theory of shock acceleration of hot ion populations

42
Theory of Shock Acceleration of Hot Ion Populations Marty Lee Durham, New Hampshire USA

Upload: milek

Post on 05-Jan-2016

24 views

Category:

Documents


0 download

DESCRIPTION

Theory of Shock Acceleration of Hot Ion Populations. Marty Lee Durham, New Hampshire USA. Current Issues & Challenges. Theory of Planar Stationary Diffusive Shock Acceleration Injection Rates and Injection Thresholds “Hot” and “Cold” Seed Particle Populations Quasilinear Wave Excitation - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Theory of Shock Acceleration of Hot Ion Populations

Theory of Shock Acceleration of Hot Ion Populations

Marty Lee

Durham, New Hampshire

USA

Page 2: Theory of Shock Acceleration of Hot Ion Populations
Page 3: Theory of Shock Acceleration of Hot Ion Populations

Current Issues & Challenges• Theory of Planar Stationary Diffusive Shock Acceleration

• Injection Rates and Injection Thresholds

• “Hot” and “Cold” Seed Particle Populations

• Quasilinear Wave Excitation

• Ion Fractionation Upstream of the Shock

• Power-law Index: Observations Versus Theory

• Varying Magnetic Obliquity Within an Event

• Geometry: Earth’s Bow Shock & Solar Wind Termination Shock

• Nonlinear Waves & SLAMS

Page 4: Theory of Shock Acceleration of Hot Ion Populations

Planar Stationary DSA - I

f(z>0,v)=f0−(f0−f∞)(1−e−ζ)(1−e−ζ∞)−1

f0≡β d′ v′ v0

v∫ f∞( ′ v)(1−e−′ ζ ∞)−1v′ v ⎛ ⎝ ⎜ ⎞ ⎠ ⎟-βexp−β d′ ′ v

′ ′ ve−′ ′ ζ ∞(1−e−′ ′ ζ ∞)−1′ vv∫ ⎡ ⎣ ⎢ ⎤

⎦ ⎥

Vz∂fi∂z−∂∂z(Ki,zz

∂fi∂z)−13dVzdzv

∂fi∂v=Qi

ζ(z)= [V/Kzz(z')]dz'0z∫

Page 5: Theory of Shock Acceleration of Hot Ion Populations

Planar Stationary DSA - II

−Kzz∂f∂zz→∞

=V(f0−f∞)e−ζ∞(1−e−ζ∞)−1

fp,∞= np(4πvp,02 )−1δ(v−vp,0)+ Cv−γS(v− vp,0)

Page 6: Theory of Shock Acceleration of Hot Ion Populations

Planar Stationary DSA - III

log f

log f

log v

Ani

f∞ (v)∝δ (v − v0)

Kzz = K0 (v /v0)2

β =5

Z = Vz /K0

Z

Z

Z = 0

Z = 8

v /v0 = 1

v /v0 = 5

v /v0 = 1€

v /v0 = 5

Page 7: Theory of Shock Acceleration of Hot Ion Populations

Planar Stationary DSA - IV

log f

log f

log v

Ani

f∞ (v)∝δ (v − v0)

Kzz = K0 (v /v0)2

β =5€

Z = Vz /K0

Z

Z

Vzesc /K0 = 10

Z = 0

Z = 8

v /v0 = 1

v /v0 = 1€

v /v0 = 5

v /v0 = 5

Page 8: Theory of Shock Acceleration of Hot Ion Populations

Planar Stationary DSA - V

log f

log f

log v

Ani

Kzz = K0 (v /v0)2

f∞ = (v /v0)−8

β =5

Z = Vz /K0

Z = 0

Z = 20

Z

Z

v /v0 = 1.5

v /v0 = 1.5

v /v0 = 5

v /v0 = 5

Page 9: Theory of Shock Acceleration of Hot Ion Populations

Planar Stationary DSA - VI

log f

log f

log v

Ani

Kzz = K0 (v /v0)2

f∞ = (v /v0)−4.2

β =5

Z = Vz /K0

Z

Z

Z = 0

Z = 20

v /v0 = 1.01

v /v0 = 1.01

v /v0 = 5

v /v0 = 5

Page 10: Theory of Shock Acceleration of Hot Ion Populations

Current Issues & Challenges• Theory of Planar Stationary Diffusive Shock Acceleration

• Injection Rates and Injection Thresholds

• “Hot” and “Cold” Seed Particle Populations

• Quasilinear Wave Excitation

• Ion Fractionation Upstream of the Shock

• Power-law Index: Observations Versus Theory

• Varying Magnetic Obliquity Within an Event

• Geometry: Earth’s Bow Shock & Solar Wind Termination Shock

• Nonlinear Waves & SLAMS

Page 11: Theory of Shock Acceleration of Hot Ion Populations

Tylka et al., 2005

Injection and Shock Obliquity

Page 12: Theory of Shock Acceleration of Hot Ion Populations

Anisotropy Limitation

|S |

vf=

V

v1+

KA2 sin2 θ + (K|| − K⊥)2 sin2 θ cos2 θ

(K|| cos2 θ + K⊥sin2 θ)2

⎣ ⎢

⎦ ⎥

1/ 2

K|| >> K⊥,KA :

⇒|S |

vf=

V

v cosθGiacalone and Jokipii, 1999

Page 13: Theory of Shock Acceleration of Hot Ion Populations

“Energetic Storm

Particle” Event

Complexity

Van Nes et al., 1984

Page 14: Theory of Shock Acceleration of Hot Ion Populations

Ion Features

Van Nes et al., 1984

Page 15: Theory of Shock Acceleration of Hot Ion Populations

ACE Shock Survey

Lario et al., 2005

Page 16: Theory of Shock Acceleration of Hot Ion Populations

Quasi-Perpendicular

Shock Simulation

Giacalone, 1999

Page 17: Theory of Shock Acceleration of Hot Ion Populations

Shock Energetic Particle

Correlation Lengths

Neugebauer et al., 2006

Page 18: Theory of Shock Acceleration of Hot Ion Populations

Current Issues & Challenges• Theory of Planar Stationary Diffusive Shock Acceleration

• Injection Rates and Injection Thresholds

• “Hot” and “Cold” Seed Particle Populations

• Quasilinear Wave Excitation

• Ion Fractionation Upstream of the Shock

• Power-law Index: Observations Versus Theory

• Varying Magnetic Obliquity Within an Event

• Geometry: Earth’s Bow Shock & Solar Wind Termination Shock

• Nonlinear Waves & SLAMS

Page 19: Theory of Shock Acceleration of Hot Ion Populations

Example Event:1999 / 47-49(Cold Seeds)

Density compression: d/ u ~ 2.9

Clear proton foreshock of appropriate scale.

Softening particle spectra on the same ESP scale.

Particle intensity index appropriate to shock strength.

Small proton anisotropy.

Wave foreshock appropriate scale.

Argued and confirmed to be cold ion seed population leading to shock acceleration.

Page 20: Theory of Shock Acceleration of Hot Ion Populations

Example Event:1998 / 217-219

(Hot Seeds)Density compression: d/ u ~ 1.8

Very modest or questionable proton foreshock if SEP event is properly recognized.

Softening particle spectra on SEP scale.

Moderate proton anisotropy.

Nonexistent wave foreshock.

Argued and confirmed to be hot ion seed population leading to shock acceleration.

Page 21: Theory of Shock Acceleration of Hot Ion Populations

Current Issues & Challenges• Theory of Planar Stationary Diffusive Shock Acceleration

• Injection Rates and Injection Thresholds

• “Hot” and “Cold” Seed Particle Populations

• Quasilinear Wave Excitation

• Ion Fractionation Upstream of the Shock

• Power-law Index: Observations Versus Theory

• Varying Magnetic Obliquity Within an Event

• Geometry: Earth’s Bow Shock & Solar Wind Termination Shock

• Nonlinear Waves & SLAMS

Page 22: Theory of Shock Acceleration of Hot Ion Populations

Wave Excitation - I

−V∂I±/∂z=2γ±I±

I≅I+=Io+(k)+4π2k2VAV|Ωp|mpcosψ dvv3(1−Ωp2

k2v2)(fp−fp,∞)|Ωp/k|∞∫

fp,∞= np(4πvp,02 )−1δ(v−vp,0)+ Cv−γS(v− vp,0)

Page 23: Theory of Shock Acceleration of Hot Ion Populations

Wave Excitation - II

I=Io+ +4π2k2VAV|Ωp|mpcosψ dvv3(1−Ωp2

k2v2)|Ωp/k|∞∫ ⋅

⋅ β n4πv0,p3 (

vv0,p)

−βS(v−v0,p)− n4πv0,p2 δ(v−v0,p)

⎧ ⎨ ⎩

+ C v0,p−γβ−γ γ(v v0,p)−γ−β(v v0,p)

−β ⎡ ⎣ ⎢

⎤ ⎦ ⎥S(v− v0,p)

⎫ ⎬ ⎭⋅

⋅exp−V d′ zcos2ψv34π

B20Ωp2dμ|μ|(1−μ2)I(Ωpμ−1v−1)+sin2ψK⊥−1

1∫ ⎡ ⎣ ⎢

⎤ ⎦ ⎥−1

0z∫ ⎫ ⎬ ⎭

⎧ ⎨ ⎩

Page 24: Theory of Shock Acceleration of Hot Ion Populations

Wave Excitation - IIIβ = 7; I0(k) 0

Page 25: Theory of Shock Acceleration of Hot Ion Populations

Current Issues & Challenges• Theory of Planar Stationary Diffusive Shock Acceleration

• Injection Rates and Injection Thresholds

• “Hot” and “Cold” Seed Particle Populations

• Quasilinear Wave Excitation

• Ion Fractionation Upstream of the Shock

• Power-law Index: Observations Versus Theory

• Varying Magnetic Obliquity Within an Event

• Geometry: Earth’s Bow Shock & Solar Wind Termination Shock

• Nonlinear Waves & SLAMS

Page 26: Theory of Shock Acceleration of Hot Ion Populations

Ion Fractionation

Tylka et al., 1999

Page 27: Theory of Shock Acceleration of Hot Ion Populations

Current Issues & Challenges• Theory of Planar Stationary Diffusive Shock Acceleration

• Injection Rates and Injection Thresholds

• “Hot” and “Cold” Seed Particle Populations

• Quasilinear Wave Excitation

• Ion Fractionation Upstream of the Shock

• Power-law Index: Observations Versus Theory

• Varying Magnetic Obliquity Within an Event

• Geometry: Earth’s Bow Shock & Solar Wind Termination Shock

• Nonlinear Waves & SLAMS

Page 28: Theory of Shock Acceleration of Hot Ion Populations

Complications within DSAWave-frame compression ratio:

Van Nes et al., 1984

Page 29: Theory of Shock Acceleration of Hot Ion Populations

Current Issues & Challenges• Theory of Planar Stationary Diffusive Shock Acceleration

• Injection Rates and Injection Thresholds

• “Hot” and “Cold” Seed Particle Populations

• Quasilinear Wave Excitation

• Ion Fractionation Upstream of the Shock

• Power-law Index: Observations Versus Theory

• Varying Magnetic Obliquity Within an Event

• Geometry: Earth’s Bow Shock & Solar Wind Termination Shock

• Nonlinear Waves & SLAMS

Page 30: Theory of Shock Acceleration of Hot Ion Populations

Fe/O Versus Energy

Tylka et al., 2005

Page 31: Theory of Shock Acceleration of Hot Ion Populations

Time Evolution

vt ≈ V secθ

Page 32: Theory of Shock Acceleration of Hot Ion Populations

A Simple Model for Composition

Tylka and Lee, 2006

Page 33: Theory of Shock Acceleration of Hot Ion Populations

Fe/O Versus Energy

Tylka and Lee, 2006

Page 34: Theory of Shock Acceleration of Hot Ion Populations

Current Issues & Challenges• Theory of Planar Stationary Diffusive Shock Acceleration

• Injection Rates and Injection Thresholds

• “Hot” and “Cold” Seed Particle Populations

• Quasilinear Wave Excitation

• Ion Fractionation Upstream of the Shock

• Power-law Index: Observations Versus Theory

• Varying Magnetic Obliquity Within an Event

• Geometry: Earth’s Bow Shock & Solar Wind Termination Shock

• Nonlinear Waves & SLAMS

Page 35: Theory of Shock Acceleration of Hot Ion Populations

The Blunt Termination Shock

McComas and Schwadron, 2006

Page 36: Theory of Shock Acceleration of Hot Ion Populations

Stone et al., 2008

Page 37: Theory of Shock Acceleration of Hot Ion Populations

Bow Shock

Page 38: Theory of Shock Acceleration of Hot Ion Populations

Kis et al., 2007

Page 39: Theory of Shock Acceleration of Hot Ion Populations

Kis et al., 2007

Page 40: Theory of Shock Acceleration of Hot Ion Populations

Current Issues & Challenges• Theory of Planar Stationary Diffusive Shock Acceleration

• Injection Rates and Injection Thresholds

• “Hot” and “Cold” Seed Particle Populations

• Quasilinear Wave Excitation

• Ion Fractionation Upstream of the Shock

• Power-law Index: Observations Versus Theory

• Varying Magnetic Obliquity Within an Event

• Geometry: Earth’s Bow Shock & Solar Wind Termination Shock

• Nonlinear Waves & SLAMS

Page 41: Theory of Shock Acceleration of Hot Ion Populations

Upstream Waves

Hoppe et al., 1981

Page 42: Theory of Shock Acceleration of Hot Ion Populations

SLAMS

Lucek et al., 2008