   (19)

    The effective thermal conductivity of carbon   ber-PCM com-

    posite which includes the effects of  

    ber mass fractions,

    Fig. 9.   Variation of the battery surface temperature in z-direction for various carbon

    ber loadings.

    Fig. 10.  Variation of cell temperature in r-direction for various carbon  ber loadings.

    F. Samimi et al. / Energy 96 (2016) 355e 371360

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-

  • 8/17/2019 Thermal Management Analysis of a Li-ion Battery Cell Using Phase

    8/18

    Fig. 11.  Simulation results for thermal conductivity enhancement factor of composites.

    Fig. 12.  Experimentally measured thermal conductivity enhancement factor for various PCM composites.

    F. Samimi et al. / Energy 96 (2016) 355e 371   361

  • 8/17/2019 Thermal Management Analysis of a Li-ion Battery Cell Using Phase

    9/18

    temperature dependence as well as properties of the base PCM and

    bers subject to Brownian motion is given by Refs.  [33e39].

    K comp ¼K c þ 2K  pcm 2

    K  pcm K c 

    4

    K c þ 2K  pcm þ

    K  pcm K c 4

    K  pcm

    þ 5 104bkx4r pcmC  p pcm ffiffiffiffiffiffiffiffiffi

    BT 

    rc dc 

    s   f ðT ;4Þ

    (20)

    whereB is Boltzmann constant, 1.381 1023  J/K and

    bk  ¼ 8:4407ð1004Þ1:07304 (21)

     f ðT ;4Þ ¼

    2:8217 1024þ 3:917 103   T 

    T ref 

    þ 3:0669 1024 0:00391123

    (22)

    where   T ref   is the reference temperature (298 K). Also,   x   is a

    correction factor in Brownian motion term, because there is no

    Brownian motion in solid phase. Its value is dened as the same as

    for liquid fraction (q).

    4. Numerical method

    The numerical technique based onnite-volume method is used

    for solving the governing momentum and energy equations  [32].

    SIMPLER algorithm is used to couple the temperature and velocity

    equations and since the governing equations are nonlinear, suc-

    cessive over-underrelaxation methodis used to solve the equations

    [33].

    5. Results and discussion

    5.1. Thermal behavior 

    Figs. 2 and 3 depict the simulation results for natural convection.

    The results show that during the   rst 60 min, the battery body

    temperatures experiences a dramatic rise, up to 70   C (343 K),

    which is more than the maximum allowable operating temperature

    for Li-ion batteries (45e55   C)  [20,27,40e42], and after that time,

    the variation of temperature is very small. As expected, naturally

    convection air is not an appropriate coolant for thermal manage-

    ment purposes.

    Therefore, other thermal management system should be used to

    control the battery temperature. This can be achieved without

    excessive complexity by using a passive cooling system that in-

    corporates PCMs as coolant [42]. The temperature results are dis-

    played in Figs. 4 and 5.

    It is seen from Figs. 4 and 5 that the battery surface temperature

    rises up to 57 C (330 K) after 120 min which is approximately 15 C(25%) lower than that of natural convection. In fact, the PCM would

    act as a heat sink for the generated heat during the battery

    discharge.

    Figs.6 and 7 represent the results of simulation for carbon ber-

    PCM composite. Here, the mass concentration of carbon   bers is

    0.69%, the same as experimental study [27].

    It is observed that the presence of carbon   bers affects the

    distribution of temperature within the thermal management sys-

    tem. The effectof various carbonberloadings on time variations of 

    battery surface temperature is shown in   Fig. 8. In   Fig. 8, the

    maximum temperature of composite W4   is 1 K less than blank

    which is 329.7 K. The effect of carbon  ber loadings on the varia-tions of battery surface temperature along the height is shown in

    Fig. 9. Here, a temperature difference between W4   and blank of 

    1.1 K can be seen along the battery simulator. The maximum tem-

    perature reaches to 325.5 K in composite W4. The effect of carbon

    berloadings on radial temperature variations is shown in Fig.10. It

    is seen from this  gure that the temperature difference between

    the composite W4 and blank is reduced at larger radii. It should be

    mentioned that blank is the sample made of pure paraf n without

    carbon bers.

    From thesegures, it can be concluded that adding carbonbers

    to the PCM affect the temperature distributions within the cell and

     Table 4

    A comparison between the numerical and experimental thermal conductivity

    enhancement factors at various times.

    Time (min)   hmodel   hexperiment   Error (deviation)

    W110 1.1 0.542857143 0.557142857

    20 1.052632 0.80952381 0.24310819

    30 1.209524 0.580952381 0.628571619

    40 1.222222 0.942857143 0.27936485750 1.035714 0.904761905 0.130952095

    60 0.883333 1.076190476   0.192857476

    70 0.859155 0.885714286   0.026559286

    80 1.060606 0.885714286 0.174891714

    90 1.057971 1.068571429   0.010600429

    100 1.074627 1.068571429 0.006055571

    110 1.089552 1.114285714   0.024733714

    120 1.057971 1 0.057971

    W210 1.181593 0.855639098 0.325953902

    20 1.22199 0.936507937 0.285482063

    30 1.552194 0.869950739 0.682243261

    40 1.48532 0.980408163 0.504911837

    50 1.283714 0.953667954 0.330046046

    60 1.263067 1.039183673 0.223883327

    70 1.10117 0.942857143 0.158312857

    80 1.223644 0.965714286 0.257929714

    90 1.10365 1.025087108 0.078562892

    100 1.103638 1.022857143 0.080780857

    110 1.103959 1.040816327 0.063142673

    120 1.203648 1 0.203648

    W310 1.001275 0.982072829 0.019202171

    20 1.002514 0.99031477 0.01219923

    30 1.002832 0.982539683 0.020292317

    40 1.004388 0.997178131 0.007209869

    50 1.002478 0.993115318 0.009362682

    60 1.001838 1.005079365   0.003241365

    70 1.000253 0.992626728 0.007626272

    80 1.002422 0.995428571 0.006993429

    90 1.00304 1.003428571   0.000388571

    100 1.002725 1.003428571   0.000703571

    110 1.00335 1.005772006   0.002422006

    120 1.002729 1 0.002729

    W410 1.001116 0.956462585 0.044653415

    20 1.00157 0.980295567 0.021274433

    30 1.003467 0.960714286 0.042752714

    40 1.003457 0.993073593 0.010383407

    50 1.001554 0.985714286 0.015839714

    60 0.99874 1.011149826   0.012409826

    70 0.999338 0.984415584 0.014922416

    80 1.001812 0.990062112 0.011749888

    90 1.00243 1.007453416   0.005023416

    100 1.00242 1.007619048   0.005199048

    110 1.003046 1.01242236   0.00937636

    120 1.002121 1 0.002121

    F. Samimi et al. / Energy 96 (2016) 355e 371362

    http://-/?-http://-/?-https://www.researchgate.net/publication/264959862_Computational_Methods_for_Fluid_Dynamics?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==https://www.researchgate.net/publication/284859680_Numerical_Heat_Transfer_and_Fluid_Flow?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==http://-/?-http://-/?-http://-/?-https://www.researchgate.net/publication/234876619_A_Novel_Thermal_Management_System_for_Electric_Vehicle_Batteries_Using_Phase-Change_Material?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==http://-/?-http://-/?-http://-/?-https://www.researchgate.net/publication/274096038_Thermal_management_of_a_Li-ion_battery_using_carbon_fiber-PCM_composites?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==http://-/?-http://-/?-http://-/?-http://-/?-https://www.researchgate.net/publication/264959862_Computational_Methods_for_Fluid_Dynamics?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==https://www.researchgate.net/publication/284859680_Numerical_Heat_Transfer_and_Fluid_Flow?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==https://www.researchgate.net/publication/234876619_A_Novel_Thermal_Management_System_for_Electric_Vehicle_Batteries_Using_Phase-Change_Material?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==https://www.researchgate.net/publication/274096038_Thermal_management_of_a_Li-ion_battery_using_carbon_fiber-PCM_composites?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-

  • 8/17/2019 Thermal Management Analysis of a Li-ion Battery Cell Using Phase

    10/18

    Fig. 13. Velocity distribution in air at (a) t ¼ 30 and (b) t ¼ 90 (min), in carbon  ber-free PCM at (c) t ¼ 30 and (d) t ¼ 90 (min) and in carbon  ber loaded PCM (W4) at (e) t ¼ 30 and

    (f) t   ¼ 90 (min).

    F. Samimi et al. / Energy 96 (2016) 355e 371   363

  • 8/17/2019 Thermal Management Analysis of a Li-ion Battery Cell Using Phase

    11/18

    the composites made of larger percentages of carbonbers can lead

    to more uniform temperature distributions.

    5.2. Thermal conductivity enhancement 

    It is evident that the effective thermal conductivity of PCM

    composite is crucial in thermal management perspective. The

    presence of a heat transfer promoter (e.g. nanoparticles, metal

    matrix) in PCM can provide better heat transfer paths through the

    cooling medium.

    With known thermal conductivity for the blank PCM, a thermal

    conductivity enhancement factor (h), can be dened as [27].

    h ¼keff ;c  keff ;b

    keff ;b(23)

    In this equation,   keff,c   and   keff,b  denote effective thermal con-

    ductivity of composite and blank, respectively.

    Fig. 11 shows the simulation results for the thermal conductivity

    enhancement factor of various PCM composites versus time.

    According to the denition given in Eq. (23), the enhancement

    factor (h) for a  ber-free PCM (blank) is zero. The presence of car-

    bon  bers in the PCM improves the effective thermal conductivity

    considerably, however; this parameter depends on the mass frac-

    tion of the carbonbers used. In addition, PCMs with higher carbon

    ber loadings (e.g. W3   and W4) have a steadier trend and their

    thermal conductivity enhancement factors remain approximately

    constant. On the other hand, samples with smaller carbon   ber

    loadings (W1 and W2) show unsteady performance owing to small

    and unsteady variation of temperature difference (not tempera-

    ture) of this samples. In other words, samples containing small

    amounts of carbon  bers have a performance similar to the blank

    Fig. 14.  Density of PCM at (a) t   ¼ 30 and (b) t   ¼ 90 (min) and of composite sample W4  at (c) t   ¼ 30 and (d) t   ¼ 90 (min).

    F. Samimi et al. / Energy 96 (2016) 355e 371364

    https://www.researchgate.net/publication/274096038_Thermal_management_of_a_Li-ion_battery_using_carbon_fiber-PCM_composites?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==http://-/?-http://-/?-https://www.researchgate.net/publication/274096038_Thermal_management_of_a_Li-ion_battery_using_carbon_fiber-PCM_composites?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==http://-/?-http://-/?-http://-/?-

  • 8/17/2019 Thermal Management Analysis of a Li-ion Battery Cell Using Phase

    12/18

    and that is why thermal conductivity enhancement factor of these

    samples is unsteady.

    5.3. Model assessment 

    Fig. 12 displays the experimental results  [27]  for thermal con-

    ductivity enhancement factor of various PCM composites versus

    time. From Figs.11 and 12 and Table 4, there exist a good agreement

    between thermal conductivity enhancement factor obtained

    experimentally [27] and those predicted by simulation.The melting rate is an important factor in latent heat thermal

    energy storage systems such as battery thermal management sys-

    tems. At high melting rates, more liquied PCM is available in the

    system for natural convection and therefore the velocity of liquid

    increases.

    5.4. Velocity distribution

    Fig. 13(aef) represents the velocity distribution for natural

    convection, PCM and carbon   ber-PCM composite. As it can be

    observed from Fig. 13(a, b), the velocity increases up to 10 mm/s

    after 90 min for air cooling system. This change is approximately

    dramatic for natural convection which affects the battery body

    temperature. These changes in velocity roots from the changein the

    density of air.

    Fig. 13(c, d) depicts the velocity distribution in the PCM at 30

    and 90 min. Under such conditions, the veriations of velocity

    within the cell is very small (e.g. between zero to 0.41 mm/s after

    90 min) due to parran's larger density and viscosity with

    respect to air.  Fig. 13(e, f) shows the velocity distribution in the

    carbon 

    ber-PCM composite with 0.69wt.% of carbon 

    berloading. In this condition, the maximum velocity of carbon  ber-

    PCM composite in the cell shows 15% decrease compared with

    that of the pure paraf n which was predictable because of the

    presence of carbon  bers which seriously mitigates the motion of 

    liquied paraf ns.

    The maximum amount of energy stored by PCM composite can

    be reduced by the presence of carbon  bers due to its lower heat

    capacity hence, the rate of melting increases. On the other hand, by

    increasing carbon   ber loading, the velocity of melted composite

    decreases owing to resistance of  bers against natural convection.

    According to the results of simulation, the effect of  bers resistant

    Fig. 15.   Kinematic viscosity of PCM at (a) t   ¼ 30 and (b) t   ¼ 90 (min) and of composite sample W4  at (c) t   ¼ 30 and (d) t   ¼ 90 (min).

    F. Samimi et al. / Energy 96 (2016) 355e 371   365

    http://-/?-https://www.researchgate.net/publication/274096038_Thermal_management_of_a_Li-ion_battery_using_carbon_fiber-PCM_composites?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==http://-/?-http://-/?-https://www.researchgate.net/publication/274096038_Thermal_management_of_a_Li-ion_battery_using_carbon_fiber-PCM_composites?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==http://-/?-http://-/?-http://-/?-http://-/?-https://www.researchgate.net/publication/274096038_Thermal_management_of_a_Li-ion_battery_using_carbon_fiber-PCM_composites?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==https://www.researchgate.net/publication/274096038_Thermal_management_of_a_Li-ion_battery_using_carbon_fiber-PCM_composites?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-

  • 8/17/2019 Thermal Management Analysis of a Li-ion Battery Cell Using Phase

    13/18

    against motion is dominant which can root from the drop in

    buoyancy force caused by added  bers.

    5.5. Thermo-physical properties

    The physical state of PCM has a key role in assessment of the

    effectiveness of thermal behavior of carbon  ber-PCM composites.

    Figs. 14 and 15   show typical changes in density and kinematic

    viscosity of PCM and carbonber-PCM composite within the cell at

    two different time intervals e.g. 30 and 90 min after cell operation.

    The time intervals 30 and 90 min are selected because the changes

    in density and kinematic viscosity aresignicant. From Fig.14(ced),

    it is obvious that adding carbon  bers to the composite increases

    the composite density by 8.28% after 90 min. This is due to the

    larger density of  bers compared to the PCM. Adding  bers to the

    PCM affects its thermal performance and because density is a

    function of temperature, the variation of density occurs. Motion of 

    particles in melted PCM composite affects its thermal performance

    and therefore its density too.

    Fig. 16  shows the effect of carbon   ber loading on density of 

    carbon ber-PCM composite.

    Changes in density are demonstrated for samples containing

    0.32 and 0.46 wt.% carbon  bers after 60 min which represent an

    increase of about 1.5% by increasing the fraction of carbon   ber.

    Fig. 17(aed) shows the specic heat capacity distribution of PCM

    and PCM composite with 0.69wt.% of carbon  ber loading at times

    30 and 90 min.

    5.6. Phase change state

    In PCMs, the changes in phase condition (here solid to liquid)

    substantially affect other parameters such as velocity and temper-

    ature distributions. Therefore, in this research phase condition is

    investigated for both PCM and carbonber-PCM composite and the

    results are compared to each other. Figs. 18 and 19 show the phase

    transition for PCM carbon  ber-loaded PCM composite with 0.69%

    wt. at various time intervals.

    It is seen from these  gures that as time passes, heat is dissi-pated into the PCM (or PCM composite), paraf n is melted and the

    melting zone expands. It is observed that a majority of paraf n

    (more than 90%) is liqueed after 90 min. The solideliquid

    interface which is  at at the early stage of melting becomes more

    and more distorted as the   uid motion is intensied. The solid-

    eliquid interface is more progressed near the regions where the

    heated  ow is upward, while at the zones where the  uid motion

    is downward, the interface moves more slowly. During the

    melting process, natural convection of the liquid phase is devel-

    oped, which causes ascending of hot liqueed P CM and

    descending of cold liquid PCM. The shapes of the interface for

    different carbon ber loadings are basically the same (Figs. 18 and

    19). However, the extent of melting region decreases as the mass

    fraction of carbon  ber increases.

    The melting rate is an important factor in latent heat thermal

    energy storage systems such as battery thermal management sys-

    tems. At high melting rates, more liquid is available in the system

    for natural convection and therefore the velocity of liquid phase

    increases.

    6. Conclusions

    Thermal performance of a Li-ion battery was simulated when

    dissipating heat into a phase change material loaded with carbon

    bers. The effect of carbon ber mass fraction on heat transfer was

    studied. From the simulation results, the following conclusions can

    be drawn: (a) the presence of carbon   bers has a signicant in-uence on thermos-physical properties of PCM e.g. 11% increase in

    density of sample W2 compared with the blank, (b) the solideliquid

    interface is more progressed near the regions where the heated

    ow is upward, while at regions where the  uid motion is down-

    ward, the interface moves more slowly, (c) the more melting rate,

    the more liquied PCM is available in the cell for natural convection

    and therefore the velocity of the liquid increases, (d) while PCMs

    can control the battery temperature much betterthan air by natural

    convection, they suffer from their low thermal conductivities.

    Carbon ber-loaded PCM composites can be a good replacement to

    solve this issue. (e) the presence of carbon bers in the PCM results

    in signicantly improvement of effective thermal conductivity and

    consequently, this makes the medium very suitable for thermal

    management of battery cells in a module or stack.

    Fig. 16.   Density of sample at t   ¼ 60 (min), (a): W1, (b): W2.

    F. Samimi et al. / Energy 96 (2016) 355e 371366

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-

  • 8/17/2019 Thermal Management Analysis of a Li-ion Battery Cell Using Phase

    14/18

    Fig. 17.   Specic heat capacity of PCM at (a) t   ¼ 30, (b) t   ¼ 60, and of composite sample W4  at (c) t   ¼ 30 and (d) t   ¼ 90 (min).

    F. Samimi et al. / Energy 96 (2016) 355e 371   367

  • 8/17/2019 Thermal Management Analysis of a Li-ion Battery Cell Using Phase

    15/18

    Fig. 18.  Phase transition for sample W0, (a): t   ¼ 0, (b): t   ¼ 30, (c): t   ¼ 60 and (d): t   ¼ 90 (min) (phase 1 is the solid phase.).

    F. Samimi et al. / Energy 96 (2016) 355e 371368

  • 8/17/2019 Thermal Management Analysis of a Li-ion Battery Cell Using Phase

    16/18

    Fig. 19.  Phase transition for sample W4, (a): t   ¼ 0, (b): t   ¼ 30, (c): t   ¼ 60 and (d): t   ¼ 90 (min) (phase 1 is the solid phase.).

    F. Samimi et al. / Energy 96 (2016) 355e 371   369

  • 8/17/2019 Thermal Management Analysis of a Li-ion Battery Cell Using Phase

    17/18

    Nomenclature

    B Boltzmann constant, 1.381 1023  J/K

    Cp   specic heat capacity (J/mol K)

    D carbon  ber diameter (m)

    F volume force (N)

    G acceleration of gravity (m/s2)

    H heat transfer coef  cient (W m2 K1)

    L latent heat of the PCM (J/kg)

    K thermal conductivity (W m1 K1)

    P pressure (Pa)

    DP pressure changes (Pa)

    Q volumetric heat source (W m3)

    r radial distance (mm)

    T temperature (C)

    t time (s)

    w carbon  ber mass fraction

    z axial distance (mm)

    Greek letters

    q   liquid fraction

    m   viscosity (Pa. s)

    r   density (kg/m3)n   velocity (m/s)

    4   carbon  ber mass fraction

    t   shear stress (Pa)

    x   correction factor in Brownian motion term

    b   volumetric thermal expansion coef cient (K1)

    h   thermal conductivity enhancement factor

    Superscripts and subscripts

    b blank

    batt battery

    c carbon  ber

    comp carbon ber-PCM composite

    eff effective

    ref reference state

     Abbreviations

    CFD computational  uid dynamic

    Li-ion lithium-ion

    PCM phase change material

    PCM-EG phase change materialeexpanded graphite

    References

    [1]  Fan L, Khodadadi JM. Thermal conductivity enhancement of phase changematerials for thermal energy storage: a reviews. Renew Sustain Energy Rev2011;15:24e46.

    [2]   He B, Martin V, S etterwall F. Phase transition temperature ranges and storagedensity of paraf n wax phase change materials. Energy 2004;29:1785e804.

    [3]  Aadmi M, Karkri M, Hammouti M. Heat transfer characteristics of thermalenergy storage of a composite phase change materials: numerical andexperimental investigations. Energy 2014;72:381e92.

    [4]   Cao L, Tang Y, Fang G. Preparation and properties of shape-stabilized phasechange materials based on fatty acid eutectics and cellulose composites forthermal energy storage. Energy 2015;80:98e103.

    [5]   Felix Regin A, Solanki SC, Saini JS. Heat transfer characteristics of thermalenergy storage system using PCM capsules: a review. Renew Sustain EnergyRev 2008;12:2438e58.

    [6]   Gilart PM, Martınez AY, Barriuso MG, Martınez CM. Development of PCM/carbon-based composite materials. Sol Energy Mater Sol Cells 2012;107:205e11.

    [7]   Liu Z-H, Zheng B-C, Wang Q, Li S-S. Study on the thermal storage performanceof a gravity assisted heat pipe thermal storage unit with granular high-temperature phase change materials. Energy 2015;81:754e65.

    [8]   Chandrasekaran P, Cheralathan M, Kumaresan V, Velraj R. Enhanced heattransfer characteristics of water based copper oxide nanouid PCM (phase

    change material) in a spherical capsule during solidication for energy ef -cient cool thermal storage system. Energy 2014;72:636e42.

    [9]   Li WQ, Qu ZG, Zhang BL, Zhao K, Tao WQ. Thermal behavior of porousstainless-steel   ber felt saturated with phase change material. Energy2013;55:846e52.

    [10]   Zhang L, Zhu J, Zhou W, Wang J, Wang Y. Thermal and electrical conductivityenhancement of graphite nanoplatelets on form-stable polyethylene glycol/polymethyl methacrylate composite phase change materials. Energy 2012;39:294e302.

    [11]   Xu B, Li Z. Paraf n/diatomite/multi-wall carbon nanotubes composite phase

    change material tailor-made for thermal energy storage cement-based com-posites. Energy 2014;72:371e80.

    [12]   Tian Y, Zhao CY. A numerical investigation of heat transfer in phase changematerials (PCMs) embedded in porous metals. Energy 2011;36:5539e46.

    [13]  Mills A, Al-Hallaj S. Simulation of passive thermal management system forlithium-ion battery packs. J Power Sources 2005;141:307e15.

    [14]   Kizilel R, Lateef A, Sabbah R, Farid MM, Selman JR, Al-Hallaj S. Passive controlof temperature excursion and uniformity in high-energy Li-ion battery packsat high current and ambient temperature. J Power Sources 2008;183:370e5.

    [15]   Goli P, Legedza S, Dhar A, Salgado R, Renteria J, Balandin AA. Graphene-enhanced hybrid phase change materials for thermal management of Li-ionbatteries. J Power Sources 2014;248:37e43.

    [16]   Khateeb SA, Amiruddin S, Farid M, Selman JR, Al-Hallaj S. Thermal manage-ment of Li-ion battery with phase change material for electric scooters:experimental validation. J Power Sources 2005;142:345e53.

    [17]   Zhang S, Zhao R, Liu J, Gu J. Investigation on a hydrogel based passive thermalmanagement system for lithium ion batteries. Energy 2014;68:854e61.

    [18]   Hu X, Li SE, Jia Z, Egardt B. Enhanced sample entropy-based health manage-ment of Li-ion battery for electried vehicles. Energy 2014;64:953e60.

    [19]   Kizilel R, Sabbah R, Selman JR, Al-Hallaj S. An alternative cooling system toenhance the safety of Li-ion battery packs. J Power Sources 2009;194:1105e12.

    [20]   Al-Hallaj S, Selman JR. Thermal modeling of secondary lithium batteries forelectric vehicle/hybrid electric vehicle applications. J Power Sources2002;110:341e8.

    [21]   Tong W, Koh WQ, Birgersson E, Mujumdar AS, Yap C. Correlating uncertaintiesof a lithium-ion battery e a Monte Carlo simulation. Int J Energy Res 2015;39:778e88.

    [22]   Smith K, Kim G-H, Darcy E, Pesaran A. Thermal/electrical modeling for abuse-tolerant design of lithium ion modules. Int J Energy Res 2010;34:204e15.

    [23]   Alrashdan A, Mayyas AT, Al-Hallaj S. Thermo-mechanical behaviors of theexpanded graphite-phase change material matrix used for thermal manage-ment of Li-ion battery packs. J Mater Process Technol 2010;210:174e9.

    [24]   Frusteri F, Leonardi V, Vasta S, Restuccia G. Thermal conductivity measure-ment of a PCM based storage system containing carbon   bers. Appl ThermEng 2005;25:1623e33.

    [25]   Frusteri F, Leonardi V,Maggio G. Numerical approach to describe the phase

    change of an inorganic PCM containing carbon   bers. Appl Therm Eng2006;26:1883e92.[26]   Javani N, Dincer I, Naterer GF. Numerical modeling of submodule heat transfer

    with phase change material for thermal management of electric vehicle bat-tery packs. J Therm Sci Eng Appl 2015;7. http://dx.doi.org/10.1115/1.4029053.

    [27]   Babapoor A, Azizi M, Karimi G. Thermal management of a Li-ion battery usingcarbon  ber-PCM composites. Appl Therm Eng 2015;82:281e90.

    [28]   Al-Hallaj S, Maleki H, Hong JS, Selman JR. Thermal modeling and designconsiderations of lithium-ion batteries. J Power Sources 1999;83:1e8.

    [29]   Rao Z, Wang S. A review of power battery thermal energy management.Renew Sustain Energy Rev 2011;15:4554e71.

    [30]   Duan X, Naterer GF. Heat transfer in phase change materials for thermalmanagement of electric vehicle battery modules. Int J Heat Mass Transf 2010;53:5176e82.

    [31]   Valan Arasu A, Mujumdar AS. Numerical study on melting of paraf n waxwith Al2O3   in a square enclosure. Int Commun Heat Mass Transf 2012;39:8e16.

    [32]   Ferziger J, Peric M. Computational method for   uid dynamics. Berlin:Springer-Verlag; 1996.

    [33]   Patankar SV. Numerical heat transfer and uid ow. Washington: HemispherePub Co; 1980.

    [34]   Chow LC, Zhong JK. Thermal conductivity enhancement for phase changestorage media. Int Commun Heat Mass Transf 1996;23:91e100.

    [35]   Vajjha RS, Das DK, Namburu PK. Numerical study of  uid dynamic and heattransfer performance of Al2O3   and CuO nanouids in the   at tubes of aradiator. Int J Heat Fluid Flow 2010;31:613e21.

    [36]   Kandasamy R, Wang XQ, Mujumdar AS. Transient cooling of electronics usingphase change material (PCM)-based heat sinks. Appl Therm Eng 2008;28:1047e57.

    [37]   Sasmito AP, Kurnia JC, Mujumdar AS. Numerical evaluation of laminar heattransfer enhancement in nanouid ow in coiled square tubes. Nanoscale ResLett 2011;6:376e90.

    [38]   Rao Y, Frank D, Peter S. Convective heat transfer characteristics of micro-encapsulated phase change material suspensions in mini channels. J HeatMass Transf 2007;44:175e86.

    F. Samimi et al. / Energy 96 (2016) 355e 371370

    https://www.researchgate.net/publication/227421332_Thermal_Conductivity_Enhancement_of_Phase_Change_Materials_for_Thermal_Energy_Storage_A_Review?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==https://www.researchgate.net/publication/227421332_Thermal_Conductivity_Enhancement_of_Phase_Change_Materials_for_Thermal_Energy_Storage_A_Review?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==https://www.researchgate.net/publication/227421332_Thermal_Conductivity_Enhancement_of_Phase_Change_Materials_for_Thermal_Energy_Storage_A_Review?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==https://www.researchgate.net/publication/227421332_Thermal_Conductivity_Enhancement_of_Phase_Change_Materials_for_Thermal_Energy_Storage_A_Review?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==https://www.researchgate.net/publication/227421332_Thermal_Conductivity_Enhancement_of_Phase_Change_Materials_for_Thermal_Energy_Storage_A_Review?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==https://www.researchgate.net/publication/227421332_Thermal_Conductivity_Enhancement_of_Phase_Change_Materials_for_Thermal_Energy_Storage_A_Review?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==https://www.researchgate.net/publication/223277538_Phase_transition_temperature_ranges_and_storage_density_of_paraffin_wax_phase_change_materials?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==https://www.researchgate.net/publication/223277538_Phase_transition_temperature_ranges_and_storage_density_of_paraffin_wax_phase_change_materials?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==https://www.researchgate.net/publication/223277538_Phase_transition_temperature_ranges_and_storage_density_of_paraffin_wax_phase_change_materials?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==https://www.researchgate.net/publication/223277538_Phase_transition_temperature_ranges_and_storage_density_of_paraffin_wax_phase_change_materials?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==https://www.researchgate.net/publication/223277538_Phase_transition_temperature_ranges_and_storage_density_of_paraffin_wax_phase_change_materials?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==https://www.researchgate.net/publication/223277538_Phase_transition_temperature_ranges_and_storage_density_of_paraffin_wax_phase_change_materials?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==https://www.researchgate.net/publication/223277538_Phase_transition_temperature_ranges_and_storage_density_of_paraffin_wax_phase_change_materials?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==https://www.researchgate.net/publication/262975374_Heat_transfer_characteristics_of_thermal_energy_storage_of_a_composite_phase_change_materials_Numerical_and_experimental_investigations?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==https://www.researchgate.net/publication/262975374_Heat_transfer_characteristics_of_thermal_energy_storage_of_a_composite_phase_change_materials_Numerical_and_experimental_investigations?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==https://www.researchgate.net/publication/262975374_Heat_transfer_characteristics_of_thermal_energy_storage_of_a_composite_phase_change_materials_Numerical_and_experimental_investigations?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==https://www.researchgate.net/publication/262975374_Heat_transfer_characteristics_of_thermal_energy_storage_of_a_composite_phase_change_materials_Numerical_and_experimental_investigations?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==https://www.researchgate.net/publication/262975374_Heat_transfer_characteristics_of_thermal_energy_storage_of_a_composite_phase_change_materials_Numerical_and_experimental_investigations?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==https://www.researchgate.net/publication/262975374_Heat_transfer_characteristics_of_thermal_energy_storage_of_a_composite_phase_change_materials_Numerical_and_experimental_investigations?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==https://www.researchgate.net/publication/272381562_Preparation_and_properties_of_shape-stabilized_phase_change_materials_based_on_fatty_acid_eutectics_and_cellulose_composites_for_thermal_energy_storage?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==https://www.researchgate.net/publication/272381562_Preparation_and_properties_of_shape-stabilized_phase_change_materials_based_on_fatty_acid_eutectics_and_cellulose_composites_for_thermal_energy_storage?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==https://www.researchgate.net/publication/272381562_Preparation_and_properties_of_shape-stabilized_phase_change_materials_based_on_fatty_acid_eutectics_and_cellulose_composites_for_thermal_energy_storage?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==https://www.researchgate.net/publication/272381562_Preparation_and_properties_of_shape-stabilized_phase_change_materials_based_on_fatty_acid_eutectics_and_cellulose_composites_for_thermal_energy_storage?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==https://www.researchgate.net/publication/272381562_Preparation_and_properties_of_shape-stabilized_phase_change_materials_based_on_fatty_acid_eutectics_and_cellulose_composites_for_thermal_energy_storage?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==https://www.researchgate.net/publication/272381562_Preparation_and_properties_of_shape-stabilized_phase_change_materials_based_on_fatty_acid_eutectics_and_cellulose_composites_for_thermal_energy_storage?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==https://www.researchgate.net/publication/223525511_Heat_transfer_characteristics_of_thermal_energy_storage_system_using_PCM_capsules_a_review_Renew_Sustain_Energy_Rev?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==https://www.researchgate.net/publication/223525511_Heat_transfer_characteristics_of_thermal_energy_storage_system_using_PCM_capsules_a_review_Renew_Sustain_Energy_Rev?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==https://www.researchgate.net/publication/223525511_Heat_transfer_characteristics_of_thermal_energy_storage_system_using_PCM_capsules_a_review_Renew_Sustain_Energy_Rev?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==https://www.researchgate.net/publication/223525511_Heat_transfer_characteristics_of_thermal_energy_storage_system_using_PCM_capsules_a_review_Renew_Sustain_Energy_Rev?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==https://www.researchgate.net/publication/223525511_Heat_transfer_characteristics_of_thermal_energy_storage_system_using_PCM_capsules_a_review_Renew_Sustain_Energy_Rev?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==https://www.researchgate.net/publication/223525511_Heat_transfer_characteristics_of_thermal_energy_storage_system_using_PCM_capsules_a_review_Renew_Sustain_Energy_Rev?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==https://www.researchgate.net/publication/257375359_Development_of_PCMcarbon-based_composite_materials?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==https://www.researchgate.net/publication/257375359_Development_of_PCMcarbon-based_composite_materials?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==https://www.researchgate.net/publication/257375359_Development_of_PCMcarbon-based_composite_materials?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==https://www.researchgate.net/publication/257375359_Development_of_PCMcarbon-based_composite_materials?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==https://www.researchgate.net/publication/257375359_Development_of_PCMcarbon-based_composite_materials?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==https://www.researchgate.net/publication/257375359_Development_of_PCMcarbon-based_composite_materials?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==https://www.researchgate.net/publication/257375359_Development_of_PCMcarbon-based_composite_materials?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==https://www.researchgate.net/publication/257375359_Development_of_PCMcarbon-based_composite_materials?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==https://www.researchgate.net/publication/257375359_Development_of_PCMcarbon-based_composite_materials?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==https://www.researchgate.net/publication/257375359_Development_of_PCMcarbon-based_composite_materials?el=1_x_8&enrichId=rgreq-dd5d9349-beaa-48bd-91a8-f41dcdcedc8c&enrichSource=Y292ZXJQYWdlOzI5Mjk5NDYwNjtBUzozNDE1OTMyMjQ2OTU4MTJAMTQ1ODQ1MzU3OTM5Mg==https://www.researchgate.net/publication/276301692_Study_on_the_thermal_storage_performance_of_a_gravity-assisted_heat-pipe_thermal_storage_unit_with_granular_high-temperature_phase-change_materials?el=1_x_8&enrichId=