the$r2d2$project:$ network$coding$for$ - lancaster university

47
The R2D2 project: Network coding for Rapid and Reliable Data Delivery Dr Ioannis Chatzigeorgiou [email protected] School of Computing and Communications A project funded by EPSRC under the First Grant scheme Web: hKp://www.lancs.ac.uk/~chatzige/R2D2/index.html University of Liverpool, 11 th March 2015 Lancaster University

Upload: others

Post on 27-Apr-2022

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The$R2D2$project:$ Network$coding$for$ - Lancaster University

The  R2D2  project:  Network  coding  for  Rapid  and  Reliable  Data  Delivery  

Dr  Ioannis  Chatzigeorgiou  -­‐  [email protected]    

 

School of Computing and Communications

A  project  funded  by  EPSRC  under  the  First  Grant  scheme  Web:  hKp://www.lancs.ac.uk/~chatzige/R2D2/index.html    

University  of  Liverpool,  11th  March  2015  

Lancaster University

Page 2: The$R2D2$project:$ Network$coding$for$ - Lancaster University

Aims  and  Aspira.ons  

•  18-­‐month  EPSRC  research  project  on  network  error  control  mechanisms  (February  2014  –  July  2015).  

•  Design  novel  mathema]cal  frameworks  -­‐  To  iden]fy  key  rela]onships  between  system  and  channel  parameters,  understand  network  dynamics  and  op]mise  network-­‐coded  architectures.  

•  Inves]gate  prac]cal  aspects  -­‐  Ultra-­‐reliable  communica]ons,  delay-­‐constrained  applica]ons,  energy-­‐efficient  architectures  

Page 3: The$R2D2$project:$ Network$coding$for$ - Lancaster University

The  R2D2  Team  

Ioannis  Chatzigeorgiou  Principal  Inves.gator  

Example  image  

Andrea  Tassi  Postdoctoral  Research  Associate  

Amjad  Saeed  Khan  PhD  Candidate    (Oct.  2014  -­‐  present)  

Andrew  Jones  MSc  by  Research  

(Sep.  2013  –  Aug.  2014)  

Page 4: The$R2D2$project:$ Network$coding$for$ - Lancaster University

Research  Ac.vi.es  

•  Performance  modelling  of  network-­‐coded  schemes  

•  System  op]misa]on  for  layered  mul]cast  services  

•  Design  of  on-­‐the-­‐fly  rateless  decoders  

•  Sparse  network  coding  schemes  that  trade  complexity  for  delay  /  energy  

•  Extension  to  relay-­‐aided  transmission  

Page 5: The$R2D2$project:$ Network$coding$for$ - Lancaster University

1.  Network  coding  in  a  nutshell  

Page 6: The$R2D2$project:$ Network$coding$for$ - Lancaster University

Random  Linear  Network  Coding  

Page 7: The$R2D2$project:$ Network$coding$for$ - Lancaster University

Random  Linear  Network  Coding  

Page 8: The$R2D2$project:$ Network$coding$for$ - Lancaster University

Random  Linear  Network  Coding  

Page 9: The$R2D2$project:$ Network$coding$for$ - Lancaster University

Random  Linear  Network  Coding  

[110100]!

Page 10: The$R2D2$project:$ Network$coding$for$ - Lancaster University

Random  Linear  Network  Coding  

[110100]![000001]!

Page 11: The$R2D2$project:$ Network$coding$for$ - Lancaster University

Random  Linear  Network  Coding  

[110100]![000001]![011000]!

Page 12: The$R2D2$project:$ Network$coding$for$ - Lancaster University

Random  Linear  Network  Coding  

[110100]![000001]![011000]![111111]!

Page 13: The$R2D2$project:$ Network$coding$for$ - Lancaster University

Random  Linear  Network  Coding  

[110100]![000001]![011000]![111111]![010101]!

Page 14: The$R2D2$project:$ Network$coding$for$ - Lancaster University

Random  Linear  Network  Coding  

…  [110100]![000001]![011000]![111111]![010101]!

Page 15: The$R2D2$project:$ Network$coding$for$ - Lancaster University

Random  Linear  Network  Coding  

…  [110100]![000001]![011000]![111111]![010101]!

Page 16: The$R2D2$project:$ Network$coding$for$ - Lancaster University

Random  Linear  Network  Coding  

…  

Network    coding  process  

Page 17: The$R2D2$project:$ Network$coding$for$ - Lancaster University

Non-­‐overlapping  window  NC  

Page 18: The$R2D2$project:$ Network$coding$for$ - Lancaster University

Non-­‐overlapping  window  NC  

Window  1   Window  2   Window  3  

Page 19: The$R2D2$project:$ Network$coding$for$ - Lancaster University

Non-­‐overlapping  window  NC  

…  

Network    coding  process  

Window  1   Window  2   Window  3  

Page 20: The$R2D2$project:$ Network$coding$for$ - Lancaster University

Non-­‐overlapping  window  NC  •  x = {x1, x2, …, xK}  is  a  layered  source  message  of  K  source  packets,  

divided  into  L  service  layers  (here  L=3).  

•  Encoding  is  performed  over  each  service  layer  independently  of  the  others  

•  The  source  linearly  combines  the  kl  data  packets  composing  the  l-­‐th  layer  and  generates  a  stream  of  nl  ≥  kl  coded  packets,  where  

•  Coefficients  gj,i  are  selected  uniformly  at  random  from  a  finite  field  of  size  q,  e.g.  GF(q).  

yj = gj ,i xii=1

kl

!

Page 21: The$R2D2$project:$ Network$coding$for$ - Lancaster University

Non-­‐overlapping  window  NC  •  User  u  can  recover  the  l-­‐th  layer  if  kl  linearly  independent  coded  packets  

from  that  layer  are  collected.  The  probability  of  this  event  is  

where  p  is  the  packet  erasure  probability,  nl,u  is  the  number  of  transmiKed  coded  packets  of  layer  l,  and  r  is  the  number  of  received  coded  packets.  

•  The  probability  that  user  u will  recover  the  first  l service  layers  is  

Pl (nl ,u ) = nl ,ur

!"#

$%&r=kl

nl ,u

' pnl ,u(r (1( p)r 1( 1qr(i

!"#

$%&i=0

kl(1

)

DNOW(n1,u ,...,nl ,u ) = Pj (nj ,u )j=1

l

!

Page 22: The$R2D2$project:$ Network$coding$for$ - Lancaster University

Expanding  window  NC  

Window  1  

Window  2  Window  3  

Page 23: The$R2D2$project:$ Network$coding$for$ - Lancaster University

Expanding  window  NC  

…  

Network    coding  process  

Window  1  

Window  2  Window  3  

Associated  with  Window  1   Associated  with  Window  2   Associated  with  Window  3  

Page 24: The$R2D2$project:$ Network$coding$for$ - Lancaster University

Expanding  window  NC  •  Let  Kl = k1 + k2 + … + kl denote  the  size  of  the  l-­‐th  expanding  window,  

while  Nl,u  denotes  the  number  of  coded  packets  transmiKed  to  user  u  and  associated  with  expanding  window  l.  

•  The  probability  of  user  u recovering  the  first  l service  layers  (or,  equivalently,  the  l-­‐th  expanding  window),  can  be  expressed  as  

where  rmin, l = Kl – Kl-1 + max(rmin, l-1 – rl-1, 0) and rmin,1 = K1.  The  probability  that  Kl  out  of  the  r1 + r2 + … + rl  received  coded  packets  are  linearly  independent  has  been  approximated  by  gl(r1,…,rl).  

DEW(N1,u ,...,Nl ,u ) =

= !N1,ur1

!"#

$%&rl=rmin,l

Nl ,u

'r2=0

N2,u

'r1=0

N1,u

' !Nl ,u

rl!"#

$%&p (Ni ,u(ri )i=1

l' (1( p) rii=1

l' gl (r1,…,rl )

Page 25: The$R2D2$project:$ Network$coding$for$ - Lancaster University

2.  Provider-­‐centric  op.misa.on  

Page 26: The$R2D2$project:$ Network$coding$for$ - Lancaster University

Op.misa.on  models  

•  We  consider  NOW  layered  NC  and  introduce  the  following  indica]on  variable  

!u ,l = I DNOW(n1,u ,...,nl ,u ) " P̂( )•  Similarly,  we  use  the  following  indica]on  variable  for  EW  layered  NC  

µu ,l = I ORj=lL

DEW(N1,u ,...,N j ,u ) ! P̂{ }"#

$%

•  Structure  of  transmission  medium:  

Frequency  bands  (sub-­‐channels)  

Time  

Page 27: The$R2D2$project:$ Network$coding$for$ - Lancaster University

Op.misa.on  models  

Proposed  mixed  alloca]on  (MA)  strategies:  

minm1,…,mL

n(1,c ) ,...,n(L ,c )

n(l ,c)c=1

C

!l=1

L

!

!u ,lu=1

U

" #U t̂lfor l = 1,...,L

mc!1 " mc

subject  to:  

(NOW-­‐MA)  

0 ! n(l ,c)l=1

L

" ! B̂c

minm1,…,mL

N (1,c ) ,...,N (L ,c )

N (l ,c)

c=1

C

!l=1

L

!

µu ,lu=1

U

! "U t̂l

mc!1 " mc

subject  to:  

(EW-­‐MA)  

0 ! N (l ,c)

l=1

L

" ! B̂c

for c = 2,...,L

for c = 1,...,L

for l = 1,...,L

for c = 2,...,L

for c = 1,...,L

Page 28: The$R2D2$project:$ Network$coding$for$ - Lancaster University

Network  configura.on  •  We  have  considered  80  users  equally  spaced  and  placed  along  the  radial  

line  represen]ng  the  symmetry  axis  of  one  sector  of  the  target  cell.  

•  Node  eNB  (eNode-­‐B)  represents  the  base  sta]on.  Users  form  a  Mul]cast  Group  (MG).  

Page 29: The$R2D2$project:$ Network$coding$for$ - Lancaster University

Analy.cal  results  

The  performance  of  the  proposed  EW-­‐MA  is  compared  to  NOW-­‐MA  and  the  state-­‐of-­‐the-­‐art  Mul]-­‐rate  Transmission  (MrT).  The  focus  is  on  GF(2).  

PSNR  layers  1+2+3   PSNR  

layers  1+2  PSNR  

layer  1  

Page 30: The$R2D2$project:$ Network$coding$for$ - Lancaster University

3.  User-­‐centric  op.misa.on  

Page 31: The$R2D2$project:$ Network$coding$for$ - Lancaster University

Op.misa.on  model  •  The  objec]ve  of  the  previous  alloca]on  method  was  to  minimize  the  

number  of  transmiKed  packets,  while  mee]ng  a  minimum  set  of  service  level  agreements  .  This  is  from  the  point  of  view  of  the  service  provider…  

•  Best  prac]ce  for  burglars:  To  steal  objects  with  the  maximum  value  and  the  minimum  weight.  Maximising  the  profit-­‐cost  ra]o  is  the  objec]ve  of  the  Unequal  Error  Protec]on  Resource  Alloca]on  Model  (UEP-­‐RAM)  .  

maxm1,…,mLN1,...,NL

!u ,ll=1

L

"u=1

U

" Nll=1

L

"

!u ,lu=1

U

" #U t̂l

l = 1,...,L

l = 1,...,L

0 ! Nl ! N̂l

subject  to:  

(UEP-­‐RAM)  

Page 32: The$R2D2$project:$ Network$coding$for$ - Lancaster University

Network  configura.on  •  LTE-­‐Advanced  allows  mul]ple  

con]guous  base  sta]ons  to  deliver  (in  a  synchronous  fashion)  the  same  services.  

•  Top  image:  we  considered  a  Single-­‐Frequency  Network  (SFN)  comprising  4  base  sta]ons  and  1700  users.  

•  BoKom  image:  The  distribu]on  of  the  Signal-­‐to-­‐Interference-­‐plus-­‐Noise  Ra]o  (SINR)  in  space.  

Page 33: The$R2D2$project:$ Network$coding$for$ - Lancaster University

Analy.cal  results  

The  proposed  op]misa]on  framework  based  on  network  coding  clearly  shows  an  increase  in  the  coverage  of  service  provider  (right-­‐hand  side  of  each  figure).  

Three-­‐layered  service  

UEP-RAM

Four-­‐layered  service  

UEP-RAM

Page 34: The$R2D2$project:$ Network$coding$for$ - Lancaster University

4.  Other  key  findings  

Page 35: The$R2D2$project:$ Network$coding$for$ - Lancaster University

Systema.c  vs.  straighKorward  NC  •  The  transmiKer  broadcasts  N  packets:  

–  They  could  all  be  linear  combina]ons  of  the  K  source  packets  (straight-­‐forward  NC)  

–  The  first  K  transmiKed  packets  could  be  un-­‐coded  and  the  remaining  N-­‐K  packets  could  be  linear  combina]ons  (systema]c  NC).  

•  We  proved  that:  

–  The  decoding  probability  of  systema]c  RLNC  is  lower  than  the  decoding  probability  of  non-­‐systema]c  RLNC.  

–  Systema]c  RNLC  offers  the  advantage  of  reduced  decoding  complexity  and  progressive  packet  recovery  at  the  receiver.  

Page 36: The$R2D2$project:$ Network$coding$for$ - Lancaster University

Systema.c  vs.  straighKorward  NC  

OU:  Ordered  Un-­‐coded  transmission,  SF  NC:  Straighlorward  Network  Coding,    Sys.  NC:  Systema]c  Network  Coding.  The  erasure  probability  is  p  =  0.1.  

 

10 15 20 25 30 35 400

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Dec

odin

g P

robab

ilit

y

N

OU Trans., M = 10

SF NC, M = 10

Sys. NC, M = 10

OU Trans., M = 20

SF NC, M = 20

Sys. NC, M = 20

Page 37: The$R2D2$project:$ Network$coding$for$ - Lancaster University

Sparse  Random  Network  Coding      •  So  far,  the  entries  of  the  generator  matrix  were  selected  uniformly  at  

random  from  the  elements  of  a  finite  field  GF(q).  

•  What  if  the  probability  of  selec]ng  a  non-­‐zero  element  is  uniform  but  the  probability  of  selec]ng  the  zero  element  (          )  is  higher  than  0.5?  

•  The  service  provider  can  adjust  the  sparsity  of  its  generator  matrix  and  trade  transmit  power  for  reduced  decoding  complexity.  

•  Recent  results  indicate  that  the  performance  gains  offered  by  larger  finite  fields,  e.g.  GF(28)  as  opposed  to  GF(2),  do  not  jus]fy  the  increase  in  decoding  complexity.  

p!

Page 38: The$R2D2$project:$ Network$coding$for$ - Lancaster University

Sparse  Random  Network  Coding    •  ?  

p!

τ!

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 110

20

30

40

50

60

70

80

90

100

k! = 10

k! = 30

k! = 50

k! = 70

SimulationsUpper-Bound

•  Results  for  different  numbers  of  source  packets  at  the  transmiKer.  Upper  bounds  (solid  lines)  are  compared  to  simula]ons  (dashed  lines).  

•  Focus  on  GF(2).  An  increase  in            (probability  of  selec]ng  the  zero  element)  causes  an  increase  in  sparsity  and  a  decrease  in  decoding  complexity.  

•  For  50  source  packets  and                            ,  ]me  to  decode=1030  μsec;  for                              ,  ]me  to  decode=352  μsec.  

p!

p! = 0.5 p! = 0.9

Page 39: The$R2D2$project:$ Network$coding$for$ - Lancaster University

5.  Concluding  remarks  

Page 40: The$R2D2$project:$ Network$coding$for$ - Lancaster University

Random  matrices  over  GF(q)  

where  �  is  an  element  of  GF(q):  • • • • • • • •• • • • • • • •• • • • • • • •• • • • • • • •• • • • • • • •• • • • • • • •• • • • • • • •• • • • • • • •

!

"

#########

$

%

&&&&&&&&&

x1 x2 x3 x4 x5 … xKxK!1

y1y2y3y4y5 !

yNyN!1

• =

0, p = 1 q1, p = 1 q! !q !1, p = 1 q

"

#$$

%$$

The  decoding  probability  Pd  is  the  probability  that  the  N×K  matrix  (N  ≥  K)  is  full-­‐rank  (Trullols-­‐Cruces  et  al.,  2011):  

Pd = 1! 1qN! j

"#$

%&'j=0

K!1

(

O. Trullols-Cruces, J.M. Barcelo-Ordinas,, M. Fiore, “Exact decoding probability under random linear network coding”, IEEE Communications Letters, vol.15, no.1, pp .67-69, 2011

Page 41: The$R2D2$project:$ Network$coding$for$ - Lancaster University

The  expanding  window  principle  

Applica.on:  ü  Transmission  of  

layered  informa]on,  where  ‘nested’  windows  carry  informa]on  of  higher/fundamental  importance.  

• • • • 0 0 0 0 0 0 0 0• • • • 0 0 0 0 0 0 0 0• • • • 0 0 0 0 0 0 0 0• • • • 0 0 0 0 0 0 0 0• • • • • • • • 0 0 0 0• • • • • • • • 0 0 0 0• • • • • • • • 0 0 0 0• • • • • • • • 0 0 0 0• • • • • • • • • • • •• • • • • • • • • • • •• • • • • • • • • • • •• • • • • • • • • • • •

!

"

###############

$

%

&&&&&&&&&&&&&&&

x1 x2 x3 x4 x5 … xKxK!1 …

y1y2y3y4y5 !

!

yNyN!1

The  decoding  probability  Pd  has  been  approximated.  

Page 42: The$R2D2$project:$ Network$coding$for$ - Lancaster University

The  sliding  window  principle  

Applica.ons:  ü  TransmiKers  

with  a  limited  buffer  size  streaming  mul]media  content.  

• • 0 0 0 0 0 0 0 0 0 0• • 0 0 0 0 0 0 0 0 0 0• • • • 0 0 0 0 0 0 0 0• • • • 0 0 0 0 0 0 0 00 0 • • • • 0 0 0 0 0 00 0 • • • • 0 0 0 0 0 00 0 0 0 • • • • 0 0 0 00 0 0 0 • • • • 0 0 0 00 0 0 0 0 0 • • • • 0 00 0 0 0 0 0 • • • • 0 00 0 0 0 0 0 0 0 • • • •0 0 0 0 0 0 0 0 • • • •0 0 0 0 0 0 0 0 0 0 • •0 0 0 0 0 0 0 0 0 0 • •

!

"

#################

$

%

&&&&&&&&&&&&&&&&&

x1 x2 x3 x4 x5 … xKxK!1 …

y1y2y3y4y5 !

!

yNyN!1

   

The  decoding  probability  Pd  is  under  inves]ga]on.  

Page 43: The$R2D2$project:$ Network$coding$for$ - Lancaster University

The  random  block-­‐angular  matrix  

Applica.ons:  ü  Mul]ple  access  

relay  networks  (MARC)  

ü  Distributed  data  storage.  

• • • • 0 0 0 0 0 0 0 0• • • • 0 0 0 0 0 0 0 0• • • • 0 0 0 0 0 0 0 00 0 0 0 • • • • 0 0 0 00 0 0 0 • • • • 0 0 0 00 0 0 0 • • • • 0 0 0 00 0 0 0 0 0 0 0 • • • •0 0 0 0 0 0 0 0 • • • •0 0 0 0 0 0 0 0 • • • •• • • • • • • • • • • •• • • • • • • • • • • •• • • • • • • • • • • •

!

"

###############

$

%

&&&&&&&&&&&&&&&

x1 x2 x3 x4 x5 … xKxK!1 …

y1y2y3y4y5 !

!

yNyN!1

The  decoding  probability  Pd  has  been  computed  (Ferreira  et  al.,  2013).  

P. J. S. G. Ferreira, B. Jesus, J. Vieira, A. J. Pinho, “The rank of random binary matrices and distributed storage applications”, IEEE Communications Letters, vol.17, no.1, pp.151-154, 2013

Page 44: The$R2D2$project:$ Network$coding$for$ - Lancaster University

Sparse  random  matrices  

where  �  is  an  element  of  GF(q):  • • • • • • • •• • • • • • • •• • • • • • • •• • • • • • • •• • • • • • • •• • • • • • • •• • • • • • • •• • • • • • • •

!

"

#########

$

%

&&&&&&&&&

x1 x2 x3 x4 x5 … xKxK!1

y1y2y3y4y5 !

yNyN!1

• =

0, p!1, p = 1! p!( ) q !1( )" "q !1, p = 1! p!( ) q !1( )

"

#

$$

%

$$

The  decoding  probability  Pd  has  been  bound  from  above  (Blömer  et  al.,  1997).  We  are  not  aware  of  exact  expressions.  

J. Blömer, R. Karp, E. Welzl, “The rank of sparse random matrices over finite fields”, Random Struct. Algorithms, 10 (1997), pp. 407-419.

Page 45: The$R2D2$project:$ Network$coding$for$ - Lancaster University

Publica.ons  –  Project  outcomes  u  A.  Tassi,  I.  Chatzigeorgiou  and  D.  Vukobratović,  “Resource  alloca]on  framework  for  network-­‐

coded  layered  mul]media  mul]cast  services”,  to  appear  in  IEEE  Journal  on  Selected  Areas  in  Communica.ons  (JSAC).  

²  A.  Khan  and  I.  Chatzigeorgiou,  “Performance  analysis  of  random  linear  network  coding  in  two-­‐source  single-­‐relay  networks”,  to  appear  in  Proc.  IEEE  Int.  Conf.  on  Commun.  (ICC),  Workshop  on  Coopera]ve  and  Cogni]ve  Mobile  Networks,  London,  UK,  June  2015.  

²  A.  Tassi,  I.  Chatzigeorgiou,  D.  Vukobratović  and  A.  L.  Jones,  “Op]mized  network-­‐coded  scalable  video  mul]cas]ng  over  eMBMS  networks”,  to  appear  in  Proc.  IEEE  Int.  Conf.  on  Commun.  (ICC)  ,  London,  UK,  June  2015.  

²  A.  L.  Jones,  I.  Chatzigeorgiou  and  A.  Tassi,  “Binary  systema]c  network  coding  for  progressive  packet  decoding”,  to  appear  in  Proc.  IEEE  Int.  Conf.  on  Comm.  (ICC)  ,  London,  UK,  June  2015.  

²  A.  L.  Jones,  I.  Chatzigeorgiou  and  A.  Tassi,  “Performance  assessment  of  fountain-­‐coded  schemes  for  progressive  packet  recovery”,  in  Proc.  9th  Int.  Symp.  on  Comm.  Systems,  Networks  &  Dig.  Sig.  Proc.  (CSNDSP),  Manchester,  UK,  July  2014.  

²  I.  Chatzigeorgiou,  “Condi]ons  for  coopera]ve  transmission  on  Rayleigh  fading  channels”,  in  Proc.  80th  IEEE  Vehicular  Tech.  Conference  (VTC),  Vancouver,  Canada,  September  2014.  

Page 46: The$R2D2$project:$ Network$coding$for$ - Lancaster University

Project  Website  hKp://www.lancs.ac.uk/~chatzige/R2D2/index.html  

Page 47: The$R2D2$project:$ Network$coding$for$ - Lancaster University