the value of bs flexibility for qos-aware sleep modes in cellular access networks

14
The Value of BS Flexibility for QoS-Aware Sleep Modes in Cellular Access Networks Gianluca Rizzo HES SO Valais, Switzerland Balaji Rengarajan Accelera, USA Marco Ajmone Marsan Politecnico di Torino and Institute IMDEA Networks

Upload: university-of-applied-sciences-western-switzerland

Post on 22-Jun-2015

257 views

Category:

Technology


2 download

DESCRIPTION

Sleep modes are one of the most widely investigated techniques to decrease energy consumption in cellular access networks. However, the application of such algorithms on present day base stations (BS) equipment poses several challenges. Indeed, currently installed BSs are unfit for frequent on/off cycles. This may lead to increased failure rates and malfunctioning, ultimately resulting in significant CAPEX and OPEX increases for mobile network operators (MNOs). This situation calls for a new generation of flexible BSs endowed with a ”hot standby” mode, which guarantees quick activation times without affecting BS availability. However, when such new BS models become available, MNOs will need to determine a migration path to a new network deployment with progressive replacement of old BS equipment. In this paper, we propose an approach to quantify the benefits achievable by MNOs with the deployment of flexible BSs, in terms of maximum energy efficiency achievable with a given fraction of flexible BSs in their network. More specifically, we propose a method for estimating, for a given percentage of flexible BSs, the energy optimal density of static and flexible BSs, which is sufficient to serve a given set of active users with predefined performance guarantees. We show how to apply our method to derive bounds on the maximum energy savings achievable through sleep modes, as a function of the fraction of flexible BSs. We determine the effect of uncertainty in traffic predictions on sleep modes performance, and we derive indications for optimal network planning strategies.

TRANSCRIPT

Page 1: The Value of BS Flexibility for QoS-Aware Sleep Modes in Cellular Access Networks

The Value of BS Flexibility for QoS-Aware Sleep Modes in Cellular Access Networks

Gianluca Rizzo

HES SO Valais, Switzerland

Balaji Rengarajan

Accelera, USA

Marco Ajmone Marsan

Politecnico di Torino and Institute IMDEA Networks

Page 2: The Value of BS Flexibility for QoS-Aware Sleep Modes in Cellular Access Networks

What is the value of sleep modes for mobile network operators?

• SM essential for achieving network energy proportionality

– theoretical savings of up to 40-60%

• Practical issues:

– Legacy BS: slow dynamics

– SM shorten their average lifetime

– Flexible BS: Switching up speed vs standby energy tradeoff erodes gains

– Uncertainty in traffic demand forecast

• What is the optimal ratio of BS which should be replaced with flexible BS?

Page 3: The Value of BS Flexibility for QoS-Aware Sleep Modes in Cellular Access Networks

System Model Users, BS ~ Homogeneous PPP

• Density is a function of time

• Forecasted user density: Gaussian, with known mean

Time is divided into periods and slots (within a period)

Two types of base stations:

• Static: They can only be on or off;

• Flexible: They also access a low power standby state.

A BS can transition from/to the off state only at the beginning of each period (slow sleep modes)

The transition from (to) the standby state can happen at the beginning of each slot (fast sleep modes)

Period: No off->on transitions

Slots: Flexible BSs can sleep/wake up

Page 4: The Value of BS Flexibility for QoS-Aware Sleep Modes in Cellular Access Networks

A method for the derivation of the energy optimal BS density

• QoS parameter: expected per-bit delay

• The energy consumed by a BS with utilization U is

• The energy optimal BS density is obtained by solving

Page 5: The Value of BS Flexibility for QoS-Aware Sleep Modes in Cellular Access Networks

Derivation of the optimal coordinated sleep modes strategy

• We assume BSs are turned on/off independently – Sleep mode univocally identified by BS density

• At each period: we compute the energy optimal total density of BS satisfying the QoS constraints, with a probability – For the peak user density, this corresponds to the max

total n of BS – All BS in excess are turned off, starting from legacy BSs.

• In each slot: we determine the optimal density of flexible BS, based on the value taken by user density in that slot – All flexible BS in excess are put into standby mode.

Page 6: The Value of BS Flexibility for QoS-Aware Sleep Modes in Cellular Access Networks

Numerical evaluation

• Duration of each period: 3h

– Max consumed power: 1500 W

– Idle power consumption: 60% of max

– Standby power consumption: 30% of max

– .

Page 7: The Value of BS Flexibility for QoS-Aware Sleep Modes in Cellular Access Networks

Flexibility allows reducing the energy costs of uncertainty in traffic forecasts

• Uncertainty affects also the total n of active BS

Page 8: The Value of BS Flexibility for QoS-Aware Sleep Modes in Cellular Access Networks

No prediction error

• Fast sleep modes increase EE by at most 12%

Combining slow and fast sleep modes enables the highest energy

gains

Page 9: The Value of BS Flexibility for QoS-Aware Sleep Modes in Cellular Access Networks

• Need of an accurate evaluation of impact of slow sleep modes on

capex and opex to determine the most efficient solution

Energy cost of

standby mode

Combining slow and fast sleep modes enables the highest

energy gains

Only Flexible BSs

(No BS is allowed to

go off)

Page 10: The Value of BS Flexibility for QoS-Aware Sleep Modes in Cellular Access Networks

• Modest increase in energy efficiency

• Capex/Opex of networks with slow sleep modes increase with

frequency of power on/off events

No need to speed up «slow» sleep modes

Page 11: The Value of BS Flexibility for QoS-Aware Sleep Modes in Cellular Access Networks

No need to speed up «slow» sleep modes

• Majority of BS are turned off once per day: modest impact of on

off costs

10% of idle

power

30% of idle

power

Page 12: The Value of BS Flexibility for QoS-Aware Sleep Modes in Cellular Access Networks

Conclusions

• We provide a tool for estimating maximum achievable energy savings for a given % of flexible BS

– Assuming a given QoS target is always met

• We estimate the cost of uncertainty in traffic predictions

• Our results enable CAPEX/OPEX analysis to determine optimal deployment strategies.

Page 13: The Value of BS Flexibility for QoS-Aware Sleep Modes in Cellular Access Networks

Future work

Evaluate the impact of

• different energy models

• different traffic mix, with different requirements

– Project with predicted evolution of wireless traffic

Capex/Opex study

• (include maintenance costs, projected energy costs, renewables, etc)

Page 14: The Value of BS Flexibility for QoS-Aware Sleep Modes in Cellular Access Networks

Thanks!