theory of precise positioning (2) rtklib practice advanced...

81
Tokyo Univ. of Marine Science and Technology Tomoji TAKASU IPNTJ Summer School on GNSS Theory of Precise Positioning (2) RTKLIB Practice Advanced Topics 2014-07-28 ~ 2014-08-02 @Tokyo, Japan

Upload: others

Post on 23-Mar-2020

11 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Theory of Precise Positioning (2) RTKLIB Practice Advanced ...gpspp.sakura.ne.jp/paper2005/IPNTJ_SummerSchool_2014_2.pdf · Theory of Precise Positioning (2) RTKLIB Practice Advanced

Tokyo Univ. of Marine Science and Technology

Tomoji TAKASU

IPNTJ Summer School on GNSS

Theory of Precise Positioning (2)RTKLIB PracticeAdvanced Topics

2014-07-28 ~ 2014-08-02 @Tokyo, Japan

Page 2: Theory of Precise Positioning (2) RTKLIB Practice Advanced ...gpspp.sakura.ne.jp/paper2005/IPNTJ_SummerSchool_2014_2.pdf · Theory of Precise Positioning (2) RTKLIB Practice Advanced

Timetable

2

B-1 RTKLIB Introduction July 29 8:30- 9:50

B-2 RTKLIB Practice (1) 10:10-11:30

B-3 Theory of Precise Positioning (1) 12:30-13:50

JAXA Activities & QZSS Intro by JAXA 14:10-15:30

QZSS-Demo & RTKLIB Practice (2) 15:50-17:10

B-4 Theory of Precise Positioning (2) July 30 8:30- 9:50

B-5 Theory of RTK and RTKLIB Practice (3) 10:10-11:30

What is AIS? by JRC 12:30-12:50

Port Cruise Demo (G-1) & RTKLIB Practice (4) 12:55-14:20

Port Cruise Demo (G-2) & RTKLIB Practice (4) 14:15-15:40

B-6 Advanced Topics 15:50-17:10

Page 3: Theory of Precise Positioning (2) RTKLIB Practice Advanced ...gpspp.sakura.ne.jp/paper2005/IPNTJ_SummerSchool_2014_2.pdf · Theory of Precise Positioning (2) RTKLIB Practice Advanced

B-4Theory of Precise

Positioning (2)

3

Page 4: Theory of Precise Positioning (2) RTKLIB Practice Advanced ...gpspp.sakura.ne.jp/paper2005/IPNTJ_SummerSchool_2014_2.pdf · Theory of Precise Positioning (2) RTKLIB Practice Advanced

Time Systems

• Time Systems– TAI: International Atomic Time

– UTC: Coordinated Universal Time

– Local Time (JST, EDT, ...)

– UT0, UT1, UT2: Universal Time

– GMST: Greenwich Mean Sidereal Time

– GPS Time

– GLONASS Time

– ...

4

Page 5: Theory of Precise Positioning (2) RTKLIB Practice Advanced ...gpspp.sakura.ne.jp/paper2005/IPNTJ_SummerSchool_2014_2.pdf · Theory of Precise Positioning (2) RTKLIB Practice Advanced

Time System Conversion

5

)( TAIUTCtt TAIUTC

)1(1 UTCUTtt UTCUT

)(

'102.6'093104.0'812866.864018454841.24110

10110

36210

UThUTUTh

uuuUTh

ttrGMSTGMST

TTTGMST

TAI to UTC:

UTC to UT1:

UT1 to GMST:

21511 '109.5'109006.5507950027379093.1 uu TTr

36525/'' uu dT : number of days elapsed since 2000 Jan 1, 12h UT1ud '

GPS Time to UTC:

UTC-TAI (s)

-25 1990/1/1- -30 1996/1/1-

-26 1991/1/1- -31 1997/7/1-

-27 1992/7/1- -32 1999/1/1-

-28 1993/7/1- -33 2006/1/1-

-29 1994/7/1- -34 2009/1/1-

))(( 10 otGPSTLSGPSTUTC ttAAttt

GPS Time to TAI:stt GPSTTAI 19

Page 6: Theory of Precise Positioning (2) RTKLIB Practice Advanced ...gpspp.sakura.ne.jp/paper2005/IPNTJ_SummerSchool_2014_2.pdf · Theory of Precise Positioning (2) RTKLIB Practice Advanced

Coordinate Systems

• ECEF: Earth-Centered Earth-Fixed

– ITRF

– WGS 84: US (GPS)

– PZ90: Russia (GLONASS), ...

• ECI: Earth-Centered Inertial

– ICRF: International CelestialReference Frame

• ECI-ECEF Connection

– Precession/Nutation Model

– EOP: Earth Orientation Parameters

z

x

y

Reference Pole

Reference meridian ECEF

6

EarthCenter

Page 7: Theory of Precise Positioning (2) RTKLIB Practice Advanced ...gpspp.sakura.ne.jp/paper2005/IPNTJ_SummerSchool_2014_2.pdf · Theory of Precise Positioning (2) RTKLIB Practice Advanced

ITRF

• International Terrestrial Reference Frame

– A "Realization" of Maintained by IERS

– GPS, VLBI, SLR, DORIS Site Position/Velocity List

– ITRF2005, ITRF2000, ITRF97, ITRF96, ...

http://itrf.ensg.ign.fr/ITRF_solutions/2005/ITRF2005.php 7

ITRS: International Terrestrial Reference SystemIERS: International Earth Rotation Service

VLBI: Very Long Baseline InterferometrySLR: Satellite Laser RangingDORIS: Doppler Orbit determination and Radiopositioning Integrated on Satellite

Page 8: Theory of Precise Positioning (2) RTKLIB Practice Advanced ...gpspp.sakura.ne.jp/paper2005/IPNTJ_SummerSchool_2014_2.pdf · Theory of Precise Positioning (2) RTKLIB Practice Advanced

ECEF to ECI Transformation

IRMO

Z

Y

0E

90E

90W

180E

ECEF (ITRF) IRP

CEP

X

X

YZ

yP

-xP

IRP

CEP

O

Z

Y

IRM

CEP

IRP

Ecliptic of date

'X

True equator of date

GST

True of Date

O

Z

Y

Ecliptic of date

'

X

True equator of date

Mean equator of date

'

A

A

CEPP

A

Mean of Date

O

Z

Y

J2000

90°+zA

90°A

A

P

PJ2000

Mean equator of date

mean equatorat epoch J2000.0

Ecliptic at epoch J2000.0

Ecliptic of date

J2000

X ECI(ICRF)

ecefPYPXZAXZAXAZAYAZ

ecefzeci

xyGSTz

GST

rRRRRRRRRR

WrPNRr

)()()()()()()()()(

)(

W

N

P

: Nutation

: Precession

: Polar Motion

8(1)

(1)(2)

(3)

(2)(3)

2sin000063".0sin00264".0

cos

AGMSTGST

Page 9: Theory of Precise Positioning (2) RTKLIB Practice Advanced ...gpspp.sakura.ne.jp/paper2005/IPNTJ_SummerSchool_2014_2.pdf · Theory of Precise Positioning (2) RTKLIB Practice Advanced

EOP: Earth Orientation Parameters

9

Polar Motion:Xp, Yp

Earth Rotation Angle:UT1-UTC

IERS C04 Series (1962/1/1-2009/8/11)Xp (mas)

Yp(m

as)

UT1

-UTC

(ms)

1960 1970 1980 1990 2000

3m

Page 10: Theory of Precise Positioning (2) RTKLIB Practice Advanced ...gpspp.sakura.ne.jp/paper2005/IPNTJ_SummerSchool_2014_2.pdf · Theory of Precise Positioning (2) RTKLIB Practice Advanced

Ellipsoid and Datum

'

Tr zyx ),,(r

h

Ellipsoid:

'

: Geocentric Latitude

: Geodetic Latitude

a

)1( 2ea

h : Ellipsoidal Height

GRS 80 WGS 84

a (m) 6378137 6378137

f1/298.257222

1011/298.257223

563

GM (m3/s2)

3986005.000 x 108

3986004.418 x 108

x,y plane

sin))1((

sincos)(

coscos)(

sin1

)2(

2

22

2

heN

hN

hN

e

aN

ffe

rr : Longitude

N

b

Lat/Lon/Height to ECEF:

10

z

r

Page 11: Theory of Precise Positioning (2) RTKLIB Practice Advanced ...gpspp.sakura.ne.jp/paper2005/IPNTJ_SummerSchool_2014_2.pdf · Theory of Precise Positioning (2) RTKLIB Practice Advanced

Geoid

EGM96 Geoid Model

Ellipsoid

Geoidh

H

: Geodetic Height

2 0

)(1),',(

n

n

m

nmsnmnmcnm

n

YSYCr

a

r

GMrV

Geopotential:

11

Page 12: Theory of Precise Positioning (2) RTKLIB Practice Advanced ...gpspp.sakura.ne.jp/paper2005/IPNTJ_SummerSchool_2014_2.pdf · Theory of Precise Positioning (2) RTKLIB Practice Advanced

Spherical Harmonics

mPY

mPY

YY

nmnms

nmnmc

cnn

sin)'(sin

cos)'(sin

00

)0()!(

)!)(12(2

)0(12

)()1()()12()(

)()1)(12()(

,0)(

)(,1)(,

,2,1

1,12/12

,1

1000

mmn

mnn

mn

N

mn

xPmnxxPnxP

xPxnxP

xP

xxPxPPNP

nm

mnmnnm

nnnn

nn

nmnmnm

Legendre function:

Spherical harmonic functions:

12

Page 13: Theory of Precise Positioning (2) RTKLIB Practice Advanced ...gpspp.sakura.ne.jp/paper2005/IPNTJ_SummerSchool_2014_2.pdf · Theory of Precise Positioning (2) RTKLIB Practice Advanced

Coordinates Transformation

ABz

y

x

RR

RR

RR

D

T

T

T

z

y

x

1

1

1

)1(

12

13

23

3

2

1

13

Helmert Transformation (A to B):

Coordinates T1(mm)

T2(mm)

T3(mm)

D(10-9)

R1(mas)

R2(mas)

R3(mas)A B

ITRF2005 ITRF20000.1 -0.8 -5.8 0.40 0.00 0.00 0.00

-0.2/y 0.1/y -1.8/y 0.08/y 0.00/y 0.00/y 0.00/y

- T1, T2, T3 : Translation along coordinate axis- D : Scale factor- R1, R2, R3 : Rotation of coordinate axis

(Epoch 2000.0)

Page 14: Theory of Precise Positioning (2) RTKLIB Practice Advanced ...gpspp.sakura.ne.jp/paper2005/IPNTJ_SummerSchool_2014_2.pdf · Theory of Precise Positioning (2) RTKLIB Practice Advanced

Precise Ephemeris

• Precise Satellite Orbit and Clock

– By Post-Processing or in Real-time

– Observation Data of Tracking Stations World-Wide

• Format:

– Orbit: NGS SP3

– Clock: NGS SP3 or RINEX Clock Extension

• Contents:

– Orbit: ECEF-Positions of Satellite Mass Center

– Clock: Clock-biases wrt Time Scale Aligned to GPS Time

14

Page 15: Theory of Precise Positioning (2) RTKLIB Practice Advanced ...gpspp.sakura.ne.jp/paper2005/IPNTJ_SummerSchool_2014_2.pdf · Theory of Precise Positioning (2) RTKLIB Practice Advanced

IGS: International GNSS Service

CODE

ESOC

GFZ

JPL

NOAA

NRCan

SIO

USNO

...

ACC

Analysis Centers (ACs)

MIT

CDDIS

IGN

SIO

KASI

Global Data Centers

Regional DCs

Tracking Network

...

Oper. DCs

GNAACs

Products(Satellite Orbit/Clock, Station

Pos/Vel, ERP, Atmos,...)

RNAACs

Data (GPS/GLONASS Raw, Ephemeris,...)

15

Page 16: Theory of Precise Positioning (2) RTKLIB Practice Advanced ...gpspp.sakura.ne.jp/paper2005/IPNTJ_SummerSchool_2014_2.pdf · Theory of Precise Positioning (2) RTKLIB Practice Advanced

IGS Products Final(IGS)

Rapid(IGR)

Ultra-Rapid (IGU)Broadcast

Observed Predicted

Accuracy

Orbit ~2.5cm ~2.5cm ~3cm ~5cm ~100cm

Clock~75ps RMS~20ps STD

~75ps RMS~25ps STD

~150ps RMS

~50ps STD

~3ns RMS~1.5ns STD

~5ns RMS~2.5ns STD

Latency 12-18 days17-41 hours

3-9 hours realtime realtime

Updatesevery

Thursdayat 17 UTC

dailyat 03, 09,

15, 21 UTCat 03, 09,

15, 21 UTC-

SampleInterval

Orbit 15min 15min 15min 15min daily

ClockSat: 30s

Stn: 5min5min 15min 15min daily

(2009/8, http://igscb.jpl.nasa.gov/)16

Page 17: Theory of Precise Positioning (2) RTKLIB Practice Advanced ...gpspp.sakura.ne.jp/paper2005/IPNTJ_SummerSchool_2014_2.pdf · Theory of Precise Positioning (2) RTKLIB Practice Advanced

Interpolation of Satellite Orbit

17

)())...()((

))...()((...)(

))...()((

))...()((

)())...()((

))...()(()(

))...()((

))...()(()(

112111

213

132313

121

2123212

1311

113121

132

ns

nnnn

ns

n

n

s

n

ns

n

ns

ttttttt

ttttttt

tttttt

tttttt

ttttttt

ttttttt

tttttt

ttttttt

rr

rrr

Degree ofPolynomial

Position RMS Error (cm) Velocity RMS Error (cm/s)

Radial Along-Trk Cross-Trk Radial Along-Trk Cross-Trk

n=5 72.10 73.84 57.48 0.253 0.260 0.202

n=6 7.31 6.89 5.75 0.032 0.031 0.025

n=7 0.63 0.63 0.50 0.017 0.019 0.014

n=8 0.08 0.11 0.08 0.017 0.018 0.013

n=9 0.05 0.11 0.05 0.017 0.018 0.013

n=10 0.05 0.10 0.06 0.017 0.018 0.013

n=11 0.05 0.12 0.06 0.017 0.018 0.013

Lagrange Interpolation:

Interpolation Error of 15-min Sample Orbit

Page 18: Theory of Precise Positioning (2) RTKLIB Practice Advanced ...gpspp.sakura.ne.jp/paper2005/IPNTJ_SummerSchool_2014_2.pdf · Theory of Precise Positioning (2) RTKLIB Practice Advanced

Interpolation of Satellite Clock

18

rel

sss t

tt

tdTtttdTtttdT

12

2112 )()()()()(

Linear Interpolation:

Satellite Clock Stability:

Page 19: Theory of Precise Positioning (2) RTKLIB Practice Advanced ...gpspp.sakura.ne.jp/paper2005/IPNTJ_SummerSchool_2014_2.pdf · Theory of Precise Positioning (2) RTKLIB Practice Advanced

Ionospheric Delay

19

22222 /30.4012/1/1 fNffffn eNN

Ionospheric Delay Model:

)(/11

)1(4)1(21

1 22

2

2

42

2 bandLffX

YiZX

Y

iZX

YiZ

Xn N

LTT

e

eN

m

eNf

02

22

4 : plasma frequency

Electron Density (Ne):

IRI-2007 model: 2009/7/31 0:00 Tokyo (http://modelweb.gsfc.nasa.gov/models/iri.html)

: Appleton-Hartree Formula

2162 /1030.40/30.40 fTECdlfNI esr TEC: Total Electron Content

Page 20: Theory of Precise Positioning (2) RTKLIB Practice Advanced ...gpspp.sakura.ne.jp/paper2005/IPNTJ_SummerSchool_2014_2.pdf · Theory of Precise Positioning (2) RTKLIB Practice Advanced

Solar Cycle

20

International Sunspot Number (ISN): 1700-2009

by SIDC (Solar Influences Data Analysis Center) in Belglum (http://sidc.oma.be)

Solar Cycle Prediction: Cycle 24

by NOAA SWPC (Space Weather Prediction Center) (http://www.swpc.noaa.gov/SolarCycle)

23222120

23 24 24

Page 21: Theory of Precise Positioning (2) RTKLIB Practice Advanced ...gpspp.sakura.ne.jp/paper2005/IPNTJ_SummerSchool_2014_2.pdf · Theory of Precise Positioning (2) RTKLIB Practice Advanced

LC: Linear Combination

21

LCCoefficients Wave

Length(cm)

IonosEffectwrt L1

TypicalNoise(cm)a b c d

L1 L1 Carrier-Phase 1 0 0 0 19.0 1.0 0.3

L2 L2 Carrier-Phase 0 1 0 0 24.4 1.6 0.3

LC/L3 Iono-Free Phase 0 0 - 0.0 0.9

LG/L4 Geometry-Free Phase 1 -1 0 0 - 0.6 0.4

WL Wide-Lane Phase 0 0 86.2 1.3 1.7

NL Narrow-Lane Phase 0 0 10.7 1.3 1.7

MW Melbourne-Wübbena 86.2 0.0 21

MP1 L1-Multipath 1 0 - 0.0 30

MP2 L2-Multipath 0 1 - 0.0 30

),( 2221112121 dPcPbaC

1/W 2/W

1/N 2/N

1/W 2/W 1/N 2/N

1C 2C

12 2 C 22C

12C 12 1 C

)/1/1/(1),/1/1/(1),/(),/( 21212

22

12

222

22

12

11 NWfffCfffC

Page 22: Theory of Precise Positioning (2) RTKLIB Practice Advanced ...gpspp.sakura.ne.jp/paper2005/IPNTJ_SummerSchool_2014_2.pdf · Theory of Precise Positioning (2) RTKLIB Practice Advanced

Single Layer Model

22

),,(1030.40

'cos

11030.402

16

2

16

pppptVTECfz

TECf

I

Receiver

Satellite

Ionosphere

Earth

IPP: Ionospheric Pierce Point

z

z'

Re

Hion

Ionospheric Delay Model:

pppp

pp

ione

e

Azαλλ

Azαα

z'zαHR

zRz'

Elπ/z

sinsinarcsin

)coscossinsinarcsin(cos

,sin

arcsin

2

IPP Position/Slant Factor:

Page 23: Theory of Precise Positioning (2) RTKLIB Practice Advanced ...gpspp.sakura.ne.jp/paper2005/IPNTJ_SummerSchool_2014_2.pdf · Theory of Precise Positioning (2) RTKLIB Practice Advanced

Ionospheric TEC Grid

23

2009/7/31 0:00 2009/7/31 2:00 2009/7/31 4:00 2009/7/31 6:00

2009/7/31 8:00 2009/7/31 10:00 2009/7/31 12:00 2009/7/31 14:00

2009/7/31 16:00 2009/7/31 18:00 2009/7/31 20:00 2009/7/31 22:00(IGS TEC Final, GPS Time)

Page 24: Theory of Precise Positioning (2) RTKLIB Practice Advanced ...gpspp.sakura.ne.jp/paper2005/IPNTJ_SummerSchool_2014_2.pdf · Theory of Precise Positioning (2) RTKLIB Practice Advanced

Tropospheric Delay

24

H

pZHD

7108.22cos00266.01

0022768.0

Tropospheric Delay Model:

ZWDElmZHDElmT wh )()(

ZenithDelay Slant

DelayElZWD

: Zenith Hydrostatic Delay (m): Zenith Wet Delay (m)

)(Elmh : Hydrostatic Mapping Function

)(Elmw : Wet Mapping Function

ZWD to PWV (Precipitable Water Vapor):

ZWD

T

k

m

mkkR

PWV

TT

md

vv

m

312

5101

72.02.70

9644.28,0152.18

10754.3,98.71

,6.77,461

532

1

dv

v

mm

kk

kR

Page 25: Theory of Precise Positioning (2) RTKLIB Practice Advanced ...gpspp.sakura.ne.jp/paper2005/IPNTJ_SummerSchool_2014_2.pdf · Theory of Precise Positioning (2) RTKLIB Practice Advanced

Mapping Function

25

NMF, GMF, VMF1

Hydrostatic

(2006/1/1-2007/12/31, TSKB, El=5deg)

Wet

cEl

bEl

aEl

c

b

a

Elm

)sin()sin(

)sin(

11

1

)( cba ,, : Mapping FunctionCoefficients

Page 26: Theory of Precise Positioning (2) RTKLIB Practice Advanced ...gpspp.sakura.ne.jp/paper2005/IPNTJ_SummerSchool_2014_2.pdf · Theory of Precise Positioning (2) RTKLIB Practice Advanced

Tropospheric Gradient

26

Mapping Function with Horizontal Gradient:

)sin()cos()cot()()(),( 00 AzGAzGElElmElmAzElm EN

EN GG , : North/East Gradient Parameters

2007/1/1-12/31, 24H-Static PPP, TSKB

PPP Solutionswith Gradient Estimation

PPP Solutionswithout Gradient Estimation

Page 27: Theory of Precise Positioning (2) RTKLIB Practice Advanced ...gpspp.sakura.ne.jp/paper2005/IPNTJ_SummerSchool_2014_2.pdf · Theory of Precise Positioning (2) RTKLIB Practice Advanced

Antenna Phase Center 1

27

Choke-Ring Type

Antenna Phase Center Variation (PCV)

L1

IGS Absolute Antenna Model (IGS05.PCV)

Antenna Phase Center

Antenna Reference

Point (ARP)

z (U)

x (E)y (N)

Antenna Phase Center Offset

L2

Zero-Offset Type

pcor,d

pcvrd ,

Receiver AntennaPhase Center:

Page 28: Theory of Precise Positioning (2) RTKLIB Practice Advanced ...gpspp.sakura.ne.jp/paper2005/IPNTJ_SummerSchool_2014_2.pdf · Theory of Precise Positioning (2) RTKLIB Practice Advanced

Antenna Phase Center 2

28

Satellite Coordinate to ECEF:

zx

y

Sun

Satellite

xs

e

zs

eyse

Antenna Phase Center

Mass Center ofSatellite

Antenna Phase Center Offset

Nadir Anglepcv

sd

pcosd

Earth

),,( zs

ys

xs

ecefsat eeeE

zs

ys

xs

szs

ss

zs

ys

ssun

ssun

ss

s

zs

eeeee

eee

rr

rre

r

re

,

,

Satellite AntennaPhase Center:

Page 29: Theory of Precise Positioning (2) RTKLIB Practice Advanced ...gpspp.sakura.ne.jp/paper2005/IPNTJ_SummerSchool_2014_2.pdf · Theory of Precise Positioning (2) RTKLIB Practice Advanced

Site Displacement

• Displacement of Ground-Fixed Receiver

– Solid Earth Tide

– Ocean Tide Loading (OTL)

– Pole Tide

– Atmospheric Loading

• Tide Model

– IERS Conventions 1996/2003/2010

– Ocean Loading: Schwiderski, GOT99.2/00.2, CSR 3.0/4.0,FES99/2004, NAO99.b

– M2,S2,N2,K2,K1,O1,P1,Q1,M1,Mm,Ssa

29

Page 30: Theory of Precise Positioning (2) RTKLIB Practice Advanced ...gpspp.sakura.ne.jp/paper2005/IPNTJ_SummerSchool_2014_2.pdf · Theory of Precise Positioning (2) RTKLIB Practice Advanced

Earth Tides

30

Earth Tides Model

IERS Conventions 1996 + NAO99.b, 2007/1/1-1/31, TSKB

Page 31: Theory of Precise Positioning (2) RTKLIB Practice Advanced ...gpspp.sakura.ne.jp/paper2005/IPNTJ_SummerSchool_2014_2.pdf · Theory of Precise Positioning (2) RTKLIB Practice Advanced

Phase Wind-up Effect

• Relative rotation between satellite and receiver antennaseffect to the measured phase of RHCP signal.

31

Nsignd

rs

rs

rss

rpw 2/arccos))((DD

DDDDe

sy

su

sx

su

su

sx

seeeeeeD )(

yrsrxr

sr

srxrr ,,, )( eeeeeeD

TTzr

Tyr

Txrenuecef ),,( ,,, eeeE

sre

: Dipole Vector of Satellite Antenna

: Dipole Vector of Receiver Antenna

: LOS Vector from Receiver to Satellite Antenna

: ECEF to ENU Transformation Matrix

N : Integer Ambiguity

Page 32: Theory of Precise Positioning (2) RTKLIB Practice Advanced ...gpspp.sakura.ne.jp/paper2005/IPNTJ_SummerSchool_2014_2.pdf · Theory of Precise Positioning (2) RTKLIB Practice Advanced

Relativistic Effects

• Satellite/Receiver:

– Frequency Shift by Earth Gravity (General Rel.)

– Frequency Shift by Sun/Moon Gravity (General Rel.)

– Second-Order Doppler-Shift by Motion (Special Rel.)

• Signal Propagation:

– Sagnac Correction (Rotating Coordinates)

– Shapiro Time Delay Effect

– Lense-Thirring Drag

32

2

2

cd

ss

rel

vr

Satellite Clock Bias/Rate Correction+ Periodic Term:

Page 33: Theory of Precise Positioning (2) RTKLIB Practice Advanced ...gpspp.sakura.ne.jp/paper2005/IPNTJ_SummerSchool_2014_2.pdf · Theory of Precise Positioning (2) RTKLIB Practice Advanced

DD (Double Difference)

33

Receiver u Receiver b

Satellite i Satellite j

iu

Φ

ij

ub

ij

ub

ij

ub

ij

ub

ij

ub

Φ

ij

ub

ij

ub

ij

ub

ij

ub

ij

ub

ij

ub

ij

ub

j

b

j

u

i

b

i

u

ij

ub

dNTI

dBTIdTdtc

Φ

)(

))()((

ju

ib

jb

ijub

jb

jb

ju

ju

ib

ib

iu

iu

ijub

jub

iub

ijub

ijb

iju

ijub

NNNNNB

dTdTdTdtdtdt

)()()()(

0,0

00,00,00,00,

0,0,0 j

ubiub

ijub

jub

iub

ijub

jub

iub

ijub dddTTTIII

Φ

ij

ub

ij

ub

ij

ub NΦ

Baseline

(short Baseline and same antenna type)

Memo for Misra & Enge:http://gpspp.sakura.ne.jp/

diary200608.htm

Page 34: Theory of Precise Positioning (2) RTKLIB Practice Advanced ...gpspp.sakura.ne.jp/paper2005/IPNTJ_SummerSchool_2014_2.pdf · Theory of Precise Positioning (2) RTKLIB Practice Advanced

Baseline Processing

34

222

222

222

,

,

,

,,

,,

,,

,,,

422

242

224

00

00

00

)(

),...,,(

1

13

12

111

11313

121212

11312

k

m

k

k

k

k

mm

k

m

k

m

kk

kk

k

m

kkkk

t

Tsstu

Tsstu

Tsstu

t

ssub

sstb

sstu

ssub

sstb

sstu

ssub

sstb

sstu

t

Tsstub

sstub

sstubt

N

N

N

R

e

e

e

H

xh

y

TTt

Tt

Tt n

),...,,(11

yyyy

Tssub

ssub

ssub

Tu

mNNN ),...,,,( 11312rx

Parameter Vector:

Measurement Vector:

Meas Model, Design Matrix:

TTt

Tt

Tt

TTt

Tt

Tt

n

n

HHHH

xhxhxhxh

,...,,

)(,...,)(,)()(

21

21

ntttblkdiag RRRR ,...,,

21

Meas Error Covariance:

))(()(ˆ0

1110 xhyRHHRHxx TT

Solution (Static/Float):

Nonlinear-LSE:

br : Fixed Base-Station Position

Page 35: Theory of Precise Positioning (2) RTKLIB Practice Advanced ...gpspp.sakura.ne.jp/paper2005/IPNTJ_SummerSchool_2014_2.pdf · Theory of Precise Positioning (2) RTKLIB Practice Advanced

Effect of Baseline Length

35

BL=0.3 km BL=13.3 km

BL=32.2 km BL=60.9 km

RMS Error:E: 0.2cmN: 0.6cmU: 1.0cmFix Ratio:

99.9%

RMS Error:E: 2.2cmN: 2.4cm

U: 10.6cmFix Ratio:

94.2%

RMS Error:E: 10.0cmN: 12.0cmU: 30.2cmFix Ratio:

64.3%

RMS Error:E: 14.0cmN: 14.8cmU: 26.7cmFix Ratio:

44.4%

: Fixed Solution : Float Solution)(24 hr Kinematic

Page 36: Theory of Precise Positioning (2) RTKLIB Practice Advanced ...gpspp.sakura.ne.jp/paper2005/IPNTJ_SummerSchool_2014_2.pdf · Theory of Precise Positioning (2) RTKLIB Practice Advanced

Integer Ambiguity Resolution

36

• Objectives

– More accurate than float solutions

– Fast converge of solutions

• Many AR Strategies

– Simple Integer rounding

– Multi-frequency wide-lane and narrow-lane generation

– Search in coordinate domain

– Search in ambiguity domain

– AFM, FARA, LSAST, LAMBDA, ARCE, HB-L3, ModifiedCholesy Decomposition, Null Space, FAST, OMEGA, ...

Page 37: Theory of Precise Positioning (2) RTKLIB Practice Advanced ...gpspp.sakura.ne.jp/paper2005/IPNTJ_SummerSchool_2014_2.pdf · Theory of Precise Positioning (2) RTKLIB Practice Advanced

ILS (Integer Least Square Estimation)

37

)()(minarg

,,),(

1

,

HxyQHxyx

vBbAavHxy

BAHbax

RbZa

y

T

TTT

mn

)ˆ()ˆ(minarg1

aaQaaaZa

a

T

n

Strategy:(1) Conventional LSE

11)(,

ˆ

ˆˆ

HQH

QQ

QQQyQHQ

b

ax y

T

bba

abaxy

Tx

(2) Search Integer Vector with Minimum Squared Residuals

Problem:

)ˆ(ˆ 1 aaQQbb

aba

(3) Improve solution

Page 38: Theory of Precise Positioning (2) RTKLIB Practice Advanced ...gpspp.sakura.ne.jp/paper2005/IPNTJ_SummerSchool_2014_2.pdf · Theory of Precise Positioning (2) RTKLIB Practice Advanced

LAMBDA

38

• ILS Estimation with:– Shrink Integer Search Space with "Decorrelation"

– Efficient Tree Search Strategy

– Similar to Closest Point Search with LLL Lattice Basis ReductionAlgorithm

)ˆ()ˆ(minarg1

aaQaaaZa

a

T

n

zZa

zzQzzz

ZQZQaZz

Zz

T

zT

aT

zT

n

)ˆ()ˆ(minarg

,ˆˆ

1

Teunissen, P.J.G. (1995)The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation. Journal of Geodesy, Vol. 70, No. 1-2, pp. 65-82.

Page 39: Theory of Precise Positioning (2) RTKLIB Practice Advanced ...gpspp.sakura.ne.jp/paper2005/IPNTJ_SummerSchool_2014_2.pdf · Theory of Precise Positioning (2) RTKLIB Practice Advanced

Performance of LAMBDA

39

5 10 15 20 25 30 35 400

5

10

15

N : Number of Integer Ambiguities

Exe

cuti

on

Tim

e (

ms)

: with decorrelation: without decorrelation

(Pentium 4 3.2GHz, Intel C/C++ 8.0)

Page 40: Theory of Precise Positioning (2) RTKLIB Practice Advanced ...gpspp.sakura.ne.jp/paper2005/IPNTJ_SummerSchool_2014_2.pdf · Theory of Precise Positioning (2) RTKLIB Practice Advanced

RTK (Real-Time Kinematic)

40

• Technique with Baseline Processing

– Real-time Position of Rover Antenna

– Transmit Reference Station Data to Rover via Comm. Link

– OTF (On-the-Fly) Integer Ambiguity Resolution

– Typical Accuracy: 1 cm + 1ppm x BL RMS (Horizontal)

– Applications:Land Survey, Construction Machine Control, PrecisionAgriculture etc.

ReferenceStation

RoverReceiver

Communication Link

Page 41: Theory of Precise Positioning (2) RTKLIB Practice Advanced ...gpspp.sakura.ne.jp/paper2005/IPNTJ_SummerSchool_2014_2.pdf · Theory of Precise Positioning (2) RTKLIB Practice Advanced

RTK Application

41

Page 42: Theory of Precise Positioning (2) RTKLIB Practice Advanced ...gpspp.sakura.ne.jp/paper2005/IPNTJ_SummerSchool_2014_2.pdf · Theory of Precise Positioning (2) RTKLIB Practice Advanced

Network RTK (NRTK)

42

• Extension of RTK

– RTK without User Reference Station

– Sparse Networked Reference Stations

– Correction Messages via Mobile-Phone Network

– Format: VRS, FKP, MAC, RTCM 2.3, RTCM 3.1

– Server S/W: Trimble GPSNet, GEO++ GNSMART, ...

– NTRIP Networked Transport of RTCM via Internet Protocol

• NRTK Service in Japan

– GEONET: ~1200 Reference Stations by GSI

– NGDS (www.gpsdata.co.jp), JENOBA (www.jenoba.jp)

Page 43: Theory of Precise Positioning (2) RTKLIB Practice Advanced ...gpspp.sakura.ne.jp/paper2005/IPNTJ_SummerSchool_2014_2.pdf · Theory of Precise Positioning (2) RTKLIB Practice Advanced

Japanese GEONET

43(http://terras.gsi.go.jp/ja/index.htm)

Page 44: Theory of Precise Positioning (2) RTKLIB Practice Advanced ...gpspp.sakura.ne.jp/paper2005/IPNTJ_SummerSchool_2014_2.pdf · Theory of Precise Positioning (2) RTKLIB Practice Advanced

Considerations for RTK System

• Rover

– Single vs. Dual-freq, Update Rate, GNSS, Receiver-cost

– CPU Power for external processing

– INS-integration for obstacles

• Reference Station

– Baseline-Length vs. Performance

– Self-provided vs. NRTK Service

– Coverage, Receiver-cost, Operational-cost, Service-fee

• Communication Link

– Coverage, Band-width, Latency, Link-cost

44

Page 45: Theory of Precise Positioning (2) RTKLIB Practice Advanced ...gpspp.sakura.ne.jp/paper2005/IPNTJ_SummerSchool_2014_2.pdf · Theory of Precise Positioning (2) RTKLIB Practice Advanced

Communication Link for RTK

• Local (<300 m)

– Serial, USB, LAN, ... (wired)

– Radio Modem, WiFi, ZigBee, DSRC, ... (wireless)

• Regional (<1,000 km)

– Analog-phone, ISDN, Dedicated Link, ... (wired)

– Mobile-phone (Analog, 2G, 3G, …), ... (wireless)

• Global (<10,000 km)

– Internet

– GEO Satellite Link (Inmarsat, WideStar II, ...)

– LEO Satellite Link (Iridum, Orbicom, …)

45

Page 46: Theory of Precise Positioning (2) RTKLIB Practice Advanced ...gpspp.sakura.ne.jp/paper2005/IPNTJ_SummerSchool_2014_2.pdf · Theory of Precise Positioning (2) RTKLIB Practice Advanced

Coverage by Mobile-phone N/W

46

NTT docomo FOMA (2008/9)

(http://servicearea.nttdocomo.co.jp)

Page 47: Theory of Precise Positioning (2) RTKLIB Practice Advanced ...gpspp.sakura.ne.jp/paper2005/IPNTJ_SummerSchool_2014_2.pdf · Theory of Precise Positioning (2) RTKLIB Practice Advanced

B-5RTKLIB Practice (3)

47

Page 48: Theory of Precise Positioning (2) RTKLIB Practice Advanced ...gpspp.sakura.ne.jp/paper2005/IPNTJ_SummerSchool_2014_2.pdf · Theory of Precise Positioning (2) RTKLIB Practice Advanced

RTK by Playback Data

• ObjectiveRTK of by Playback Data

• Programrtklib_2.4.2p9¥bin¥rtknavi.exe

• Datasample2¥oemv_2009515c.gps (NovAtel)ubx_20090515c.ubx (u-blox)0263_20090515c.rtcm3 (VRS)

48

RTKNAVI

Page 49: Theory of Precise Positioning (2) RTKLIB Practice Advanced ...gpspp.sakura.ne.jp/paper2005/IPNTJ_SummerSchool_2014_2.pdf · Theory of Precise Positioning (2) RTKLIB Practice Advanced

Playback Data

49

GEONET

VRSService

S

NovAtelGPS-702-GG

NovAtelOEM-V20 Hz

u-bloxLEA-4T10 Hz

DataLogger

E-Mobile

Page 50: Theory of Precise Positioning (2) RTKLIB Practice Advanced ...gpspp.sakura.ne.jp/paper2005/IPNTJ_SummerSchool_2014_2.pdf · Theory of Precise Positioning (2) RTKLIB Practice Advanced

RTKNAVI - Options

50

Setting1 Setting2

Page 51: Theory of Precise Positioning (2) RTKLIB Practice Advanced ...gpspp.sakura.ne.jp/paper2005/IPNTJ_SummerSchool_2014_2.pdf · Theory of Precise Positioning (2) RTKLIB Practice Advanced

Reference Station for RTK

51

IP-Addr : ***.***.***.***Port : 2101MountP : RTCM3USER-ID : ********PW : ****Data : RTCM 3, GPS+GLO

IP-Addr : ***.***.***.***Port : 2102MountP : BINEXUSER-ID : ******** PW : ****Data : BINEX, GPS+GLO+GAL+QZS+BDS

Receiver:Trimble NetR9

Lat: 35.666243069Lon: 139.792308111Height: 59.8700

Page 52: Theory of Precise Positioning (2) RTKLIB Practice Advanced ...gpspp.sakura.ne.jp/paper2005/IPNTJ_SummerSchool_2014_2.pdf · Theory of Precise Positioning (2) RTKLIB Practice Advanced

RTK Setup for Port Cruise

52

RTKNAVIS

WiFiRouter

RTK ReferenceStation

Page 53: Theory of Precise Positioning (2) RTKLIB Practice Advanced ...gpspp.sakura.ne.jp/paper2005/IPNTJ_SummerSchool_2014_2.pdf · Theory of Precise Positioning (2) RTKLIB Practice Advanced

What is AIS ? by JRC

53

Page 54: Theory of Precise Positioning (2) RTKLIB Practice Advanced ...gpspp.sakura.ne.jp/paper2005/IPNTJ_SummerSchool_2014_2.pdf · Theory of Precise Positioning (2) RTKLIB Practice Advanced

Port Cruise Demo &RTKLIB Practice (4)

54

Page 55: Theory of Precise Positioning (2) RTKLIB Practice Advanced ...gpspp.sakura.ne.jp/paper2005/IPNTJ_SummerSchool_2014_2.pdf · Theory of Precise Positioning (2) RTKLIB Practice Advanced

Port Cruise Schedule

55

• Group 1 (A, B, C, D)

– Loading : 12:55 (keep it!)

– Start : 13:15

– Return : 14:20

• Group 2 (E, F, G, H)

– Loading : 14:15 (keep it!)

– Start : 14:35

– Return : 15:40

• Waiting Group

– Self Practice of RTKLIB on the Ground

Page 56: Theory of Precise Positioning (2) RTKLIB Practice Advanced ...gpspp.sakura.ne.jp/paper2005/IPNTJ_SummerSchool_2014_2.pdf · Theory of Precise Positioning (2) RTKLIB Practice Advanced

Loading of Boat

56

Port

Page 57: Theory of Precise Positioning (2) RTKLIB Practice Advanced ...gpspp.sakura.ne.jp/paper2005/IPNTJ_SummerSchool_2014_2.pdf · Theory of Precise Positioning (2) RTKLIB Practice Advanced

Port Cruise with RTK

57

Page 58: Theory of Precise Positioning (2) RTKLIB Practice Advanced ...gpspp.sakura.ne.jp/paper2005/IPNTJ_SummerSchool_2014_2.pdf · Theory of Precise Positioning (2) RTKLIB Practice Advanced

B-6Advanced Topics

58

Page 59: Theory of Precise Positioning (2) RTKLIB Practice Advanced ...gpspp.sakura.ne.jp/paper2005/IPNTJ_SummerSchool_2014_2.pdf · Theory of Precise Positioning (2) RTKLIB Practice Advanced

Advanced Topics

• Multi-GNSS RTK

• Long-Baseline RTK

• INS-Aided RTK

• RTK-PPP

59

Page 60: Theory of Precise Positioning (2) RTKLIB Practice Advanced ...gpspp.sakura.ne.jp/paper2005/IPNTJ_SummerSchool_2014_2.pdf · Theory of Precise Positioning (2) RTKLIB Practice Advanced

GNSS Evolution

System 2010 2013 2016 2019

GPS 31 31 32 32

GLONASS 23 (+2) 24 (+3) 24 (+3) 24 (+3)

Galileo 0 4 18 27 (+3)

Compass 6 16 30 32 (+3)

QZSS 1 1 4 7

IRNSS 0 7 7 7

SBAS 7 8 11 11

Total 68 91 126 140

Number of Planned GNSS Satellites

GNSS Signal Frequencies

(Y.Yang, COMPASS: View on Compatibility and Interoperability, 2009)

L1/E1L2L5/E5a E5b E6/LEX L1L2L3

60

Page 61: Theory of Precise Positioning (2) RTKLIB Practice Advanced ...gpspp.sakura.ne.jp/paper2005/IPNTJ_SummerSchool_2014_2.pdf · Theory of Precise Positioning (2) RTKLIB Practice Advanced

Multi-GNSS RTK Performance

61

El Mask=15° El Mask=30°

GPS GalileoFixingRatio

RMS Error (cm) FixingRatio

RMS Error (cm)E-W N-S U-D E-W N-S U-D

L1 - 49.7% 4.6 8.1 19.0 23.3% 71.4 115.0 289

L1,L2 - 99.0% 1.4 1.3 1.9 87.6% 3.4 10.5 15.5

L1,L2,L5 - 99.0% 1.4 1.3 1.9 87.3% 3.4 10.5 15.6

L1 E1 98.8% 1.3 1.2 1.9 90.1% 1.2 2.1 2.7

L1,L2 E1 98.9% 1.4 1.2 1.7 98.7% 1.2 1.0 1.6

L1,L2,L5E1,E5a,

E5b98.9% 1.5 1.3 2.0 98.9% 1.3 1.1 1.8

RTK Performance: Baseline 13.3 km, Instantaneous AR

GPS L1+L2

GPS+GAL L1

Page 62: Theory of Precise Positioning (2) RTKLIB Practice Advanced ...gpspp.sakura.ne.jp/paper2005/IPNTJ_SummerSchool_2014_2.pdf · Theory of Precise Positioning (2) RTKLIB Practice Advanced

Multi-GNSS Receiver

• Moore's Law

– More correlators

– More tracking channels

– More powerful embedded CPU

• Consumer-grade Multi-GNSS Receiver

– SkyTraq: GPS + GLONASS

– STMicro: GPS + GLONASS

– Broadcom: GPS + GLONASS + QZSS

– u-blox: GPS + Galileo

62

Page 63: Theory of Precise Positioning (2) RTKLIB Practice Advanced ...gpspp.sakura.ne.jp/paper2005/IPNTJ_SummerSchool_2014_2.pdf · Theory of Precise Positioning (2) RTKLIB Practice Advanced

Issues for Multi-GNSS RTK

• Multi-GNSS Integration Issue

– Time-system, Coordinate-system

– Receiver H/W Biases

• Multi-code System Issue

– L1C/A-L1P(Y)-L1Cd-L1Cp, L2P(Y)-L2C, L5I-L5Q

– Quarter cycle phase-shift problem

• GLONASS FDMA Issue

– Receiver Inter-channel biases (Receiver Interoperability)

– Calibration Message Standard

– Antenna Calibration

63

Page 64: Theory of Precise Positioning (2) RTKLIB Practice Advanced ...gpspp.sakura.ne.jp/paper2005/IPNTJ_SummerSchool_2014_2.pdf · Theory of Precise Positioning (2) RTKLIB Practice Advanced

Long-Baseline RTK

64

GPS TsunamiMonitoring System

(Currently ~15 km off-shore)http://www.tsunamigps.com

1,000 km

100 km

Page 65: Theory of Precise Positioning (2) RTKLIB Practice Advanced ...gpspp.sakura.ne.jp/paper2005/IPNTJ_SummerSchool_2014_2.pdf · Theory of Precise Positioning (2) RTKLIB Practice Advanced

Long-Baseline RTK Strategy

65

BL(km)

Error EliminationStrategy

Ephem Ionos Tropos Others

S 0 – 10 Broadcast - - - ConventionalRTK

M10 –100

BroadcastDual-Freq - -

Interpolation - Network RTK

L100 –1,000

Real-timePrecise(IGU)

Dual-FreqEstimateZTD + MF

Earth Tides

Long-BaselineRTK

VL >1,000Non-RTPrecise

(IGR, IGS)Dual-Freq

EstimateZTD + MF

EarthTides,

Ph-WU

Post-Processing

or PPP

Page 66: Theory of Precise Positioning (2) RTKLIB Practice Advanced ...gpspp.sakura.ne.jp/paper2005/IPNTJ_SummerSchool_2014_2.pdf · Theory of Precise Positioning (2) RTKLIB Practice Advanced

Long-Baseline RTK with RTKLIBJanuary 1-7, 2009 July 1-7, 2009

BL=961.3 km

E-W

N-S

U-D

E-W

N-S

U-D

BL=471.2 km

STD=1.1,1.3,3.8 cm FIX=99.0%

STD=1.1,1.5,3.6 cm FIX=96.2%STD=1.6,1.3,3.0 cm FIX=98.8%

STD=0.7,0.9,2.3 cm FIX=99.8%

66

Page 67: Theory of Precise Positioning (2) RTKLIB Practice Advanced ...gpspp.sakura.ne.jp/paper2005/IPNTJ_SummerSchool_2014_2.pdf · Theory of Precise Positioning (2) RTKLIB Practice Advanced

Mobile AP issues for RTK

• Cycle-Slips

– Frequent cycle-slip with around obstacles

– Miss-detection of cycle-slip

• Low Solution Availability

– Long acquisition time by weak signal (Low C/N0)

– Half-cycle ambiguity resolution with Costas-PLL

– Low fixing ratio

• High Noise Level

– High multipath level even in carrier-phase

– Jamming by RFI

67

Page 68: Theory of Precise Positioning (2) RTKLIB Practice Advanced ...gpspp.sakura.ne.jp/paper2005/IPNTJ_SummerSchool_2014_2.pdf · Theory of Precise Positioning (2) RTKLIB Practice Advanced

Cycle-Slips

68

ReceiverDetects

Loss-of-Lock

Reacquisition(<1s)

Half-Cycle AmbiguityResolution

(0-12s) *

Carrier-Phase

Cycle Slip(Half-Cycle

Slip)

Time

Signal Outage/Data Gap

* Depend on Receiver

0 10 200

100

200

300

400

500

Span of Data Gap (s) (EL>15°)

Num

ber of Sam

ple

s

T<1s: 724(68.2%)T<3s: 869(81.8%)

T<5s: 932(87.8%)

Page 69: Theory of Precise Positioning (2) RTKLIB Practice Advanced ...gpspp.sakura.ne.jp/paper2005/IPNTJ_SummerSchool_2014_2.pdf · Theory of Precise Positioning (2) RTKLIB Practice Advanced

INS-Aided RTK

69

Navi

Loosely-CoupledIntegration

IMU

BB

Filter

r0,v0

IMU

BB

Filter

P,D

Tightly-CoupledIntegration

IMU

BB

Filter

Is,Qs

Deep Integration(Ultra-Tightly)High sensitivity

(DLL, PLL)Slip resistance

ω,f C,r,v

ω,fC,r,v

ω,fC,r,v

NCO

Page 70: Theory of Precise Positioning (2) RTKLIB Practice Advanced ...gpspp.sakura.ne.jp/paper2005/IPNTJ_SummerSchool_2014_2.pdf · Theory of Precise Positioning (2) RTKLIB Practice Advanced

RTK-PPP

• Combination of RTK and PPP

– Precise Orbits and Clocks

– Ambiguity Resolution in PPP

– Local Augmentation (Iono. and Tropos.)

• RTCM SSR (RTCM 3.2, 3.5.12)

– Level 1: Precise Orbits, Clock and Code Biases

– Level 2: Iono. (VTEC)

– Level 3: Iono. (STEC), Tropos. and Phase Biases

70

Page 71: Theory of Precise Positioning (2) RTKLIB Practice Advanced ...gpspp.sakura.ne.jp/paper2005/IPNTJ_SummerSchool_2014_2.pdf · Theory of Precise Positioning (2) RTKLIB Practice Advanced

Precise Orbits and Clock

• Satellite Orbit Models

– EGM 2008+solid earth tide+FES2004

– Sun, Moon, Venus and Jupiter with JPL DE421

– Empirical SRP model, ...

• Measurement Models

– ZD Iono-free phase+ pseudorange, 2nd-order-iono

– ZTD+gradient estimation with GPT+GMF/VMF1

– IERS DEHANTIDEINEL+FES2004+pole tide+CMC

• ECI-ECEF Coordinates Transformation

– IAU 2000A/2006 by IAU SOFA

71

Page 72: Theory of Precise Positioning (2) RTKLIB Practice Advanced ...gpspp.sakura.ne.jp/paper2005/IPNTJ_SummerSchool_2014_2.pdf · Theory of Precise Positioning (2) RTKLIB Practice Advanced

SRP Model

72

satellite

orbitplane

midnight

noon

beta

fZ

eY

X

eD

eB

GPS Block IIR GLONASS QZSS

asrp = S ((D0 + DC cos f + DS sin f) eD + (B0 + BC cos f + BS sin f) eB

+ (Y0 + YC cos f + YS sin f) eY) x 10-9 (m/s2)

Ec YsYs

Y

Page 73: Theory of Precise Positioning (2) RTKLIB Practice Advanced ...gpspp.sakura.ne.jp/paper2005/IPNTJ_SummerSchool_2014_2.pdf · Theory of Precise Positioning (2) RTKLIB Practice Advanced

Parameter Adjustment

73

Offline Real-Time

Algorithm Iterated Weighted LSQ Dual-Cycle-EKF

Estimated Parameters

Orbit, SRP/Emp-Acc, Clock, Position, ZTD/Grad,Ambiguity, Bias, EOP

Measurements ZD Carrier-Phase and Peudo-range

NumericalSolver

NEQ by CholeskyFactorization

Numerical StableEKF

Clock EstimationParameter Elimination

in NEQState as White-Noise

or Random-Walk

Integer AmbiguityResolution

Network AR(Ge., 2005)

Real-TimeNetwork AR

Page 74: Theory of Precise Positioning (2) RTKLIB Practice Advanced ...gpspp.sakura.ne.jp/paper2005/IPNTJ_SummerSchool_2014_2.pdf · Theory of Precise Positioning (2) RTKLIB Practice Advanced

Dual-Cycle-EKF

74

ˆ ˆ( , ), ( , ),e c e c v y h x x H H H R

T Te e e c c c S H P H H P H R

ˆ ˆe e e x x K v

( )e e e e P I K H P

1Te e e

K P H S

ˆ ˆc c c x x K v

( )c c c c P I K H P

1Tc c c

K P H S

, ,0

2 2

ˆ

( , ,...)

e k e

e diag

x x

P

,ˆ ˆ( )c k c

c c

t

x f x

P ΦP Φ Q

y

Epoch Parameters Common Parameters

Common cycle (30 s)Epoch cycle (1Hz)

TimeUpdate

Meas.Update

OBSData

Page 75: Theory of Precise Positioning (2) RTKLIB Practice Advanced ...gpspp.sakura.ne.jp/paper2005/IPNTJ_SummerSchool_2014_2.pdf · Theory of Precise Positioning (2) RTKLIB Practice Advanced

75

• Dynamic baseline selection to convert ZD to DD

• WL and NL DD ambiguities by rounding

• Validation by confidence function and FCB

• For GPS, QZSS and Galileo (no GLONASS)

Network AR

AR-OFF AR-ON

GPS3D-RMS: 5.63 cm

GPS3D-RMS: 2.59 cm

Page 76: Theory of Precise Positioning (2) RTKLIB Practice Advanced ...gpspp.sakura.ne.jp/paper2005/IPNTJ_SummerSchool_2014_2.pdf · Theory of Precise Positioning (2) RTKLIB Practice Advanced

Numerically Stable EKF

76

1( )

( ( ))

( )

T T

K P H HP H R

x x K y h x

P I KH P

(1) v = y - h(x), H, R(2) D = P HT

(3) S = H D + R(4) U = chol(S)(5) K = (D U-1) U-T

(6) x = x + K v(7) P = P - K DT

(1) v = y - h(x), H, R(2) D = P HT

(3) S = H D + R(4) U = chol(S)(5) E = D U-1

(6) K = E U-T

(7) x = x + K v(8) P = P - E ET

(sparse)

(sparse)

DPOTRF

DTRSM

DTRSM

DGEMV

DSYRK

(sparse)

(sparse)

DPOTRF

DTRSM

DGEMV

DGEMM

Standard EKF Numerically Stable EKF

Measurement Update of EKF

Page 77: Theory of Precise Positioning (2) RTKLIB Practice Advanced ...gpspp.sakura.ne.jp/paper2005/IPNTJ_SummerSchool_2014_2.pdf · Theory of Precise Positioning (2) RTKLIB Practice Advanced

GPS Orbit Quality by MADOCA

IGS AC Analysis Software# ofStas

GPS Orbit RMS (cm) Clock (ns)

R A C 3D STD RMS

MADOCA 0.3.0 77 0.89 1.10 1.12 1.81 0.109 0.131

ESA NAPEOS 3.5 110 0.97 1.33 1.09 1.98 0.116 0.183

CODE Bernese 5.1 231 1.01 1.36 1.14 2.04 0.075 0.089

NGS arc, orb, pages, gpscom 199 0.95 1.46 1.41 2.24 - -

GFZ EPOS.P.V2 191 1.15 1.64 1.59 2.56 0.146 0.169

MIT GAMIT 10.33, GLOBK 5.16 263 1.37 2.12 1.39 2.88 0.277 0.316

NRCan GIPSY/OASIS-II 5.0 91 2.58 1.72 1.77 3.57 0.128 0.148

JPL GIPSY/OASIS-II 5.0 142 2.62 1.67 1.98 3.68 0.168 0.226

SIO GAMIT 10.20, GLOBK 5.08 258 2.42 2.26 1.77 3.75 - -

GRG GINS, DYNAMO 134 2.47 2.80 1.74 4.12 0.172 0.212

2011/01/01 -2011/12/31 (365 days), wrt IGS Final 77

Page 78: Theory of Precise Positioning (2) RTKLIB Practice Advanced ...gpspp.sakura.ne.jp/paper2005/IPNTJ_SummerSchool_2014_2.pdf · Theory of Precise Positioning (2) RTKLIB Practice Advanced

Ambiguity Resolution in PPP

78

• with AR for PPP

– Improve Convergence Time

– Improve Accuracy of Static Solution (EW, UD)

– Improve Stability of Kinematic Solution

• Difficulties of AR for PPP

– Unknown Satellite Initial Phase Biases

– Effect of Precise Orbit/Clock Error

– Effect of Ionospheric Delay

– Code/Phase Bias Instability

– Multipath Effect at Reference Station Network

Page 79: Theory of Precise Positioning (2) RTKLIB Practice Advanced ...gpspp.sakura.ne.jp/paper2005/IPNTJ_SummerSchool_2014_2.pdf · Theory of Precise Positioning (2) RTKLIB Practice Advanced

M.Ge et al., EGU 2007

79

M.Ge et al., Resolution of GPS carrier-phase ambiguity in precise point positioning, EGUAssembly 2007

WL Phase Bias Stability NL Phase Bias Stability

Repeatability of PPP-AR RMS Error of PPP-AR

Page 80: Theory of Precise Positioning (2) RTKLIB Practice Advanced ...gpspp.sakura.ne.jp/paper2005/IPNTJ_SummerSchool_2014_2.pdf · Theory of Precise Positioning (2) RTKLIB Practice Advanced

D.Laurichesse, ION 2010

80

• Real-Time Implementation of PPP-AR

– Network WL ambiguity fixing

– Parameter estimation by EKF with iono-free code/phase:phase-clock, code-phase-bias, ZTD, station position, orbitcorrection to IGU, phase ambiguity

– Orbit construction + high-rate clock generation

• Evaluation of Accuracy

– Orbit: 4cm, code-clock: 5 cm, phase-clock: 1cm

• RT-PPP with AR ("CNES Integer PPP")

– 1 cm HRMS

Page 81: Theory of Precise Positioning (2) RTKLIB Practice Advanced ...gpspp.sakura.ne.jp/paper2005/IPNTJ_SummerSchool_2014_2.pdf · Theory of Precise Positioning (2) RTKLIB Practice Advanced

Future Precise Positioning

81

Requirement Technologies in 2020

CoverageGlobal

(world-wide)RT-Orbit/Clock with AR,

Broadcast via Internet + GEO/QZSS Satellite

Dynamics Stationary - Space Static - Kinematic

Accuracy1 cm (HRMS)2 cm (VRMS)

Local iono/tropos corrections (land)Iono estimation by triple-freq (sea)

Availability99 % (open sky) 30 sats + triple-freq

95 % (urban) 30 sats+INS-aided PLL, slip-resistant

Latency 1 s Real-time corrections

TTFF10 s (land) Local iono/tropos corrections

1 min (sea) Iono estimation by triple-freq

User Cost < $100 No patent problem, need killer-AP